New Features in SUMO

SUMO User Conference 2016
Sublane Model

- Configurable lateral resolution for car-following and lane-changing
- Continuous positioning in x,y (pos, posLat)
- New lane-changing model to accommodate lateral dynamics
 - maxSpeedLat, minGapLat, latAlignment, lateral encroachment (lcPushy)
- Allow modelling of Asian traffic characteristics (flexible lane use, large proportion of two-wheelers)
- Improved modelling of car/bicycle interactions (overtaking on a single lane)
New Parameters for all lane-changing models

- One vType parameter for each changing reason
 - lcStrategic
 - lcCooperative
 - lcSpeedGain
 - lcKeepRight

- Control the likelihood (or eagerness) to perform lane changing for the respective reason
 - Public busses should be less likely to perform cooperative lane-changing that might put them at a disadvantage. (And should instead expect cooperation from everyone else)
Collision detection and handling

- Collisions are part of SUMO
 - Originally, bugs in the collision-free model (not all of them fixed)
 - Dangerous traffic light configuration
 - Intentionally unsafe car-following parameterization
 - new model for driver errors planned
- TraCI
 - So far, only detected along contiguous lanes
 - New option for detecting collision on junctions
 - Detect invalid positioning of internal junctions
 - New option for configuring collision handling
 - Teleport rear vehicle (current default)
 - Remove both vehicles
 - Warning only
 - Further extensions planned (i.e. vehicles block the road for some time before removal)
TraCl

- New vehicle command `nextTLS` to retrieve upcoming traffic lights
 - Returns variable length list `[(tlsID, tlsLinkIndex, distance, linkState),]`

- Improved coverage of the C++ client library
 - Vehicle add, remove, moveToXY
 - Variable subscriptions
 - Context subscriptions
 - ~90% coverage now (lots of additions already in 0.26.0)
Netedit support for additional network infrastructure (still in branch)

- Load, define, configure and save the following objects
 - Detectors (E1, E2, E3)
 - Rerouters
 - Stopping places (busStop, containerStop, chargingStation)
 - Calibrators
 - Variable Speed signs
 - RouteProbe detectors
Passing Blockage with Lane Changes
SUMO in Production Logistics

- Respecting „real“ dynamics in virtual inhouse logistic
- Coupling SUMO to existing material flow simulation
- Respecting oncoming traffic and lane changes
Passing Blockage with Lane Changes
SUMO in Production Logistics

- Using existing coupling of Plant Simulation and Malaga
MESO

- Uses the same inputs as SUMO
- Running time of microsim ~15s (avg vehicle TimeLoss ~95s)
- Run scenario again with option --mesosim ~1s
 - MESO is fast!
 - TimeLoss < 1? Add option --meso-junction-control
 - -> TimeLoss 50.0.
 - MESO does not model vehicle acceleration, impact on urban dynamics
Intermodal Routing

• Intermodal Trip chains

• Input
 • Network with bus stops
 • Transfer times
 • Timetables
 • Persons and their daily plans
 • Availability of modes

• Output
 • Fastest intermodal route
 • Respecting transfer times
 • To be run directly in the Simulation

<flow id="bus" from = "beg" to = "end"
line="bus" begin="0" end="1000"
period="300">
 <stop busStop="beg_0" until="10"/>
 <stop busStop="left_0" until="20"/>
 <stop busStop="end_0" until="30"/>
</flow>

<person id="p0" depart="0">
 <personTrip from="beg" to="end"
 modes="public"/>
</person>

<person id="p0" depart="0.00">
 <walk edges="beg" busStop="beg_0"/>
 <ride busStop="end_0" lines="bus"/>
 <walk edges="end"/>
</person>
Intermodal Routing

Outlook

• Bicycle traffic
 • Taking it with you in car and public transport
 • Transfer at defined stations
• Integration into the running simulation
 • Current travel times
 • Intermodal rerouting
• Import
 • VISUM
 • OSM
 • GTFS