Line data Source code
1 : /****************************************************************************/
2 : // Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
3 : // Copyright (C) 2001-2024 German Aerospace Center (DLR) and others.
4 : // This program and the accompanying materials are made available under the
5 : // terms of the Eclipse Public License 2.0 which is available at
6 : // https://www.eclipse.org/legal/epl-2.0/
7 : // This Source Code may also be made available under the following Secondary
8 : // Licenses when the conditions for such availability set forth in the Eclipse
9 : // Public License 2.0 are satisfied: GNU General Public License, version 2
10 : // or later which is available at
11 : // https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
12 : // SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
13 : /****************************************************************************/
14 : /// @file NBContHelper.h
15 : /// @author Daniel Krajzewicz
16 : /// @author Jakob Erdmann
17 : /// @author Michael Behrisch
18 : /// @date Mon, 17 Dec 2001
19 : ///
20 : // Some methods for traversing lists of edges
21 : /****************************************************************************/
22 : #pragma once
23 : #include <config.h>
24 :
25 : #include <vector>
26 : #include <iostream>
27 : #include <cmath>
28 : #include <algorithm>
29 : #include <cassert>
30 : #include "NBHelpers.h"
31 : #include "NBCont.h"
32 : #include "NBEdge.h"
33 : #include "NBNode.h"
34 : #include <utils/common/StdDefs.h>
35 : #include <utils/geom/GeomHelper.h>
36 :
37 :
38 : // ===========================================================================
39 : // class definitions
40 : // ===========================================================================
41 : /**
42 : * NBContHelper
43 : * Some static helper methods that traverse a sorted list of edges in both
44 : * directions
45 : */
46 : class NBContHelper {
47 : public:
48 : /** Moves the given iterator clockwise within the given container
49 : of edges sorted clockwise */
50 : static void nextCW(const EdgeVector& edges,
51 : EdgeVector::const_iterator& from);
52 :
53 : /** Moves the given iterator counter clockwise within the given container
54 : of edges sorted clockwise */
55 : static void nextCCW(const EdgeVector& edges,
56 : EdgeVector::const_iterator& from);
57 :
58 : static double getMaxSpeed(const EdgeVector& edges);
59 :
60 : static double getMinSpeed(const EdgeVector& edges);
61 :
62 : /** writes the vector of bools to the given stream */
63 : static std::ostream& out(std::ostream& os, const std::vector<bool>& v);
64 :
65 :
66 : /**
67 : * relative_outgoing_edge_sorter
68 : * Class to sort edges by their angle in relation to the node the
69 : * edge using this class is incoming into. This is normally done to
70 : * sort edges outgoing from the node the using edge is incoming in
71 : * by their angle in relation to the using edge's angle (this angle
72 : * is the reference angle).
73 : */
74 : class relative_outgoing_edge_sorter {
75 : public:
76 : /// constructor
77 119790 : explicit relative_outgoing_edge_sorter(NBEdge* e) : myAngle(e->getEndAngle()) {}
78 : /// constructor
79 : explicit relative_outgoing_edge_sorter(double angle) : myAngle(angle) {}
80 :
81 : public:
82 : /// comparing operation
83 : bool operator()(const NBEdge* e1, const NBEdge* e2) const;
84 :
85 : private:
86 : /// @brief the reference angle to compare edges agains
87 : double myAngle;
88 : };
89 :
90 :
91 : /**
92 : * relative_incoming_edge_sorter
93 : * Class to sort edges by their angle in relation to an outgoing edge.
94 : * This is normally done to sort edges incoming at the starting node of this edge
95 : * by their angle in relation to the using edge's angle (this angle
96 : * is the reference angle).
97 : */
98 : class relative_incoming_edge_sorter {
99 : public:
100 : /// constructor
101 3018 : explicit relative_incoming_edge_sorter(NBEdge* e) : myAngle(e->getStartAngle()) {}
102 : /// constructor
103 : explicit relative_incoming_edge_sorter(double angle) : myAngle(angle) {}
104 :
105 : public:
106 : /// comparing operation
107 : bool operator()(const NBEdge* e1, const NBEdge* e2) const;
108 :
109 : private:
110 : /// @brief the reference angle to compare edges agains
111 : double myAngle;
112 : };
113 :
114 :
115 : /**
116 : * edge_by_priority_sorter
117 : * Class to sort edges by their priority
118 : */
119 : class edge_by_priority_sorter {
120 : public:
121 : /// comparing operator
122 151039 : int operator()(NBEdge* e1, NBEdge* e2) const {
123 151039 : if (e1->getPriority() != e2->getPriority()) {
124 34715 : return e1->getPriority() > e2->getPriority();
125 : }
126 116324 : if (e1->getSpeed() != e2->getSpeed()) {
127 8802 : return e1->getSpeed() > e2->getSpeed();
128 : }
129 107522 : return e1->getNumLanes() > e2->getNumLanes();
130 : }
131 : };
132 :
133 : // ---------------------------
134 :
135 : /**
136 : * @class edge_opposite_direction_sorter
137 : * @brief Class to sort edges by their angle in relation to the given edge
138 : *
139 : * The resulting sorted list has the edge in the most opposite direction
140 : * to the given edge as her first entry.
141 : */
142 : class edge_opposite_direction_sorter {
143 : public:
144 : /** @brief Constructor
145 : * @param[in] e The edge to which the sorting relates
146 : * @param[in] n The node to consider
147 : */
148 113181 : explicit edge_opposite_direction_sorter(const NBEdge* const e, const NBNode* const n, bool regardPriority) :
149 113181 : myNode(n),
150 113181 : myEdge(e),
151 113181 : myRegardPriority(regardPriority) {
152 113181 : myAngle = getEdgeAngleAt(e, n);
153 : }
154 :
155 : /** @brief Comparing operation
156 : * @param[in] e1 The first edge to compare
157 : * @param[in] e2 The second edge to compare
158 : * @return Which edge is more opposite to the related one
159 : */
160 347519 : int operator()(NBEdge* e1, NBEdge* e2) const {
161 347519 : if (!myRegardPriority || e1->getPriority() == e2->getPriority() || e1 == myEdge || e2 == myEdge) {
162 313493 : return getDiff(e1) > getDiff(e2);
163 : } else {
164 34026 : return e1->getPriority() > e2->getPriority();
165 : }
166 : }
167 :
168 : protected:
169 : /** @brief Computes the angle difference between the related and the given edge
170 : * @param[in] e The edge to compare the angle difference of
171 : * @return The angle difference
172 : */
173 626986 : double getDiff(const NBEdge* const e) const {
174 626986 : return fabs(GeomHelper::angleDiff(getEdgeAngleAt(e, myNode), myAngle));
175 : }
176 :
177 : /** @brief Returns the given edge's angle at the given node
178 : *
179 : * Please note that we always consider the "outgoing direction".
180 : * @param[in] e The edge to which the sorting relates
181 : * @param[in] n The node to consider
182 : */
183 740167 : double getEdgeAngleAt(const NBEdge* const e, const NBNode* const n) const {
184 740167 : if (e->getFromNode() == n) {
185 265976 : return e->getGeometry().angleAt2D(0);
186 : } else {
187 474191 : return e->getGeometry()[-1].angleTo2D(e->getGeometry()[-2]);
188 : }
189 : }
190 :
191 : private:
192 :
193 : /// @brief The related node
194 : const NBNode* const myNode;
195 :
196 : /// @brief the reference edge
197 : const NBEdge* const myEdge;
198 :
199 : /// @brief The angle of the related edge at the given node
200 : double myAngle;
201 :
202 : /// @brief Whether edge priority may override closer angles
203 : bool myRegardPriority;
204 :
205 : };
206 :
207 : // ---------------------------
208 :
209 : /**
210 : * edge_similar_direction_sorter
211 : * Class to sort edges by their angle in relation to the given edge
212 : * The resulting list should have the edge in the most similar direction
213 : * to the given edge as its first entry
214 : */
215 : class edge_similar_direction_sorter {
216 : public:
217 : /// constructor
218 45930 : explicit edge_similar_direction_sorter(const NBEdge* const e, bool outgoing = true) :
219 45930 : myCompareOutgoing(outgoing),
220 87297 : myAngle(outgoing ? e->getShapeEndAngle() : e->getShapeStartAngle())
221 : {}
222 :
223 : /// comparing operation
224 93924 : int operator()(const NBEdge* e1, const NBEdge* e2) const {
225 93924 : const double d1 = angleDiff(myCompareOutgoing ? e1->getShapeStartAngle() : e1->getShapeEndAngle(), myAngle);
226 93924 : const double d2 = angleDiff(myCompareOutgoing ? e2->getShapeStartAngle() : e2->getShapeEndAngle(), myAngle);
227 93924 : if (fabs(fabs(d1) - fabs(d2)) < NUMERICAL_EPS) {
228 6229 : if (fabs(d1 - d2) > NUMERICAL_EPS) {
229 6077 : return d1 < d2;
230 : } else {
231 152 : return e1->getNumericalID() < e2->getNumericalID();
232 : }
233 : }
234 87695 : return fabs(d1) < fabs(d2);
235 : }
236 :
237 : private:
238 : double angleDiff(const double angle1, const double angle2) const {
239 187848 : double d = angle2 - angle1;
240 199328 : while (d >= 180.) {
241 11480 : d -= 360.;
242 : }
243 206498 : while (d < -180.) {
244 18650 : d += 360.;
245 : }
246 : return d;
247 : }
248 :
249 :
250 : private:
251 : /// the angle to find the edge with the opposite direction
252 : bool myCompareOutgoing;
253 : double myAngle;
254 : };
255 :
256 :
257 : /**
258 : * @class node_with_incoming_finder
259 : */
260 : class node_with_incoming_finder {
261 : public:
262 : /// constructor
263 : node_with_incoming_finder(const NBEdge* const e);
264 :
265 : bool operator()(const NBNode* const n) const;
266 :
267 : private:
268 : const NBEdge* const myEdge;
269 :
270 : };
271 :
272 :
273 : /**
274 : * @class node_with_outgoing_finder
275 : */
276 : class node_with_outgoing_finder {
277 : public:
278 : /// constructor
279 : node_with_outgoing_finder(const NBEdge* const e);
280 :
281 : bool operator()(const NBNode* const n) const;
282 :
283 : private:
284 : const NBEdge* const myEdge;
285 :
286 : };
287 :
288 :
289 :
290 :
291 : class edge_with_destination_finder {
292 : public:
293 : /// constructor
294 : edge_with_destination_finder(NBNode* dest);
295 :
296 : bool operator()(NBEdge* e) const;
297 :
298 : private:
299 : NBNode* myDestinationNode;
300 :
301 : private:
302 : /// @brief invalidated assignment operator
303 : edge_with_destination_finder& operator=(const edge_with_destination_finder& s);
304 :
305 : };
306 :
307 :
308 : /** Tries to return the first edge within the given container which
309 : connects both given nodes */
310 : static NBEdge* findConnectingEdge(const EdgeVector& edges,
311 : NBNode* from, NBNode* to);
312 :
313 :
314 : /** returns the maximum speed allowed on the edges */
315 : static double maxSpeed(const EdgeVector& ev);
316 :
317 : /**
318 : * same_connection_edge_sorter
319 : * This class is used to sort edges which connect the same nodes.
320 : * The edges are sorted in dependence to edges connecting them. The
321 : * rightmost will be the first in the list; the leftmost the last one.
322 : */
323 : class same_connection_edge_sorter {
324 : public:
325 : /// constructor
326 : explicit same_connection_edge_sorter() { }
327 :
328 : /// comparing operation
329 22 : int operator()(NBEdge* e1, NBEdge* e2) const {
330 22 : std::pair<double, double> mm1 = getMinMaxRelAngles(e1);
331 22 : std::pair<double, double> mm2 = getMinMaxRelAngles(e2);
332 22 : if (mm1.first == mm2.first && mm1.second == mm2.second) {
333 : // ok, let's simply sort them arbitrarily
334 14 : return e1->getID() < e2->getID();
335 : }
336 :
337 : assert(
338 : (mm1.first <= mm2.first && mm1.second <= mm2.second)
339 : ||
340 : (mm1.first >= mm2.first && mm1.second >= mm2.second));
341 14 : return (mm1.first >= mm2.first && mm1.second >= mm2.second);
342 : }
343 :
344 : /**
345 : *
346 : */
347 44 : std::pair<double, double> getMinMaxRelAngles(NBEdge* e) const {
348 : double min = 360;
349 : double max = 360;
350 44 : const EdgeVector& ev = e->getConnectedEdges();
351 110 : for (EdgeVector::const_iterator i = ev.begin(); i != ev.end(); ++i) {
352 66 : double angle = NBHelpers::normRelAngle(
353 : e->getTotalAngle(), (*i)->getTotalAngle());
354 66 : if (min == 360 || min > angle) {
355 : min = angle;
356 : }
357 66 : if (max == 360 || max < angle) {
358 : max = angle;
359 : }
360 : }
361 44 : return std::pair<double, double>(min, max);
362 44 : }
363 : };
364 :
365 :
366 : friend std::ostream& operator<<(std::ostream& os, const EdgeVector& ev);
367 :
368 : class opposite_finder {
369 : public:
370 : /// constructor
371 : opposite_finder(NBEdge* edge)
372 22467 : : myReferenceEdge(edge) { }
373 :
374 36694 : bool operator()(NBEdge* e) const {
375 57679 : return e->isTurningDirectionAt(myReferenceEdge) ||
376 20985 : myReferenceEdge->isTurningDirectionAt(e);
377 : }
378 :
379 : private:
380 : NBEdge* myReferenceEdge;
381 :
382 : };
383 :
384 : /**
385 : * edge_by_angle_to_nodeShapeCentroid_sorter
386 : * Class to sort edges by their angle in relation to the node shape
387 : * */
388 : class edge_by_angle_to_nodeShapeCentroid_sorter {
389 : public:
390 : /// constructor
391 : explicit edge_by_angle_to_nodeShapeCentroid_sorter(const NBNode* n) : myNode(n) {}
392 :
393 : public:
394 : /// comparing operation
395 : bool operator()(const NBEdge* e1, const NBEdge* e2) const;
396 :
397 : private:
398 : /// the edge to compute the relative angle of
399 : const NBNode* myNode;
400 : };
401 :
402 : };
|