LCOV - code coverage report
Current view: top level - src/microsim/cfmodels - MSCFModel_CACC.h (source / functions) Coverage Total Hit
Test: lcov.info Lines: 100.0 % 17 17
Test Date: 2024-12-21 15:45:41 Functions: 100.0 % 4 4

            Line data    Source code
       1              : /****************************************************************************/
       2              : // Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
       3              : // Copyright (C) 2001-2024 German Aerospace Center (DLR) and others.
       4              : // This program and the accompanying materials are made available under the
       5              : // terms of the Eclipse Public License 2.0 which is available at
       6              : // https://www.eclipse.org/legal/epl-2.0/
       7              : // This Source Code may also be made available under the following Secondary
       8              : // Licenses when the conditions for such availability set forth in the Eclipse
       9              : // Public License 2.0 are satisfied: GNU General Public License, version 2
      10              : // or later which is available at
      11              : // https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
      12              : // SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
      13              : /****************************************************************************/
      14              : /// @file    MSCFModel_CACC.h
      15              : /// @author  Kallirroi Porfyri
      16              : /// @date    Nov 2018
      17              : ///
      18              : // CACC car-following model based on [1], [2].
      19              : // [1] Milanes, V., and S. E. Shladover. Handling Cut-In Vehicles in Strings
      20              : //    of Cooperative Adaptive Cruise Control Vehicles. Journal of Intelligent
      21              : //     Transportation Systems, Vol. 20, No. 2, 2015, pp. 178-191.
      22              : // [2] Xiao, L., M. Wang and B. van Arem. Realistic Car-Following Models for
      23              : //    Microscopic Simulation of Adaptive and Cooperative Adaptive Cruise
      24              : //     Control Vehicles. Transportation Research Record: Journal of the
      25              : //     Transportation Research Board, No. 2623, 2017. (DOI: 10.3141/2623-01).
      26              : /****************************************************************************/
      27              : #pragma once
      28              : #include <config.h>
      29              : 
      30              : #include "MSCFModel.h"
      31              : #include "MSCFModel_ACC.h"
      32              : #include <utils/xml/SUMOXMLDefinitions.h>
      33              : 
      34              : // ===========================================================================
      35              : // class declarations
      36              : // ===========================================================================
      37              : class MSVehicle;
      38              : class MSVehicleType;
      39              : 
      40              : // ===========================================================================
      41              : // class definitions
      42              : // ===========================================================================
      43              : /** @class MSCFModel_CACC
      44              : * @brief The CACC car-following model
      45              : * @see MSCFModel
      46              : */
      47              : class MSCFModel_CACC : public MSCFModel {
      48              : public:
      49              :     /** @brief Constructor
      50              :      *  @param[in] vtype the type for which this model is built and also the parameter object to configure this model
      51              :      */
      52              : 
      53              :     MSCFModel_CACC(const MSVehicleType* vtype);
      54              : 
      55              :     /// @brief Destructor
      56              :     ~MSCFModel_CACC();
      57              : 
      58              : 
      59              :     /// @name Implementations of the MSCFModel interface
      60              :     /// @{
      61              : 
      62              :     /** @brief Computes the vehicle's safe speed without a leader
      63              :      *
      64              :      * Returns the velocity of the vehicle in dependence to the length of the free street and the target
      65              :      *  velocity at the end of the free range. If onInsertion is true, the vehicle may still brake
      66              :      *  before the next movement.
      67              :      * XXX: Currently only needed to (re-)set "caccVehicleMode" parameter to default value.
      68              :      *
      69              :      * @param[in] veh The vehicle (EGO)
      70              :      * @param[in] speed The vehicle's speed
      71              :      * @param[in] seen The look ahead distance
      72              :      * @param[in] maxSpeed The maximum allowed speed
      73              :      * @param[in] onInsertion whether speed at insertion is asked for
      74              :      * @return EGO's safe speed
      75              :      */
      76              :     double freeSpeed(const MSVehicle* const veh, double speed, double seen,
      77              :                      double maxSpeed, const bool onInsertion = false, const CalcReason usage = CalcReason::CURRENT) const;
      78              : 
      79              :     /** @brief Computes the vehicle's safe speed (no dawdling)
      80              :     * @param[in] veh The vehicle (EGO)
      81              :     * @param[in] speed The vehicle's speed
      82              :     * @param[in] gap2pred The (net) distance to the LEADER
      83              :     * @param[in] predSpeed The speed of LEADER
      84              :     * @return EGO's safe speed
      85              :     * @see MSCFModel::ffeV
      86              :     */
      87              :     double followSpeed(const MSVehicle* const veh, double speed, double gap2pred, double predSpeed,
      88              :                        double predMaxDecel, const MSVehicle* const pred = 0, const CalcReason usage = CalcReason::CURRENT) const;
      89              : 
      90              : 
      91              :     /** @brief Computes the vehicle's safe speed for approaching a non-moving obstacle (no dawdling)
      92              :     * @param[in] veh The vehicle (EGO)
      93              :     * @param[in] gap2pred The (net) distance to the obstacle
      94              :     * @return EGO's safe speed for approaching a non-moving obstacle
      95              :     * @see MSCFModel::ffeS
      96              :     * @todo generic Interface, models can call for the values they need
      97              :     */
      98              :     double stopSpeed(const MSVehicle* const veh, const double speed, double gap2pred, double decel, const CalcReason usage = CalcReason::CURRENT) const;
      99              : 
     100              : 
     101              :     /** @brief Returns the a gap such that the gap mode acceleration of the follower is zero
     102              :      * @param[in] veh The vehicle itself, for obtaining other values
     103              :      * @param[in] pred The leader vehicle, for obtaining other values
     104              :      * @param[in] speed EGO's speed
     105              :      * @param[in] leaderSpeed LEADER's speed
     106              :      * @param[in] leaderMaxDecel LEADER's max. deceleration rate
     107              :      */
     108              :     double getSecureGap(const MSVehicle* const veh, const MSVehicle* const pred, const double speed, const double leaderSpeed, const double leaderMaxDecel) const;
     109              : 
     110              :     /** @brief Computes the vehicle's acceptable speed at insertion
     111              :      * @param[in] veh The vehicle (EGO)
     112              :      * @param[in] speed The vehicle's speed
     113              :      * @param[in] gap2pred The (net) distance to the LEADER
     114              :      * @param[in] predSpeed The speed of LEADER
     115              :      * @return EGO's safe speed
     116              :      */
     117              :     double insertionFollowSpeed(const MSVehicle* const v, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle* const pred = 0) const;
     118              : 
     119              : 
     120              :     /** @brief Returns the maximum gap at which an interaction between both vehicles occurs
     121              :     *
     122              :     * "interaction" means that the LEADER influences EGO's speed.
     123              :     * @param[in] veh The EGO vehicle
     124              :     * @param[in] vL LEADER's speed
     125              :     * @return The interaction gap
     126              :     * @todo evaluate signature
     127              :     * @see MSCFModel::interactionGap
     128              :     */
     129              :     double interactionGap(const MSVehicle* const, double vL) const;
     130              : 
     131              :     /** @brief Sets a new value for desired headway [s]
     132              :      * @param[in] headwayTime The new desired headway (in s)
     133              :      */
     134          912 :     void setHeadwayTime(double headwayTime) {
     135          912 :         myHeadwayTime = headwayTime;
     136          912 :         myHeadwayTimeACC = headwayTime;
     137              :         acc_CFM.setHeadwayTime(headwayTime);
     138          912 :     }
     139              : 
     140              :     /**
     141              :      * @brief try to get the given parameter for this carFollowingModel
     142              :      *
     143              :      * @param[in] veh the vehicle from which the parameter must be retrieved
     144              :      * @param[in] key the key of the parameter
     145              :      * @return the value of the requested parameter
     146              :      */
     147              :     virtual std::string getParameter(const MSVehicle* veh, const std::string& key) const;
     148              : 
     149              : 
     150              :     /**
     151              :      * @brief try to set the given parameter for this carFollowingModel
     152              :      *
     153              :      * @param[in] veh the vehicle for which the parameter must be set
     154              :      * @param[in] key the key of the parameter
     155              :      * @param[in] value the value to be set for the given parameter
     156              :      */
     157              :     virtual void setParameter(MSVehicle* veh, const std::string& key, const std::string& value) const;
     158              : 
     159              : 
     160              :     /** @brief Returns the model's name
     161              :     * @return The model's name
     162              :     * @see MSCFModel::getModelName
     163              :     */
     164     34500586 :     int getModelID() const {
     165     34500586 :         return SUMO_TAG_CF_CACC;
     166              :     }
     167              : 
     168              :     /** @brief Returns the maximum velocity the CF-model wants to achieve in the next step
     169              :      * @param[in] maxSpeed The maximum achievable speed in the next step
     170              :      * @param[in] maxSpeedLane The maximum speed the vehicle wants to drive on this lane (Speedlimit*SpeedFactor)
     171              :      */
     172      4057291 :     double maximumLaneSpeedCF(const MSVehicle* const veh, double maxSpeed, double maxSpeedLane) const {
     173      4057291 :         double result = MIN2(maxSpeed, maxSpeedLane);
     174      4057291 :         if (myApplyDriverstate) {
     175        22481 :             applyOwnSpeedPerceptionError(veh, result);
     176              :         }
     177      4057291 :         return result;
     178              :     }
     179              :     /// @}
     180              : 
     181              : 
     182              : 
     183              :     /** @brief Duplicates the car-following model
     184              :     * @param[in] vtype The vehicle type this model belongs to (1:1)
     185              :     * @return A duplicate of this car-following model
     186              :     */
     187              :     MSCFModel* duplicate(const MSVehicleType* vtype) const;
     188              : 
     189         7119 :     virtual MSCFModel::VehicleVariables* createVehicleVariables() const {
     190         7119 :         CACCVehicleVariables* ret = new CACCVehicleVariables();
     191         7119 :         ret->ACC_ControlMode = 0;
     192              :         ret->CACC_ControlMode = 0;
     193              :         ret->CACC_CommunicationsOverrideMode = CACC_NO_OVERRIDE;
     194         7119 :         ret->lastUpdateTime = 0;
     195         7119 :         return ret;
     196              :     }
     197              : 
     198              : 
     199              : private:
     200              :     enum CommunicationsOverrideMode {
     201              :         CACC_NO_OVERRIDE = 0,
     202              :         CACC_MODE_NO_LEADER = 1,
     203              :         CACC_MODE_LEADER_NO_CAV = 2,
     204              :         CACC_MODE_LEADER_CAV = 3
     205              :     };
     206              : 
     207              :     static std::map<std::string, CommunicationsOverrideMode> CommunicationsOverrideModeMap;
     208              : 
     209              :     /// @brief Vehicle mode (default is CACC)
     210              :     /// Switch to ACC mode if CACC_ControlMode = 1 (gap control mode) _and_ leader's CFModel != CACC
     211              :     enum VehicleMode {
     212              :         CC_MODE = 0,
     213              :         ACC_MODE,
     214              :         CACC_GAP_MODE,
     215              :         CACC_GAP_CLOSING_MODE,
     216              :         CACC_COLLISION_AVOIDANCE_MODE
     217              :     };
     218              : 
     219              :     /// @brief Vehicle mode name map
     220              :     static std::map<VehicleMode, std::string> VehicleModeNames;
     221              : 
     222              :     class CACCVehicleVariables : public MSCFModel_ACC::ACCVehicleVariables {
     223              :     public:
     224         7119 :         CACCVehicleVariables() : CACC_ControlMode(0), CACC_CommunicationsOverrideMode(CACC_NO_OVERRIDE) {}
     225              :         /// @brief The vehicle's CACC  precious time step gap error
     226              :         int    CACC_ControlMode;
     227              :         CommunicationsOverrideMode CACC_CommunicationsOverrideMode;
     228              :     };
     229              : 
     230              : private:
     231              :     double _v(const MSVehicle* const veh, const MSVehicle* const pred, const double gap2pred, const double mySpeed,
     232              :               const double predSpeed, const double desSpeed, const bool respectMinGap, const CalcReason usage = CalcReason::CURRENT) const;
     233              : 
     234              :     double speedSpeedControl(const double speed, double vErr, VehicleMode& vehMode) const;
     235              :     double speedGapControl(const MSVehicle* const veh, const double gap2pred,
     236              :                            const double speed, const double predSpeed, const double desSpeed, double vErr,
     237              :                            const MSVehicle* const pred, VehicleMode& vehMode) const;
     238              : 
     239              : private:
     240              :     MSCFModel_ACC acc_CFM;
     241              :     double mySpeedControlGain;
     242              :     double myGapClosingControlGainGap;
     243              :     double myGapClosingControlGainGapDot;
     244              :     double myGapControlGainGap;
     245              :     double myGapControlGainGapDot;
     246              :     double myCollisionAvoidanceGainGap;
     247              :     double myCollisionAvoidanceGainGapDot;
     248              :     double myHeadwayTimeACC;
     249              :     double myApplyDriverstate;
     250              :     double myEmergencyThreshold;
     251              :     double mySpeedControlMinGap;
     252              : 
     253              : private:
     254              :     /// @brief Invalidated assignment operator
     255              :     MSCFModel_CACC& operator=(const MSCFModel_CACC& s);
     256              : };
        

Generated by: LCOV version 2.0-1