Line data Source code
1 : /****************************************************************************/
2 : // Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
3 : // Copyright (C) 2001-2024 German Aerospace Center (DLR) and others.
4 : // This program and the accompanying materials are made available under the
5 : // terms of the Eclipse Public License 2.0 which is available at
6 : // https://www.eclipse.org/legal/epl-2.0/
7 : // This Source Code may also be made available under the following Secondary
8 : // Licenses when the conditions for such availability set forth in the Eclipse
9 : // Public License 2.0 are satisfied: GNU General Public License, version 2
10 : // or later which is available at
11 : // https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
12 : // SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
13 : /****************************************************************************/
14 : /// @file NBNodeShapeComputer.cpp
15 : /// @author Daniel Krajzewicz
16 : /// @author Jakob Erdmann
17 : /// @author Michael Behrisch
18 : /// @date Sept 2002
19 : ///
20 : // This class computes shapes of junctions
21 : /****************************************************************************/
22 : #include <config.h>
23 :
24 : #include <algorithm>
25 : #include <iterator>
26 : #include <utils/geom/PositionVector.h>
27 : #include <utils/options/OptionsCont.h>
28 : #include <utils/geom/GeomHelper.h>
29 : #include <utils/common/StdDefs.h>
30 : #include <utils/common/MsgHandler.h>
31 : #include <utils/common/UtilExceptions.h>
32 : #include <utils/common/ToString.h>
33 : #include <utils/iodevices/OutputDevice.h>
34 : #include "NBNode.h"
35 : #include "NBAlgorithms.h"
36 : #include "NBNodeShapeComputer.h"
37 :
38 : //#define DEBUG_NODE_SHAPE
39 : //#define DEBUG_SMOOTH_CORNERS
40 : //#define DEBUG_RADIUS
41 : #define DEBUGCOND (myNode.getID() == "C")
42 :
43 :
44 : #define EXT2 10.0
45 :
46 : // foot and bicycle paths as well as pure service roads should not get large junctions
47 : // railways also do have have junctions with sharp turns so can be excluded
48 : const SVCPermissions NBNodeShapeComputer::SVC_LARGE_TURN(
49 : SVCAll & ~(SVC_BICYCLE | SVC_PEDESTRIAN | SVC_DELIVERY | SVC_RAIL_CLASSES));
50 :
51 : // ===========================================================================
52 : // method definitions
53 : // ===========================================================================
54 71522 : NBNodeShapeComputer::NBNodeShapeComputer(const NBNode& node) :
55 71522 : myNode(node),
56 71522 : myRadius(node.getRadius()) {
57 71522 : if (node.getEdges().size() > 4 && !NBNodeTypeComputer::isRailwayNode(&node)) {
58 17820 : EXT = 50;
59 : } else {
60 53702 : EXT = 100;
61 : }
62 71522 : }
63 :
64 :
65 71522 : NBNodeShapeComputer::~NBNodeShapeComputer() {}
66 :
67 :
68 : const PositionVector
69 71522 : NBNodeShapeComputer::compute(bool forceSmall) {
70 : #ifdef DEBUG_NODE_SHAPE
71 : if (DEBUGCOND) {
72 : // annotate edges edges to make their ordering visible
73 : int i = 0;
74 : for (NBEdge* e : myNode.getEdges()) {
75 : e->setStreetName(toString(i));
76 : i++;
77 : }
78 : }
79 : #endif
80 : // check whether the node is a dead end node or a node where only turning is possible
81 : // in this case, we will use "computeNodeShapeSmall"
82 71522 : if (myNode.getEdges().size() == 1 || forceSmall) {
83 9450 : return computeNodeShapeSmall();
84 : }
85 62072 : if (myNode.getEdges().size() == 2 && myNode.getIncomingEdges().size() == 1) {
86 20059 : if (myNode.getIncomingEdges()[0]->isTurningDirectionAt(myNode.getOutgoingEdges()[0])) {
87 9872 : return computeNodeShapeSmall();
88 : }
89 : }
90 52200 : const bool geometryLike = myNode.isSimpleContinuation(true, true);
91 52200 : const PositionVector& ret = computeNodeShapeDefault(geometryLike);
92 : // fail fall-back: use "computeNodeShapeSmall"
93 52200 : if (ret.size() < 3) {
94 84 : return computeNodeShapeSmall();
95 : }
96 : return ret;
97 52200 : }
98 :
99 :
100 : void
101 68729 : NBNodeShapeComputer::computeSameEnd(PositionVector& l1, PositionVector& l2) {
102 : assert(l1[0].distanceTo2D(l1[1]) >= EXT);
103 : assert(l2[0].distanceTo2D(l2[1]) >= EXT);
104 68729 : PositionVector tmp;
105 68729 : tmp.push_back(PositionVector::positionAtOffset2D(l1[0], l1[1], EXT));
106 68729 : tmp.push_back(l1[1]);
107 68729 : tmp[1].sub(tmp[0]);
108 68729 : tmp[1].set(-tmp[1].y(), tmp[1].x());
109 68729 : tmp[1].add(tmp[0]);
110 68729 : tmp.extrapolate2D(EXT);
111 68729 : if (l2.intersects(tmp[0], tmp[1])) {
112 68678 : const double offset = l2.intersectsAtLengths2D(tmp)[0];
113 68678 : if (l2.length2D() - offset > POSITION_EPS) {
114 68678 : PositionVector tl2 = l2.getSubpart2D(offset, l2.length2D());
115 68678 : tl2.extrapolate2D(EXT);
116 68678 : l2.erase(l2.begin(), l2.begin() + (l2.size() - tl2.size()));
117 68678 : l2[0] = tl2[0];
118 68678 : }
119 : }
120 68729 : }
121 :
122 :
123 : const PositionVector
124 52200 : NBNodeShapeComputer::computeNodeShapeDefault(bool simpleContinuation) {
125 : // if we have less than two edges, we can not compute the node's shape this way
126 52200 : if (myNode.getEdges().size() < 2) {
127 0 : return PositionVector();
128 : }
129 : // magic values
130 52200 : const OptionsCont& oc = OptionsCont::getOptions();
131 52200 : const double defaultRadius = getDefaultRadius(oc);
132 52200 : const bool useDefaultRadius = myNode.getRadius() == NBNode::UNSPECIFIED_RADIUS || myNode.getRadius() == defaultRadius;
133 52200 : myRadius = (useDefaultRadius ? defaultRadius : myNode.getRadius());
134 52200 : double smallRadius = useDefaultRadius ? oc.getFloat("junctions.small-radius") : myRadius;
135 52200 : const int cornerDetail = oc.getInt("junctions.corner-detail");
136 52200 : const double sCurveStretch = oc.getFloat("junctions.scurve-stretch");
137 52200 : const bool useEndpoints = oc.getBool("junctions.endpoint-shape");
138 52200 : const bool rectangularCut = oc.getBool("rectangular-lane-cut");
139 52200 : const bool openDriveOutput = oc.isSet("opendrive-output");
140 :
141 : // Extend geometries to move the stop line forward.
142 : // In OpenDrive the junction starts whenever the geometry changes. Stop
143 : // line information is not given or ambiguous (sign positions at most)
144 : // In SUMO, stop lines are where the junction starts. This is computed
145 : // heuristically from intersecting the junctions roads geometries.
146 99725 : const double advanceStopLine = oc.exists("opendrive-files") && oc.isSet("opendrive-files") ? oc.getFloat("opendrive.advance-stopline") : 0;
147 :
148 :
149 : #ifdef DEBUG_NODE_SHAPE
150 : if (DEBUGCOND) {
151 : std::cout << "\ncomputeNodeShapeDefault node " << myNode.getID() << " simple=" << simpleContinuation << " useDefaultRadius=" << useDefaultRadius << " radius=" << myRadius << "\n";
152 : }
153 : #endif
154 :
155 : // initialise
156 52200 : EdgeVector::const_iterator i;
157 : // edges located in the value-vector have the same direction as the key edge
158 : std::map<NBEdge*, std::set<NBEdge*> > same;
159 : // the counter-clockwise boundary of the edge regarding possible same-direction edges
160 : GeomsMap geomsCCW;
161 : // the clockwise boundary of the edge regarding possible same-direction edges
162 : GeomsMap geomsCW;
163 52200 : EdgeVector usedEdges = myNode.getEdges();
164 52200 : computeEdgeBoundaries(usedEdges, geomsCCW, geomsCW);
165 :
166 : // check which edges are parallel
167 52200 : joinSameDirectionEdges(usedEdges, same, useEndpoints);
168 : // compute unique direction list
169 52200 : EdgeVector newAll = computeUniqueDirectionList(usedEdges, same, geomsCCW, geomsCW);
170 : // if we have only two "directions", let's not compute the geometry using this method
171 52200 : if (newAll.size() < 2) {
172 84 : return PositionVector();
173 : }
174 :
175 : // All geoms are outgoing from myNode.
176 : // for every direction in newAll we compute the offset at which the
177 : // intersection ends and the edge starts. This value is saved in 'distances'
178 : // If the geometries need to be extended to get an intersection, this is
179 : // recorded in 'myExtended'
180 : std::map<NBEdge*, double> distances;
181 : std::map<NBEdge*, double> distances2;
182 : std::map<NBEdge*, bool> myExtended;
183 :
184 201719 : for (i = newAll.begin(); i != newAll.end(); ++i) {
185 149603 : EdgeVector::const_iterator cwi = i;
186 149603 : EdgeVector::const_iterator ccwi = i;
187 : double ccad;
188 : double cad;
189 149603 : initNeighbors(newAll, i, geomsCW, geomsCCW, cwi, ccwi, cad, ccad);
190 : assert(geomsCCW.find(*i) != geomsCCW.end());
191 : assert(geomsCW.find(*ccwi) != geomsCW.end());
192 : assert(geomsCW.find(*cwi) != geomsCW.end());
193 :
194 : // there are only 2 directions and they are almost parallel
195 149603 : if (*cwi == *ccwi &&
196 : (
197 : // no change in lane numbers, even low angles still give a good intersection
198 26980 : (simpleContinuation && fabs(ccad - cad) < (double) 0.1)
199 : // lane numbers change, a direct intersection could be far away from the node position
200 : // so we use a larger threshold
201 11328 : || (!simpleContinuation && fabs(ccad - cad) < DEG2RAD(22.5)))
202 : ) {
203 : // compute the mean position between both edges ends ...
204 : Position p;
205 25862 : if (myExtended.find(*ccwi) != myExtended.end()) {
206 0 : p = geomsCCW[*ccwi][0];
207 0 : p.add(geomsCW[*ccwi][0]);
208 : p.mul(0.5);
209 : #ifdef DEBUG_NODE_SHAPE
210 : if (DEBUGCOND) {
211 : std::cout << " extended: p=" << p << " angle=" << (ccad - cad) << "\n";
212 : }
213 : #endif
214 : } else {
215 25862 : p = geomsCCW[*ccwi][0];
216 25862 : p.add(geomsCW[*ccwi][0]);
217 25862 : p.add(geomsCCW[*i][0]);
218 25862 : p.add(geomsCW[*i][0]);
219 : p.mul(0.25);
220 : #ifdef DEBUG_NODE_SHAPE
221 : if (DEBUGCOND) {
222 : std::cout << " unextended: p=" << p << " angle=" << (ccad - cad) << "\n";
223 : }
224 : #endif
225 : }
226 : // ... compute the distance to this point ...
227 51724 : double dist = MAX2(
228 25862 : geomsCCW[*i].nearest_offset_to_point2D(p),
229 25862 : geomsCW[*i].nearest_offset_to_point2D(p));
230 25862 : if (dist < 0) {
231 0 : if (isRailway((*i)->getPermissions())) {
232 : // better not mess up bidi geometries
233 0 : return PositionVector();
234 : }
235 : // ok, we have the problem that even the extrapolated geometry
236 : // does not reach the point
237 : // in this case, the geometry has to be extenden... too bad ...
238 : // ... let's append the mean position to the geometry
239 0 : PositionVector g = (*i)->getGeometry();
240 0 : if (myNode.hasIncoming(*i)) {
241 0 : g.push_back_noDoublePos(p);
242 : } else {
243 0 : g.push_front_noDoublePos(p);
244 : }
245 0 : (*i)->setGeometry(g);
246 : // and rebuild previous information
247 0 : geomsCCW[*i] = (*i)->getCCWBoundaryLine(myNode);
248 0 : geomsCCW[*i].extrapolate(EXT);
249 0 : geomsCW[*i] = (*i)->getCWBoundaryLine(myNode);
250 0 : geomsCW[*i].extrapolate(EXT);
251 : // the distance is now = zero (the point we have appended)
252 0 : distances[*i] = EXT;
253 0 : myExtended[*i] = true;
254 : #ifdef DEBUG_NODE_SHAPE
255 : if (DEBUGCOND) {
256 : std::cout << " extending (dist=" << dist << ")\n";
257 : }
258 : #endif
259 0 : } else {
260 25862 : if (!simpleContinuation) {
261 8718 : dist += myRadius;
262 : } else {
263 : // if the angles change, junction should have some size to avoid degenerate shape
264 17144 : double radius2 = fabs(ccad - cad) * (*i)->getNumLanes();
265 17144 : if (radius2 > NUMERICAL_EPS || openDriveOutput) {
266 : radius2 = MAX2(0.15, radius2);
267 : }
268 17144 : if (myNode.getCrossings().size() > 0) {
269 46 : double width = myNode.getCrossings()[0]->customWidth;
270 46 : if (width == NBEdge::UNSPECIFIED_WIDTH) {
271 56 : width = OptionsCont::getOptions().getFloat("default.crossing-width");
272 : }
273 46 : radius2 = MAX2(radius2, width / 2);
274 : }
275 17144 : if (!useDefaultRadius) {
276 2 : radius2 = MAX2(radius2, myRadius);
277 : }
278 17144 : dist += radius2;
279 : #ifdef DEBUG_NODE_SHAPE
280 : if (DEBUGCOND) {
281 : std::cout << " using radius=" << radius2 << " ccad=" << ccad << " cad=" << cad << "\n";
282 : }
283 : #endif
284 : }
285 25862 : distances[*i] = dist;
286 : }
287 :
288 : } else {
289 : // the angles are different enough to compute the intersection of
290 : // the outer boundaries directly (or there are more than 2 directions). The "nearer" neighbor causes the furthest distance
291 123741 : const bool ccwCloser = ccad < cad;
292 123741 : const bool cwLargeTurn = needsLargeTurn(*i, *cwi, same);
293 123741 : const bool ccwLargeTurn = needsLargeTurn(*i, *ccwi, same);
294 123741 : const bool neighLargeTurn = ccwCloser ? ccwLargeTurn : cwLargeTurn;
295 123741 : const bool neigh2LargeTurn = ccwCloser ? cwLargeTurn : ccwLargeTurn;
296 : // the border facing the closer neighbor
297 123741 : const PositionVector& currGeom = ccwCloser ? geomsCCW[*i] : geomsCW[*i];
298 : // the border facing the far neighbor
299 123741 : const PositionVector& currGeom2 = ccwCloser ? geomsCW[*i] : geomsCCW[*i];
300 : // the border of the closer neighbor
301 123741 : const PositionVector& neighGeom = ccwCloser ? geomsCW[*ccwi] : geomsCCW[*cwi];
302 : // the border of the far neighbor
303 123741 : const PositionVector& neighGeom2 = ccwCloser ? geomsCCW[*cwi] : geomsCW[*ccwi];
304 : // whether the current edge/direction spans a divided road
305 247482 : const bool keepBothDistances = isDivided(*i, same[*i], geomsCCW[*i], geomsCW[*i]);
306 : #ifdef DEBUG_NODE_SHAPE
307 : if (DEBUGCOND) {
308 : std::cout << " i=" << (*i)->getID() << " neigh=" << (*ccwi)->getID() << " neigh2=" << (*cwi)->getID() << "\n";
309 : std::cout << " ccwCloser=" << ccwCloser << " divided=" << keepBothDistances
310 : << "\n currGeom=" << currGeom << " neighGeom=" << neighGeom
311 : << "\n currGeom2=" << currGeom2 << " neighGeom2=" << neighGeom2
312 : << "\n";
313 : }
314 : #endif
315 123741 : if (!simpleContinuation) {
316 113839 : if (useEndpoints && !(*i)->hasDefaultGeometryEndpointAtNode(&myNode)) {
317 16 : distances[*i] = EXT;
318 113823 : } else if (currGeom.intersects(neighGeom)) {
319 113356 : distances[*i] = (neighLargeTurn ? myRadius : smallRadius) + closestIntersection(currGeom, neighGeom, EXT);
320 : #ifdef DEBUG_NODE_SHAPE
321 : if (DEBUGCOND) {
322 : std::cout << " neigh intersects dist=" << distances[*i] << " currGeom=" << currGeom << " neighGeom=" << neighGeom << "\n";
323 : }
324 : #endif
325 113356 : if (*cwi != *ccwi && currGeom2.intersects(neighGeom2)) {
326 : // also use the second intersection point
327 : // but prevent very large node shapes
328 108549 : const double farAngleDist = ccwCloser ? cad : ccad;
329 108549 : double a1 = distances[*i];
330 108549 : double a2 = (neigh2LargeTurn ? myRadius : smallRadius) + closestIntersection(currGeom2, neighGeom2, EXT);
331 : #ifdef DEBUG_NODE_SHAPE
332 : if (DEBUGCOND) {
333 : std::cout << " neigh2 also intersects a1=" << a1 << " a2=" << a2 << " ccad=" << RAD2DEG(ccad) << " cad=" << RAD2DEG(cad) << " dist[cwi]=" << distances[*cwi] << " dist[ccwi]=" << distances[*ccwi] << " farAngleDist=" << RAD2DEG(farAngleDist) << " currGeom2=" << currGeom2 << " neighGeom2=" << neighGeom2 << "\n";
334 : }
335 : #endif
336 : //if (RAD2DEG(farAngleDist) < 175) {
337 : // distances[*i] = MAX2(a1, MIN2(a2, a1 + 180 - RAD2DEG(farAngleDist)));
338 : //}
339 108549 : if (a2 <= EXT) {
340 3871 : if (keepBothDistances) {
341 55 : if (ccwCloser) {
342 17 : distances2[*i] = a2;
343 : } else {
344 38 : distances[*i] = a2;
345 38 : distances2[*i] = a1;
346 : }
347 : } else {
348 7632 : distances[*i] = MAX2(a1, a2);
349 : }
350 25092 : } else if (ccad > DEG2RAD(90. + 45.) && cad > DEG2RAD(90. + 45.)
351 108004 : && (fabs(ccad - cad) > DEG2RAD(10)
352 951 : || MAX2(ccad, cad) > DEG2RAD(160)
353 175 : || (a2 - a1) > 7
354 : // keep roundabouts nodes small
355 168 : || myNode.isRoundabout())) {
356 : #ifdef DEBUG_NODE_SHAPE
357 : if (DEBUGCOND) {
358 : std::cout << " ignore a2\n";
359 : }
360 : #endif
361 : // do nothing.
362 101510 : } else if (farAngleDist < DEG2RAD(135) || (fabs(RAD2DEG(farAngleDist) - 180) > 1 && fabs(a2 - a1) < 10)) {
363 79711 : if (keepBothDistances) {
364 218 : if (ccwCloser) {
365 100 : distances2[*i] = a2;
366 : } else {
367 118 : distances[*i] = a2;
368 118 : distances2[*i] = a1;
369 : }
370 : } else {
371 158986 : distances[*i] = MAX2(a1, a2);
372 : }
373 : }
374 : #ifdef DEBUG_NODE_SHAPE
375 : if (DEBUGCOND) {
376 : std::cout << " a1=" << a1 << " a2=" << a2 << " keepBoth=" << keepBothDistances << " dist=" << distances[*i] << "\n";
377 : }
378 : #endif
379 : }
380 : } else {
381 467 : if (*cwi != *ccwi && currGeom2.intersects(neighGeom2)) {
382 407 : distances[*i] = (neigh2LargeTurn ? myRadius : smallRadius) + currGeom2.intersectsAtLengths2D(neighGeom2)[0];
383 : #ifdef DEBUG_NODE_SHAPE
384 : if (DEBUGCOND) {
385 : std::cout << " neigh2 intersects dist=" << distances[*i] << " currGeom2=" << currGeom2 << " neighGeom2=" << neighGeom2 << "\n";
386 : }
387 : #endif
388 : } else {
389 60 : distances[*i] = EXT + myRadius;
390 : #ifdef DEBUG_NODE_SHAPE
391 : if (DEBUGCOND) {
392 : std::cout << " no intersects dist=" << distances[*i] << " currGeom=" << currGeom << " neighGeom=" << neighGeom << " currGeom2=" << currGeom2 << " neighGeom2=" << neighGeom2 << "\n";
393 : }
394 : #endif
395 : }
396 : }
397 : } else {
398 9902 : if (currGeom.intersects(neighGeom)) {
399 9875 : distances[*i] = currGeom.intersectsAtLengths2D(neighGeom)[0];
400 : } else {
401 27 : distances[*i] = (double) EXT;
402 : }
403 : }
404 : }
405 149603 : if (useDefaultRadius && sCurveStretch > 0) {
406 32 : double sCurveWidth = myNode.getDisplacementError();
407 32 : if (sCurveWidth > 0) {
408 2 : const double sCurveRadius = myRadius + sCurveWidth / SUMO_const_laneWidth * sCurveStretch * pow((*i)->getSpeed(), 2 + sCurveStretch) / 1000;
409 2 : const double stretch = EXT + sCurveRadius - distances[*i];
410 2 : if (stretch > 0) {
411 2 : distances[*i] += stretch;
412 : // fixate extended geometry for repeated computation
413 2 : const double shorten = distances[*i] - EXT;
414 2 : (*i)->shortenGeometryAtNode(&myNode, shorten);
415 2 : for (std::set<NBEdge*>::iterator k = same[*i].begin(); k != same[*i].end(); ++k) {
416 0 : (*k)->shortenGeometryAtNode(&myNode, shorten);
417 : }
418 : #ifdef DEBUG_NODE_SHAPE
419 : if (DEBUGCOND) {
420 : std::cout << " stretching junction: sCurveWidth=" << sCurveWidth << " sCurveRadius=" << sCurveRadius << " stretch=" << stretch << " dist=" << distances[*i] << "\n";
421 : }
422 : #endif
423 : }
424 : }
425 : }
426 : }
427 :
428 201719 : for (NBEdge* const edge : newAll) {
429 149603 : if (distances.find(edge) == distances.end()) {
430 : assert(false);
431 0 : distances[edge] = EXT;
432 : }
433 : }
434 : // because of lane spread right the crossing point may be identical to the junction center and thus the distance is exactly EXT
435 52116 : const double off = EXT - NUMERICAL_EPS;
436 : // prevent inverted node shapes
437 : // (may happen with near-parallel edges)
438 52116 : const double minDistSum = 2 * (EXT + myRadius);
439 201719 : for (NBEdge* const edge : newAll) {
440 149603 : if (distances[edge] < off && edge->hasDefaultGeometryEndpointAtNode(&myNode)) {
441 5861 : for (EdgeVector::const_iterator j = newAll.begin(); j != newAll.end(); ++j) {
442 4367 : if (distances[*j] > off && (*j)->hasDefaultGeometryEndpointAtNode(&myNode) && distances[edge] + distances[*j] < minDistSum) {
443 231 : const double angleDiff = fabs(NBHelpers::relAngle(edge->getAngleAtNode(&myNode), (*j)->getAngleAtNode(&myNode)));
444 231 : if (angleDiff > 160 || angleDiff < 20) {
445 : #ifdef DEBUG_NODE_SHAPE
446 : if (DEBUGCOND) {
447 : std::cout << " increasing dist for i=" << edge->getID() << " because of j=" << (*j)->getID() << " jDist=" << distances[*j]
448 : << " oldI=" << distances[edge] << " newI=" << minDistSum - distances[*j]
449 : << " angleDiff=" << angleDiff
450 : << " geomI=" << edge->getGeometry() << " geomJ=" << (*j)->getGeometry() << "\n";
451 : }
452 : #endif
453 122 : distances[edge] = minDistSum - distances[*j];
454 : }
455 : }
456 : }
457 : }
458 : }
459 :
460 :
461 : // build
462 52116 : PositionVector ret;
463 201719 : for (i = newAll.begin(); i != newAll.end(); ++i) {
464 149603 : const PositionVector& ccwBound = geomsCCW[*i];
465 149603 : const PositionVector& cwBound = geomsCW[*i];
466 : //double offset = MIN3(distances[*i], cwBound.length2D() - POSITION_EPS, ccwBound.length2D() - POSITION_EPS);
467 149603 : double offset = distances[*i];
468 273 : double offset2 = distances2.count(*i) != 0 ? distances2[*i] : offset;
469 149603 : if (offset != offset2) {
470 : // keep rectangular cuts if the difference is small or the roads aren't
471 : // really divided by much (unless the angle is very different)
472 819 : const double dWidth = divisionWidth(*i, same[*i],
473 273 : ccwBound.positionAtOffset2D(offset),
474 273 : cwBound.positionAtOffset2D(offset2));
475 273 : const double angle = RAD2DEG(GeomHelper::angleDiff(ccwBound.angleAt2D(0), cwBound.angleAt2D(0)));
476 273 : const double oDelta = fabs(offset - offset2);
477 : //std::cout << " i=" << (*i)->getID() << " offset=" << offset << " offset2=" << offset2 << " dWidth=" << dWidth << " angle=" << angle << " same=" << joinNamedToStringSorting(same[*i], ",") << "\n";
478 273 : if ((((oDelta < 5 || dWidth < 10) && fabs(angle) < 30)) || (fabs(angle) < 5 && myNode.getType() != SumoXMLNodeType::RAIL_CROSSING)) {
479 : #ifdef DEBUG_NODE_SHAPE
480 : std::cout << " i=" << (*i)->getID() << " offset=" << offset << " offset2=" << offset2 << " dWidth=" << dWidth << " angle=" << angle << " same=" << joinNamedToStringSorting(same[*i], ",") << "\n";
481 : #endif
482 : offset = MAX2(offset, offset2);
483 : offset2 = offset;
484 : }
485 : }
486 149603 : if (!(*i)->hasDefaultGeometryEndpointAtNode(&myNode)) {
487 : // for non geometry-endpoints, only shorten but never extend the geometry
488 14690 : if (advanceStopLine > 0 && offset < EXT) {
489 : #ifdef DEBUG_NODE_SHAPE
490 : std::cout << " i=" << (*i)->getID() << " offset=" << offset << " advanceStopLine=" << advanceStopLine << "\n";
491 : #endif
492 : // fixate extended geometry for repeated computation
493 0 : (*i)->extendGeometryAtNode(&myNode, advanceStopLine);
494 0 : for (std::set<NBEdge*>::iterator k = same[*i].begin(); k != same[*i].end(); ++k) {
495 0 : (*k)->extendGeometryAtNode(&myNode, advanceStopLine);
496 : }
497 : }
498 14690 : offset = MAX2(EXT - advanceStopLine, offset);
499 : offset2 = MAX2(EXT - advanceStopLine, offset2);
500 : }
501 149603 : if (offset == -1) {
502 0 : WRITE_WARNINGF(TL("Fixing offset for edge '%' at node '%."), (*i)->getID(), myNode.getID());
503 : offset = -.1;
504 : offset2 = -.1;
505 : }
506 149603 : Position p = ccwBound.positionAtOffset2D(offset);
507 149603 : p.setz(myNode.getPosition().z());
508 149603 : if (i != newAll.begin()) {
509 292461 : ret.append(getSmoothCorner(geomsCW[*(i - 1)], ccwBound, ret[-1], p, cornerDetail));
510 : }
511 149603 : Position p2 = cwBound.positionAtOffset2D(offset2);
512 149603 : p2.setz(myNode.getPosition().z());
513 : //ret.append(getEdgeCuts(*i, geomsCCW, geomsCW, offset, offset2, same));
514 149603 : ret.push_back_noDoublePos(p);
515 149603 : ret.push_back_noDoublePos(p2);
516 : #ifdef DEBUG_NODE_SHAPE
517 : if (DEBUGCOND) {
518 : std::cout << " build stopLine for i=" << (*i)->getID() << " offset=" << offset << " offset2=" << offset2 << " dist=" << distances[*i] << " cwLength=" << cwBound.length2D() << " ccwLength=" << ccwBound.length2D() << " p=" << p << " p2=" << p2 << " ccwBound=" << ccwBound << " cwBound=" << cwBound << "\n";
519 : }
520 : #endif
521 149603 : (*i)->setNodeBorder(&myNode, p, p2, rectangularCut);
522 219932 : for (std::set<NBEdge*>::iterator k = same[*i].begin(); k != same[*i].end(); ++k) {
523 70329 : (*k)->setNodeBorder(&myNode, p, p2, rectangularCut);
524 : }
525 : }
526 : // final curve segment
527 156348 : ret.append(getSmoothCorner(geomsCW[*(newAll.end() - 1)], geomsCCW[*newAll.begin()], ret[-1], ret[0], cornerDetail));
528 : #ifdef DEBUG_NODE_SHAPE
529 : if (DEBUGCOND) {
530 : std::cout << " final shape=" << ret << "\n";
531 : }
532 : #endif
533 : return ret;
534 104316 : }
535 :
536 :
537 : double
538 221905 : NBNodeShapeComputer::closestIntersection(const PositionVector& geom1, const PositionVector& geom2, double offset) {
539 221905 : std::vector<double> intersections = geom1.intersectsAtLengths2D(geom2);
540 221905 : double result = intersections[0];
541 234357 : for (std::vector<double>::iterator it = intersections.begin() + 1; it != intersections.end(); ++it) {
542 12452 : if (fabs(*it - offset) < fabs(result - offset)) {
543 : result = *it;
544 : }
545 : }
546 221905 : return result;
547 221905 : }
548 :
549 : bool
550 247482 : NBNodeShapeComputer::needsLargeTurn(NBEdge* e1, NBEdge* e2,
551 : std::map<NBEdge*, std::set<NBEdge*> >& same) const {
552 247482 : const SVCPermissions p1 = e1->getPermissions();
553 247482 : const SVCPermissions p2 = e2->getPermissions();
554 247482 : if ((p1 & p2 & SVC_LARGE_TURN) != 0) {
555 : // note: would could also check whether there is actually a connection
556 : // between those edges
557 : return true;
558 : }
559 : // maybe edges in the same direction need a large turn
560 162254 : for (NBEdge* e2s : same[e2]) {
561 41566 : if ((p1 & e2s->getPermissions() & SVC_LARGE_TURN) != 0
562 41566 : && (e1->getToNode() == e2s->getFromNode() || e2s->getToNode() == e1->getFromNode())) {
563 : return true;
564 : }
565 70537 : for (NBEdge* e1s : same[e1]) {
566 29967 : if ((e2s->getPermissions() & e1s->getPermissions() & SVC_LARGE_TURN) != 0
567 29967 : && (e2s->getToNode() == e1s->getFromNode() || e1s->getToNode() == e2s->getFromNode())) {
568 : return true;
569 : }
570 : }
571 : }
572 160750 : for (NBEdge* e1s : same[e1]) {
573 40524 : if ((p2 & e1s->getPermissions() & SVC_LARGE_TURN) != 0
574 40524 : && (e2->getToNode() == e1s->getFromNode() || e1s->getToNode() == e2->getFromNode())) {
575 : return true;
576 : }
577 : }
578 : //std::cout << " e1=" << e1->getID() << " e2=" << e2->getID() << " sameE1=" << toString(same[e1]) << " sameE2=" << toString(same[e2]) << "\n";
579 : return false;
580 : }
581 :
582 : PositionVector
583 149603 : NBNodeShapeComputer::getSmoothCorner(PositionVector begShape, PositionVector endShape,
584 : const Position& begPoint, const Position& endPoint, int cornerDetail) {
585 149603 : PositionVector ret;
586 149603 : if (cornerDetail > 0) {
587 125247 : PositionVector begShape2 = begShape.reverse().getSubpart2D(EXT2, begShape.length());
588 125247 : const double begSplit = begShape2.nearest_offset_to_point2D(begPoint, false);
589 : #ifdef DEBUG_SMOOTH_CORNERS
590 : if (DEBUGCOND) {
591 : std::cout << " begLength=" << begShape2.length2D() << " begSplit=" << begSplit << "\n";
592 : }
593 : #endif
594 125247 : if (begSplit > POSITION_EPS && begSplit < begShape2.length2D() - POSITION_EPS) {
595 115940 : begShape2 = begShape2.splitAt(begSplit, true).first;
596 : } else {
597 : return ret;
598 : }
599 115940 : PositionVector endShape2 = endShape.getSubpart(0, endShape.length() - EXT2);
600 115940 : const double endSplit = endShape2.nearest_offset_to_point2D(endPoint, false);
601 : #ifdef DEBUG_SMOOTH_CORNERS
602 : if (DEBUGCOND) {
603 : std::cout << " endLength=" << endShape2.length2D() << " endSplit=" << endSplit << "\n";
604 : }
605 : #endif
606 115940 : if (endSplit > POSITION_EPS && endSplit < endShape2.length2D() - POSITION_EPS) {
607 110885 : endShape2 = endShape2.splitAt(endSplit, true).second;
608 : } else {
609 : return ret;
610 : }
611 : // flatten z to junction z level
612 221770 : begShape2 = begShape2.interpolateZ(myNode.getPosition().z(), myNode.getPosition().z());
613 221770 : endShape2 = endShape2.interpolateZ(myNode.getPosition().z(), myNode.getPosition().z());
614 : #ifdef DEBUG_SMOOTH_CORNERS
615 : if (DEBUGCOND) {
616 : std::cout << "getSmoothCorner begPoint=" << begPoint << " endPoint=" << endPoint
617 : << " begShape=" << begShape << " endShape=" << endShape
618 : << " begShape2=" << begShape2 << " endShape2=" << endShape2
619 : << "\n";
620 : }
621 : #endif
622 110885 : if (begShape2.size() < 2 || endShape2.size() < 2) {
623 : return ret;
624 : }
625 110885 : const double angle = GeomHelper::angleDiff(begShape2.angleAt2D(-2), endShape2.angleAt2D(0));
626 : NBNode* recordError = nullptr;
627 : #ifdef DEBUG_SMOOTH_CORNERS
628 : if (DEBUGCOND) {
629 : std::cout << " angle=" << RAD2DEG(angle) << "\n";
630 : }
631 : recordError = const_cast<NBNode*>(&myNode);
632 : #endif
633 : // fill highly acute corners
634 : //if (fabs(angle) > DEG2RAD(135)) {
635 : // return ret;
636 : //}
637 110885 : PositionVector curve = myNode.computeSmoothShape(begShape2, endShape2, cornerDetail + 2, false, 25, 25, recordError, NBNode::AVOID_WIDE_LEFT_TURN);
638 : //PositionVector curve = myNode.computeSmoothShape(begShape2, endShape2, cornerDetail + 2, false, 25, 25, recordError, 0);
639 110885 : const double curvature = curve.length2D() / MAX2(NUMERICAL_EPS, begPoint.distanceTo2D(endPoint));
640 : #ifdef DEBUG_SMOOTH_CORNERS
641 : if (DEBUGCOND) {
642 : std::cout << " curve=" << curve << " curveLength=" << curve.length2D() << " dist=" << begPoint.distanceTo2D(endPoint) << " curvature=" << curvature << "\n";
643 : }
644 : #endif
645 110885 : if (curvature > 2 && angle > DEG2RAD(85)) {
646 : // simplify dubious inside corner shape
647 : return ret;
648 : }
649 109417 : if (curve.size() > 2) {
650 : curve.erase(curve.begin());
651 : curve.pop_back();
652 : ret = curve;
653 : }
654 125247 : }
655 : return ret;
656 0 : }
657 :
658 : void
659 52200 : NBNodeShapeComputer::computeEdgeBoundaries(const EdgeVector& edges,
660 : GeomsMap& geomsCCW,
661 : GeomsMap& geomsCW) {
662 : // compute boundary lines and extend it by EXT m
663 272360 : for (NBEdge* const edge : edges) {
664 : // store current edge's boundary as current ccw/cw boundary
665 : try {
666 440320 : geomsCCW[edge] = edge->getCCWBoundaryLine(myNode);
667 0 : } catch (InvalidArgument& e) {
668 0 : WRITE_WARNING("While computing intersection geometry at junction '" + myNode.getID() + "': " + std::string(e.what()));
669 0 : geomsCCW[edge] = edge->getGeometry();
670 0 : }
671 : try {
672 440320 : geomsCW[edge] = edge->getCWBoundaryLine(myNode);
673 0 : } catch (InvalidArgument& e) {
674 0 : WRITE_WARNING("While computing intersection geometry at junction '" + myNode.getID() + "': " + std::string(e.what()));
675 0 : geomsCW[edge] = edge->getGeometry();
676 0 : }
677 : // ensure the boundary is valid
678 220160 : if (geomsCCW[edge].length2D() < NUMERICAL_EPS) {
679 0 : geomsCCW[edge] = edge->getGeometry();
680 : }
681 220160 : if (geomsCW[edge].length2D() < NUMERICAL_EPS) {
682 0 : geomsCW[edge] = edge->getGeometry();
683 : }
684 : // cut off all parts beyond EXT to avoid issues with curved-back roads
685 440332 : geomsCCW[edge] = geomsCCW[edge].getSubpart2D(0, MAX2(EXT, edge->getTotalWidth()));
686 440332 : geomsCW[edge] = geomsCW[edge].getSubpart2D(0, MAX2(EXT, edge->getTotalWidth()));
687 : // extend the boundary by extrapolating it by EXT m towards the junction
688 220160 : geomsCCW[edge].extrapolate2D(EXT, true);
689 220160 : geomsCW[edge].extrapolate2D(EXT, true);
690 : // ensure minimum length by extending it away from the junction
691 220160 : geomsCCW[edge].extrapolate(EXT2, false, true);
692 220160 : geomsCW[edge].extrapolate(EXT2, false, true);
693 : }
694 52200 : }
695 :
696 : void
697 52200 : NBNodeShapeComputer::joinSameDirectionEdges(const EdgeVector& edges, std::map<NBEdge*, std::set<NBEdge*> >& same, bool useEndpoints) {
698 : // compute same (edges where an intersection doesn't work well
699 : // (always check an edge and its cw neighbor)
700 : const double angleChangeLookahead = 35; // distance to look ahead for a misleading angle
701 99609 : const bool isXodr = OptionsCont::getOptions().exists("opendrive-files") && OptionsCont::getOptions().isSet("opendrive-files");
702 : EdgeSet foundOpposite;
703 272360 : for (EdgeVector::const_iterator i = edges.begin(); i != edges.end(); i++) {
704 : EdgeVector::const_iterator j;
705 220160 : if (i == edges.end() - 1) {
706 : j = edges.begin();
707 : } else {
708 : j = i + 1;
709 : }
710 16 : if (useEndpoints
711 16 : && !(*i)->hasDefaultGeometryEndpointAtNode(&myNode)
712 220176 : && !(*j)->hasDefaultGeometryEndpointAtNode(&myNode)) {
713 16 : continue;
714 : }
715 220144 : const bool incoming = (*i)->getToNode() == &myNode;
716 220144 : const bool incoming2 = (*j)->getToNode() == &myNode;
717 : const bool differentDirs = (incoming != incoming2);
718 253022 : const bool sameGeom = (*i)->getGeometry() == (differentDirs ? (*j)->getGeometry().reverse() : (*j)->getGeometry());
719 220144 : const PositionVector g1 = incoming ? (*i)->getCCWBoundaryLine(myNode) : (*i)->getCWBoundaryLine(myNode);
720 220144 : const PositionVector g2 = incoming ? (*j)->getCCWBoundaryLine(myNode) : (*j)->getCWBoundaryLine(myNode);
721 220144 : const double angle1further = (g1.size() > 2 && g1[0].distanceTo2D(g1[1]) < angleChangeLookahead ?
722 220144 : g1.angleAt2D(1) : g1.angleAt2D(0));
723 220144 : const double angle2further = (g2.size() > 2 && g2[0].distanceTo2D(g2[1]) < angleChangeLookahead ?
724 220144 : g2.angleAt2D(1) : g2.angleAt2D(0));
725 220144 : const double angleDiff = GeomHelper::angleDiff(g1.angleAt2D(0), g2.angleAt2D(0));
726 220144 : const double angleDiffFurther = GeomHelper::angleDiff(angle1further, angle2further);
727 220144 : const bool ambiguousGeometry = ((angleDiff > 0 && angleDiffFurther < 0) || (angleDiff < 0 && angleDiffFurther > 0));
728 : //if (ambiguousGeometry) {
729 : // @todo: this warning would be helpful in many cases. However, if angle and angleFurther jump between 179 and -179 it is misleading
730 : // WRITE_WARNINGF(TL("Ambiguous angles at junction '%' for edges '%' and '%'."), myNode.getID(), (*i)->getID(), (*j)->getID());
731 : //}
732 : #ifdef DEBUG_NODE_SHAPE
733 : if (DEBUGCOND) {
734 : std::cout << " checkSameDirection " << (*i)->getID() << " " << (*j)->getID()
735 : << " diffDirs=" << differentDirs
736 : << " isOpposite=" << (differentDirs && foundOpposite.count(*i) == 0)
737 : << " angleDiff=" << angleDiff
738 : << " ambiguousGeometry=" << ambiguousGeometry
739 : << " badInsersection=" << badIntersection(*i, *j, EXT)
740 : << "\n";
741 :
742 : }
743 : #endif
744 220144 : if (sameGeom || fabs(angleDiff) < DEG2RAD(20)) {
745 72038 : const bool isOpposite = differentDirs && foundOpposite.count(*i) == 0;
746 : if (isOpposite) {
747 : foundOpposite.insert(*i);
748 : foundOpposite.insert(*j);
749 : }
750 72038 : if (isOpposite || ambiguousGeometry || (!isXodr && badIntersection(*i, *j, EXT))) {
751 : // maintain equivalence relation for all members of the equivalence class
752 74050 : for (std::set<NBEdge*>::iterator k = same[*i].begin(); k != same[*i].end(); ++k) {
753 3522 : if (*j != *k) {
754 3467 : same[*k].insert(*j);
755 3467 : same[*j].insert(*k);
756 : }
757 : }
758 74238 : for (std::set<NBEdge*>::iterator k = same[*j].begin(); k != same[*j].end(); ++k) {
759 3710 : if (*i != *k) {
760 3655 : same[*k].insert(*i);
761 3655 : same[*i].insert(*k);
762 : }
763 : }
764 70528 : same[*i].insert(*j);
765 70528 : same[*j].insert(*i);
766 : #ifdef DEBUG_NODE_SHAPE
767 : if (DEBUGCOND) {
768 : std::cout << " joinedSameDirectionEdges " << (*i)->getID() << " " << (*j)->getID() << " isOpposite=" << isOpposite << " ambiguousGeometry=" << ambiguousGeometry << "\n";
769 : }
770 : #endif
771 : }
772 : }
773 220144 : }
774 52200 : }
775 :
776 :
777 : bool
778 4122 : NBNodeShapeComputer::badIntersection(const NBEdge* e1, const NBEdge* e2, double distance) {
779 : // check whether the two edges are on top of each other. In that case they should be joined
780 : // also, if they never touch along their common length
781 4122 : const double commonLength = MIN3(distance, e1->getGeometry().length(), e2->getGeometry().length());
782 : PositionVector geom1 = e1->getGeometry();
783 : PositionVector geom2 = e2->getGeometry();
784 : // shift to make geom the centerline of the edge regardless of spreadtype
785 4122 : if (e1->getLaneSpreadFunction() == LaneSpreadFunction::RIGHT) {
786 830 : geom1.move2side(e1->getTotalWidth() / 2);
787 : }
788 4122 : if (e2->getLaneSpreadFunction() == LaneSpreadFunction::RIGHT) {
789 802 : geom2.move2side(e2->getTotalWidth() / 2);
790 : }
791 : // always let geometry start at myNode
792 4122 : if (e1->getToNode() == &myNode) {
793 3424 : geom1 = geom1.reverse();
794 : }
795 4122 : if (e2->getToNode() == &myNode) {
796 4270 : geom2 = geom2.reverse();
797 : }
798 8244 : geom1 = geom1.getSubpart2D(0, commonLength);
799 8244 : geom2 = geom2.getSubpart2D(0, commonLength);
800 : double endAngleDiff = 0;
801 4122 : if (geom1.size() >= 2 && geom2.size() >= 2) {
802 4122 : endAngleDiff = fabs(RAD2DEG(GeomHelper::angleDiff(
803 : geom1.angleAt2D((int)geom1.size() - 2),
804 : geom2.angleAt2D((int)geom2.size() - 2))));
805 : }
806 4122 : const double minDistanceThreshold = (e1->getTotalWidth() + e2->getTotalWidth()) / 2 + POSITION_EPS;
807 4122 : std::vector<double> distances = geom1.distances(geom2, true);
808 4122 : std::vector<double> distances2 = geom1.distances(geom2);
809 : const double minDist = VectorHelper<double>::minValue(distances2);
810 : const double maxDist = VectorHelper<double>::maxValue(distances);
811 4122 : const bool curvingTowards = geom1[0].distanceTo2D(geom2[0]) > minDistanceThreshold && minDist < minDistanceThreshold;
812 4122 : const bool onTop = (maxDist - POSITION_EPS < minDistanceThreshold) && endAngleDiff < 30;
813 4122 : const bool bothDefault = e1->hasDefaultGeometryEndpointAtNode(&myNode) && e2->hasDefaultGeometryEndpointAtNode(&myNode);
814 4122 : const bool neverTouch = minDist > minDistanceThreshold * 2 && !bothDefault;
815 4122 : geom1.extrapolate2D(EXT);
816 4122 : geom2.extrapolate2D(EXT);
817 4122 : Position intersect = geom1.intersectionPosition2D(geom2);
818 2986 : const bool intersects = intersect != Position::INVALID && geom1.distance2D(intersect) < POSITION_EPS;
819 : #ifdef DEBUG_NODE_SHAPE
820 : if (DEBUGCOND) {
821 : std::cout << " badIntersect: onTop=" << onTop << " curveTo=" << curvingTowards << " intersects=" << intersects
822 : << " endAngleDiff=" << endAngleDiff
823 : << " geom1=" << geom1 << " geom2=" << geom2
824 : << " distances=" << toString(distances) << " minDist=" << minDist << " maxDist=" << maxDist << " thresh=" << minDistanceThreshold
825 : << " neverTouch=" << neverTouch
826 : << " intersectPos=" << intersect
827 : << "\n";
828 : }
829 : #endif
830 8244 : return onTop || curvingTowards || !intersects || neverTouch;
831 4122 : }
832 :
833 :
834 : EdgeVector
835 52200 : NBNodeShapeComputer::computeUniqueDirectionList(
836 : const EdgeVector& all,
837 : std::map<NBEdge*, std::set<NBEdge*> >& same,
838 : GeomsMap& geomsCCW,
839 : GeomsMap& geomsCW) {
840 : // store relationships
841 52200 : EdgeVector newAll = all;
842 272360 : for (NBEdge* e1 : all) {
843 : // determine which of the edges marks the outer boundary
844 220160 : auto e2NewAll = std::find(newAll.begin(), newAll.end(), e1);
845 : #ifdef DEBUG_NODE_SHAPE
846 : if (DEBUGCOND) std::cout << "computeUniqueDirectionList e1=" << e1->getID()
847 : << " deleted=" << (e2NewAll == newAll.end())
848 : << " same=" << joinNamedToStringSorting(same[e1], ',') << "\n";
849 : #endif
850 220160 : if (e2NewAll == newAll.end()) {
851 70473 : continue;
852 : }
853 149687 : auto e1It = std::find(all.begin(), all.end(), e1);
854 : auto bestCCW = e1It;
855 : auto bestCW = e1It;
856 : bool changed = true;
857 368786 : while (changed) {
858 : changed = false;
859 363450 : for (NBEdge* e2 : same[e1]) {
860 : #ifdef DEBUG_NODE_SHAPE
861 : if (DEBUGCOND) {
862 : std::cout << " e2=" << e2->getID() << "\n";
863 : }
864 : #endif
865 144351 : auto e2It = std::find(all.begin(), all.end(), e2);
866 144351 : if (e2It + 1 == bestCCW || (e2It == (all.end() - 1) && bestCCW == all.begin())) {
867 : bestCCW = e2It;
868 : changed = true;
869 : #ifdef DEBUG_NODE_SHAPE
870 : if (DEBUGCOND) {
871 : std::cout << " bestCCW=" << e2->getID() << "\n";
872 : }
873 : #endif
874 143039 : } else if (bestCW + 1 == e2It || (bestCW == (all.end() - 1) && e2It == all.begin())) {
875 : bestCW = e2It;
876 : changed = true;
877 : #ifdef DEBUG_NODE_SHAPE
878 : if (DEBUGCOND) {
879 : std::cout << " bestCW=" << e2->getID() << "\n";
880 : }
881 : #endif
882 : }
883 : }
884 : }
885 149687 : if (bestCW != e1It) {
886 67581 : geomsCW[e1] = geomsCW[*bestCW];
887 67581 : computeSameEnd(geomsCW[e1], geomsCCW[e1]);
888 : }
889 149687 : if (bestCCW != e1It) {
890 1148 : geomsCCW[e1] = geomsCCW[*bestCCW];
891 1148 : computeSameEnd(geomsCW[e1], geomsCCW[e1]);
892 : }
893 : // clean up
894 220160 : for (NBEdge* e2 : same[e1]) {
895 70473 : auto e2NewAllIt = std::find(newAll.begin(), newAll.end(), e2);
896 70473 : if (e2NewAllIt != newAll.end()) {
897 : newAll.erase(e2NewAllIt);
898 : }
899 : }
900 : }
901 : #ifdef DEBUG_NODE_SHAPE
902 : if (DEBUGCOND) {
903 : std::cout << " newAll:\n";
904 : for (NBEdge* e : newAll) {
905 : std::cout << " " << e->getID() << " geomCCW=" << geomsCCW[e] << " geomsCW=" << geomsCW[e] << "\n";
906 : }
907 : }
908 : #endif
909 52200 : return newAll;
910 0 : }
911 :
912 :
913 : void
914 149603 : NBNodeShapeComputer::initNeighbors(const EdgeVector& edges, const EdgeVector::const_iterator& current,
915 : GeomsMap& geomsCW,
916 : GeomsMap& geomsCCW,
917 : EdgeVector::const_iterator& cwi,
918 : EdgeVector::const_iterator& ccwi,
919 : double& cad,
920 : double& ccad) {
921 : const double twoPI = (double)(2 * M_PI);
922 149603 : cwi = current;
923 : cwi++;
924 149603 : if (cwi == edges.end()) {
925 52116 : std::advance(cwi, -((int)edges.size())); // set to edges.begin();
926 : }
927 149603 : ccwi = current;
928 149603 : if (ccwi == edges.begin()) {
929 52116 : std::advance(ccwi, edges.size() - 1); // set to edges.end() - 1;
930 : } else {
931 : ccwi--;
932 : }
933 :
934 149603 : const double angleCurCCW = geomsCCW[*current].angleAt2D(0);
935 149603 : const double angleCurCW = geomsCW[*current].angleAt2D(0);
936 149603 : const double angleCCW = geomsCW[*ccwi].angleAt2D(0);
937 149603 : const double angleCW = geomsCCW[*cwi].angleAt2D(0);
938 149603 : ccad = angleCCW - angleCurCCW;
939 203085 : while (ccad < 0.) {
940 53482 : ccad += twoPI;
941 : }
942 149603 : cad = angleCurCW - angleCW;
943 203085 : while (cad < 0.) {
944 53482 : cad += twoPI;
945 : }
946 149603 : }
947 :
948 :
949 :
950 : const PositionVector
951 19406 : NBNodeShapeComputer::computeNodeShapeSmall() {
952 : #ifdef DEBUG_NODE_SHAPE
953 : if (DEBUGCOND) {
954 : std::cout << "computeNodeShapeSmall node=" << myNode.getID() << "\n";
955 : }
956 : #endif
957 19406 : PositionVector ret;
958 48860 : for (NBEdge* e : myNode.getEdges()) {
959 : // compute crossing with normal
960 29454 : PositionVector edgebound1 = e->getCCWBoundaryLine(myNode).getSubpartByIndex(0, 2);
961 29454 : PositionVector edgebound2 = e->getCWBoundaryLine(myNode).getSubpartByIndex(0, 2);
962 29454 : Position delta = edgebound1[1] - edgebound1[0];
963 : delta.set(-delta.y(), delta.x()); // rotate 90 degrees
964 29454 : PositionVector cross(myNode.getPosition(), myNode.getPosition() + delta);
965 29454 : cross.extrapolate2D(500);
966 29454 : edgebound1.extrapolate2D(500);
967 29454 : edgebound2.extrapolate2D(500);
968 29454 : if (cross.intersects(edgebound1)) {
969 29454 : Position np = cross.intersectionPosition2D(edgebound1);
970 29454 : np.set(np.x(), np.y(), myNode.getPosition().z());
971 29454 : ret.push_back_noDoublePos(np);
972 : }
973 29454 : if (cross.intersects(edgebound2)) {
974 29450 : Position np = cross.intersectionPosition2D(edgebound2);
975 29450 : np.set(np.x(), np.y(), myNode.getPosition().z());
976 29450 : ret.push_back_noDoublePos(np);
977 : }
978 29454 : e->resetNodeBorder(&myNode);
979 29454 : }
980 19406 : return ret;
981 0 : }
982 :
983 :
984 : double
985 52200 : NBNodeShapeComputer::getDefaultRadius(const OptionsCont& oc) {
986 : // look for incoming/outgoing edge pairs that do not go straight and allow wide vehicles
987 : // (connection information is not available yet)
988 : // @TODO compute the radius for each pair of neighboring edge intersections in computeNodeShapeDefault rather than use the maximum
989 52200 : const double radius = oc.getFloat("default.junctions.radius");
990 52200 : const double smallRadius = oc.getFloat("junctions.small-radius");
991 : double maxRightAngle = 0; // rad
992 : double extraWidthRight = 0; // m
993 : double maxLeftAngle = 0; // rad
994 : double extraWidthLeft = 0; // m
995 : int laneDelta = 0;
996 : int totalWideLanesIn = 0;
997 161849 : for (NBEdge* in : myNode.getIncomingEdges()) {
998 : int wideLanesIn = 0;
999 252760 : for (int i = 0; i < in->getNumLanes(); i++) {
1000 143111 : if ((in->getPermissions(i) & SVC_LARGE_TURN) != 0) {
1001 90652 : wideLanesIn++;
1002 : }
1003 : }
1004 109649 : totalWideLanesIn += wideLanesIn;
1005 388020 : for (NBEdge* out : myNode.getOutgoingEdges()) {
1006 278371 : if ((in->getPermissions() & out->getPermissions() & SVC_LARGE_TURN) != 0) {
1007 171238 : if (myNode.getDirection(in, out) == LinkDirection::TURN) {
1008 47863 : continue;
1009 : };
1010 123375 : const double angle = GeomHelper::angleDiff(
1011 123375 : in->getGeometry().angleAt2D(-2),
1012 : out->getGeometry().angleAt2D(0));
1013 123375 : if (angle < 0) {
1014 56507 : if (maxRightAngle < -angle) {
1015 : maxRightAngle = -angle;
1016 34933 : extraWidthRight = MAX2(getExtraWidth(in, SVC_LARGE_TURN), getExtraWidth(out, SVC_LARGE_TURN));
1017 : }
1018 : } else {
1019 66868 : if (maxLeftAngle < angle) {
1020 : maxLeftAngle = angle;
1021 : // all edges clockwise between in and out count as extra width
1022 : extraWidthLeft = 0;
1023 30821 : EdgeVector::const_iterator pIn = std::find(myNode.getEdges().begin(), myNode.getEdges().end(), in);
1024 30821 : NBContHelper::nextCW(myNode.getEdges(), pIn);
1025 81059 : while (*pIn != out) {
1026 50238 : extraWidthLeft += (*pIn)->getTotalWidth();
1027 : #ifdef DEBUG_RADIUS
1028 : if (DEBUGCOND) {
1029 : std::cout << " in=" << in->getID() << " out=" << out->getID() << " extra=" << (*pIn)->getID() << " extraWidthLeft=" << extraWidthLeft << "\n";
1030 : }
1031 : #endif
1032 50238 : NBContHelper::nextCW(myNode.getEdges(), pIn);
1033 : }
1034 : }
1035 : }
1036 : int wideLanesOut = 0;
1037 299766 : for (int i = 0; i < out->getNumLanes(); i++) {
1038 176391 : if ((out->getPermissions(i) & SVC_LARGE_TURN) != 0) {
1039 163086 : wideLanesOut++;
1040 : }
1041 : }
1042 : #ifdef DEBUG_RADIUS
1043 : if (DEBUGCOND) {
1044 : std::cout << " in=" << in->getID() << " out=" << out->getID() << " wideLanesIn=" << wideLanesIn << " wideLanesOut=" << wideLanesOut << "\n";
1045 : }
1046 : #endif
1047 123375 : laneDelta = MAX2(laneDelta, abs(wideLanesOut - wideLanesIn));
1048 : }
1049 : }
1050 : }
1051 : // special case: on/off-ramp
1052 52200 : if (myNode.getOutgoingEdges().size() == 1 || myNode.getIncomingEdges().size() == 1) {
1053 : int totalWideLanesOut = 0;
1054 49624 : for (NBEdge* out : myNode.getOutgoingEdges()) {
1055 68038 : for (int i = 0; i < out->getNumLanes(); i++) {
1056 39786 : if ((out->getPermissions(i) & SVC_LARGE_TURN) != 0) {
1057 22136 : totalWideLanesOut++;
1058 : }
1059 : }
1060 : }
1061 21372 : if (totalWideLanesIn == totalWideLanesOut) {
1062 : // use total laneDelta instead of individual edge lane delta
1063 : laneDelta = 0;
1064 : }
1065 : }
1066 : // changing the number of wide-vehicle lanes on a straight segment requires a larger junction to allow for smooth driving
1067 : // otherwise we can reduce the radius according to the angle
1068 : double result = radius;
1069 : // left turns are assumed to cross additional edges and thus du not determine the required radius in most cases
1070 : double maxTurnAngle = maxRightAngle;
1071 : double extraWidth = extraWidthRight;
1072 52200 : if (maxRightAngle < DEG2RAD(5)) {
1073 : maxTurnAngle = maxLeftAngle;
1074 : extraWidth = extraWidthLeft;
1075 : }
1076 52200 : const double minRadius = maxTurnAngle >= DEG2RAD(30) ? MIN2(smallRadius, radius) : smallRadius;
1077 52200 : if (laneDelta == 0 || maxTurnAngle >= DEG2RAD(30) || myNode.isConstantWidthTransition()) {
1078 : // subtract radius gained from extra lanes
1079 : // do not increase radius for turns that are sharper than a right angle
1080 49420 : result = radius * tan(0.5 * MIN2(0.5 * M_PI, maxTurnAngle)) - extraWidth;
1081 : }
1082 : result = MAX2(minRadius, result);
1083 : #ifdef DEBUG_RADIUS
1084 : if (DEBUGCOND) {
1085 : std::cout << "getDefaultRadius n=" << myNode.getID()
1086 : << " r=" << radius << " sr=" << smallRadius
1087 : << " mr=" << minRadius
1088 : << " laneDelta=" << laneDelta
1089 : << " rightA=" << RAD2DEG(maxRightAngle)
1090 : << " leftA=" << RAD2DEG(maxLeftAngle)
1091 : << " maxA=" << RAD2DEG(maxTurnAngle)
1092 : << " extraWidth=" << extraWidth
1093 : << " result=" << result << "\n";
1094 : }
1095 : #endif
1096 52200 : return result;
1097 : }
1098 :
1099 :
1100 : bool
1101 123741 : NBNodeShapeComputer::isDivided(const NBEdge* e, std::set<NBEdge*> same, const PositionVector& ccw, const PositionVector& cw) const {
1102 123741 : if (same.size() < 2) {
1103 : return false;
1104 : }
1105 : std::set<Position> endPoints;
1106 1632 : endPoints.insert(e->getEndpointAtNode(&myNode));
1107 3146 : for (NBEdge* s : same) {
1108 4660 : endPoints.insert(s->getEndpointAtNode(&myNode));
1109 : }
1110 816 : if (endPoints.size() > 1) {
1111 671 : std::vector<double> distances = ccw.distances(cw, true);
1112 671 : double width = e->getTotalWidth();
1113 2652 : for (const NBEdge* e2 : same) {
1114 1981 : width += e2->getTotalWidth();
1115 : }
1116 : const double maxDist = VectorHelper<double>::maxValue(distances);
1117 671 : const double maxDivider = maxDist - width;
1118 671 : return maxDivider >= 5;
1119 671 : }
1120 : return false;
1121 : }
1122 :
1123 :
1124 : double
1125 69866 : NBNodeShapeComputer::getExtraWidth(const NBEdge* e, SVCPermissions exclude) {
1126 : double result = 0;
1127 : int lane = 0;
1128 69866 : while (lane < e->getNumLanes() && e->getPermissions(lane) == 0) {
1129 : // ignore forbidden lanes out the outside
1130 0 : lane++;
1131 : }
1132 78712 : while (lane < e->getNumLanes() && (e->getPermissions(lane) & exclude) == 0) {
1133 8846 : result += e->getLaneWidth(lane);
1134 8846 : lane++;
1135 : }
1136 69866 : return result;
1137 : }
1138 :
1139 :
1140 : double
1141 273 : NBNodeShapeComputer::divisionWidth(const NBEdge* e, std::set<NBEdge*> same, const Position& p, const Position& p2) {
1142 : double result = p.distanceTo2D(p2);
1143 273 : result -= e->getTotalWidth();
1144 1183 : for (NBEdge* e2 : same) {
1145 910 : result -= e2->getTotalWidth();
1146 : }
1147 273 : return MAX2(0.0, result);
1148 : }
1149 :
1150 : /****************************************************************************/
|