DFROUTER - Route estimate methods based on detector data

TeRon Nguyen,
Institute for Transportation, TU München
teron.nguyen@tum.de
Agenda

1. Introduction
2. OD matrix estimation methods
3. Methodology
4. Results
5. Conclusion
Introduction

Traffic demand is actually the key input for transportation system operation, design, analysis and planning.

Various methods have been developed for generating traffic demand:
- Direct estimation
- Model estimation
- Origin Destination matrix estimation (ODME) from traffic counts

→ Many researches have been focusing on developing ODME from traffic counts over the last 30 years
Study aiming

The study aims at analyzing, evaluating and improving the open-source “DFROUTER” tool.

- DFROUTER algorithm has been not described in detail.

- The algorithm will be well compared with other similar approaches.

- Suggestions for the improvement of DFROUTER in order to calculate routes/demand more accurately.
Estimation of OD matrices from traffic counts

Specifically for highway, the problem of determining of OD matrix from traffic counts can be formulated as follow:

\[
\sum_i b_{ij} Q_i = O_j \\
\sum_j b_{ij} = 1
\]

Where:
- \(b_{ij} \) = proportion of trip from \(i \) to \(j \);
- \(Q_i \) = on-ramp counts (origin flows);
- \(O_j \) = off-ramp counts (destination flows).

→ **the under-specification problem**

Sample highway segment

Table:

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>O2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sum</td>
<td>10</td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>
Estimation of OD matrices from traffic counts

Relationship between estimation of O/D flows with traffic counts and traffic assignment [Cascetta, 2001]

Traffic assignment	Un-congested	Congested
OD adjustment | Static | Dynamic

Four cases for OD estimation
Static ODME

Estimate average OD demand for long-time transport planning and design purpose

The link volumes

\[V_a = \sum_{ij} p_{ij} T_{ij} \]

Two optimization functions

\[\min F(T, V) = \gamma_1 F_1(T, \hat{T}) + \gamma_2 F_2(V, \hat{V}) \]

- minimization the distance between estimated OD matrix and the target OD matrix
- minimization the difference between estimated link flows and observed link flows

Dynamic ODME

Consider OD flows with time variation for short-term strategies traffic control and management

Non-DTA-based approaches: intersection or small freeway segment

\[y_j(k) = \sum_{i=1}^{k} \sum_{M} b_{ij}(k) \times q_i(k) \]

DTA-based approaches: large urban or freeway network

Upper level

\[\min F(T, V) = \gamma_1 F_1(T[t], \hat{T}[t]) + \gamma_2 F_2(V_{lj}[t], \hat{V}_{li}) \]

Lower level

\[V_{lj}[t] = assign(T[t]) = \sum_{t=1}^{j} \sum_{od} m_{ij}^{od,t} T[t] + \varepsilon(l,t) \]
SUMO suite and DFROUTER

DFROUTER routing module has been designed specifically to highway scenarios based on the idea that most highways are well equipped with induction loops, measuring each of the highways’ entering and leaving flows.

From this information regarding vehicle types, flows and speeds DFROUTER is able to rebuild vehicle amounts and routes.

The initial DFROUTER was not a major work, but rather a tool in a larger system for calibration the microscopic simulation scenarios.

→ adding and removing vehicles to / from the simulation at the measurement points so that they match the real-world counts → need routes
Methodology

The research methods focus on three key areas:

1. A more formal description of DFROUTER
2. How does the algorithm compare to similar approaches?
3. How could the algorithm be improved in order to estimate routes more accurately?

General framework to analyze DFROUTER tool
Results

1. A more formal description of DFROUTER
 - The algorithm works well whenever the network is fully covered with detectors and generates routes comprising all OD pairs. The algorithm could not detect the missing routes.
 - Missing of in-between detectors does not cause a big estimation problem as long as the source and sink detectors are present.
 - Basically the estimated probabilities are identical to flow proportions at destinations, therefore sink detectors are the decisive elements in flow computation.
1. A more formal description of DFROUTER

Step 1: For all routes starting from source or between detectors to sink detectors → determining split edges (the legs go out of a junction) having detectors on them.

Step 2: Calculating proportion of flow on split edges using detector data → each split edge contains different probability, the others have probability = 1,0 as default.

Step 3: For only routes starting from source detectors → calculating destination distribution by multiplying all flow probabilities on all edges constructing that route.
1. A more formal description of DFROUTER

Pros:

- Simple and fast calculation in any kind of network.
- Requires basically source and sink detector data.

Cons:

- The algorithm could not work successfully in the case of missing detectors, especially detector data on split edges.
- Probability of missing flow is overestimated to 1.0 as default.
- Under-specified problem.

However the absent flow from one detector can be deduced by subtraction of all inflows to all outflows.

→ Additional information like a priority matrix or a specific route assignment is required to compute routes/demand properly.
2. How does the algorithm compare to similar approaches?

DFROUTER generates route/demand data based merely on flow proportions on split edges. This method works similarly to a static OD matrix estimation, but:

- not any constraints between link flows
- not any optimization function
- no congestion effects and travel time between origin and destination

→ \textit{It does not work as an OD estimator}
→ \textit{can not be compared with OD matrix estimation methods such as Maximum Entropy, Minimum Information, Bayesian Inference, Generalised Least Square, etc.}
2. How does the algorithm compare to similar approaches?

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFROUTER</td>
<td>multiplying the available probabilities on edges</td>
</tr>
<tr>
<td>1 The Equally Split OD matrix</td>
<td>equal proportion is assigned to all destinations</td>
</tr>
<tr>
<td>2 Proportional OD matrix</td>
<td>the attraction of any destination is the function of the number of trips that end at that destination</td>
</tr>
<tr>
<td>3 Iterative method</td>
<td>balances both inflows and outflows based on an iterative fitting algorithm</td>
</tr>
<tr>
<td>4 The Gravity model</td>
<td>a concept that probability of very long and very short trips is low in the freeway</td>
</tr>
<tr>
<td>5 The Turning Percentage</td>
<td>is based on turning percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section length</td>
<td>100, 50, 50, 50</td>
</tr>
<tr>
<td>On-ramp counts</td>
<td>280, 180</td>
</tr>
<tr>
<td>Off-ramp counts</td>
<td>70, 120, 270</td>
</tr>
<tr>
<td>Mainline counts</td>
<td>280, 460, 390, 270</td>
</tr>
</tbody>
</table>

Test case
2. How does the algorithm compare to similar approaches?

<table>
<thead>
<tr>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFROUTER</td>
<td></td>
</tr>
<tr>
<td>1 The Equally Split OD matrix</td>
<td>implausible result.</td>
</tr>
<tr>
<td>2 Proportional OD matrix</td>
<td>Identical to DFROUTER</td>
</tr>
<tr>
<td>3 Iterative method</td>
<td>Identical to DFROUTER</td>
</tr>
<tr>
<td>4 The Gravity model</td>
<td>depends heavily on the treatment of external stations</td>
</tr>
<tr>
<td>5 The Turning Percentage</td>
<td>Identical to DFROUTER</td>
</tr>
</tbody>
</table>

![DFROUTER results diagram](image)

DFROUTER results
2. How does the algorithm compare to similar approaches?

The simple proportionality scheme on has the problem of over-predicting the number of very short and very long trips with 20-30% level of error (L.Nihan, 1979).

➔ Due to the drawback of these methods, they are often used to generate starting solution (*seed or target, a priori matrix*) for the OD estimation problem to solve the minimization function of difference between estimated and observed link flows or OD matrix.
3. How could the algorithm be improved to estimate routes more accurately?

Calculating missing data based on existing detector flows.

Step 1: Calculate the flow value on each edge of the highway network using recursion backward or forward.

Step 2: For all routes starting from source or between detectors to sink detectors → determining split edges after a junction.

Step 3: Calculating flow proportion of split edges based on computed flow → each split edge contains different probability.

Step 4: For only routes starting from source detectors → calculating destination distribution by multiplying all flow probabilities on all edges constructing that route.
3. How could the algorithm be improved in to estimate routes more accurately?

<table>
<thead>
<tr>
<th>Case</th>
<th>Recursion forward</th>
<th>Recursion backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e (= \text{afterE})</td>
<td>beforeE (= e)</td>
</tr>
<tr>
<td>2</td>
<td>e (= \text{afterE} - x)</td>
<td>beforeE (= e)</td>
</tr>
<tr>
<td>3</td>
<td>e (= \Sigma \text{afterE})</td>
<td>beforeE (= e)</td>
</tr>
</tbody>
</table>

Cases to consider recursion algorithm
Application in an abstract network

<table>
<thead>
<tr>
<th>Trip</th>
<th>Des.-counts</th>
<th>Des.-Probability</th>
<th>Probability DFROUTER</th>
<th>Improved DFROUTER</th>
<th>Relative Error DFROUTER</th>
<th>Improved DFROUTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>From L1/R1/R2 to R3</td>
<td>900</td>
<td>0.24</td>
<td>1</td>
<td>0.23</td>
<td>3.22</td>
<td>-0.03</td>
</tr>
<tr>
<td>From L1/R1/R2 to R66</td>
<td>500</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
<td>0.06</td>
<td>-0.01</td>
</tr>
<tr>
<td>From L1/R1/R2 to R7</td>
<td>1100</td>
<td>0.29</td>
<td>0.69</td>
<td>0.28</td>
<td>1.38</td>
<td>-0.03</td>
</tr>
<tr>
<td>From L1/R1/R2 to R8</td>
<td>700</td>
<td>0.18</td>
<td>0.69</td>
<td>0.20</td>
<td>2.75</td>
<td>0.09</td>
</tr>
<tr>
<td>From L1/R1/R2 to R7_1</td>
<td>300</td>
<td>0.08</td>
<td>0.69</td>
<td>0.09</td>
<td>7.74</td>
<td>0.14</td>
</tr>
<tr>
<td>From L1/R1/R2 to R8_1</td>
<td>300</td>
<td>0.08</td>
<td>0.69</td>
<td>0.06</td>
<td>7.74</td>
<td>-0.24</td>
</tr>
<tr>
<td>Total</td>
<td>22.90</td>
<td></td>
<td></td>
<td></td>
<td>-0.19</td>
<td></td>
</tr>
</tbody>
</table>

The probabilities generated by the improved DFROUTER are approximate to the destination probabilities and also more accurate compared to that of the original DFROUTER.
Application in a larger network

Nuremberg highway network
Application in a larger network

<table>
<thead>
<tr>
<th>No</th>
<th>Trip</th>
<th>Color</th>
<th>Input</th>
<th>Probability</th>
<th></th>
<th>Relative Error</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DFROUTER</td>
<td>Improved</td>
<td>DFROUTER</td>
<td>Improved</td>
</tr>
<tr>
<td>1</td>
<td>From 1 to 1 left</td>
<td>Yellow</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>From 1 to 2 straight1</td>
<td>Yellow</td>
<td>0.13</td>
<td>0.06</td>
<td>0.18</td>
<td>-0.54</td>
<td>0.38</td>
</tr>
<tr>
<td>3</td>
<td>From 1 to 2 right</td>
<td>Yellow</td>
<td>0.09</td>
<td>0.22</td>
<td>0.04</td>
<td>1.44</td>
<td>-0.56</td>
</tr>
<tr>
<td>4</td>
<td>From 1 to 3</td>
<td>Yellow</td>
<td>0.63</td>
<td>0.24</td>
<td>0.62</td>
<td>-0.62</td>
<td>-0.02</td>
</tr>
<tr>
<td>5</td>
<td>From 1 to 2 straight2</td>
<td>Yellow</td>
<td>1</td>
<td>0.28</td>
<td>0.82</td>
<td>-0.72</td>
<td>-0.18</td>
</tr>
<tr>
<td>6</td>
<td>From 2 to 1</td>
<td>Blue</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>From 3 to 1</td>
<td>Pink</td>
<td>1</td>
<td>0.4</td>
<td>0.86</td>
<td>-0.60</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>-1.03</td>
<td></td>
<td>-0.51</td>
<td></td>
</tr>
</tbody>
</table>

More reliable and accurate results from the improved DFROUTER are achieved.
Conclusion

The study has been conducted to analyze the DFROUTER tool. The algorithm has been compared with other similar approaches. The study has also focused on proposing an improved algorithm, which generates traffic demand/flow probabilities more accurately.

The algorithm of flow computation has operated efficiently up to now.

The comparison of similar methods: none of them provides better output than DFROUTER.

More testing in practical highway scenarios are needed to complete the improved algorithm.

Future research:
- wrong detector data or broken detectors
- demand calculation for urban areas
- take into account time variation.
References

- BERT, E. 2009. Dynamic urban origin-destination matrix estimation methodology. EPFL.
Thank You for your attention and questions!