LCOV - code coverage report
Current view: top level - src/netbuild - NBNodeShapeComputer.cpp (source / functions) Coverage Total Hit
Test: lcov.info Lines: 91.9 % 455 418
Test Date: 2024-12-21 15:45:41 Functions: 100.0 % 18 18

            Line data    Source code
       1              : /****************************************************************************/
       2              : // Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
       3              : // Copyright (C) 2001-2024 German Aerospace Center (DLR) and others.
       4              : // This program and the accompanying materials are made available under the
       5              : // terms of the Eclipse Public License 2.0 which is available at
       6              : // https://www.eclipse.org/legal/epl-2.0/
       7              : // This Source Code may also be made available under the following Secondary
       8              : // Licenses when the conditions for such availability set forth in the Eclipse
       9              : // Public License 2.0 are satisfied: GNU General Public License, version 2
      10              : // or later which is available at
      11              : // https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
      12              : // SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
      13              : /****************************************************************************/
      14              : /// @file    NBNodeShapeComputer.cpp
      15              : /// @author  Daniel Krajzewicz
      16              : /// @author  Jakob Erdmann
      17              : /// @author  Michael Behrisch
      18              : /// @date    Sept 2002
      19              : ///
      20              : // This class computes shapes of junctions
      21              : /****************************************************************************/
      22              : #include <config.h>
      23              : 
      24              : #include <algorithm>
      25              : #include <iterator>
      26              : #include <utils/geom/PositionVector.h>
      27              : #include <utils/options/OptionsCont.h>
      28              : #include <utils/geom/GeomHelper.h>
      29              : #include <utils/common/StdDefs.h>
      30              : #include <utils/common/MsgHandler.h>
      31              : #include <utils/common/UtilExceptions.h>
      32              : #include <utils/common/ToString.h>
      33              : #include <utils/iodevices/OutputDevice.h>
      34              : #include "NBNode.h"
      35              : #include "NBAlgorithms.h"
      36              : #include "NBNodeShapeComputer.h"
      37              : 
      38              : //#define DEBUG_NODE_SHAPE
      39              : //#define DEBUG_SMOOTH_CORNERS
      40              : //#define DEBUG_RADIUS
      41              : #define DEBUGCOND (myNode.getID() == "C")
      42              : 
      43              : 
      44              : #define EXT2 10.0
      45              : 
      46              : // foot and bicycle paths as well as pure service roads should not get large junctions
      47              : // railways also do have have junctions with sharp turns so can be excluded
      48              : const SVCPermissions NBNodeShapeComputer::SVC_LARGE_TURN(
      49              :     SVCAll & ~(SVC_BICYCLE | SVC_PEDESTRIAN | SVC_DELIVERY | SVC_RAIL_CLASSES));
      50              : 
      51              : // ===========================================================================
      52              : // method definitions
      53              : // ===========================================================================
      54        71563 : NBNodeShapeComputer::NBNodeShapeComputer(const NBNode& node) :
      55        71563 :     myNode(node),
      56        71563 :     myRadius(node.getRadius()) {
      57        71563 :     if (node.getEdges().size() > 4 && !NBNodeTypeComputer::isRailwayNode(&node)) {
      58        17823 :         EXT = 50;
      59              :     } else {
      60        53740 :         EXT = 100;
      61              :     }
      62        71563 : }
      63              : 
      64              : 
      65        71563 : NBNodeShapeComputer::~NBNodeShapeComputer() {}
      66              : 
      67              : 
      68              : const PositionVector
      69        71563 : NBNodeShapeComputer::compute(bool forceSmall) {
      70              : #ifdef DEBUG_NODE_SHAPE
      71              :     if (DEBUGCOND) {
      72              :         // annotate edges edges to make their ordering visible
      73              :         int i = 0;
      74              :         for (NBEdge* e : myNode.getEdges()) {
      75              :             e->setStreetName(toString(i));
      76              :             i++;
      77              :         }
      78              :     }
      79              : #endif
      80              :     // check whether the node is a dead end node or a node where only turning is possible
      81              :     //  in this case, we will use "computeNodeShapeSmall"
      82        71563 :     if (myNode.getEdges().size() == 1 || forceSmall) {
      83         9454 :         return computeNodeShapeSmall();
      84              :     }
      85        62109 :     if (myNode.getEdges().size() == 2 && myNode.getIncomingEdges().size() == 1) {
      86        20085 :         if (myNode.getIncomingEdges()[0]->isTurningDirectionAt(myNode.getOutgoingEdges()[0])) {
      87         9898 :             return computeNodeShapeSmall();
      88              :         }
      89              :     }
      90        52211 :     const bool geometryLike = myNode.isSimpleContinuation(true, true);
      91        52211 :     const PositionVector& ret = computeNodeShapeDefault(geometryLike);
      92              :     // fail fall-back: use "computeNodeShapeSmall"
      93        52211 :     if (ret.size() < 3) {
      94           84 :         return computeNodeShapeSmall();
      95              :     }
      96              :     return ret;
      97        52211 : }
      98              : 
      99              : 
     100              : void
     101        68749 : NBNodeShapeComputer::computeSameEnd(PositionVector& l1, PositionVector& l2) {
     102              :     assert(l1[0].distanceTo2D(l1[1]) >= EXT);
     103              :     assert(l2[0].distanceTo2D(l2[1]) >= EXT);
     104        68749 :     PositionVector tmp;
     105        68749 :     tmp.push_back(PositionVector::positionAtOffset2D(l1[0], l1[1], EXT));
     106        68749 :     tmp.push_back(l1[1]);
     107        68749 :     tmp[1].sub(tmp[0]);
     108        68749 :     tmp[1].set(-tmp[1].y(), tmp[1].x());
     109        68749 :     tmp[1].add(tmp[0]);
     110        68749 :     tmp.extrapolate2D(EXT);
     111        68749 :     if (l2.intersects(tmp[0], tmp[1])) {
     112        68698 :         const double offset = l2.intersectsAtLengths2D(tmp)[0];
     113        68698 :         if (l2.length2D() - offset > POSITION_EPS) {
     114        68698 :             PositionVector tl2 = l2.getSubpart2D(offset, l2.length2D());
     115        68698 :             tl2.extrapolate2D(EXT);
     116        68698 :             l2.erase(l2.begin(), l2.begin() + (l2.size() - tl2.size()));
     117        68698 :             l2[0] = tl2[0];
     118        68698 :         }
     119              :     }
     120        68749 : }
     121              : 
     122              : 
     123              : const PositionVector
     124        52211 : NBNodeShapeComputer::computeNodeShapeDefault(bool simpleContinuation) {
     125              :     // if we have less than two edges, we can not compute the node's shape this way
     126        52211 :     if (myNode.getEdges().size() < 2) {
     127            0 :         return PositionVector();
     128              :     }
     129              :     // magic values
     130        52211 :     const OptionsCont& oc = OptionsCont::getOptions();
     131        52211 :     const double defaultRadius = getDefaultRadius(oc);
     132        52211 :     const bool useDefaultRadius = myNode.getRadius() == NBNode::UNSPECIFIED_RADIUS || myNode.getRadius() == defaultRadius;
     133        52211 :     myRadius = (useDefaultRadius ? defaultRadius : myNode.getRadius());
     134        52211 :     double smallRadius = useDefaultRadius ? oc.getFloat("junctions.small-radius") : myRadius;
     135        52211 :     const int cornerDetail = oc.getInt("junctions.corner-detail");
     136        52211 :     const double sCurveStretch = oc.getFloat("junctions.scurve-stretch");
     137        52211 :     const bool useEndpoints = oc.getBool("junctions.endpoint-shape");
     138        52211 :     const bool rectangularCut = oc.getBool("rectangular-lane-cut");
     139        52211 :     const bool openDriveOutput = oc.isSet("opendrive-output");
     140              : 
     141              :     // Extend geometries to move the stop line forward.
     142              :     // In OpenDrive the junction starts whenever the geometry changes. Stop
     143              :     // line information is not given or ambiguous (sign positions at most)
     144              :     // In SUMO, stop lines are where the junction starts. This is computed
     145              :     // heuristically from intersecting the junctions roads geometries.
     146        99746 :     const double advanceStopLine = oc.exists("opendrive-files") && oc.isSet("opendrive-files") ? oc.getFloat("opendrive.advance-stopline") : 0;
     147              : 
     148              : 
     149              : #ifdef DEBUG_NODE_SHAPE
     150              :     if (DEBUGCOND) {
     151              :         std::cout << "\ncomputeNodeShapeDefault node " << myNode.getID() << " simple=" << simpleContinuation << " useDefaultRadius=" << useDefaultRadius << " radius=" << myRadius << "\n";
     152              :     }
     153              : #endif
     154              : 
     155              :     // initialise
     156        52211 :     EdgeVector::const_iterator i;
     157              :     // edges located in the value-vector have the same direction as the key edge
     158              :     std::map<NBEdge*, std::set<NBEdge*> > same;
     159              :     // the counter-clockwise boundary of the edge regarding possible same-direction edges
     160              :     GeomsMap geomsCCW;
     161              :     // the clockwise boundary of the edge regarding possible same-direction edges
     162              :     GeomsMap geomsCW;
     163        52211 :     EdgeVector usedEdges = myNode.getEdges();
     164        52211 :     computeEdgeBoundaries(usedEdges, geomsCCW, geomsCW);
     165              : 
     166              :     // check which edges are parallel
     167        52211 :     joinSameDirectionEdges(usedEdges, same, useEndpoints);
     168              :     // compute unique direction list
     169        52211 :     EdgeVector newAll = computeUniqueDirectionList(usedEdges, same, geomsCCW, geomsCW);
     170              :     // if we have only two "directions", let's not compute the geometry using this method
     171        52211 :     if (newAll.size() < 2) {
     172           84 :         return PositionVector();
     173              :     }
     174              : 
     175              :     // All geoms are outgoing from myNode.
     176              :     // for every direction in newAll we compute the offset at which the
     177              :     // intersection ends and the edge starts. This value is saved in 'distances'
     178              :     // If the geometries need to be extended to get an intersection, this is
     179              :     // recorded in 'myExtended'
     180              :     std::map<NBEdge*, double> distances;
     181              :     std::map<NBEdge*, double> distances2;
     182              :     std::map<NBEdge*, bool> myExtended;
     183              : 
     184       201766 :     for (i = newAll.begin(); i != newAll.end(); ++i) {
     185       149639 :         EdgeVector::const_iterator cwi = i;
     186       149639 :         EdgeVector::const_iterator ccwi = i;
     187              :         double ccad;
     188              :         double cad;
     189       149639 :         initNeighbors(newAll, i, geomsCW, geomsCCW, cwi, ccwi, cad, ccad);
     190              :         assert(geomsCCW.find(*i) != geomsCCW.end());
     191              :         assert(geomsCW.find(*ccwi) != geomsCW.end());
     192              :         assert(geomsCW.find(*cwi) != geomsCW.end());
     193              : 
     194              :         // there are only 2 directions and they are almost parallel
     195       149639 :         if (*cwi == *ccwi &&
     196              :                 (
     197              :                     // no change in lane numbers, even low angles still give a good intersection
     198        26980 :                     (simpleContinuation && fabs(ccad - cad) < (double) 0.1)
     199              :                     // lane numbers change, a direct intersection could be far away from the node position
     200              :                     // so we use a larger threshold
     201        11328 :                     || (!simpleContinuation && fabs(ccad - cad) < DEG2RAD(22.5)))
     202              :            ) {
     203              :             // compute the mean position between both edges ends ...
     204              :             Position p;
     205        25862 :             if (myExtended.find(*ccwi) != myExtended.end()) {
     206            0 :                 p = geomsCCW[*ccwi][0];
     207            0 :                 p.add(geomsCW[*ccwi][0]);
     208              :                 p.mul(0.5);
     209              : #ifdef DEBUG_NODE_SHAPE
     210              :                 if (DEBUGCOND) {
     211              :                     std::cout << " extended: p=" << p << " angle=" << (ccad - cad) << "\n";
     212              :                 }
     213              : #endif
     214              :             } else {
     215        25862 :                 p = geomsCCW[*ccwi][0];
     216        25862 :                 p.add(geomsCW[*ccwi][0]);
     217        25862 :                 p.add(geomsCCW[*i][0]);
     218        25862 :                 p.add(geomsCW[*i][0]);
     219              :                 p.mul(0.25);
     220              : #ifdef DEBUG_NODE_SHAPE
     221              :                 if (DEBUGCOND) {
     222              :                     std::cout << " unextended: p=" << p << " angle=" << (ccad - cad) << "\n";
     223              :                 }
     224              : #endif
     225              :             }
     226              :             // ... compute the distance to this point ...
     227        51724 :             double dist = MAX2(
     228        25862 :                               geomsCCW[*i].nearest_offset_to_point2D(p),
     229        25862 :                               geomsCW[*i].nearest_offset_to_point2D(p));
     230        25862 :             if (dist < 0) {
     231            0 :                 if (isRailway((*i)->getPermissions())) {
     232              :                     // better not mess up bidi geometries
     233            0 :                     return PositionVector();
     234              :                 }
     235              :                 // ok, we have the problem that even the extrapolated geometry
     236              :                 //  does not reach the point
     237              :                 // in this case, the geometry has to be extenden... too bad ...
     238              :                 // ... let's append the mean position to the geometry
     239            0 :                 PositionVector g = (*i)->getGeometry();
     240            0 :                 if (myNode.hasIncoming(*i)) {
     241            0 :                     g.push_back_noDoublePos(p);
     242              :                 } else {
     243            0 :                     g.push_front_noDoublePos(p);
     244              :                 }
     245            0 :                 (*i)->setGeometry(g);
     246              :                 // and rebuild previous information
     247            0 :                 geomsCCW[*i] = (*i)->getCCWBoundaryLine(myNode);
     248            0 :                 geomsCCW[*i].extrapolate(EXT);
     249            0 :                 geomsCW[*i] = (*i)->getCWBoundaryLine(myNode);
     250            0 :                 geomsCW[*i].extrapolate(EXT);
     251              :                 // the distance is now = zero (the point we have appended)
     252            0 :                 distances[*i] = EXT;
     253            0 :                 myExtended[*i] = true;
     254              : #ifdef DEBUG_NODE_SHAPE
     255              :                 if (DEBUGCOND) {
     256              :                     std::cout << " extending (dist=" << dist << ")\n";
     257              :                 }
     258              : #endif
     259            0 :             } else {
     260        25862 :                 if (!simpleContinuation) {
     261         8718 :                     dist += myRadius;
     262              :                 } else {
     263              :                     // if the angles change, junction should have some size to avoid degenerate shape
     264        17144 :                     double radius2 = fabs(ccad - cad) * (*i)->getNumLanes();
     265        17144 :                     if (radius2 > NUMERICAL_EPS || openDriveOutput) {
     266              :                         radius2 = MAX2(0.15, radius2);
     267              :                     }
     268        17144 :                     if (myNode.getCrossings().size() > 0) {
     269           46 :                         double width = myNode.getCrossings()[0]->customWidth;
     270           46 :                         if (width == NBEdge::UNSPECIFIED_WIDTH) {
     271           56 :                             width = OptionsCont::getOptions().getFloat("default.crossing-width");
     272              :                         }
     273           46 :                         radius2 = MAX2(radius2, width / 2);
     274              :                     }
     275        17144 :                     if (!useDefaultRadius) {
     276            2 :                         radius2 = MAX2(radius2, myRadius);
     277              :                     }
     278        17144 :                     dist += radius2;
     279              : #ifdef DEBUG_NODE_SHAPE
     280              :                     if (DEBUGCOND) {
     281              :                         std::cout << " using radius=" << radius2 << " ccad=" << ccad << " cad=" << cad << "\n";
     282              :                     }
     283              : #endif
     284              :                 }
     285        25862 :                 distances[*i] = dist;
     286              :             }
     287              : 
     288              :         } else {
     289              :             // the angles are different enough to compute the intersection of
     290              :             // the outer boundaries directly (or there are more than 2 directions). The "nearer" neighbor causes the furthest distance
     291       123777 :             const bool ccwCloser = ccad < cad;
     292       123777 :             const bool cwLargeTurn = needsLargeTurn(*i, *cwi, same);
     293       123777 :             const bool ccwLargeTurn = needsLargeTurn(*i, *ccwi, same);
     294       123777 :             const bool neighLargeTurn = ccwCloser ? ccwLargeTurn : cwLargeTurn;
     295       123777 :             const bool neigh2LargeTurn =  ccwCloser ? cwLargeTurn : ccwLargeTurn;
     296              :             // the border facing the closer neighbor
     297       123777 :             const PositionVector& currGeom = ccwCloser ? geomsCCW[*i] : geomsCW[*i];
     298              :             // the border facing the far neighbor
     299       123777 :             const PositionVector& currGeom2 = ccwCloser ? geomsCW[*i] : geomsCCW[*i];
     300              :             // the border of the closer neighbor
     301       123777 :             const PositionVector& neighGeom = ccwCloser ? geomsCW[*ccwi] : geomsCCW[*cwi];
     302              :             // the border of the far neighbor
     303       123777 :             const PositionVector& neighGeom2 = ccwCloser ? geomsCCW[*cwi] : geomsCW[*ccwi];
     304              :             // whether the current edge/direction spans a divided road
     305       247554 :             const bool keepBothDistances = isDivided(*i, same[*i], geomsCCW[*i], geomsCW[*i]);
     306              : #ifdef DEBUG_NODE_SHAPE
     307              :             if (DEBUGCOND) {
     308              :                 std::cout << " i=" << (*i)->getID() << " neigh=" << (*ccwi)->getID() << " neigh2=" << (*cwi)->getID() << "\n";
     309              :                 std::cout << "    ccwCloser=" << ccwCloser << " divided=" << keepBothDistances
     310              :                           << "\n      currGeom=" << currGeom << " neighGeom=" << neighGeom
     311              :                           << "\n      currGeom2=" << currGeom2 << " neighGeom2=" << neighGeom2
     312              :                           << "\n";
     313              :             }
     314              : #endif
     315       123777 :             if (!simpleContinuation) {
     316       113875 :                 if (useEndpoints && !(*i)->hasDefaultGeometryEndpointAtNode(&myNode)) {
     317           16 :                     distances[*i] = EXT;
     318       113859 :                 } else if (currGeom.intersects(neighGeom)) {
     319       113392 :                     distances[*i] = (neighLargeTurn ? myRadius : smallRadius) + closestIntersection(currGeom, neighGeom, EXT);
     320              : #ifdef DEBUG_NODE_SHAPE
     321              :                     if (DEBUGCOND) {
     322              :                         std::cout << "   neigh intersects dist=" << distances[*i] << " currGeom=" << currGeom << " neighGeom=" << neighGeom << "\n";
     323              :                     }
     324              : #endif
     325       113392 :                     if (*cwi != *ccwi && currGeom2.intersects(neighGeom2)) {
     326              :                         // also use the second intersection point
     327              :                         // but prevent very large node shapes
     328       108585 :                         const double farAngleDist = ccwCloser ? cad : ccad;
     329       108585 :                         double a1 = distances[*i];
     330       108585 :                         double a2 = (neigh2LargeTurn ? myRadius : smallRadius) + closestIntersection(currGeom2, neighGeom2, EXT);
     331              : #ifdef DEBUG_NODE_SHAPE
     332              :                         if (DEBUGCOND) {
     333              :                             std::cout << "      neigh2 also intersects a1=" << a1 << " a2=" << a2 << " ccad=" << RAD2DEG(ccad) << " cad=" << RAD2DEG(cad) << " dist[cwi]=" << distances[*cwi] << " dist[ccwi]=" << distances[*ccwi] << " farAngleDist=" << RAD2DEG(farAngleDist) << " currGeom2=" << currGeom2 << " neighGeom2=" << neighGeom2 << "\n";
     334              :                         }
     335              : #endif
     336              :                         //if (RAD2DEG(farAngleDist) < 175) {
     337              :                         //    distances[*i] = MAX2(a1, MIN2(a2, a1 + 180 - RAD2DEG(farAngleDist)));
     338              :                         //}
     339       108585 :                         if (a2 <= EXT) {
     340         3871 :                             if (keepBothDistances) {
     341           55 :                                 if (ccwCloser) {
     342           17 :                                     distances2[*i] = a2;
     343              :                                 } else {
     344           38 :                                     distances[*i] = a2;
     345           38 :                                     distances2[*i] = a1;
     346              :                                 }
     347              :                             } else {
     348         7632 :                                 distances[*i] = MAX2(a1, a2);
     349              :                             }
     350        25100 :                         } else if (ccad > DEG2RAD(90. + 45.) && cad > DEG2RAD(90. + 45.)
     351       108040 :                                    && (fabs(ccad - cad) > DEG2RAD(10)
     352          951 :                                        || MAX2(ccad, cad) > DEG2RAD(160)
     353          175 :                                        || (a2 - a1) > 7
     354              :                                        // keep roundabouts nodes small
     355          168 :                                        || myNode.isRoundabout())) {
     356              : #ifdef DEBUG_NODE_SHAPE
     357              :                             if (DEBUGCOND) {
     358              :                                 std::cout << "     ignore a2\n";
     359              :                             }
     360              : #endif
     361              :                             // do nothing.
     362       101546 :                         } else if (farAngleDist < DEG2RAD(135) || (fabs(RAD2DEG(farAngleDist) - 180) > 1 && fabs(a2 - a1) < 10)) {
     363        79747 :                             if (keepBothDistances) {
     364          218 :                                 if (ccwCloser) {
     365          100 :                                     distances2[*i] = a2;
     366              :                                 } else {
     367          118 :                                     distances[*i] = a2;
     368          118 :                                     distances2[*i] = a1;
     369              :                                 }
     370              :                             } else {
     371       159058 :                                 distances[*i] = MAX2(a1, a2);
     372              :                             }
     373              :                         }
     374              : #ifdef DEBUG_NODE_SHAPE
     375              :                         if (DEBUGCOND) {
     376              :                             std::cout << "   a1=" << a1 << " a2=" << a2 << " keepBoth=" << keepBothDistances << " dist=" << distances[*i] << "\n";
     377              :                         }
     378              : #endif
     379              :                     }
     380              :                 } else {
     381          467 :                     if (*cwi != *ccwi && currGeom2.intersects(neighGeom2)) {
     382          407 :                         distances[*i] = (neigh2LargeTurn ? myRadius : smallRadius) + currGeom2.intersectsAtLengths2D(neighGeom2)[0];
     383              : #ifdef DEBUG_NODE_SHAPE
     384              :                         if (DEBUGCOND) {
     385              :                             std::cout << "   neigh2 intersects dist=" << distances[*i] << " currGeom2=" << currGeom2 << " neighGeom2=" << neighGeom2 << "\n";
     386              :                         }
     387              : #endif
     388              :                     } else {
     389           60 :                         distances[*i] = EXT + myRadius;
     390              : #ifdef DEBUG_NODE_SHAPE
     391              :                         if (DEBUGCOND) {
     392              :                             std::cout << "   no intersects dist=" << distances[*i]  << " currGeom=" << currGeom << " neighGeom=" << neighGeom << " currGeom2=" << currGeom2 << " neighGeom2=" << neighGeom2 << "\n";
     393              :                         }
     394              : #endif
     395              :                     }
     396              :                 }
     397              :             } else {
     398         9902 :                 if (currGeom.intersects(neighGeom)) {
     399         9875 :                     distances[*i] = currGeom.intersectsAtLengths2D(neighGeom)[0];
     400              :                 } else {
     401           27 :                     distances[*i] = (double) EXT;
     402              :                 }
     403              :             }
     404              :         }
     405       149639 :         if (useDefaultRadius && sCurveStretch > 0) {
     406           32 :             double sCurveWidth = myNode.getDisplacementError();
     407           32 :             if (sCurveWidth > 0) {
     408            2 :                 const double sCurveRadius = myRadius + sCurveWidth / SUMO_const_laneWidth * sCurveStretch * pow((*i)->getSpeed(), 2 + sCurveStretch) / 1000;
     409            2 :                 const double stretch = EXT + sCurveRadius - distances[*i];
     410            2 :                 if (stretch > 0) {
     411            2 :                     distances[*i] += stretch;
     412              :                     // fixate extended geometry for repeated computation
     413            2 :                     const double shorten = distances[*i] - EXT;
     414            2 :                     (*i)->shortenGeometryAtNode(&myNode, shorten);
     415            2 :                     for (std::set<NBEdge*>::iterator k = same[*i].begin(); k != same[*i].end(); ++k) {
     416            0 :                         (*k)->shortenGeometryAtNode(&myNode, shorten);
     417              :                     }
     418              : #ifdef DEBUG_NODE_SHAPE
     419              :                     if (DEBUGCOND) {
     420              :                         std::cout << "   stretching junction: sCurveWidth=" << sCurveWidth << " sCurveRadius=" << sCurveRadius << " stretch=" << stretch << " dist=" << distances[*i]  << "\n";
     421              :                     }
     422              : #endif
     423              :                 }
     424              :             }
     425              :         }
     426              :     }
     427              : 
     428       201766 :     for (NBEdge* const edge : newAll) {
     429       149639 :         if (distances.find(edge) == distances.end()) {
     430              :             assert(false);
     431            0 :             distances[edge] = EXT;
     432              :         }
     433              :     }
     434              :     // because of lane spread right the crossing point may be identical to the junction center and thus the distance is exactly EXT
     435        52127 :     const double off = EXT - NUMERICAL_EPS;
     436              :     // prevent inverted node shapes
     437              :     // (may happen with near-parallel edges)
     438        52127 :     const double minDistSum = 2 * (EXT + myRadius);
     439       201766 :     for (NBEdge* const edge : newAll) {
     440       149639 :         if (distances[edge] < off && edge->hasDefaultGeometryEndpointAtNode(&myNode)) {
     441         5861 :             for (EdgeVector::const_iterator j = newAll.begin(); j != newAll.end(); ++j) {
     442         4367 :                 if (distances[*j] > off && (*j)->hasDefaultGeometryEndpointAtNode(&myNode) && distances[edge] + distances[*j] < minDistSum) {
     443          231 :                     const double angleDiff = fabs(NBHelpers::relAngle(edge->getAngleAtNode(&myNode), (*j)->getAngleAtNode(&myNode)));
     444          231 :                     if (angleDiff > 160 || angleDiff < 20) {
     445              : #ifdef DEBUG_NODE_SHAPE
     446              :                         if (DEBUGCOND) {
     447              :                             std::cout << "   increasing dist for i=" << edge->getID() << " because of j=" << (*j)->getID() << " jDist=" << distances[*j]
     448              :                                       << "  oldI=" << distances[edge] << " newI=" << minDistSum - distances[*j]
     449              :                                       << " angleDiff=" << angleDiff
     450              :                                       << " geomI=" << edge->getGeometry() << " geomJ=" << (*j)->getGeometry() << "\n";
     451              :                         }
     452              : #endif
     453          122 :                         distances[edge] = minDistSum - distances[*j];
     454              :                     }
     455              :                 }
     456              :             }
     457              :         }
     458              :     }
     459              : 
     460              : 
     461              :     // build
     462        52127 :     PositionVector ret;
     463       201766 :     for (i = newAll.begin(); i != newAll.end(); ++i) {
     464       149639 :         const PositionVector& ccwBound = geomsCCW[*i];
     465       149639 :         const PositionVector& cwBound = geomsCW[*i];
     466              :         //double offset = MIN3(distances[*i], cwBound.length2D() - POSITION_EPS, ccwBound.length2D() - POSITION_EPS);
     467       149639 :         double offset = distances[*i];
     468          273 :         double offset2 = distances2.count(*i) != 0 ? distances2[*i] : offset;
     469       149639 :         if (offset != offset2) {
     470              :             // keep rectangular cuts if the difference is small or the roads aren't
     471              :             // really divided by much (unless the angle is very different)
     472          819 :             const double dWidth = divisionWidth(*i, same[*i],
     473          273 :                                                 ccwBound.positionAtOffset2D(offset),
     474          273 :                                                 cwBound.positionAtOffset2D(offset2));
     475          273 :             const double angle = RAD2DEG(GeomHelper::angleDiff(ccwBound.angleAt2D(0), cwBound.angleAt2D(0)));
     476          273 :             const double oDelta = fabs(offset - offset2);
     477              :             //std::cout << " i=" << (*i)->getID() << " offset=" << offset << " offset2=" << offset2 << " dWidth=" << dWidth << " angle=" << angle << " same=" << joinNamedToStringSorting(same[*i], ",") << "\n";
     478          273 :             if ((((oDelta < 5 || dWidth < 10) && fabs(angle) < 30)) || (fabs(angle) < 5 && myNode.getType() != SumoXMLNodeType::RAIL_CROSSING)) {
     479              : #ifdef DEBUG_NODE_SHAPE
     480              :                 std::cout << " i=" << (*i)->getID() << " offset=" << offset << " offset2=" << offset2 << " dWidth=" << dWidth << " angle=" << angle << " same=" << joinNamedToStringSorting(same[*i], ",") << "\n";
     481              : #endif
     482              :                 offset = MAX2(offset, offset2);
     483              :                 offset2 = offset;
     484              :             }
     485              :         }
     486       149639 :         if (!(*i)->hasDefaultGeometryEndpointAtNode(&myNode)) {
     487              :             // for non geometry-endpoints, only shorten but never extend the geometry
     488        14690 :             if (advanceStopLine > 0 && offset < EXT) {
     489              : #ifdef DEBUG_NODE_SHAPE
     490              :                 std::cout << " i=" << (*i)->getID() << " offset=" << offset << " advanceStopLine=" << advanceStopLine << "\n";
     491              : #endif
     492              :                 // fixate extended geometry for repeated computation
     493            0 :                 (*i)->extendGeometryAtNode(&myNode, advanceStopLine);
     494            0 :                 for (std::set<NBEdge*>::iterator k = same[*i].begin(); k != same[*i].end(); ++k) {
     495            0 :                     (*k)->extendGeometryAtNode(&myNode, advanceStopLine);
     496              :                 }
     497              :             }
     498        14690 :             offset = MAX2(EXT - advanceStopLine, offset);
     499              :             offset2 = MAX2(EXT - advanceStopLine, offset2);
     500              :         }
     501       149639 :         if (offset == -1) {
     502            0 :             WRITE_WARNINGF(TL("Fixing offset for edge '%' at node '%."), (*i)->getID(), myNode.getID());
     503              :             offset = -.1;
     504              :             offset2 = -.1;
     505              :         }
     506       149639 :         Position p = ccwBound.positionAtOffset2D(offset);
     507       149639 :         p.setz(myNode.getPosition().z());
     508       149639 :         if (i != newAll.begin()) {
     509       292536 :             ret.append(getSmoothCorner(geomsCW[*(i - 1)], ccwBound, ret[-1], p, cornerDetail));
     510              :         }
     511       149639 :         Position p2 = cwBound.positionAtOffset2D(offset2);
     512       149639 :         p2.setz(myNode.getPosition().z());
     513              :         //ret.append(getEdgeCuts(*i, geomsCCW, geomsCW, offset, offset2, same));
     514       149639 :         ret.push_back_noDoublePos(p);
     515       149639 :         ret.push_back_noDoublePos(p2);
     516              : #ifdef DEBUG_NODE_SHAPE
     517              :         if (DEBUGCOND) {
     518              :             std::cout << "   build stopLine for i=" << (*i)->getID() << " offset=" << offset << " offset2=" << offset2 << " dist=" << distances[*i] << " cwLength=" << cwBound.length2D() << " ccwLength=" << ccwBound.length2D() << " p=" << p << " p2=" << p2 << " ccwBound=" <<  ccwBound << " cwBound=" << cwBound << "\n";
     519              :         }
     520              : #endif
     521       149639 :         (*i)->setNodeBorder(&myNode, p, p2, rectangularCut);
     522       219988 :         for (std::set<NBEdge*>::iterator k = same[*i].begin(); k != same[*i].end(); ++k) {
     523        70349 :             (*k)->setNodeBorder(&myNode, p, p2, rectangularCut);
     524              :         }
     525              :     }
     526              :     // final curve segment
     527       156381 :     ret.append(getSmoothCorner(geomsCW[*(newAll.end() - 1)], geomsCCW[*newAll.begin()], ret[-1], ret[0], cornerDetail));
     528              : #ifdef DEBUG_NODE_SHAPE
     529              :     if (DEBUGCOND) {
     530              :         std::cout << " final shape=" << ret << "\n";
     531              :     }
     532              : #endif
     533              :     return ret;
     534       104338 : }
     535              : 
     536              : 
     537              : double
     538       221977 : NBNodeShapeComputer::closestIntersection(const PositionVector& geom1, const PositionVector& geom2, double offset) {
     539       221977 :     std::vector<double> intersections = geom1.intersectsAtLengths2D(geom2);
     540       221977 :     double result = intersections[0];
     541       234429 :     for (std::vector<double>::iterator it = intersections.begin() + 1; it != intersections.end(); ++it) {
     542        12452 :         if (fabs(*it - offset) < fabs(result - offset)) {
     543              :             result = *it;
     544              :         }
     545              :     }
     546       221977 :     return result;
     547       221977 : }
     548              : 
     549              : bool
     550       247554 : NBNodeShapeComputer::needsLargeTurn(NBEdge* e1, NBEdge* e2,
     551              :                                     std::map<NBEdge*, std::set<NBEdge*> >& same) const {
     552       247554 :     const SVCPermissions p1 = e1->getPermissions();
     553       247554 :     const SVCPermissions p2 = e2->getPermissions();
     554       247554 :     if ((p1 & p2 & SVC_LARGE_TURN) != 0) {
     555              :         // note: would could also check whether there is actually a connection
     556              :         // between those edges
     557              :         return true;
     558              :     }
     559              :     // maybe edges in the same direction need a large turn
     560       162250 :     for (NBEdge* e2s : same[e2]) {
     561        41562 :         if ((p1 & e2s->getPermissions() & SVC_LARGE_TURN) != 0
     562        41562 :                 && (e1->getToNode() == e2s->getFromNode() || e2s->getToNode() == e1->getFromNode())) {
     563              :             return true;
     564              :         }
     565        70529 :         for (NBEdge* e1s : same[e1]) {
     566        29963 :             if ((e2s->getPermissions() & e1s->getPermissions() & SVC_LARGE_TURN) != 0
     567        29963 :                     && (e2s->getToNode() == e1s->getFromNode() || e1s->getToNode() == e2s->getFromNode())) {
     568              :                 return true;
     569              :             }
     570              :         }
     571              :     }
     572       160749 :     for (NBEdge* e1s : same[e1]) {
     573        40523 :         if ((p2 & e1s->getPermissions() & SVC_LARGE_TURN) != 0
     574        40523 :                 && (e2->getToNode() == e1s->getFromNode() || e1s->getToNode() == e2->getFromNode())) {
     575              :             return true;
     576              :         }
     577              :     }
     578              :     //std::cout << " e1=" << e1->getID() << " e2=" << e2->getID() << " sameE1=" << toString(same[e1]) << " sameE2=" << toString(same[e2]) << "\n";
     579              :     return false;
     580              : }
     581              : 
     582              : PositionVector
     583       149639 : NBNodeShapeComputer::getSmoothCorner(PositionVector begShape, PositionVector endShape,
     584              :                                      const Position& begPoint, const Position& endPoint, int cornerDetail) {
     585       149639 :     PositionVector ret;
     586       149639 :     if (cornerDetail > 0) {
     587       125283 :         PositionVector begShape2 = begShape.reverse().getSubpart2D(EXT2, begShape.length());
     588       125283 :         const double begSplit = begShape2.nearest_offset_to_point2D(begPoint, false);
     589              : #ifdef DEBUG_SMOOTH_CORNERS
     590              :         if (DEBUGCOND) {
     591              :             std::cout << " begLength=" << begShape2.length2D() << " begSplit=" << begSplit << "\n";
     592              :         }
     593              : #endif
     594       125283 :         if (begSplit > POSITION_EPS && begSplit < begShape2.length2D() - POSITION_EPS) {
     595       115976 :             begShape2 = begShape2.splitAt(begSplit, true).first;
     596              :         } else {
     597              :             return ret;
     598              :         }
     599       115976 :         PositionVector endShape2 = endShape.getSubpart(0, endShape.length() - EXT2);
     600       115976 :         const double endSplit = endShape2.nearest_offset_to_point2D(endPoint, false);
     601              : #ifdef DEBUG_SMOOTH_CORNERS
     602              :         if (DEBUGCOND) {
     603              :             std::cout << " endLength=" << endShape2.length2D() << " endSplit=" << endSplit << "\n";
     604              :         }
     605              : #endif
     606       115976 :         if (endSplit > POSITION_EPS && endSplit < endShape2.length2D() - POSITION_EPS) {
     607       110921 :             endShape2 = endShape2.splitAt(endSplit, true).second;
     608              :         } else {
     609              :             return ret;
     610              :         }
     611              :         // flatten z to junction z level
     612       221842 :         begShape2 = begShape2.interpolateZ(myNode.getPosition().z(), myNode.getPosition().z());
     613       221842 :         endShape2 = endShape2.interpolateZ(myNode.getPosition().z(), myNode.getPosition().z());
     614              : #ifdef DEBUG_SMOOTH_CORNERS
     615              :         if (DEBUGCOND) {
     616              :             std::cout << "getSmoothCorner begPoint=" << begPoint << " endPoint=" << endPoint
     617              :                       << " begShape=" << begShape << " endShape=" << endShape
     618              :                       << " begShape2=" << begShape2 << " endShape2=" << endShape2
     619              :                       << "\n";
     620              :         }
     621              : #endif
     622       110921 :         if (begShape2.size() < 2 || endShape2.size() < 2) {
     623              :             return ret;
     624              :         }
     625       110921 :         const double angle = GeomHelper::angleDiff(begShape2.angleAt2D(-2), endShape2.angleAt2D(0));
     626              :         NBNode* recordError = nullptr;
     627              : #ifdef DEBUG_SMOOTH_CORNERS
     628              :         if (DEBUGCOND) {
     629              :             std::cout << "   angle=" << RAD2DEG(angle) << "\n";
     630              :         }
     631              :         recordError = const_cast<NBNode*>(&myNode);
     632              : #endif
     633              :         // fill highly acute corners
     634              :         //if (fabs(angle) > DEG2RAD(135)) {
     635              :         //    return ret;
     636              :         //}
     637       110921 :         PositionVector curve = myNode.computeSmoothShape(begShape2, endShape2, cornerDetail + 2, false, 25, 25, recordError, NBNode::AVOID_WIDE_LEFT_TURN);
     638              :         //PositionVector curve = myNode.computeSmoothShape(begShape2, endShape2, cornerDetail + 2, false, 25, 25, recordError, 0);
     639       110921 :         const double curvature = curve.length2D() / MAX2(NUMERICAL_EPS, begPoint.distanceTo2D(endPoint));
     640              : #ifdef DEBUG_SMOOTH_CORNERS
     641              :         if (DEBUGCOND) {
     642              :             std::cout << "   curve=" << curve << " curveLength=" << curve.length2D() << " dist=" << begPoint.distanceTo2D(endPoint) << " curvature=" << curvature << "\n";
     643              :         }
     644              : #endif
     645       110921 :         if (curvature > 2 && angle > DEG2RAD(85)) {
     646              :             // simplify dubious inside corner shape
     647              :             return ret;
     648              :         }
     649       109453 :         if (curve.size() > 2) {
     650              :             curve.erase(curve.begin());
     651              :             curve.pop_back();
     652              :             ret = curve;
     653              :         }
     654       125283 :     }
     655              :     return ret;
     656            0 : }
     657              : 
     658              : void
     659        52211 : NBNodeShapeComputer::computeEdgeBoundaries(const EdgeVector& edges,
     660              :         GeomsMap& geomsCCW,
     661              :         GeomsMap& geomsCW) {
     662              :     // compute boundary lines and extend it by EXT m
     663       272427 :     for (NBEdge* const edge : edges) {
     664              :         // store current edge's boundary as current ccw/cw boundary
     665              :         try {
     666       440432 :             geomsCCW[edge] = edge->getCCWBoundaryLine(myNode);
     667            0 :         } catch (InvalidArgument& e) {
     668            0 :             WRITE_WARNING("While computing intersection geometry at junction '" + myNode.getID() + "': " + std::string(e.what()));
     669            0 :             geomsCCW[edge] = edge->getGeometry();
     670            0 :         }
     671              :         try {
     672       440432 :             geomsCW[edge] = edge->getCWBoundaryLine(myNode);
     673            0 :         } catch (InvalidArgument& e) {
     674            0 :             WRITE_WARNING("While computing intersection geometry at junction '" + myNode.getID() + "': " + std::string(e.what()));
     675            0 :             geomsCW[edge] = edge->getGeometry();
     676            0 :         }
     677              :         // ensure the boundary is valid
     678       220216 :         if (geomsCCW[edge].length2D() < NUMERICAL_EPS) {
     679            0 :             geomsCCW[edge] = edge->getGeometry();
     680              :         }
     681       220216 :         if (geomsCW[edge].length2D() < NUMERICAL_EPS) {
     682            0 :             geomsCW[edge] = edge->getGeometry();
     683              :         }
     684              :         // cut off all parts beyond EXT to avoid issues with curved-back roads
     685       440444 :         geomsCCW[edge] = geomsCCW[edge].getSubpart2D(0, MAX2(EXT, edge->getTotalWidth()));
     686       440444 :         geomsCW[edge] = geomsCW[edge].getSubpart2D(0, MAX2(EXT, edge->getTotalWidth()));
     687              :         // extend the boundary by extrapolating it by EXT m towards the junction
     688       220216 :         geomsCCW[edge].extrapolate2D(EXT, true);
     689       220216 :         geomsCW[edge].extrapolate2D(EXT, true);
     690              :         // ensure minimum length by extending it away from the junction
     691       220216 :         geomsCCW[edge].extrapolate(EXT2, false, true);
     692       220216 :         geomsCW[edge].extrapolate(EXT2, false, true);
     693              :     }
     694        52211 : }
     695              : 
     696              : void
     697        52211 : NBNodeShapeComputer::joinSameDirectionEdges(const EdgeVector& edges, std::map<NBEdge*, std::set<NBEdge*> >& same, bool useEndpoints) {
     698              :     // compute same (edges where an intersection doesn't work well
     699              :     // (always check an edge and its cw neighbor)
     700              :     const double angleChangeLookahead = 35; // distance to look ahead for a misleading angle
     701        99630 :     const bool isXodr = OptionsCont::getOptions().exists("opendrive-files") && OptionsCont::getOptions().isSet("opendrive-files");
     702              :     EdgeSet foundOpposite;
     703       272427 :     for (EdgeVector::const_iterator i = edges.begin(); i != edges.end(); i++) {
     704              :         EdgeVector::const_iterator j;
     705       220216 :         if (i == edges.end() - 1) {
     706              :             j = edges.begin();
     707              :         } else {
     708              :             j = i + 1;
     709              :         }
     710           16 :         if (useEndpoints
     711           16 :                 && !(*i)->hasDefaultGeometryEndpointAtNode(&myNode)
     712       220232 :                 && !(*j)->hasDefaultGeometryEndpointAtNode(&myNode)) {
     713           16 :             continue;
     714              :         }
     715       220200 :         const bool incoming = (*i)->getToNode() == &myNode;
     716       220200 :         const bool incoming2 = (*j)->getToNode() == &myNode;
     717              :         const bool differentDirs = (incoming != incoming2);
     718       253078 :         const bool sameGeom = (*i)->getGeometry() == (differentDirs ? (*j)->getGeometry().reverse() : (*j)->getGeometry());
     719       220200 :         const PositionVector g1 = incoming ? (*i)->getCCWBoundaryLine(myNode) : (*i)->getCWBoundaryLine(myNode);
     720       220200 :         const PositionVector g2 = incoming ? (*j)->getCCWBoundaryLine(myNode) : (*j)->getCWBoundaryLine(myNode);
     721       220200 :         const double angle1further = (g1.size() > 2 && g1[0].distanceTo2D(g1[1]) < angleChangeLookahead ?
     722       220200 :                                       g1.angleAt2D(1) : g1.angleAt2D(0));
     723       220200 :         const double angle2further = (g2.size() > 2 && g2[0].distanceTo2D(g2[1]) < angleChangeLookahead ?
     724       220200 :                                       g2.angleAt2D(1) : g2.angleAt2D(0));
     725       220200 :         const double angleDiff = GeomHelper::angleDiff(g1.angleAt2D(0), g2.angleAt2D(0));
     726       220200 :         const double angleDiffFurther = GeomHelper::angleDiff(angle1further, angle2further);
     727       220200 :         const bool ambiguousGeometry = ((angleDiff > 0 && angleDiffFurther < 0) || (angleDiff < 0 && angleDiffFurther > 0));
     728              :         //if (ambiguousGeometry) {
     729              :         //    @todo: this warning would be helpful in many cases. However, if angle and angleFurther jump between 179 and -179 it is misleading
     730              :         //    WRITE_WARNINGF(TL("Ambiguous angles at junction '%' for edges '%' and '%'."), myNode.getID(), (*i)->getID(), (*j)->getID());
     731              :         //}
     732              : #ifdef DEBUG_NODE_SHAPE
     733              :         if (DEBUGCOND) {
     734              :             std::cout << "   checkSameDirection " << (*i)->getID() << " " << (*j)->getID()
     735              :                       << " diffDirs=" << differentDirs
     736              :                       << " isOpposite=" << (differentDirs && foundOpposite.count(*i) == 0)
     737              :                       << " angleDiff=" << angleDiff
     738              :                       << " ambiguousGeometry=" << ambiguousGeometry
     739              :                       << " badInsersection=" << badIntersection(*i, *j, EXT)
     740              :                       << "\n";
     741              : 
     742              :         }
     743              : #endif
     744       220200 :         if (sameGeom || fabs(angleDiff) < DEG2RAD(20)) {
     745        72058 :             const bool isOpposite = differentDirs && foundOpposite.count(*i) == 0;
     746              :             if (isOpposite) {
     747              :                 foundOpposite.insert(*i);
     748              :                 foundOpposite.insert(*j);
     749              :             }
     750        72058 :             if (isOpposite || ambiguousGeometry || (!isXodr && badIntersection(*i, *j, EXT))) {
     751              :                 // maintain equivalence relation for all members of the equivalence class
     752        74070 :                 for (std::set<NBEdge*>::iterator k = same[*i].begin(); k != same[*i].end(); ++k) {
     753         3522 :                     if (*j != *k) {
     754         3467 :                         same[*k].insert(*j);
     755         3467 :                         same[*j].insert(*k);
     756              :                     }
     757              :                 }
     758        74258 :                 for (std::set<NBEdge*>::iterator k = same[*j].begin(); k != same[*j].end(); ++k) {
     759         3710 :                     if (*i != *k) {
     760         3655 :                         same[*k].insert(*i);
     761         3655 :                         same[*i].insert(*k);
     762              :                     }
     763              :                 }
     764        70548 :                 same[*i].insert(*j);
     765        70548 :                 same[*j].insert(*i);
     766              : #ifdef DEBUG_NODE_SHAPE
     767              :                 if (DEBUGCOND) {
     768              :                     std::cout << "   joinedSameDirectionEdges " << (*i)->getID() << "   " << (*j)->getID() << " isOpposite=" << isOpposite << " ambiguousGeometry=" << ambiguousGeometry << "\n";
     769              :                 }
     770              : #endif
     771              :             }
     772              :         }
     773       220200 :     }
     774        52211 : }
     775              : 
     776              : 
     777              : bool
     778         4122 : NBNodeShapeComputer::badIntersection(const NBEdge* e1, const NBEdge* e2, double distance) {
     779              :     // check whether the two edges are on top of each other. In that case they should be joined
     780              :     // also, if they never touch along their common length
     781         4122 :     const double commonLength = MIN3(distance, e1->getGeometry().length(), e2->getGeometry().length());
     782              :     PositionVector geom1 = e1->getGeometry();
     783              :     PositionVector geom2 = e2->getGeometry();
     784              :     // shift to make geom the centerline of the edge regardless of spreadtype
     785         4122 :     if (e1->getLaneSpreadFunction() == LaneSpreadFunction::RIGHT) {
     786          830 :         geom1.move2side(e1->getTotalWidth() / 2);
     787              :     }
     788         4122 :     if (e2->getLaneSpreadFunction() == LaneSpreadFunction::RIGHT) {
     789          802 :         geom2.move2side(e2->getTotalWidth() / 2);
     790              :     }
     791              :     // always let geometry start at myNode
     792         4122 :     if (e1->getToNode() == &myNode) {
     793         3424 :         geom1 = geom1.reverse();
     794              :     }
     795         4122 :     if (e2->getToNode() == &myNode) {
     796         4270 :         geom2 = geom2.reverse();
     797              :     }
     798         8244 :     geom1 = geom1.getSubpart2D(0, commonLength);
     799         8244 :     geom2 = geom2.getSubpart2D(0, commonLength);
     800              :     double endAngleDiff = 0;
     801         4122 :     if (geom1.size() >= 2 && geom2.size() >= 2) {
     802         4122 :         endAngleDiff = fabs(RAD2DEG(GeomHelper::angleDiff(
     803              :                                         geom1.angleAt2D((int)geom1.size() - 2),
     804              :                                         geom2.angleAt2D((int)geom2.size() - 2))));
     805              :     }
     806         4122 :     const double minDistanceThreshold = (e1->getTotalWidth() + e2->getTotalWidth()) / 2 + POSITION_EPS;
     807         4122 :     std::vector<double> distances = geom1.distances(geom2, true);
     808         4122 :     std::vector<double> distances2 = geom1.distances(geom2);
     809              :     const double minDist = VectorHelper<double>::minValue(distances2);
     810              :     const double maxDist = VectorHelper<double>::maxValue(distances);
     811         4122 :     const bool curvingTowards = geom1[0].distanceTo2D(geom2[0]) > minDistanceThreshold && minDist < minDistanceThreshold;
     812         4122 :     const bool onTop = (maxDist - POSITION_EPS < minDistanceThreshold) && endAngleDiff < 30;
     813         4122 :     const bool bothDefault = e1->hasDefaultGeometryEndpointAtNode(&myNode) && e2->hasDefaultGeometryEndpointAtNode(&myNode);
     814         4122 :     const bool neverTouch = minDist > minDistanceThreshold * 2 && !bothDefault;
     815         4122 :     geom1.extrapolate2D(EXT);
     816         4122 :     geom2.extrapolate2D(EXT);
     817         4122 :     Position intersect = geom1.intersectionPosition2D(geom2);
     818         2986 :     const bool intersects = intersect != Position::INVALID && geom1.distance2D(intersect) < POSITION_EPS;
     819              : #ifdef DEBUG_NODE_SHAPE
     820              :     if (DEBUGCOND) {
     821              :         std::cout << "    badIntersect: onTop=" << onTop << " curveTo=" << curvingTowards << " intersects=" << intersects
     822              :                   << " endAngleDiff=" << endAngleDiff
     823              :                   << " geom1=" << geom1 << " geom2=" << geom2
     824              :                   << " distances=" << toString(distances) << " minDist=" << minDist << " maxDist=" << maxDist << " thresh=" << minDistanceThreshold
     825              :                   << " neverTouch=" << neverTouch
     826              :                   << " intersectPos=" << intersect
     827              :                   << "\n";
     828              :     }
     829              : #endif
     830         8244 :     return onTop || curvingTowards || !intersects || neverTouch;
     831         4122 : }
     832              : 
     833              : 
     834              : EdgeVector
     835        52211 : NBNodeShapeComputer::computeUniqueDirectionList(
     836              :     const EdgeVector& all,
     837              :     std::map<NBEdge*, std::set<NBEdge*> >& same,
     838              :     GeomsMap& geomsCCW,
     839              :     GeomsMap& geomsCW) {
     840              :     // store relationships
     841        52211 :     EdgeVector newAll = all;
     842       272427 :     for (NBEdge* e1 : all) {
     843              :         // determine which of the edges marks the outer boundary
     844       220216 :         auto e2NewAll = std::find(newAll.begin(), newAll.end(), e1);
     845              : #ifdef DEBUG_NODE_SHAPE
     846              :         if (DEBUGCOND) std::cout << "computeUniqueDirectionList e1=" << e1->getID()
     847              :                                      << " deleted=" << (e2NewAll == newAll.end())
     848              :                                      << " same=" << joinNamedToStringSorting(same[e1], ',') << "\n";
     849              : #endif
     850       220216 :         if (e2NewAll == newAll.end()) {
     851        70493 :             continue;
     852              :         }
     853       149723 :         auto e1It = std::find(all.begin(), all.end(), e1);
     854              :         auto bestCCW = e1It;
     855              :         auto bestCW = e1It;
     856              :         bool changed = true;
     857       368877 :         while (changed) {
     858              :             changed = false;
     859       363546 :             for (NBEdge* e2 : same[e1]) {
     860              : #ifdef DEBUG_NODE_SHAPE
     861              :                 if (DEBUGCOND) {
     862              :                     std::cout << "  e2=" << e2->getID() << "\n";
     863              :                 }
     864              : #endif
     865       144392 :                 auto e2It = std::find(all.begin(), all.end(), e2);
     866       144392 :                 if (e2It + 1 == bestCCW || (e2It == (all.end() - 1) && bestCCW == all.begin())) {
     867              :                     bestCCW = e2It;
     868              :                     changed = true;
     869              : #ifdef DEBUG_NODE_SHAPE
     870              :                     if (DEBUGCOND) {
     871              :                         std::cout << "    bestCCW=" << e2->getID() << "\n";
     872              :                     }
     873              : #endif
     874       143080 :                 } else if (bestCW + 1 == e2It || (bestCW == (all.end() - 1) && e2It == all.begin())) {
     875              :                     bestCW = e2It;
     876              :                     changed = true;
     877              : #ifdef DEBUG_NODE_SHAPE
     878              :                     if (DEBUGCOND) {
     879              :                         std::cout << "    bestCW=" << e2->getID() << "\n";
     880              :                     }
     881              : #endif
     882              :                 }
     883              :             }
     884              :         }
     885       149723 :         if (bestCW != e1It) {
     886        67601 :             geomsCW[e1] = geomsCW[*bestCW];
     887        67601 :             computeSameEnd(geomsCW[e1], geomsCCW[e1]);
     888              :         }
     889       149723 :         if (bestCCW != e1It) {
     890         1148 :             geomsCCW[e1] = geomsCCW[*bestCCW];
     891         1148 :             computeSameEnd(geomsCW[e1], geomsCCW[e1]);
     892              :         }
     893              :         // clean up
     894       220216 :         for (NBEdge* e2 : same[e1]) {
     895        70493 :             auto e2NewAllIt = std::find(newAll.begin(), newAll.end(), e2);
     896        70493 :             if (e2NewAllIt != newAll.end()) {
     897              :                 newAll.erase(e2NewAllIt);
     898              :             }
     899              :         }
     900              :     }
     901              : #ifdef DEBUG_NODE_SHAPE
     902              :     if (DEBUGCOND) {
     903              :         std::cout << "  newAll:\n";
     904              :         for (NBEdge* e : newAll) {
     905              :             std::cout << "    " << e->getID() << " geomCCW=" << geomsCCW[e] << " geomsCW=" << geomsCW[e] << "\n";
     906              :         }
     907              :     }
     908              : #endif
     909        52211 :     return newAll;
     910            0 : }
     911              : 
     912              : 
     913              : void
     914       149639 : NBNodeShapeComputer::initNeighbors(const EdgeVector& edges, const EdgeVector::const_iterator& current,
     915              :                                    GeomsMap& geomsCW,
     916              :                                    GeomsMap& geomsCCW,
     917              :                                    EdgeVector::const_iterator& cwi,
     918              :                                    EdgeVector::const_iterator& ccwi,
     919              :                                    double& cad,
     920              :                                    double& ccad) {
     921              :     const double twoPI = (double)(2 * M_PI);
     922       149639 :     cwi = current;
     923              :     cwi++;
     924       149639 :     if (cwi == edges.end()) {
     925        52127 :         std::advance(cwi, -((int)edges.size())); // set to edges.begin();
     926              :     }
     927       149639 :     ccwi = current;
     928       149639 :     if (ccwi == edges.begin()) {
     929        52127 :         std::advance(ccwi, edges.size() - 1); // set to edges.end() - 1;
     930              :     } else {
     931              :         ccwi--;
     932              :     }
     933              : 
     934       149639 :     const double angleCurCCW = geomsCCW[*current].angleAt2D(0);
     935       149639 :     const double angleCurCW = geomsCW[*current].angleAt2D(0);
     936       149639 :     const double angleCCW = geomsCW[*ccwi].angleAt2D(0);
     937       149639 :     const double angleCW = geomsCCW[*cwi].angleAt2D(0);
     938       149639 :     ccad = angleCCW - angleCurCCW;
     939       203132 :     while (ccad < 0.) {
     940        53493 :         ccad += twoPI;
     941              :     }
     942       149639 :     cad = angleCurCW - angleCW;
     943       203132 :     while (cad < 0.) {
     944        53493 :         cad += twoPI;
     945              :     }
     946       149639 : }
     947              : 
     948              : 
     949              : 
     950              : const PositionVector
     951        19436 : NBNodeShapeComputer::computeNodeShapeSmall() {
     952              : #ifdef DEBUG_NODE_SHAPE
     953              :     if (DEBUGCOND) {
     954              :         std::cout << "computeNodeShapeSmall node=" << myNode.getID() << "\n";
     955              :     }
     956              : #endif
     957        19436 :     PositionVector ret;
     958        48946 :     for (NBEdge* e : myNode.getEdges()) {
     959              :         // compute crossing with normal
     960        29510 :         PositionVector edgebound1 = e->getCCWBoundaryLine(myNode).getSubpartByIndex(0, 2);
     961        29510 :         PositionVector edgebound2 = e->getCWBoundaryLine(myNode).getSubpartByIndex(0, 2);
     962        29510 :         Position delta = edgebound1[1] - edgebound1[0];
     963              :         delta.set(-delta.y(), delta.x()); // rotate 90 degrees
     964        29510 :         PositionVector cross(myNode.getPosition(), myNode.getPosition() + delta);
     965        29510 :         cross.extrapolate2D(500);
     966        29510 :         edgebound1.extrapolate2D(500);
     967        29510 :         edgebound2.extrapolate2D(500);
     968        29510 :         if (cross.intersects(edgebound1)) {
     969        29510 :             Position np = cross.intersectionPosition2D(edgebound1);
     970        29510 :             np.set(np.x(), np.y(), myNode.getPosition().z());
     971        29510 :             ret.push_back_noDoublePos(np);
     972              :         }
     973        29510 :         if (cross.intersects(edgebound2)) {
     974        29506 :             Position np = cross.intersectionPosition2D(edgebound2);
     975        29506 :             np.set(np.x(), np.y(), myNode.getPosition().z());
     976        29506 :             ret.push_back_noDoublePos(np);
     977              :         }
     978        29510 :         e->resetNodeBorder(&myNode);
     979        29510 :     }
     980        19436 :     return ret;
     981            0 : }
     982              : 
     983              : 
     984              : double
     985        52211 : NBNodeShapeComputer::getDefaultRadius(const OptionsCont& oc) {
     986              :     // look for incoming/outgoing edge pairs that do not go straight and allow wide vehicles
     987              :     // (connection information is not available yet)
     988              :     // @TODO compute the radius for each pair of neighboring edge intersections in computeNodeShapeDefault rather than use the maximum
     989        52211 :     const double radius = oc.getFloat("default.junctions.radius");
     990        52211 :     const double smallRadius = oc.getFloat("junctions.small-radius");
     991              :     double maxRightAngle = 0; // rad
     992              :     double extraWidthRight = 0; // m
     993              :     double maxLeftAngle = 0; // rad
     994              :     double extraWidthLeft = 0; // m
     995              :     int laneDelta = 0;
     996              :     int totalWideLanesIn = 0;
     997       161888 :     for (NBEdge* in : myNode.getIncomingEdges()) {
     998              :         int wideLanesIn = 0;
     999       252880 :         for (int i = 0; i < in->getNumLanes(); i++) {
    1000       143203 :             if ((in->getPermissions(i) & SVC_LARGE_TURN) != 0) {
    1001        90700 :                 wideLanesIn++;
    1002              :             }
    1003              :         }
    1004       109677 :         totalWideLanesIn += wideLanesIn;
    1005       388128 :         for (NBEdge* out : myNode.getOutgoingEdges()) {
    1006       278451 :             if ((in->getPermissions() & out->getPermissions() & SVC_LARGE_TURN) != 0) {
    1007       171318 :                 if (myNode.getDirection(in, out) == LinkDirection::TURN) {
    1008        47883 :                     continue;
    1009              :                 };
    1010       123435 :                 const double angle = GeomHelper::angleDiff(
    1011       123435 :                                          in->getGeometry().angleAt2D(-2),
    1012              :                                          out->getGeometry().angleAt2D(0));
    1013       123435 :                 if (angle < 0) {
    1014        56539 :                     if (maxRightAngle < -angle) {
    1015              :                         maxRightAngle = -angle;
    1016        34952 :                         extraWidthRight = MAX2(getExtraWidth(in, SVC_LARGE_TURN), getExtraWidth(out, SVC_LARGE_TURN));
    1017              :                     }
    1018              :                 } else {
    1019        66896 :                     if (maxLeftAngle < angle) {
    1020              :                         maxLeftAngle = angle;
    1021              :                         // all edges clockwise between in and out count as extra width
    1022              :                         extraWidthLeft = 0;
    1023        30834 :                         EdgeVector::const_iterator pIn = std::find(myNode.getEdges().begin(), myNode.getEdges().end(), in);
    1024        30834 :                         NBContHelper::nextCW(myNode.getEdges(), pIn);
    1025        81082 :                         while (*pIn != out) {
    1026        50248 :                             extraWidthLeft += (*pIn)->getTotalWidth();
    1027              : #ifdef DEBUG_RADIUS
    1028              :                             if (DEBUGCOND) {
    1029              :                                 std::cout << "   in=" << in->getID() << " out=" << out->getID() << " extra=" << (*pIn)->getID() << " extraWidthLeft=" << extraWidthLeft << "\n";
    1030              :                             }
    1031              : #endif
    1032        50248 :                             NBContHelper::nextCW(myNode.getEdges(), pIn);
    1033              :                         }
    1034              :                     }
    1035              :                 }
    1036              :                 int wideLanesOut = 0;
    1037       300000 :                 for (int i = 0; i < out->getNumLanes(); i++) {
    1038       176565 :                     if ((out->getPermissions(i) & SVC_LARGE_TURN) != 0) {
    1039       163182 :                         wideLanesOut++;
    1040              :                     }
    1041              :                 }
    1042              : #ifdef DEBUG_RADIUS
    1043              :                 if (DEBUGCOND) {
    1044              :                     std::cout << "   in=" << in->getID() << " out=" << out->getID() << " wideLanesIn=" << wideLanesIn << " wideLanesOut=" << wideLanesOut << "\n";
    1045              :                 }
    1046              : #endif
    1047       123435 :                 laneDelta = MAX2(laneDelta, abs(wideLanesOut - wideLanesIn));
    1048              :             }
    1049              :         }
    1050              :     }
    1051              :     // special case: on/off-ramp
    1052        52211 :     if (myNode.getOutgoingEdges().size() == 1 || myNode.getIncomingEdges().size() == 1) {
    1053              :         int totalWideLanesOut = 0;
    1054        49624 :         for (NBEdge* out : myNode.getOutgoingEdges()) {
    1055        68038 :             for (int i = 0; i < out->getNumLanes(); i++) {
    1056        39786 :                 if ((out->getPermissions(i) & SVC_LARGE_TURN) != 0) {
    1057        22136 :                     totalWideLanesOut++;
    1058              :                 }
    1059              :             }
    1060              :         }
    1061        21372 :         if (totalWideLanesIn == totalWideLanesOut) {
    1062              :             // use total laneDelta instead of individual edge lane delta
    1063              :             laneDelta = 0;
    1064              :         }
    1065              :     }
    1066              :     // changing the number of wide-vehicle lanes on a straight segment requires a larger junction to allow for smooth driving
    1067              :     // otherwise we can reduce the radius according to the angle
    1068              :     double result = radius;
    1069              :     // left turns are assumed to cross additional edges and thus du not determine the required radius in most cases
    1070              :     double maxTurnAngle = maxRightAngle;
    1071              :     double extraWidth = extraWidthRight;
    1072        52211 :     if (maxRightAngle < DEG2RAD(5)) {
    1073              :         maxTurnAngle = maxLeftAngle;
    1074              :         extraWidth = extraWidthLeft;
    1075              :     }
    1076        52211 :     const double minRadius = maxTurnAngle >= DEG2RAD(30) ? MIN2(smallRadius, radius) : smallRadius;
    1077        52211 :     if (laneDelta == 0 || maxTurnAngle >= DEG2RAD(30) || myNode.isConstantWidthTransition()) {
    1078              :         // subtract radius gained from extra lanes
    1079              :         // do not increase radius for turns that are sharper than a right angle
    1080        49431 :         result = radius * tan(0.5 * MIN2(0.5 * M_PI, maxTurnAngle)) - extraWidth;
    1081              :     }
    1082              :     result = MAX2(minRadius, result);
    1083              : #ifdef DEBUG_RADIUS
    1084              :     if (DEBUGCOND) {
    1085              :         std::cout << "getDefaultRadius n=" << myNode.getID()
    1086              :                   << " r=" << radius << " sr=" << smallRadius
    1087              :                   << " mr=" << minRadius
    1088              :                   << " laneDelta=" << laneDelta
    1089              :                   << " rightA=" << RAD2DEG(maxRightAngle)
    1090              :                   << " leftA=" << RAD2DEG(maxLeftAngle)
    1091              :                   << " maxA=" << RAD2DEG(maxTurnAngle)
    1092              :                   << " extraWidth=" << extraWidth
    1093              :                   << " result=" << result << "\n";
    1094              :     }
    1095              : #endif
    1096        52211 :     return result;
    1097              : }
    1098              : 
    1099              : 
    1100              : bool
    1101       123777 : NBNodeShapeComputer::isDivided(const NBEdge* e, std::set<NBEdge*> same, const PositionVector& ccw, const PositionVector& cw) const {
    1102       123777 :     if (same.size() < 2) {
    1103              :         return false;
    1104              :     }
    1105              :     std::set<Position> endPoints;
    1106         1632 :     endPoints.insert(e->getEndpointAtNode(&myNode));
    1107         3146 :     for (NBEdge* s : same) {
    1108         4660 :         endPoints.insert(s->getEndpointAtNode(&myNode));
    1109              :     }
    1110          816 :     if (endPoints.size() > 1) {
    1111          671 :         std::vector<double> distances = ccw.distances(cw, true);
    1112          671 :         double width = e->getTotalWidth();
    1113         2652 :         for (const NBEdge* e2 : same) {
    1114         1981 :             width += e2->getTotalWidth();
    1115              :         }
    1116              :         const double maxDist = VectorHelper<double>::maxValue(distances);
    1117          671 :         const double maxDivider = maxDist - width;
    1118          671 :         return maxDivider >= 5;
    1119          671 :     }
    1120              :     return false;
    1121              : }
    1122              : 
    1123              : 
    1124              : double
    1125        69904 : NBNodeShapeComputer::getExtraWidth(const NBEdge* e, SVCPermissions exclude) {
    1126              :     double result = 0;
    1127              :     int lane = 0;
    1128        69904 :     while (lane < e->getNumLanes() && e->getPermissions(lane) == 0) {
    1129              :         // ignore forbidden lanes out the outside
    1130            0 :         lane++;
    1131              :     }
    1132        78816 :     while (lane < e->getNumLanes() && (e->getPermissions(lane) & exclude) == 0) {
    1133         8912 :         result += e->getLaneWidth(lane);
    1134         8912 :         lane++;
    1135              :     }
    1136        69904 :     return result;
    1137              : }
    1138              : 
    1139              : 
    1140              : double
    1141          273 : NBNodeShapeComputer::divisionWidth(const NBEdge* e, std::set<NBEdge*> same, const Position& p, const Position& p2) {
    1142              :     double result = p.distanceTo2D(p2);
    1143          273 :     result -= e->getTotalWidth();
    1144         1183 :     for (NBEdge* e2 : same) {
    1145          910 :         result -= e2->getTotalWidth();
    1146              :     }
    1147          273 :     return MAX2(0.0, result);
    1148              : }
    1149              : 
    1150              : /****************************************************************************/
        

Generated by: LCOV version 2.0-1