LCOV - code coverage report
Current view: top level - src/netbuild - NBOwnTLDef.cpp (source / functions) Coverage Total Hit
Test: lcov.info Lines: 94.4 % 788 744
Test Date: 2024-11-20 15:55:46 Functions: 89.1 % 46 41

            Line data    Source code
       1              : /****************************************************************************/
       2              : // Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
       3              : // Copyright (C) 2001-2024 German Aerospace Center (DLR) and others.
       4              : // This program and the accompanying materials are made available under the
       5              : // terms of the Eclipse Public License 2.0 which is available at
       6              : // https://www.eclipse.org/legal/epl-2.0/
       7              : // This Source Code may also be made available under the following Secondary
       8              : // Licenses when the conditions for such availability set forth in the Eclipse
       9              : // Public License 2.0 are satisfied: GNU General Public License, version 2
      10              : // or later which is available at
      11              : // https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
      12              : // SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
      13              : /****************************************************************************/
      14              : /// @file    NBOwnTLDef.cpp
      15              : /// @author  Daniel Krajzewicz
      16              : /// @author  Jakob Erdmann
      17              : /// @author  Sascha Krieg
      18              : /// @author  Michael Behrisch
      19              : /// @date    Tue, 29.05.2005
      20              : ///
      21              : // A traffic light logics which must be computed (only nodes/edges are given)
      22              : /****************************************************************************/
      23              : #include <config.h>
      24              : 
      25              : #include <vector>
      26              : #include <cassert>
      27              : #include <iterator>
      28              : #include "NBTrafficLightDefinition.h"
      29              : #include "NBNode.h"
      30              : #include "NBOwnTLDef.h"
      31              : #include "NBTrafficLightLogic.h"
      32              : #include <utils/common/MsgHandler.h>
      33              : #include <utils/common/UtilExceptions.h>
      34              : #include <utils/common/ToString.h>
      35              : #include <utils/common/StringUtils.h>
      36              : #include <utils/options/OptionsCont.h>
      37              : #include <utils/options/Option.h>
      38              : 
      39              : #define HEIGH_WEIGHT 2
      40              : #define LOW_WEIGHT .5;
      41              : 
      42              : #define MIN_GREEN_TIME 5
      43              : 
      44              : //#define DEBUG_STREAM_ORDERING
      45              : //#define DEBUG_PHASES
      46              : //#define DEBUG_CONTRELATION
      47              : #define DEBUGID  "C"
      48              : #define DEBUGCOND (getID() == DEBUGID)
      49              : #define DEBUGCOND2(obj) (obj->getID() == DEBUGID)
      50              : //#define DEBUGEDGE(edge) (edge->getID() == "23209153#1" || edge->getID() == "319583927#0")
      51              : //#define DEBUGCOND (true)
      52              : #define DEBUGEDGE(edge) (true)
      53              : 
      54              : // ===========================================================================
      55              : // static members
      56              : // ===========================================================================
      57              : const double NBOwnTLDef::MIN_SPEED_CROSSING_TIME(25 / 3.6);
      58              : 
      59              : 
      60              : // ===========================================================================
      61              : // member method definitions
      62              : // ===========================================================================
      63          147 : NBOwnTLDef::NBOwnTLDef(const std::string& id,
      64              :                        const std::vector<NBNode*>& junctions, SUMOTime offset,
      65          147 :                        TrafficLightType type) :
      66              :     NBTrafficLightDefinition(id, junctions, DefaultProgramID, offset, type),
      67          147 :     myHaveSinglePhase(false),
      68          147 :     myLayout(TrafficLightLayout::DEFAULT) {
      69          147 : }
      70              : 
      71              : 
      72         5501 : NBOwnTLDef::NBOwnTLDef(const std::string& id, NBNode* junction, SUMOTime offset,
      73         5501 :                        TrafficLightType type) :
      74              :     NBTrafficLightDefinition(id, junction, DefaultProgramID, offset, type),
      75         5501 :     myHaveSinglePhase(false),
      76         5501 :     myLayout(TrafficLightLayout::DEFAULT) {
      77         5501 : }
      78              : 
      79              : 
      80            0 : NBOwnTLDef::NBOwnTLDef(const std::string& id, SUMOTime offset,
      81            0 :                        TrafficLightType type) :
      82              :     NBTrafficLightDefinition(id, DefaultProgramID, offset, type),
      83            0 :     myHaveSinglePhase(false),
      84            0 :     myLayout(TrafficLightLayout::DEFAULT) {
      85            0 : }
      86              : 
      87              : 
      88         9093 : NBOwnTLDef::~NBOwnTLDef() {}
      89              : 
      90              : 
      91              : int
      92         8935 : NBOwnTLDef::getToPrio(const NBEdge* const e) {
      93         8935 :     return e->getJunctionPriority(e->getToNode());
      94              : }
      95              : 
      96              : 
      97              : double
      98       107736 : NBOwnTLDef::getDirectionalWeight(LinkDirection dir) {
      99       107736 :     switch (dir) {
     100              :         case LinkDirection::STRAIGHT:
     101              :         case LinkDirection::PARTLEFT:
     102              :         case LinkDirection::PARTRIGHT:
     103              :             return HEIGH_WEIGHT;
     104        50335 :         case LinkDirection::LEFT:
     105              :         case LinkDirection::RIGHT:
     106        50335 :             return LOW_WEIGHT;
     107              :         default:
     108              :             break;
     109              :     }
     110           50 :     return 0;
     111              : }
     112              : 
     113              : double
     114         6152 : NBOwnTLDef::computeUnblockedWeightedStreamNumber(const NBEdge* const e1, const NBEdge* const e2) {
     115              :     double val = 0;
     116        18046 :     for (int e1l = 0; e1l < e1->getNumLanes(); e1l++) {
     117        11894 :         std::vector<NBEdge::Connection> approached1 = e1->getConnectionsFromLane(e1l);
     118        36886 :         for (int e2l = 0; e2l < e2->getNumLanes(); e2l++) {
     119        24992 :             std::vector<NBEdge::Connection> approached2 = e2->getConnectionsFromLane(e2l);
     120        67136 :             for (std::vector<NBEdge::Connection>::iterator e1c = approached1.begin(); e1c != approached1.end(); ++e1c) {
     121        42144 :                 if (e1->getTurnDestination() == (*e1c).toEdge) {
     122         5193 :                     continue;
     123              :                 }
     124       107461 :                 for (std::vector<NBEdge::Connection>::iterator e2c = approached2.begin(); e2c != approached2.end(); ++e2c) {
     125        70510 :                     if (e2->getTurnDestination() == (*e2c).toEdge) {
     126        10244 :                         continue;
     127              :                     }
     128        60266 :                     const double sign = (forbids(e1, (*e1c).toEdge, e2, (*e2c).toEdge, true)
     129        60266 :                                          || forbids(e2, (*e2c).toEdge, e1, (*e1c).toEdge, true)) ? -1 : 1;
     130              :                     double w1;
     131              :                     double w2;
     132        60266 :                     const int prio1 = e1->getJunctionPriority(e1->getToNode());
     133        60266 :                     const int prio2 = e2->getJunctionPriority(e2->getToNode());
     134        60266 :                     if (prio1 == prio2) {
     135        53868 :                         w1 = getDirectionalWeight(e1->getToNode()->getDirection(e1, (*e1c).toEdge));
     136        53868 :                         w2 = getDirectionalWeight(e2->getToNode()->getDirection(e2, (*e2c).toEdge));
     137              :                     } else {
     138         6398 :                         if (prio1 > prio2) {
     139              :                             w1 = HEIGH_WEIGHT;
     140              :                             w2 = LOW_WEIGHT;
     141              :                         } else {
     142              :                             w1 = LOW_WEIGHT;
     143              :                             w2 = HEIGH_WEIGHT;
     144              :                         }
     145         6398 :                         if (sign == -1) {
     146              :                             // extra penalty if edges with different junction priority are in conflict
     147         3901 :                             w1 *= 2;
     148         3901 :                             w2 *= 2;
     149              :                         }
     150              :                     }
     151        60266 :                     if (isRailway(e1->getPermissions()) != isRailway(e2->getPermissions())) {
     152         3335 :                         w1 *= 0.1;
     153         3335 :                         w2 *= 0.1;
     154              :                     }
     155        60266 :                     if ((e1->getPermissions() & SVC_PASSENGER) == 0) {
     156         6830 :                         w1 *= 0.1;
     157              :                     }
     158        60266 :                     if ((e2->getPermissions() & SVC_PASSENGER) == 0) {
     159         6528 :                         w2 *= 0.1;
     160              :                     }
     161        60266 :                     val += sign * w1;
     162        60266 :                     val += sign * w2;
     163              : #ifdef DEBUG_STREAM_ORDERING
     164              :                     if (DEBUGCOND && DEBUGEDGE(e2) && DEBUGEDGE(e1)) {
     165              :                         std::cout << "      sign=" << sign << " w1=" << w1 << " w2=" << w2 << " val=" << val
     166              :                                   << " c1=" << (*e1c).getDescription(e1)
     167              :                                   << " c2=" << (*e2c).getDescription(e2)
     168              :                                   << "\n";
     169              :                     }
     170              : #endif
     171              :                 }
     172              :             }
     173        24992 :         }
     174        11894 :     }
     175              : #ifdef DEBUG_STREAM_ORDERING
     176              :     if (DEBUGCOND && DEBUGEDGE(e2) && DEBUGEDGE(e1)) {
     177              :         std::cout << "     computeUnblockedWeightedStreamNumber e1=" << e1->getID() << " e2=" << e2->getID() << " val=" << val << "\n";
     178              :     }
     179              : #endif
     180         6152 :     return val;
     181              : }
     182              : 
     183              : 
     184              : std::pair<NBEdge*, NBEdge*>
     185         3367 : NBOwnTLDef::getBestCombination(const EdgeVector& edges) {
     186              :     std::pair<NBEdge*, NBEdge*> bestPair(static_cast<NBEdge*>(nullptr), static_cast<NBEdge*>(nullptr));
     187              :     double bestValue = -std::numeric_limits<double>::max();
     188        11075 :     for (EdgeVector::const_iterator i = edges.begin(); i != edges.end(); ++i) {
     189        13860 :         for (EdgeVector::const_iterator j = i + 1; j != edges.end(); ++j) {
     190         6152 :             const double value = computeUnblockedWeightedStreamNumber(*i, *j);
     191         6152 :             if (value > bestValue) {
     192              :                 bestValue = value;
     193              :                 bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
     194         2041 :             } else if (value == bestValue) {
     195          291 :                 const double ca = GeomHelper::getMinAngleDiff((*i)->getAngleAtNode((*i)->getToNode()), (*j)->getAngleAtNode((*j)->getToNode()));
     196          291 :                 const double oa = GeomHelper::getMinAngleDiff(bestPair.first->getAngleAtNode(bestPair.first->getToNode()), bestPair.second->getAngleAtNode(bestPair.second->getToNode()));
     197          291 :                 if (fabs(oa - ca) < NUMERICAL_EPS) { // break ties by id
     198           16 :                     if (bestPair.first->getID() < (*i)->getID()) {
     199              :                         bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
     200              :                     }
     201          275 :                 } else if (oa < ca) {
     202              :                     bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
     203              :                 }
     204              :             }
     205              :         }
     206              :     }
     207         3367 :     if (bestValue <= 0) {
     208              :         // do not group edges
     209          394 :         if (bestPair.first->getPriority() < bestPair.second->getPriority()) {
     210              :             std::swap(bestPair.first, bestPair.second);
     211              :         }
     212              :         bestPair.second = nullptr;
     213              :     }
     214              : #ifdef DEBUG_STREAM_ORDERING
     215              :     if (DEBUGCOND) {
     216              :         std::cout << "   getBestCombination bestValue=" << bestValue << "  best=" << Named::getIDSecure(bestPair.first) << ", " << Named::getIDSecure(bestPair.second) << "\n";
     217              :     }
     218              : #endif
     219         3367 :     return bestPair;
     220              : }
     221              : 
     222              : 
     223              : std::pair<NBEdge*, NBEdge*>
     224         4650 : NBOwnTLDef::getBestPair(EdgeVector& incoming) {
     225         4650 :     if (incoming.size() == 1) {
     226              :         // only one there - return the one
     227              :         std::pair<NBEdge*, NBEdge*> ret(*incoming.begin(), static_cast<NBEdge*>(nullptr));
     228              :         incoming.clear();
     229         1283 :         return ret;
     230              :     }
     231              :     // determine the best combination
     232              :     //  by priority, first
     233              :     EdgeVector used;
     234         3367 :     std::sort(incoming.begin(), incoming.end(), edge_by_incoming_priority_sorter());
     235         3367 :     used.push_back(*incoming.begin()); // the first will definitely be used
     236              :     // get the ones with the same priority
     237         3367 :     int prio = getToPrio(*used.begin());
     238         6973 :     for (EdgeVector::iterator i = incoming.begin() + 1; i != incoming.end() && prio == getToPrio(*i); ++i) {
     239         3606 :         used.push_back(*i);
     240              :     }
     241              :     //  if there only lower priorised, use these, too
     242         3367 :     if (used.size() < 2) {
     243          382 :         used = incoming;
     244              :     }
     245         3367 :     std::pair<NBEdge*, NBEdge*> ret = getBestCombination(used);
     246              : #ifdef DEBUG_STREAM_ORDERING
     247              :     if (DEBUGCOND) {
     248              :         std::cout << "getBestPair tls=" << getID() << " incoming=" << toString(incoming) << " prio=" << prio << " used=" << toString(used) << " best=" << Named::getIDSecure(ret.first) << ", " << Named::getIDSecure(ret.second) << "\n";
     249              :     }
     250              : #endif
     251              : 
     252         3367 :     incoming.erase(find(incoming.begin(), incoming.end(), ret.first));
     253         3367 :     if (ret.second != nullptr) {
     254         2973 :         incoming.erase(find(incoming.begin(), incoming.end(), ret.second));
     255              :     }
     256         3367 :     return ret;
     257         3367 : }
     258              : 
     259              : bool
     260         9960 : NBOwnTLDef::hasStraightConnection(const NBEdge* fromEdge) {
     261        18060 :     for (const NBEdge::Connection& c : fromEdge->getConnections()) {
     262        15973 :         LinkDirection dir = fromEdge->getToNode()->getDirection(fromEdge, c.toEdge);
     263        15973 :         if (dir == LinkDirection::STRAIGHT) {
     264              :             return true;
     265              :         }
     266              :     }
     267              :     return false;
     268              : }
     269              : 
     270              : NBTrafficLightLogic*
     271         2142 : NBOwnTLDef::myCompute(int brakingTimeSeconds) {
     272         2142 :     return computeLogicAndConts(brakingTimeSeconds);
     273              : }
     274              : 
     275              : 
     276              : NBTrafficLightLogic*
     277         2791 : NBOwnTLDef::computeLogicAndConts(int brakingTimeSeconds, bool onlyConts) {
     278         2791 :     if (myControlledNodes.size() == 1) {
     279              :         // otherwise, use values from previous call to initNeedsContRelation
     280              :         myNeedsContRelation.clear();
     281              :     }
     282              :     myRightOnRedConflicts.clear();
     283         2791 :     const bool isNEMA = myType == TrafficLightType::NEMA;
     284         2791 :     const SUMOTime brakingTime = TIME2STEPS(brakingTimeSeconds);
     285         2791 :     const SUMOTime leftTurnTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.left-green.time"));
     286         2982 :     const SUMOTime minMinDur = (myType == TrafficLightType::STATIC) ? UNSPECIFIED_DURATION : TIME2STEPS(OptionsCont::getOptions().getInt("tls.min-dur"));
     287         2982 :     const SUMOTime maxDur = (myType == TrafficLightType::STATIC) ? UNSPECIFIED_DURATION : TIME2STEPS(OptionsCont::getOptions().getInt("tls.max-dur"));
     288         2791 :     const SUMOTime earliestEnd = UNSPECIFIED_DURATION;
     289              :     const SUMOTime latestEnd = UNSPECIFIED_DURATION;
     290              : 
     291              :     // things collect for NEMA phase building
     292              :     std::vector<std::pair<NBEdge*, NBEdge*> > chosenList;
     293              :     std::vector<std::string> straightStates;
     294              :     std::vector<std::string> leftStates;
     295              : 
     296              :     // build complete lists first
     297         2791 :     const EdgeVector& incoming = getIncomingEdges();
     298              :     EdgeVector fromEdges, toEdges;
     299              :     std::vector<bool> isTurnaround;
     300              :     std::vector<bool> hasTurnLane;
     301              :     std::vector<int> fromLanes;
     302              :     std::vector<int> toLanes;
     303              :     std::vector<SUMOTime> crossingTime;
     304              :     int totalNumLinks = 0;
     305        12751 :     for (NBEdge* const fromEdge : incoming) {
     306              :         const int numLanes = fromEdge->getNumLanes();
     307         9960 :         const bool edgeHasStraight = hasStraightConnection(fromEdge);
     308        29528 :         for (int i2 = 0; i2 < numLanes; i2++) {
     309              :             bool hasLeft = false;
     310              :             bool hasPartLeft = false;
     311              :             bool hasStraight = false;
     312              :             bool hasRight = false;
     313              :             bool hasTurnaround = false;
     314        50973 :             for (const NBEdge::Connection& approached : fromEdge->getConnectionsFromLane(i2)) {
     315        31405 :                 if (!fromEdge->mayBeTLSControlled(i2, approached.toEdge, approached.toLane)) {
     316           26 :                     continue;
     317              :                 }
     318        31379 :                 fromEdges.push_back(fromEdge);
     319        31379 :                 fromLanes.push_back(i2);
     320        31379 :                 toLanes.push_back(approached.toLane);
     321        31379 :                 toEdges.push_back(approached.toEdge);
     322        12165 :                 if (approached.vmax < NUMERICAL_EPS || (fromEdge->getPermissions() & SVC_PASSENGER) == 0
     323        42759 :                         || (approached.toEdge->getPermissions() & SVC_PASSENGER) == 0) {
     324        20383 :                     crossingTime.push_back(0);
     325              :                 } else {
     326        13776 :                     crossingTime.push_back(TIME2STEPS((approached.length + approached.viaLength) / MAX2(approached.vmax, MIN_SPEED_CROSSING_TIME)));
     327              :                 }
     328              :                 // std::cout << fromEdge->getID() << " " << approached.toEdge->getID() << " " << (fromEdge->getPermissions() & SVC_PASSENGER) << " " << approached.length << " " << approached.viaLength << " " << approached.vmax << " " << crossingTime.back() << std::endl;
     329        31379 :                 if (approached.toEdge != nullptr) {
     330        31379 :                     isTurnaround.push_back(fromEdge->isTurningDirectionAt(approached.toEdge));
     331              :                 } else {
     332            0 :                     isTurnaround.push_back(true);
     333              :                 }
     334        31379 :                 LinkDirection dir = fromEdge->getToNode()->getDirection(fromEdge, approached.toEdge);
     335              :                 if (dir == LinkDirection::STRAIGHT) {
     336              :                     hasStraight = true;
     337              :                 } else if (dir == LinkDirection::RIGHT || dir == LinkDirection::PARTRIGHT) {
     338              :                     hasRight = true;
     339              :                 } else if (dir == LinkDirection::LEFT) {
     340              :                     hasLeft = true;
     341              :                 } else if (dir == LinkDirection::PARTLEFT) {
     342              :                     hasPartLeft = true;
     343              :                 } else if (dir == LinkDirection::TURN) {
     344              :                     hasTurnaround = true;
     345              :                 }
     346        31379 :                 totalNumLinks++;
     347        19568 :             }
     348        50973 :             for (const NBEdge::Connection& approached : fromEdge->getConnectionsFromLane(i2)) {
     349        31405 :                 if (!fromEdge->mayBeTLSControlled(i2, approached.toEdge, approached.toLane)) {
     350           26 :                     continue;
     351              :                 }
     352        31379 :                 hasTurnLane.push_back(
     353              :                     (hasLeft && !hasPartLeft && !hasStraight && !hasRight)
     354        14793 :                     || (hasPartLeft && !hasLeft && !hasStraight && !hasRight)
     355        28147 :                     || (hasPartLeft && hasLeft && edgeHasStraight && !hasRight)
     356        59140 :                     || (!hasLeft && !hasPartLeft && !hasTurnaround && hasRight));
     357        19568 :             }
     358              :             //std::cout << " from=" << fromEdge->getID() << "_" << i2 << " hasTurnLane=" << hasTurnLane.back() << " s=" << hasStraight << " l=" << hasLeft << " r=" << hasRight << " t=" << hasTurnaround << "\n";
     359              :         }
     360              :     }
     361              :     // collect crossings
     362              :     std::vector<NBNode::Crossing*> crossings;
     363         5935 :     for (NBNode* const node : myControlledNodes) {
     364         3144 :         const std::vector<NBNode::Crossing*>& c = node->getCrossings();
     365         3144 :         if (!onlyConts) {
     366              :             // set tl indices for crossings
     367         2357 :             node->setCrossingTLIndices(getID(), totalNumLinks);
     368              :         }
     369              :         copy(c.begin(), c.end(), std::back_inserter(crossings));
     370         3144 :         totalNumLinks += (int)c.size();
     371         3144 :     }
     372              : 
     373         2791 :     NBTrafficLightLogic* logic = new NBTrafficLightLogic(getID(), getProgramID(), totalNumLinks, myOffset, myType);
     374         2791 :     EdgeVector toProc = getConnectedOuterEdges(incoming);
     375         2791 :     const SUMOTime greenTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.green.time"));
     376         2791 :     SUMOTime allRedTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.allred.time"));
     377         2791 :     const double minorLeftSpeedThreshold = OptionsCont::getOptions().getFloat("tls.minor-left.max-speed");
     378         2791 :     const bool noMixed = OptionsCont::getOptions().getBool("tls.no-mixed");
     379              :     // left-turn phases do not work well for joined tls, so we build incoming instead
     380         2791 :     if (myLayout == TrafficLightLayout::DEFAULT) {
     381              :         // @note this prevents updating after loading plain-xml into netedit computing tls and then changing the default layout
     382         4342 :         myLayout = SUMOXMLDefinitions::TrafficLightLayouts.get(OptionsCont::getOptions().getString("tls.layout"));
     383              :     }
     384         2791 :     const bool groupOpposites = (myLayout == TrafficLightLayout::OPPOSITES && (myControlledNodes.size() <= 2 || corridorLike()));
     385              : 
     386              :     // build all phases
     387              :     std::vector<int> greenPhases; // indices of green phases
     388         2791 :     std::vector<bool> hadGreenMajor(totalNumLinks, false);
     389         8136 :     while (toProc.size() > 0) {
     390              :         bool groupTram = false;
     391              :         bool groupOther = false;
     392         5345 :         std::pair<NBEdge*, NBEdge*> chosen;
     393              :         std::set<const NBEdge*> chosenSet;
     394         5345 :         if (groupOpposites) {
     395         5136 :             if (incoming.size() == 2) {
     396              :                 // if there are only 2 incoming edges we need to decide whether they are a crossing or a "continuation"
     397              :                 // @node: this heuristic could be extended to also check the number of outgoing edges
     398          719 :                 double angle = fabs(NBHelpers::relAngle(incoming[0]->getAngleAtNode(incoming[0]->getToNode()), incoming[1]->getAngleAtNode(incoming[1]->getToNode())));
     399              :                 // angle would be 180 for straight opposing incoming edges
     400          719 :                 if (angle < 135) {
     401              :                     chosen = std::pair<NBEdge*, NBEdge*>(toProc[0], static_cast<NBEdge*>(nullptr));
     402              :                     toProc.erase(toProc.begin());
     403              :                 } else {
     404          233 :                     chosen = getBestPair(toProc);
     405              :                 }
     406              :             } else {
     407         4417 :                 chosen = getBestPair(toProc);
     408         4417 :                 if (chosen.second == nullptr && chosen.first->getPermissions() == SVC_TRAM) {
     409              :                     groupTram = true;
     410          215 :                     for (auto it = toProc.begin(); it != toProc.end();) {
     411          122 :                         if ((*it)->getPermissions() == SVC_TRAM) {
     412              :                             it = toProc.erase(it);
     413              :                         } else {
     414              :                             it++;
     415              :                         }
     416              :                     }
     417              :                 }
     418              :             }
     419              :         } else {
     420          209 :             NBEdge* chosenEdge = toProc[0];
     421              :             chosen = std::pair<NBEdge*, NBEdge*>(chosenEdge, static_cast<NBEdge*>(nullptr));
     422              :             toProc.erase(toProc.begin());
     423          209 :             SVCPermissions perms = chosenEdge->getPermissions();
     424          209 :             if (perms == SVC_TRAM) {
     425              :                 groupTram = true;
     426          205 :             } else if ((perms & ~(SVC_PEDESTRIAN | SVC_BICYCLE | SVC_DELIVERY)) == 0) {
     427           36 :                 if (OptionsCont::getOptions().getBool("tls.ignore-internal-junction-jam")) {
     428              :                     // otherwise, we can get a mutual conflict for minor green
     429              :                     // streams which would create deadlock
     430              :                     groupOther = true;
     431              :                 }
     432              :             }
     433              :             // group all edges with the same permissions into a single phase (later)
     434          209 :             if (groupTram || groupOther) {
     435           44 :                 for (auto it = toProc.begin(); it != toProc.end();) {
     436           36 :                     if ((*it)->getPermissions() == perms) {
     437              :                         it = toProc.erase(it);
     438              :                     } else {
     439              :                         it++;
     440              :                     }
     441              :                 }
     442              :             }
     443              :         }
     444              :         int pos = 0;
     445              :         std::string state(totalNumLinks, 'r');
     446              : #ifdef DEBUG_PHASES
     447              :         if (DEBUGCOND) {
     448              :             std::cout << " computing " << getID() << " prog=" << getProgramID() << " cho1=" << Named::getIDSecure(chosen.first) << " cho2=" << Named::getIDSecure(chosen.second) << " toProc=" << toString(toProc) << " bentPrio=" << chosen.first->getToNode()->isBentPriority() << "\n";
     449              :         }
     450              : #endif
     451         5345 :         chosenList.push_back(chosen);
     452              :         chosenSet.insert(chosen.first);
     453         5345 :         if (chosen.second != nullptr) {
     454              :             chosenSet.insert(chosen.second);
     455              :         }
     456              :         // find parallel bike edge for the chosen (passenger) edges
     457        13733 :         for (const NBEdge* e : chosenSet) {
     458         8388 :             if ((e->getPermissions() & SVC_PASSENGER) != 0) {
     459              :                 std::vector<NBEdge*> parallelBikeEdges;
     460        15231 :                 for (NBEdge* cand : toProc) {
     461         7642 :                     if ((cand->getPermissions() & ~SVC_PEDESTRIAN) == SVC_BICYCLE) {
     462          313 :                         double angle = fabs(NBHelpers::relAngle(e->getAngleAtNode(e->getToNode()), cand->getAngleAtNode(cand->getToNode())));
     463          313 :                         if (angle < 30) {
     464              :                             // roughly parallel
     465          110 :                             parallelBikeEdges.push_back(cand);
     466              :                         }
     467              :                     }
     468              :                 }
     469         7699 :                 for (NBEdge* be : parallelBikeEdges) {
     470              : #ifdef DEBUG_PHASES
     471              :                     if (DEBUGCOND) {
     472              :                         std::cout << " chosen=" << e->getID() << " be=" << be->getID() << "\n";
     473              :                     }
     474              : #endif
     475              :                     chosenSet.insert(be);
     476          110 :                     toProc.erase(std::find(toProc.begin(), toProc.end(), be));
     477              :                 }
     478         7589 :             }
     479              :         }
     480              :         // plain straight movers
     481              :         double maxSpeed = 0;
     482              :         bool haveGreen = false;
     483        29668 :         for (const NBEdge* const fromEdge : incoming) {
     484              :             const bool inChosen = chosenSet.count(fromEdge) != 0;
     485              :             const int numLanes = fromEdge->getNumLanes();
     486        70261 :             for (int i2 = 0; i2 < numLanes; i2++) {
     487       121576 :                 for (const NBEdge::Connection& approached : fromEdge->getConnectionsFromLane(i2)) {
     488        75638 :                     if (!fromEdge->mayBeTLSControlled(i2, approached.toEdge, approached.toLane)) {
     489           62 :                         continue;
     490              :                     }
     491        75576 :                     if (inChosen) {
     492        30368 :                         state[pos] = 'G';
     493              :                         haveGreen = true;
     494        30368 :                         maxSpeed = MAX2(maxSpeed, fromEdge->getSpeed());
     495              :                     } else {
     496        45208 :                         state[pos] = 'r';
     497              :                     }
     498        75576 :                     ++pos;
     499        45938 :                 }
     500              :             }
     501              :         }
     502         5345 :         if (!haveGreen) {
     503              :             continue;
     504              :         }
     505              : 
     506              : #ifdef DEBUG_PHASES
     507              :         if (DEBUGCOND) {
     508              :             std::cout << " state after plain straight movers " << state << "\n";
     509              :         }
     510              : #endif
     511         5339 :         if (!isNEMA) {
     512              :             // correct behaviour for those that are not in chosen, but may drive, though
     513         5292 :             state = allowCompatible(state, fromEdges, toEdges, fromLanes, toLanes);
     514              : #ifdef DEBUG_PHASES
     515              :             if (DEBUGCOND) {
     516              :                 std::cout << " state after allowing compatible " << state << "\n";
     517              :             }
     518              : #endif
     519         5292 :             if (groupTram) {
     520          194 :                 state = allowByVClass(state, fromEdges, toEdges, SVC_TRAM);
     521         5195 :             } else if (groupOther) {
     522            8 :                 state = allowByVClass(state, fromEdges, toEdges, SVC_PEDESTRIAN | SVC_BICYCLE | SVC_DELIVERY);
     523              :             }
     524              : #ifdef DEBUG_PHASES
     525              :             if (DEBUGCOND) {
     526              :                 std::cout << " state after grouping by vClass " << state << " (groupTram=" << groupTram << " groupOther=" << groupOther << ")\n";
     527              :             }
     528              : #endif
     529         5292 :             if (groupOpposites || chosen.first->getToNode()->getType() == SumoXMLNodeType::TRAFFIC_LIGHT_RIGHT_ON_RED) {
     530        10178 :                 state = allowUnrelated(state, fromEdges, toEdges, isTurnaround, crossings);
     531              :             }
     532              : #ifdef DEBUG_PHASES
     533              :             if (DEBUGCOND) {
     534              :                 std::cout << " state after finding allowUnrelated " << state << "\n";
     535              :             }
     536              : #endif
     537              :         }
     538              :         // correct behaviour for those that have to wait (mainly left-mover)
     539         5339 :         bool haveForbiddenLeftMover = false;
     540         5339 :         std::vector<bool> rightTurnConflicts(pos, false);
     541         5339 :         std::vector<bool> mergeConflicts(pos, false);
     542         5339 :         state = correctConflicting(state, fromEdges, toEdges, isTurnaround, fromLanes, toLanes, hadGreenMajor, haveForbiddenLeftMover, rightTurnConflicts, mergeConflicts);
     543        80881 :         for (int i1 = 0; i1 < pos; ++i1) {
     544        75542 :             if (state[i1] == 'G') {
     545              :                 hadGreenMajor[i1] = true;
     546              :             }
     547              :         }
     548              : #ifdef DEBUG_PHASES
     549              :         if (DEBUGCOND) {
     550              :             std::cout << " state after correcting left movers=" << state << "\n";
     551              :         }
     552              : #endif
     553              : 
     554         5339 :         std::vector<bool> leftGreen(pos, false);
     555              :         // check whether at least one left-turn lane exist
     556              :         bool foundLeftTurnLane = false;
     557        80881 :         for (int i1 = 0; i1 < pos; ++i1) {
     558        75542 :             if (state[i1] == 'g' && !rightTurnConflicts[i1] && !mergeConflicts[i1] && hasTurnLane[i1]) {
     559              :                 foundLeftTurnLane = true;
     560              :             }
     561              :         }
     562         2425 :         const bool buildLeftGreenPhase = (haveForbiddenLeftMover && !myHaveSinglePhase && leftTurnTime > 0 && foundLeftTurnLane
     563         6276 :                                           && groupOpposites && !groupTram && !groupOther);
     564              : 
     565              :         // find indices for exclusive left green phase and apply option minor-left.max-speed
     566        80881 :         for (int i1 = 0; i1 < pos; ++i1) {
     567        75542 :             if (state[i1] == 'g' && !rightTurnConflicts[i1] && !mergeConflicts[i1]
     568              :                     // only activate turn-around together with a real left-turn
     569        84854 :                     && (!isTurnaround[i1] || (i1 > 0 && leftGreen[i1 - 1]))) {
     570              :                 leftGreen[i1] = true;
     571         8173 :                 if (fromEdges[i1]->getSpeed() > minorLeftSpeedThreshold) {
     572          204 :                     if (buildLeftGreenPhase) {
     573           77 :                         state[i1] = 'r';
     574              :                         //std::cout << " disabling minorLeft " << i1 << " (speed=" << fromEdges[i1]->getSpeed() << " thresh=" << minorLeftSpeedThreshold << ")\n";
     575          127 :                     } else if (!isTurnaround[i1]) {
     576          284 :                         WRITE_WARNINGF(TL("Minor green from edge '%' to edge '%' exceeds %m/s. Maybe a left-turn lane is missing."),
     577              :                                        fromEdges[i1]->getID(), toEdges[i1]->getID(), minorLeftSpeedThreshold);
     578              :                     }
     579              :                 }
     580              :             }
     581              :         }
     582              : 
     583              : #ifdef DEBUG_PHASES
     584              :         if (DEBUGCOND) {
     585              :             std::cout << getID() << " state=" << state << " buildLeft=" << buildLeftGreenPhase << " hFLM=" << haveForbiddenLeftMover << " turnLane=" << foundLeftTurnLane
     586              :                       << "   \nrtC=" << toString(rightTurnConflicts)
     587              :                       << "   \nmC=" << toString(mergeConflicts)
     588              :                       << "   \nhTL=" << toString(hasTurnLane)
     589              :                       << "   \nlGr=" << toString(leftGreen)
     590              :                       << "\n";
     591              :         }
     592              : #endif
     593         5339 :         straightStates.push_back(state);
     594              : 
     595              :         const std::string vehicleState = state; // backup state before pedestrian modifications
     596         5339 :         greenPhases.push_back((int)logic->getPhases().size());
     597              : 
     598              :         // 5s at 50km/h, 10s at 80km/h, rounded to full seconds
     599         5339 :         const double minDurBySpeed = maxSpeed * 3.6 / 6 - 3.3;
     600         5367 :         SUMOTime minDur = MAX2(minMinDur, TIME2STEPS(floor(minDurBySpeed + 0.5)));
     601         5339 :         if (chosen.first->getPermissions() == SVC_TRAM && (chosen.second == nullptr || chosen.second->getPermissions() == SVC_TRAM)) {
     602              :             // shorter minDuration for tram phase (only if the phase is
     603              :             // exclusively for tram)
     604              :             bool tramExclusive = true;
     605         1470 :             for (int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
     606         1373 :                 if (state[i1] == 'G') {
     607          415 :                     SVCPermissions linkPerm = (fromEdges[i1]->getPermissions() & toEdges[i1]->getPermissions());
     608          415 :                     if (linkPerm != SVC_TRAM) {
     609              :                         tramExclusive = false;
     610              :                         break;
     611              :                     }
     612              :                 }
     613              :             }
     614          227 :             if (tramExclusive) {
     615              :                 // one tram per actuated phase
     616              :                 minDur = TIME2STEPS(1);
     617              :             }
     618              :         }
     619              : 
     620         5339 :         state = addPedestrianPhases(logic, greenTime, minDur, maxDur, earliestEnd, latestEnd, state, crossings, fromEdges, toEdges);
     621              :         // pedestrians have 'r' from here on
     622         8368 :         for (int i1 = pos; i1 < pos + (int)crossings.size(); ++i1) {
     623         3029 :             state[i1] = 'r';
     624              :         }
     625         5339 :         if (brakingTime > 0) {
     626              :             SUMOTime maxCross = 0;
     627              :             // build yellow (straight)
     628        64980 :             for (int i1 = 0; i1 < pos; ++i1) {
     629        60909 :                 if (state[i1] != 'G' && state[i1] != 'g') {
     630        33666 :                     continue;
     631              :                 }
     632         8505 :                 if ((vehicleState[i1] >= 'a' && vehicleState[i1] <= 'z')
     633         8505 :                         && buildLeftGreenPhase
     634         3281 :                         && !rightTurnConflicts[i1]
     635         3177 :                         && !mergeConflicts[i1]
     636        30396 :                         && leftGreen[i1]) {
     637         3018 :                     continue;
     638              :                 }
     639        24225 :                 state[i1] = 'y';
     640        24225 :                 maxCross = MAX2(maxCross, crossingTime[i1]);
     641              :             }
     642              :             // add step
     643         4071 :             logic->addStep(brakingTime, state);
     644              :             // add optional all-red state
     645         4071 :             if (!buildLeftGreenPhase) {
     646         3285 :                 if (myLayout == TrafficLightLayout::ALTERNATE_ONEWAY) {
     647           24 :                     allRedTime = computeEscapeTime(state, fromEdges, toEdges);
     648              :                 }
     649         3285 :                 buildAllRedState(allRedTime + MAX2(0ll, maxCross - brakingTime - allRedTime), logic, state);
     650              :             }
     651              :         }
     652              : 
     653              : 
     654         5339 :         if (buildLeftGreenPhase) {
     655              :             // build left green
     656        18638 :             for (int i1 = 0; i1 < pos; ++i1) {
     657        17713 :                 if (state[i1] == 'Y' || state[i1] == 'y') {
     658         4330 :                     state[i1] = 'r';
     659         4330 :                     continue;
     660              :                 }
     661        13383 :                 if (leftGreen[i1]) {
     662         3728 :                     state[i1] = 'G';
     663              :                 }
     664              :             }
     665          925 :             leftStates.push_back(state);
     666         1850 :             state = allowCompatible(state, fromEdges, toEdges, fromLanes, toLanes);
     667          925 :             state = correctConflicting(state, fromEdges, toEdges, isTurnaround, fromLanes, toLanes, hadGreenMajor, haveForbiddenLeftMover, rightTurnConflicts, mergeConflicts);
     668          925 :             bool buildMixedGreenPhase = false;
     669          925 :             std::vector<bool> mixedGreen(pos, false);
     670              :             const std::string oldState = state;
     671          925 :             if (noMixed) {
     672           20 :                 state = correctMixed(state, fromEdges, fromLanes, buildMixedGreenPhase, mixedGreen);
     673              :             }
     674          925 :             if (state != oldState) {
     675          120 :                 for (int i1 = 0; i1 < pos; ++i1) {
     676          112 :                     if (mixedGreen[i1]) {
     677              :                         // patch previous yellow and allred phase
     678            8 :                         int yellowIndex = (int)logic->getPhases().size() - 1;
     679            8 :                         if (allRedTime > 0) {
     680            0 :                             logic->setPhaseState(yellowIndex--, i1, LINKSTATE_TL_RED);
     681              :                         }
     682            8 :                         if (brakingTime > 0) {
     683            8 :                             logic->setPhaseState(yellowIndex, i1, LINKSTATE_TL_YELLOW_MINOR);
     684              :                         }
     685              :                     }
     686              :                 }
     687           16 :                 state = allowCompatible(state, fromEdges, toEdges, fromLanes, toLanes);
     688              :             }
     689              : 
     690              :             // add step
     691         1850 :             logic->addStep(leftTurnTime, state, minDur, maxDur, earliestEnd, latestEnd);
     692              : 
     693              :             // build left yellow
     694          925 :             if (brakingTime > 0) {
     695              :                 SUMOTime maxCross = 0;
     696        15680 :                 for (int i1 = 0; i1 < pos; ++i1) {
     697        14894 :                     if (state[i1] != 'G' && state[i1] != 'g') {
     698        11510 :                         continue;
     699              :                     }
     700         3384 :                     state[i1] = 'y';
     701         3384 :                     maxCross = MAX2(maxCross, crossingTime[i1]);
     702              :                 }
     703              :                 // add step
     704          786 :                 logic->addStep(brakingTime, state);
     705              :                 // add optional all-red state
     706          786 :                 buildAllRedState(allRedTime + MAX2(0ll, maxCross - brakingTime - allRedTime), logic, state);
     707              :             }
     708              : 
     709          925 :             if (buildMixedGreenPhase) {
     710              :                 // build mixed green
     711              :                 // @todo if there is no left green phase we might want to build two
     712              :                 // mixed-green phases but then we should consider avoid a common
     713              :                 // opposite phase for this direction
     714              : 
     715           68 :                 for (int i1 = 0; i1 < pos; ++i1) {
     716           64 :                     if (state[i1] == 'Y' || state[i1] == 'y') {
     717           16 :                         state[i1] = 'r';
     718           16 :                         continue;
     719              :                     }
     720           48 :                     if (mixedGreen[i1]) {
     721            4 :                         state[i1] = 'G';
     722              :                     }
     723              :                 }
     724            8 :                 state = allowCompatible(state, fromEdges, toEdges, fromLanes, toLanes);
     725            8 :                 state = correctConflicting(state, fromEdges, toEdges, isTurnaround, fromLanes, toLanes, hadGreenMajor, haveForbiddenLeftMover, rightTurnConflicts, mergeConflicts);
     726              : 
     727              :                 // add step
     728            8 :                 logic->addStep(leftTurnTime, state, minDur, maxDur, earliestEnd, latestEnd);
     729              : 
     730              :                 // build mixed yellow
     731            4 :                 if (brakingTime > 0) {
     732              :                     SUMOTime maxCross = 0;
     733           68 :                     for (int i1 = 0; i1 < pos; ++i1) {
     734           64 :                         if (state[i1] != 'G' && state[i1] != 'g') {
     735           48 :                             continue;
     736              :                         }
     737           16 :                         state[i1] = 'y';
     738           16 :                         maxCross = MAX2(maxCross, crossingTime[i1]);
     739              :                     }
     740              :                     // add step
     741            4 :                     logic->addStep(brakingTime, state);
     742              :                     // add optional all-red state
     743            4 :                     buildAllRedState(allRedTime + MAX2(0ll, maxCross - brakingTime - allRedTime), logic, state);
     744              :                 }
     745              :             }
     746              : 
     747         4414 :         } else if (isNEMA) {
     748              :             std::string& s = straightStates.back();
     749              :             std::string leftState = s;
     750          211 :             for (int ii = 0; ii < pos; ++ii) {
     751          192 :                 if (s[ii] != 'r') {
     752           88 :                     NBEdge* fromEdge = fromEdges[ii];
     753           88 :                     NBEdge* toEdge = toEdges[ii];
     754           88 :                     LinkDirection dir = fromEdge->getToNode()->getDirection(fromEdge, toEdge);
     755           88 :                     if (hasTurnLane[ii] && (dir == LinkDirection::LEFT || dir == LinkDirection::TURN)) {
     756           13 :                         s[ii] = 'r';
     757           13 :                         leftState[ii] = 'G';
     758              :                     } else {
     759           75 :                         leftState[ii] = 'r';
     760              :                     }
     761              :                 }
     762              :             }
     763           19 :             leftStates.push_back(leftState);
     764              :         }
     765              :         // fix edges within joined traffic lights that did not get the green light yet
     766         5339 :         if (myEdgesWithin.size() > 0 && !isNEMA && toProc.size() == 0) {
     767          155 :             addGreenWithin(logic, fromEdges, toProc);
     768              :         }
     769              :     }
     770              :     // fix pedestrian crossings that did not get the green light yet
     771         2791 :     if (crossings.size() > 0) {
     772          322 :         addPedestrianScramble(logic, totalNumLinks, TIME2STEPS(10), brakingTime, crossings, fromEdges, toEdges);
     773              :     }
     774              :     // add optional red phase if there were no foes
     775          846 :     if (logic->getPhases().size() == 2 && brakingTime > 0
     776         4268 :             && OptionsCont::getOptions().getInt("tls.red.time") > 0) {
     777          631 :         const SUMOTime redTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.red.time"));
     778         1893 :         logic->addStep(redTime, std::string(totalNumLinks, 'r'));
     779              :     }
     780              :     // fix states to account for custom crossing link indices
     781         2791 :     if (crossings.size() > 0 && !onlyConts) {
     782          247 :         checkCustomCrossingIndices(logic);
     783              :     }
     784              : 
     785         2791 :     if (myLayout == TrafficLightLayout::ALTERNATE_ONEWAY) {
     786              :         // exiting the oneway section should always be possible
     787            9 :         deactivateInsideEdges(logic, fromEdges);
     788              :     }
     789         2791 :     if (isNEMA) {
     790           24 :         NBTrafficLightLogic* nemaLogic = buildNemaPhases(fromEdges, toEdges, crossings, chosenList, straightStates, leftStates);
     791           24 :         if (nemaLogic == nullptr) {
     792            6 :             WRITE_WARNINGF(TL("Generating NEMA phases is not support for traffic light '%' with % incoming edges. Using tlType 'actuated' as fallback"), getID(), incoming.size());
     793              :             logic->setType(TrafficLightType::ACTUATED);
     794            2 :             setType(TrafficLightType::ACTUATED);
     795              :         } else {
     796           22 :             delete logic;
     797              :             logic = nemaLogic;
     798              :         }
     799              :     }
     800              : 
     801         2791 :     SUMOTime totalDuration = logic->getDuration();
     802              : 
     803         2817 :     if ((OptionsCont::getOptions().isDefault("tls.green.time") || !OptionsCont::getOptions().isDefault("tls.cycle.time")) && !isNEMA) {
     804         2765 :         const SUMOTime cycleTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.cycle.time"));
     805              :         // adapt to cycle time by changing the duration of the green phases
     806              :         SUMOTime minGreenDuration = SUMOTime_MAX;
     807         8049 :         for (std::vector<int>::const_iterator it = greenPhases.begin(); it != greenPhases.end(); ++it) {
     808         5284 :             const SUMOTime dur = logic->getPhases()[*it].duration;
     809              :             minGreenDuration = MIN2(minGreenDuration, dur);
     810              :         }
     811         2765 :         const int patchSeconds = (int)(STEPS2TIME(cycleTime - totalDuration) / (double)greenPhases.size());
     812         2765 :         const int patchSecondsRest = (int)(STEPS2TIME(cycleTime - totalDuration)) - patchSeconds * (int)greenPhases.size();
     813              :         //std::cout << "cT=" << cycleTime << " td=" << totalDuration << " pS=" << patchSeconds << " pSR=" << patchSecondsRest << "\n";
     814         2765 :         if (STEPS2TIME(minGreenDuration) + patchSeconds < MIN_GREEN_TIME
     815         2760 :                 || STEPS2TIME(minGreenDuration) + patchSeconds + patchSecondsRest < MIN_GREEN_TIME
     816         5522 :                 || greenPhases.size() == 0) {
     817            8 :             if (getID() != DummyID) {
     818           24 :                 WRITE_WARNINGF(TL("The traffic light '%' cannot be adapted to a cycle time of %."), getID(), time2string(cycleTime));
     819              :             }
     820              :             // @todo use a multiple of cycleTime ?
     821              :         } else {
     822         7974 :             for (std::vector<int>::const_iterator it = greenPhases.begin(); it != greenPhases.end(); ++it) {
     823         6644 :                 logic->setPhaseDuration(*it, logic->getPhases()[*it].duration + TIME2STEPS(patchSeconds));
     824              :             }
     825         2757 :             if (greenPhases.size() > 0) {
     826         2882 :                 logic->setPhaseDuration(greenPhases.front(), logic->getPhases()[greenPhases.front()].duration + TIME2STEPS(patchSecondsRest));
     827              :             }
     828         2757 :             totalDuration = logic->getDuration();
     829              :         }
     830              :     }
     831              : 
     832              :     // check for coherent signal sequence and remove yellow if preceded and followed by green
     833              :     const std::vector<NBTrafficLightLogic::PhaseDefinition>& allPhases = logic->getPhases();
     834         2791 :     const int phaseCount = (int)allPhases.size();
     835              :     const int stateSize = (int)logic->getNumLinks();
     836        15549 :     for (int i = 0; i < phaseCount; ++i) {
     837        12758 :         std::string currState = allPhases[i].state;
     838        12758 :         const int prevIndex = (i == 0) ? phaseCount - 1 : i - 1;
     839        12758 :         const std::string prevState = allPhases[prevIndex].state;
     840        12758 :         const std::string nextState = allPhases[(i + 1) % phaseCount].state;
     841              :         bool updatedState = false;
     842       209794 :         for (int i1 = 0; i1 < stateSize; ++i1) {
     843       197036 :             if (currState[i1] == 'y' && (nextState[i1] == 'g' || nextState[i1] == 'G') && (prevState[i1] == 'g' || prevState[i1] == 'G')) {
     844         2014 :                 LinkState ls = (nextState[i1] == prevState[i1]) ? (LinkState)prevState[i1] : (LinkState)'g';
     845         2014 :                 logic->setPhaseState(i, i1, ls);
     846              :                 updatedState = true;
     847              :             }
     848              :         }
     849              :         UNUSED_PARAMETER(updatedState);  // disable warning
     850              : #ifdef DEBUG_PHASES
     851              :         if (DEBUGCOND) {
     852              :             if (updatedState) {
     853              :                 std::cout << getID() << " state of phase index " << i <<  " was patched due to yellow in between green\n";
     854              :             }
     855              : 
     856              :         }
     857              : #endif
     858              :     }
     859              : 
     860              : 
     861         2791 :     myRightOnRedConflictsReady = true;
     862              :     // this computation only makes sense for single nodes
     863         2791 :     myNeedsContRelationReady = (myControlledNodes.size() == 1);
     864         2791 :     if (totalDuration > 0) {
     865         2791 :         if (totalDuration > 3 * (greenTime + 2 * brakingTime + leftTurnTime) && !isNEMA) {
     866           30 :             WRITE_WARNINGF(TL("The traffic light '%' has a high cycle time of %."), getID(), time2string(totalDuration));
     867              :         }
     868         2791 :         logic->closeBuilding();
     869              :         return logic;
     870              :     } else {
     871            0 :         delete logic;
     872            0 :         return nullptr;
     873              :     }
     874         5582 : }
     875              : 
     876              : 
     877              : bool
     878         2891 : NBOwnTLDef::hasCrossing(const NBEdge* from, const NBEdge* to, const std::vector<NBNode::Crossing*>& crossings) {
     879              :     assert(to != 0);
     880         4633 :     for (auto c : crossings) {
     881              :         const NBNode::Crossing& cross = *c;
     882              :         // only check connections at this crossings node
     883         2344 :         if (to->getFromNode() == cross.node) {
     884         4554 :             for (EdgeVector::const_iterator it_e = cross.edges.begin(); it_e != cross.edges.end(); ++it_e) {
     885         3173 :                 const NBEdge* edge = *it_e;
     886         3173 :                 if (edge == from || edge == to) {
     887              :                     return true;
     888              :                 }
     889              :             }
     890              :         }
     891              :     }
     892              :     return false;
     893              : }
     894              : 
     895              : 
     896              : std::string
     897         5464 : NBOwnTLDef::addPedestrianPhases(NBTrafficLightLogic* logic, const SUMOTime greenTime, const SUMOTime minDur, const SUMOTime maxDur,
     898              :                                 const SUMOTime earliestEnd, const SUMOTime latestEnd,
     899              :                                 std::string state, const std::vector<NBNode::Crossing*>& crossings, const EdgeVector& fromEdges, const EdgeVector& toEdges) {
     900              :     // compute based on length of the crossing if not set by the user
     901         5464 :     const SUMOTime pedClearingTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.crossing-clearance.time"));
     902              :     // compute if not set by user: must be able to reach the middle of the second "Richtungsfahrbahn"
     903         5464 :     const SUMOTime minPedTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.crossing-min.time"));
     904              :     const std::string orig = state;
     905         5464 :     state = patchStateForCrossings(state, crossings, fromEdges, toEdges);
     906         5464 :     if (orig == state) {
     907              :         // add step
     908         9544 :         logic->addStep(greenTime, state, minDur, maxDur, earliestEnd, latestEnd);
     909              :     } else {
     910          692 :         const SUMOTime pedTime = greenTime - pedClearingTime;
     911          692 :         if (pedTime >= minPedTime) {
     912              :             // ensure clearing time for pedestrians
     913          669 :             const int pedStates = (int)crossings.size();
     914              :             const bool isSimpleActuatedCrossing = logic->getType() == TrafficLightType::ACTUATED
     915          669 :                 && minDur == UNSPECIFIED_DURATION && logic->getPhases().size() == 2;
     916              :             if (isSimpleActuatedCrossing) {
     917              :                 // permit green phase to extend when there are no pedestrians
     918           19 :                 logic->setPhaseNext(0, {0, 1});
     919              :             }
     920         1338 :             logic->addStep(pedTime, state, minDur, maxDur, earliestEnd, latestEnd);
     921              : #ifdef DEBUG_PHASES
     922              :             if (DEBUGCOND2(logic)) {
     923              :                 std::cout << " intermidate state for addPedestrianPhases " << state << "\n";
     924              :             }
     925              : #endif
     926         1338 :             state = state.substr(0, state.size() - pedStates) + std::string(pedStates, 'r');
     927          669 :             logic->addStep(pedClearingTime, state);
     928              :         } else {
     929              :             state = orig;
     930              :             // not safe for pedestrians.
     931           46 :             logic->addStep(greenTime, state, minDur, maxDur, earliestEnd, latestEnd);
     932              :         }
     933              :     }
     934              : #ifdef DEBUG_PHASES
     935              :     if (DEBUGCOND2(logic)) {
     936              :         std::cout << " state after addPedestrianPhases " << state << "\n";
     937              :     }
     938              : #endif
     939        10928 :     return state;
     940              : }
     941              : 
     942              : 
     943              : std::string
     944         5464 : NBOwnTLDef::patchStateForCrossings(const std::string& state, const std::vector<NBNode::Crossing*>& crossings, const EdgeVector& fromEdges, const EdgeVector& toEdges) {
     945              :     std::string result = state;
     946         5464 :     const int pos = (int)(state.size() - crossings.size()); // number of controlled vehicle links
     947         8765 :     for (int ic = 0; ic < (int)crossings.size(); ++ic) {
     948         3301 :         const int i1 = pos + ic;
     949         3301 :         const NBNode::Crossing& cross = *crossings[ic];
     950              :         bool isForbidden = false;
     951        45668 :         for (int i2 = 0; i2 < pos && !isForbidden; ++i2) {
     952              :             // only check connections at this crossings node
     953        42367 :             if (fromEdges[i2] != 0 && toEdges[i2] != 0 && fromEdges[i2]->getToNode() == cross.node) {
     954        95936 :                 for (EdgeVector::const_iterator it = cross.edges.begin(); it != cross.edges.end(); ++it) {
     955        59826 :                     const NBEdge* edge = *it;
     956        59826 :                     const LinkDirection i2dir = cross.node->getDirection(fromEdges[i2], toEdges[i2]);
     957        59826 :                     if (state[i2] != 'r' && state[i2] != 's' && (edge == fromEdges[i2] ||
     958        19725 :                             (edge == toEdges[i2] && (i2dir == LinkDirection::STRAIGHT || i2dir == LinkDirection::PARTLEFT || i2dir == LinkDirection::PARTRIGHT)))) {
     959              :                         isForbidden = true;
     960              :                         break;
     961              :                     }
     962              :                 }
     963              :             }
     964              :         }
     965         3301 :         if (!isForbidden) {
     966         1850 :             result[i1] = 'G';
     967              :         } else {
     968         1451 :             result[i1] = 'r';
     969              :         }
     970              :     }
     971              : 
     972              :     // correct behaviour for roads that are in conflict with a pedestrian crossing
     973        82109 :     for (int i1 = 0; i1 < pos; ++i1) {
     974        76645 :         if (result[i1] == 'G') {
     975        38236 :             for (int ic = 0; ic < (int)crossings.size(); ++ic) {
     976        14412 :                 const NBNode::Crossing& crossing = *crossings[ic];
     977        14412 :                 if (fromEdges[i1] != 0 && toEdges[i1] != 0 && fromEdges[i1]->getToNode() == crossing.node) {
     978        12892 :                     const int i2 = pos + ic;
     979        12892 :                     if (result[i2] == 'G' && crossing.node->mustBrakeForCrossing(fromEdges[i1], toEdges[i1], crossing)) {
     980          916 :                         result[i1] = 'g';
     981          916 :                         break;
     982              :                     }
     983              :                 }
     984              :             }
     985              :         }
     986              :     }
     987         5464 :     return result;
     988              : }
     989              : 
     990              : 
     991              : std::string
     992           78 : NBOwnTLDef::patchNEMAStateForCrossings(const std::string& state,
     993              :                                        const std::vector<NBNode::Crossing*>& crossings,
     994              :                                        const EdgeVector& fromEdges,
     995              :                                        const EdgeVector& toEdges,
     996              :                                        const NBEdge* greenEdge, NBEdge* otherChosen) {
     997              :     std::string result = state;
     998           78 :     const int pos = (int)(state.size() - crossings.size()); // number of controlled vehicle links
     999           78 :     const EdgeVector& all = greenEdge->getToNode()->getEdges();
    1000           78 :     EdgeVector::const_iterator start = std::find(all.begin(), all.end(), greenEdge);
    1001              : 
    1002              :     // permit crossings over edges between the current green edge and it's straight continuation
    1003           78 :     const NBEdge* endEdge = nullptr;
    1004          621 :     for (int i = 0; i < (int)state.size(); i++) {
    1005          609 :         if (state[i] == 'G' && fromEdges[i] == greenEdge
    1006          752 :                 && greenEdge->getToNode()->getDirection(greenEdge, toEdges[i]) == LinkDirection::STRAIGHT) {
    1007              :             // straight edge found
    1008           66 :             endEdge = toEdges[i];
    1009           66 :             break;
    1010              :         }
    1011              :     }
    1012           78 :     if (endEdge == nullptr) {
    1013           12 :         endEdge = otherChosen;
    1014              :     }
    1015           78 :     if (endEdge == nullptr) {
    1016              :         // try to find the reverse edge of the green edge
    1017            8 :         auto itCW = start;
    1018            8 :         NBContHelper::nextCW(all, itCW);
    1019            8 :         if ((*itCW)->getFromNode() == greenEdge->getToNode()) {
    1020            8 :             endEdge = *itCW;
    1021              :         }
    1022              :     }
    1023           78 :     if (endEdge == nullptr) {
    1024              :         // at least prevent an infinite loop
    1025            0 :         endEdge = greenEdge;
    1026              :     }
    1027              :     //std::cout << " patchNEMAStateForCrossings green=" << greenEdge->getID() << " other=" << Named::getIDSecure(otherChosen) << " end=" << Named::getIDSecure(end) << " all=" << toString(all) << "\n";
    1028              : 
    1029           78 :     EdgeVector::const_iterator end = std::find(all.begin(), all.end(), endEdge);
    1030           78 :     if (end == all.end()) {
    1031              :         // at least prevent an infinite loop
    1032            0 :         end = start;
    1033              :     }
    1034           78 :     auto it = start;
    1035           78 :     NBContHelper::nextCCW(all, it);
    1036          236 :     for (; it != end; NBContHelper::nextCCW(all, it)) {
    1037          258 :         for (int ic = 0; ic < (int)crossings.size(); ++ic) {
    1038          100 :             const int i1 = pos + ic;
    1039          100 :             const NBNode::Crossing& cross = *crossings[ic];
    1040          258 :             for (const NBEdge* crossed : cross.edges) {
    1041              :                 //std::cout << "   cand=" << (*it)->getID() << " crossed=" << crossed->getID() << "\n";
    1042          186 :                 if (crossed == *it) {
    1043           28 :                     result[i1] = 'G';
    1044           28 :                     break;
    1045              :                 }
    1046              :             }
    1047              :         }
    1048              :     }
    1049              :     // correct behaviour for roads that are in conflict with a pedestrian crossing
    1050         1174 :     for (int i1 = 0; i1 < pos; ++i1) {
    1051         1096 :         if (result[i1] == 'G') {
    1052          216 :             for (int ic = 0; ic < (int)crossings.size(); ++ic) {
    1053           72 :                 const NBNode::Crossing& crossing = *crossings[ic];
    1054           72 :                 const int i2 = pos + ic;
    1055           72 :                 if (result[i2] == 'G' && crossing.node->mustBrakeForCrossing(fromEdges[i1], toEdges[i1], crossing)) {
    1056           12 :                     result[i1] = 'g';
    1057           12 :                     break;
    1058              :                 }
    1059              :             }
    1060              :         }
    1061              :     }
    1062           78 :     return result;
    1063              : }
    1064              : 
    1065              : 
    1066              : void
    1067         4580 : NBOwnTLDef::collectLinks() {
    1068              :     myControlledLinks.clear();
    1069         4580 :     collectAllLinks(myControlledLinks);
    1070         4580 : }
    1071              : 
    1072              : 
    1073              : void
    1074         3931 : NBOwnTLDef::setTLControllingInformation() const {
    1075              :     // set the information about the link's positions within the tl into the
    1076              :     //  edges the links are starting at, respectively
    1077              :     for (NBConnectionVector::const_iterator j = myControlledLinks.begin(); j != myControlledLinks.end(); ++j) {
    1078              :         const NBConnection& conn = *j;
    1079        17350 :         NBEdge* edge = conn.getFrom();
    1080        17350 :         edge->setControllingTLInformation(conn, getID());
    1081              :     }
    1082         3931 : }
    1083              : 
    1084              : 
    1085              : void
    1086            0 : NBOwnTLDef::remapRemoved(NBEdge* /*removed*/, const EdgeVector& /*incoming*/,
    1087            0 :                          const EdgeVector& /*outgoing*/) {}
    1088              : 
    1089              : 
    1090              : void
    1091         4005 : NBOwnTLDef::replaceRemoved(NBEdge* /*removed*/, int /*removedLane*/,
    1092         4005 :                            NBEdge* /*by*/, int /*byLane*/, bool /*incoming*/) {}
    1093              : 
    1094              : 
    1095              : void
    1096          198 : NBOwnTLDef::initNeedsContRelation() const {
    1097          198 :     if (!myNeedsContRelationReady) {
    1098          198 :         if (myControlledNodes.size() > 0) {
    1099              :             // setParticipantsInformation resets myAmInTLS so we need to make a copy
    1100              :             std::vector<bool> edgeInsideTLS;
    1101         1910 :             for (const NBEdge* e : myIncomingEdges) {
    1102         1712 :                 edgeInsideTLS.push_back(e->isInsideTLS());
    1103              :             }
    1104              :             // we use a dummy node just to maintain const-correctness
    1105              :             myNeedsContRelation.clear();
    1106          779 :             for (NBNode* n : myControlledNodes) {
    1107          581 :                 NBOwnTLDef dummy(DummyID, n, 0, TrafficLightType::STATIC);
    1108          581 :                 dummy.setParticipantsInformation();
    1109          581 :                 NBTrafficLightLogic* tllDummy = dummy.computeLogicAndConts(0, true);
    1110          581 :                 delete tllDummy;
    1111          581 :                 myNeedsContRelation.insert(dummy.myNeedsContRelation.begin(), dummy.myNeedsContRelation.end());
    1112          581 :                 n->removeTrafficLight(&dummy);
    1113          581 :             }
    1114          198 :             if (myControlledNodes.size() > 1) {
    1115              :                 int i = 0;
    1116         1907 :                 for (NBEdge* e : myIncomingEdges) {
    1117              :                     e->setInsideTLS(edgeInsideTLS[i]);
    1118         1712 :                     i++;
    1119              :                 }
    1120              :             }
    1121              : #ifdef DEBUG_CONTRELATION
    1122              :             if (DEBUGCOND) {
    1123              :                 std::cout << " contRelations at " << getID() << " prog=" << getProgramID() << ":\n";
    1124              :                 for (const StreamPair& s : myNeedsContRelation) {
    1125              :                     std::cout << "   " << s.from1->getID() << "->" << s.to1->getID() << " foe " << s.from2->getID() << "->" << s.to2->getID() << "\n";
    1126              :                 }
    1127              :             }
    1128              : #endif
    1129              : 
    1130              :         }
    1131          198 :         myNeedsContRelationReady = true;
    1132              :     }
    1133          198 : }
    1134              : 
    1135              : 
    1136              : EdgeVector
    1137         2791 : NBOwnTLDef::getConnectedOuterEdges(const EdgeVector& incoming) {
    1138         2791 :     EdgeVector result = incoming;
    1139        12751 :     for (EdgeVector::iterator it = result.begin(); it != result.end();) {
    1140         9960 :         if ((*it)->getConnections().size() == 0 || (*it)->isInsideTLS()) {
    1141              :             it = result.erase(it);
    1142              :         } else {
    1143              :             ++it;
    1144              :         }
    1145              :     }
    1146         2791 :     return result;
    1147              : }
    1148              : 
    1149              : 
    1150              : std::string
    1151         6229 : NBOwnTLDef::allowCompatible(std::string state, const EdgeVector& fromEdges, const EdgeVector& toEdges,
    1152              :                             const std::vector<int>& fromLanes, const std::vector<int>& toLanes) {
    1153        12458 :     state = allowSingleEdge(state, fromEdges);
    1154              : #ifdef DEBUG_PHASES
    1155              :     if (DEBUGCOND) {
    1156              :         std::cout << " state after allowSingle " << state << "\n";
    1157              :     }
    1158              : #endif
    1159         6229 :     if (myControlledNodes.size() > 1) {
    1160         1252 :         state = allowFollowers(state, fromEdges, toEdges);
    1161              : #ifdef DEBUG_PHASES
    1162              :         if (DEBUGCOND) {
    1163              :             std::cout << " state after allowFollowers " << state << "\n";
    1164              :         }
    1165              : #endif
    1166         1252 :         state = allowPredecessors(state, fromEdges, toEdges, fromLanes, toLanes);
    1167              : #ifdef DEBUG_PHASES
    1168              :         if (DEBUGCOND) {
    1169              :             std::cout << " state after allowPredecessors " << state << "\n";
    1170              :         }
    1171              : #endif
    1172              :     }
    1173         6229 :     return state;
    1174              : }
    1175              : 
    1176              : 
    1177              : std::string
    1178         6229 : NBOwnTLDef::allowSingleEdge(std::string state, const EdgeVector& fromEdges) {
    1179              :     // if only one edge has green, ensure sure that all connections from that edge are green
    1180         6229 :     const int size = (int)fromEdges.size();
    1181              :     NBEdge* greenEdge = nullptr;
    1182        75252 :     for (int i1 = 0; i1 < size; ++i1) {
    1183        72757 :         if (state[i1] == 'G') {
    1184        23959 :             if (greenEdge == nullptr) {
    1185         6229 :                 greenEdge = fromEdges[i1];
    1186        17730 :             } else if (greenEdge != fromEdges[i1]) {
    1187         3734 :                 return state;
    1188              :             }
    1189              :         }
    1190              :     }
    1191         2495 :     if (greenEdge != nullptr) {
    1192        30163 :         for (int i1 = 0; i1 < size; ++i1) {
    1193        27668 :             if (fromEdges[i1] == greenEdge) {
    1194         7339 :                 state[i1] = 'G';
    1195              :             }
    1196              :         }
    1197              :     }
    1198         2495 :     return state;
    1199              : }
    1200              : 
    1201              : 
    1202              : std::string
    1203          626 : NBOwnTLDef::allowFollowers(std::string state, const EdgeVector& fromEdges, const EdgeVector& toEdges) {
    1204              :     // check continuation within joined traffic lights
    1205              :     bool check = true;
    1206         1644 :     while (check) {
    1207              :         check = false;
    1208        27698 :         for (int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
    1209        26680 :             if (state[i1] == 'G') {
    1210         6381 :                 continue;
    1211              :             }
    1212        20299 :             if (forbidden(state, i1, fromEdges, toEdges, true)) {
    1213         7245 :                 continue;
    1214              :             }
    1215              :             bool followsChosen = false;
    1216       557642 :             for (int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
    1217       546180 :                 if (state[i2] == 'G' && fromEdges[i1] == toEdges[i2]) {
    1218              :                     followsChosen = true;
    1219              :                     break;
    1220              :                 }
    1221              :             }
    1222        13054 :             if (followsChosen) {
    1223         1592 :                 state[i1] = 'G';
    1224              :                 check = true;
    1225              :             }
    1226              :         }
    1227              :     }
    1228          626 :     return state;
    1229              : }
    1230              : 
    1231              : 
    1232              : std::string
    1233          626 : NBOwnTLDef::allowPredecessors(std::string state, const EdgeVector& fromEdges, const EdgeVector& toEdges,
    1234              :                               const std::vector<int>& fromLanes, const std::vector<int>& toLanes) {
    1235              :     // also allow predecessors of chosen edges if the lanes match and there is no conflict
    1236              :     // (must be done after the followers are done because followers are less specific)
    1237              :     bool check = true;
    1238         1264 :     while (check) {
    1239              :         check = false;
    1240        16950 :         for (int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
    1241        16312 :             if (state[i1] == 'G') {
    1242         4519 :                 continue;
    1243              :             }
    1244        11793 :             if (forbidden(state, i1, fromEdges, toEdges, false)) {
    1245         6076 :                 continue;
    1246              :             }
    1247              :             bool preceedsChosen = false;
    1248       267850 :             for (int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
    1249       262149 :                 if (state[i2] == 'G' && fromEdges[i2] == toEdges[i1]
    1250       262201 :                         && fromLanes[i2] == toLanes[i1]) {
    1251              :                     preceedsChosen = true;
    1252              :                     break;
    1253              :                 }
    1254              :             }
    1255         5717 :             if (preceedsChosen) {
    1256           16 :                 state[i1] = 'G';
    1257              :                 check = true;
    1258              :             }
    1259              :         }
    1260              :     }
    1261          626 :     return state;
    1262              : }
    1263              : 
    1264              : 
    1265              : std::string
    1266         5089 : NBOwnTLDef::allowUnrelated(std::string state, const EdgeVector& fromEdges, const EdgeVector& toEdges,
    1267              :                            const std::vector<bool>& isTurnaround,
    1268              :                            const std::vector<NBNode::Crossing*>& crossings) {
    1269        73188 :     for (int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
    1270        68099 :         if (state[i1] == 'G') {
    1271        30590 :             continue;
    1272              :         }
    1273              :         bool isForbidden = false;
    1274       317266 :         for (int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
    1275       428097 :             if (state[i2] == 'G' && !isTurnaround[i2] &&
    1276       208153 :                     (forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1], true) || forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2], true))) {
    1277              :                 isForbidden = true;
    1278              :                 break;
    1279              :             }
    1280              :         }
    1281        37509 :         if (!isForbidden && !hasCrossing(fromEdges[i1], toEdges[i1], crossings)) {
    1282         2289 :             state[i1] = 'G';
    1283              :         }
    1284              :     }
    1285         5089 :     return state;
    1286              : }
    1287              : 
    1288              : 
    1289              : std::string
    1290          101 : NBOwnTLDef::allowByVClass(std::string state, const EdgeVector& fromEdges, const EdgeVector& toEdges, SVCPermissions perm) {
    1291         1513 :     for (int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
    1292         1412 :         SVCPermissions linkPerm = (fromEdges[i1]->getPermissions() & toEdges[i1]->getPermissions());
    1293         1412 :         if ((linkPerm & ~perm) == 0) {
    1294          378 :             state[i1] = 'G';
    1295              :         }
    1296              :     }
    1297          101 :     return state;
    1298              : }
    1299              : 
    1300              : 
    1301              : bool
    1302        32092 : NBOwnTLDef::forbidden(const std::string& state, int index, const EdgeVector& fromEdges, const EdgeVector& toEdges, bool allowCont) {
    1303      1062563 :     for (int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
    1304      1043792 :         if (state[i2] == 'G' && foes(fromEdges[i2], toEdges[i2], fromEdges[index], toEdges[index])) {
    1305        30134 :             if (!allowCont || (
    1306        21575 :                         !needsCont(fromEdges[i2], toEdges[i2], fromEdges[index], toEdges[index]) &&
    1307         9546 :                         !needsCont(fromEdges[index], toEdges[index], fromEdges[i2], toEdges[i2]))) {
    1308        13321 :                 return true;
    1309              :             }
    1310              :         }
    1311              :     }
    1312              :     return false;
    1313              : }
    1314              : 
    1315              : 
    1316              : std::string
    1317         6268 : NBOwnTLDef::correctConflicting(std::string state, const EdgeVector& fromEdges, const EdgeVector& toEdges,
    1318              :                                const std::vector<bool>& isTurnaround,
    1319              :                                const std::vector<int>& fromLanes,
    1320              :                                const std::vector<int>& toLanes,
    1321              :                                const std::vector<bool>& hadGreenMajor,
    1322              :                                bool& haveForbiddenLeftMover,
    1323              :                                std::vector<bool>& rightTurnConflicts,
    1324              :                                std::vector<bool>& mergeConflicts) {
    1325         6268 :     const bool controlledWithin = !OptionsCont::getOptions().getBool("tls.uncontrolled-within");
    1326        99587 :     for (int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
    1327        93319 :         if (state[i1] == 'G') {
    1328       802002 :             for (int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
    1329       762659 :                 if ((state[i2] == 'G' || state[i2] == 'g')) {
    1330       356347 :                     if (NBNode::rightTurnConflict(
    1331              :                                 fromEdges[i1], toEdges[i1], fromLanes[i1], fromEdges[i2], toEdges[i2], fromLanes[i2])) {
    1332              :                         rightTurnConflicts[i1] = true;
    1333              :                     }
    1334       356347 :                     if (forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1], true, controlledWithin) || rightTurnConflicts[i1]) {
    1335        28065 :                         state[i1] = 'g';
    1336        28065 :                         if (myControlledNodes.size() == 1) {
    1337        25953 :                             myNeedsContRelation.insert(StreamPair(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2]));
    1338              : #ifdef DEBUG_CONTRELATION
    1339              :                             if (DEBUGCOND) {
    1340              :                                 std::cout << getID() << " p=" << getProgramID() << " contRel: " << fromEdges[i1]->getID() << "->" << toEdges[i1]->getID()
    1341              :                                           << " foe " << fromEdges[i2]->getID() << "->" << toEdges[i2]->getID() << "\n";
    1342              :                             }
    1343              : #endif
    1344              :                         }
    1345        28065 :                         if (!isTurnaround[i1] && !hadGreenMajor[i1] && !rightTurnConflicts[i1]) {
    1346        16694 :                             haveForbiddenLeftMover = true;
    1347              :                         }
    1348       328282 :                     } else if (fromEdges[i1] == fromEdges[i2]
    1349       154619 :                                && fromLanes[i1] != fromLanes[i2]
    1350        63401 :                                && toEdges[i1] == toEdges[i2]
    1351        17429 :                                && toLanes[i1] == toLanes[i2]
    1352       328563 :                                && fromEdges[i1]->getToNode()->mergeConflictYields(fromEdges[i1], fromLanes[i1], fromLanes[i2], toEdges[i1], toLanes[i1])) {
    1353              :                         mergeConflicts[i1] = true;
    1354          139 :                         state[i1] = 'g';
    1355              :                     }
    1356              :                 }
    1357              :             }
    1358              :         }
    1359        93319 :         if (state[i1] == 'r') {
    1360        54102 :             if (fromEdges[i1]->getToNode()->getType() == SumoXMLNodeType::TRAFFIC_LIGHT_RIGHT_ON_RED &&
    1361          212 :                     fromEdges[i1]->getToNode()->getDirection(fromEdges[i1], toEdges[i1]) == LinkDirection::RIGHT) {
    1362           48 :                 state[i1] = 's';
    1363              :                 // do not allow right-on-red when in conflict with exclusive left-turn phase
    1364          720 :                 for (int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
    1365          917 :                     if (state[i2] == 'G' && !isTurnaround[i2] &&
    1366          440 :                             (forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1], true) ||
    1367          207 :                              forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2], true))) {
    1368           64 :                         const LinkDirection foeDir = fromEdges[i2]->getToNode()->getDirection(fromEdges[i2], toEdges[i2]);
    1369           64 :                         if (foeDir == LinkDirection::LEFT || foeDir == LinkDirection::PARTLEFT) {
    1370           12 :                             state[i1] = 'r';
    1371           12 :                             break;
    1372              :                         }
    1373              :                     }
    1374              :                 }
    1375           48 :                 if (state[i1] == 's') {
    1376              :                     // handle right-on-red conflicts
    1377          612 :                     for (int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
    1378          784 :                         if (state[i2] == 'G' && !isTurnaround[i2] &&
    1379          390 :                                 (forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1], true) ||
    1380          182 :                                  forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2], true))) {
    1381           52 :                             myRightOnRedConflicts.insert(std::make_pair(i1, i2));
    1382              :                         }
    1383              :                     }
    1384              :                 }
    1385              :             }
    1386              :         }
    1387              :     }
    1388         6268 :     return state;
    1389              : }
    1390              : 
    1391              : 
    1392              : std::string
    1393           10 : NBOwnTLDef::correctMixed(std::string state, const EdgeVector& fromEdges,
    1394              :                          const std::vector<int>& fromLanes,
    1395              :                          bool& buildMixedGreenPhase, std::vector<bool>& mixedGreen) {
    1396          152 :     for (int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
    1397          142 :         if ((state[i1] == 'G' || state[i1] == 'g')) {
    1398          368 :             for (int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
    1399          320 :                 if (i1 != i2 && fromEdges[i1] == fromEdges[i2] && fromLanes[i1] == fromLanes[i2]
    1400          360 :                         && state[i2] != 'G' && state[i2] != 'g') {
    1401           12 :                     state[i1] = state[i2];
    1402              :                     //std::cout << " mixedGreen i1=" << i1 << " i2=" << i2 << "\n";
    1403              :                     mixedGreen[i1] = true;
    1404           12 :                     if (fromEdges[i1]->getNumLanesThatAllow(SVC_PASSENGER) > 1) {
    1405            4 :                         buildMixedGreenPhase = true;
    1406              :                     }
    1407              :                 }
    1408              :             }
    1409              :         }
    1410              :     }
    1411           10 :     return state;
    1412              : }
    1413              : 
    1414              : 
    1415              : void
    1416          155 : NBOwnTLDef::addGreenWithin(NBTrafficLightLogic* logic, const EdgeVector& fromEdges, EdgeVector& toProc) {
    1417          155 :     std::vector<bool> foundGreen(fromEdges.size(), false);
    1418         1288 :     for (const auto& phase : logic->getPhases()) {
    1419              :         const std::string state = phase.state;
    1420        30805 :         for (int j = 0; j < (int)fromEdges.size(); j++) {
    1421        29672 :             LinkState ls = (LinkState)state[j];
    1422        29672 :             if (ls == LINKSTATE_TL_GREEN_MAJOR || ls == LINKSTATE_TL_GREEN_MINOR) {
    1423              :                 foundGreen[j] = true;
    1424              :             }
    1425              :         }
    1426              :     }
    1427         6915 :     for (int j = 0; j < (int)foundGreen.size(); j++) {
    1428         3380 :         if (!foundGreen[j]) {
    1429           11 :             NBEdge* e = fromEdges[j];
    1430           11 :             if (std::find(toProc.begin(), toProc.end(), e) == toProc.end()) {
    1431            6 :                 toProc.push_back(e);
    1432              :             }
    1433              :         }
    1434              :     }
    1435          155 : }
    1436              : 
    1437              : 
    1438              : void
    1439          328 : NBOwnTLDef::addPedestrianScramble(NBTrafficLightLogic* logic, int totalNumLinks, SUMOTime /* greenTime */, SUMOTime brakingTime,
    1440              :                                   const std::vector<NBNode::Crossing*>& crossings, const EdgeVector& fromEdges, const EdgeVector& toEdges) {
    1441          328 :     const int vehLinks = totalNumLinks - (int)crossings.size();
    1442          328 :     std::vector<bool> foundGreen(crossings.size(), false);
    1443              :     const std::vector<NBTrafficLightLogic::PhaseDefinition>& phases = logic->getPhases();
    1444         2381 :     for (int i = 0; i < (int)phases.size(); i++) {
    1445         2053 :         const std::string state = phases[i].state;
    1446        11597 :         for (int j = 0; j < (int)crossings.size(); j++) {
    1447         9544 :             LinkState ls = (LinkState)state[vehLinks + j];
    1448         9544 :             if (ls == LINKSTATE_TL_GREEN_MAJOR || ls == LINKSTATE_TL_GREEN_MINOR) {
    1449              :                 foundGreen[j] = true;
    1450              :             }
    1451              :         }
    1452              :     }
    1453              : #ifdef DEBUG_PHASES
    1454              :     if (DEBUGCOND2(logic)) {
    1455              :         std::cout << " foundCrossingGreen=" << toString(foundGreen) << "\n";
    1456              :     }
    1457              : #endif
    1458         2444 :     for (int j = 0; j < (int)foundGreen.size(); j++) {
    1459         1139 :         if (!foundGreen[j]) {
    1460              :             // add a phase where all pedestrians may walk, (preceded by a yellow phase and followed by a clearing phase)
    1461           81 :             if (phases.size() > 0) {
    1462              :                 bool needYellowPhase = false;
    1463              :                 std::string state = phases.back().state;
    1464          652 :                 for (int i1 = 0; i1 < vehLinks; ++i1) {
    1465          571 :                     if (state[i1] == 'G' || state[i1] == 'g') {
    1466          119 :                         state[i1] = 'y';
    1467              :                         needYellowPhase = true;
    1468              :                     }
    1469              :                 }
    1470              :                 // add yellow step
    1471           81 :                 if (needYellowPhase && brakingTime > 0) {
    1472            0 :                     logic->addStep(brakingTime, state);
    1473              :                 }
    1474              :             }
    1475           81 :             const SUMOTime pedClearingTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.crossing-clearance.time"));
    1476           81 :             const SUMOTime scrambleTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.scramble.time"));
    1477           81 :             addPedestrianPhases(logic, scrambleTime + pedClearingTime, UNSPECIFIED_DURATION,
    1478           81 :                                 UNSPECIFIED_DURATION, UNSPECIFIED_DURATION, UNSPECIFIED_DURATION, std::string(totalNumLinks, 'r'), crossings, fromEdges, toEdges);
    1479           81 :             break;
    1480              :         }
    1481              :     }
    1482          328 : }
    1483              : 
    1484              : 
    1485              : void
    1486         4075 : NBOwnTLDef::buildAllRedState(SUMOTime allRedTime, NBTrafficLightLogic* logic, const std::string& state) {
    1487         4075 :     if (allRedTime > 0) {
    1488              :         // build all-red phase
    1489              :         std::string allRedState = state;
    1490         5923 :         for (int i = 0; i < (int)state.size(); i++) {
    1491         5650 :             if (allRedState[i] == 'Y' || allRedState[i] == 'y') {
    1492         1635 :                 allRedState[i] = 'r';
    1493              :             }
    1494              :         }
    1495          273 :         logic->addStep(TIME2STEPS(ceil(STEPS2TIME(allRedTime))), allRedState);
    1496              :     }
    1497         4075 : }
    1498              : 
    1499              : 
    1500              : void
    1501          247 : NBOwnTLDef::checkCustomCrossingIndices(NBTrafficLightLogic* logic) const {
    1502              :     int minCustomIndex = -1;
    1503              :     int maxCustomIndex = -1;
    1504              :     // collect crossings
    1505          520 :     for (std::vector<NBNode*>::const_iterator i = myControlledNodes.begin(); i != myControlledNodes.end(); i++) {
    1506          273 :         const std::vector<NBNode::Crossing*>& c = (*i)->getCrossings();
    1507         1254 :         for (auto crossing : c) {
    1508          981 :             minCustomIndex = MIN2(minCustomIndex, crossing->customTLIndex);
    1509          981 :             minCustomIndex = MIN2(minCustomIndex, crossing->customTLIndex2);
    1510              :             maxCustomIndex = MAX2(maxCustomIndex, crossing->customTLIndex);
    1511              :             maxCustomIndex = MAX2(maxCustomIndex, crossing->customTLIndex2);
    1512              :         }
    1513          273 :     }
    1514              :     // custom crossing linkIndex could lead to longer states. ensure that every index has a state
    1515          247 :     if (maxCustomIndex >= logic->getNumLinks()) {
    1516            9 :         logic->setStateLength(maxCustomIndex + 1);
    1517              :     }
    1518              :     // XXX shorter state vectors are possible as well
    1519              :     // XXX if the indices are shuffled the guessed crossing states should be shuffled correspondingly
    1520              :     // XXX initialize the backward index to the same state as the forward index
    1521          247 : }
    1522              : 
    1523              : void
    1524            0 : NBOwnTLDef::fixSuperfluousYellow(NBTrafficLightLogic* logic) const {
    1525              :     // assume that yellow states last at most one phase
    1526              :     const int n = logic->getNumLinks();
    1527            0 :     const int p = (int)logic->getPhases().size();
    1528            0 :     for (int i1 = 0; i1 < n; ++i1) {
    1529            0 :         LinkState prev = (LinkState)logic->getPhases().back().state[i1];
    1530            0 :         for (int i2 = 0; i2 < p; ++i2) {
    1531            0 :             LinkState cur = (LinkState)logic->getPhases()[i2].state[i1];
    1532            0 :             LinkState next = (LinkState)logic->getPhases()[(i2 + 1) % p].state[i1];
    1533            0 :             if (cur == LINKSTATE_TL_YELLOW_MINOR
    1534            0 :                     && (prev == LINKSTATE_TL_GREEN_MAJOR || prev == LINKSTATE_TL_YELLOW_MINOR)
    1535            0 :                     && next == LINKSTATE_TL_GREEN_MAJOR) {
    1536            0 :                 logic->setPhaseState(i2, i1, prev);
    1537              :             }
    1538              :             prev = cur;
    1539              :         }
    1540              :     }
    1541            0 : }
    1542              : 
    1543              : 
    1544              : void
    1545            0 : NBOwnTLDef::deactivateAlwaysGreen(NBTrafficLightLogic* logic) const {
    1546              :     const int n = logic->getNumLinks();
    1547            0 :     std::vector<bool> alwaysGreen(n, true);
    1548            0 :     for (int i1 = 0; i1 < n; ++i1) {
    1549            0 :         for (const auto& phase : logic->getPhases()) {
    1550            0 :             if (phase.state[i1] != 'G') {
    1551              :                 alwaysGreen[i1] = false;
    1552            0 :                 break;
    1553              :             }
    1554              :         }
    1555              :     }
    1556            0 :     const int p = (int)logic->getPhases().size();
    1557            0 :     for (int i1 = 0; i1 < n; ++i1) {
    1558            0 :         if (alwaysGreen[i1]) {
    1559            0 :             for (int i2 = 0; i2 < p; ++i2) {
    1560            0 :                 logic->setPhaseState(i2, i1, LINKSTATE_TL_OFF_NOSIGNAL);
    1561              :             }
    1562              :         }
    1563              :     }
    1564            0 : }
    1565              : 
    1566              : 
    1567              : void
    1568            9 : NBOwnTLDef::deactivateInsideEdges(NBTrafficLightLogic* logic, const EdgeVector& fromEdges) const {
    1569            9 :     const int n = (int)fromEdges.size();
    1570            9 :     const int p = (int)logic->getPhases().size();
    1571           83 :     for (int i1 = 0; i1 < n; ++i1) {
    1572           74 :         if (fromEdges[i1]->isInsideTLS()) {
    1573          470 :             for (int i2 = 0; i2 < p; ++i2) {
    1574          428 :                 logic->setPhaseState(i2, i1, LINKSTATE_TL_OFF_NOSIGNAL);
    1575              :             }
    1576              :         }
    1577              :     }
    1578            9 : }
    1579              : 
    1580              : 
    1581              : SUMOTime
    1582           24 : NBOwnTLDef::computeEscapeTime(const std::string& state, const EdgeVector& fromEdges, const EdgeVector& toEdges) const {
    1583           24 :     const int n = (int)fromEdges.size();
    1584              :     double maxTime = 0;
    1585          232 :     for (int i1 = 0; i1 < n; ++i1) {
    1586          208 :         if (state[i1] == 'y' && !fromEdges[i1]->isInsideTLS()) {
    1587          344 :             for (int i2 = 0; i2 < n; ++i2) {
    1588          312 :                 if (fromEdges[i2]->isInsideTLS()) {
    1589          180 :                     double gapSpeed = (toEdges[i1]->getSpeed() + fromEdges[i2]->getSpeed()) / 2;
    1590          180 :                     double time = fromEdges[i1]->getGeometry().back().distanceTo2D(fromEdges[i2]->getGeometry().back()) / gapSpeed;
    1591              :                     maxTime = MAX2(maxTime, time);
    1592              :                 }
    1593              :             }
    1594              :         }
    1595              :     }
    1596              :     // give some slack
    1597           24 :     return TIME2STEPS(floor(maxTime * 1.2 + 5));
    1598              : }
    1599              : 
    1600              : 
    1601              : int
    1602            0 : NBOwnTLDef::getMaxIndex() {
    1603            0 :     setParticipantsInformation();
    1604            0 :     NBTrafficLightLogic* logic = compute(OptionsCont::getOptions());
    1605            0 :     if (logic != nullptr) {
    1606            0 :         return logic->getNumLinks() - 1;
    1607              :     } else {
    1608              :         return -1;
    1609              :     }
    1610              : }
    1611              : 
    1612              : 
    1613              : bool
    1614           88 : NBOwnTLDef::corridorLike() const {
    1615           88 :     if (getID() == DummyID) {
    1616              :         // avoid infinite recursion
    1617              :         return true;
    1618              :     }
    1619              :     assert(myControlledNodes.size() >= 2);
    1620           42 :     NBOwnTLDef dummy(DummyID, myControlledNodes, 0, TrafficLightType::STATIC);
    1621           42 :     dummy.setParticipantsInformation();
    1622           42 :     NBTrafficLightLogic* tllDummy = dummy.computeLogicAndConts(0, true);
    1623              :     int greenPhases = 0;
    1624          177 :     for (const auto& phase : tllDummy->getPhases()) {
    1625          135 :         if (phase.state.find_first_of("gG") != std::string::npos) {
    1626          133 :             greenPhases++;
    1627              :         }
    1628              :     }
    1629           42 :     delete tllDummy;
    1630          212 :     for (const auto& controlledNode : myControlledNodes) {
    1631          170 :         controlledNode->removeTrafficLight(&dummy);
    1632              :     }
    1633           42 :     return greenPhases <= 2;
    1634           42 : }
    1635              : 
    1636              : 
    1637              : NBTrafficLightLogic*
    1638           24 : NBOwnTLDef::buildNemaPhases(
    1639              :     const EdgeVector& fromEdges,
    1640              :     const EdgeVector& toEdges,
    1641              :     const std::vector<NBNode::Crossing*>& crossings,
    1642              :     const std::vector<std::pair<NBEdge*, NBEdge*> >& chosenList,
    1643              :     const std::vector<std::string>& straightStates,
    1644              :     const std::vector<std::string>& leftStates) {
    1645           24 :     if (chosenList.size() != 2) {
    1646              :         return nullptr;
    1647              :     }
    1648           23 :     const SUMOTime dur = TIME2STEPS(OptionsCont::getOptions().getInt("tls.cycle.time"));
    1649           23 :     const SUMOTime vehExt = TIME2STEPS(OptionsCont::getOptions().getInt("tls.nema.vehExt"));
    1650           23 :     const SUMOTime yellow = TIME2STEPS(OptionsCont::getOptions().getInt("tls.nema.yellow"));
    1651           23 :     const SUMOTime red = TIME2STEPS(OptionsCont::getOptions().getInt("tls.nema.red"));
    1652           23 :     const SUMOTime minMinDur = TIME2STEPS(OptionsCont::getOptions().getInt("tls.min-dur"));
    1653           23 :     const SUMOTime maxDur = TIME2STEPS(OptionsCont::getOptions().getInt("tls.max-dur"));
    1654           23 :     const SUMOTime earliestEnd = UNSPECIFIED_DURATION;
    1655              :     const SUMOTime latestEnd = UNSPECIFIED_DURATION;
    1656              : 
    1657           23 :     const int totalNumLinks = (int)straightStates[0].size();
    1658           23 :     NBTrafficLightLogic* logic = new NBTrafficLightLogic(getID(), getProgramID(), totalNumLinks, myOffset, myType);
    1659           23 :     std::vector<int> ring1({1, 2, 3, 4});
    1660           23 :     std::vector<int> ring2({5, 6, 7, 8});
    1661           23 :     std::vector<int> barrier1({4, 8});
    1662           23 :     std::vector<int> barrier2({2, 6});
    1663           23 :     int phaseNameLeft = 1;
    1664           67 :     for (int i = 0; i < (int)chosenList.size(); i++) {
    1665           45 :         NBEdge* e1 = chosenList[i].first;
    1666              :         assert(e1 != nullptr);
    1667           45 :         NBEdge* e2 = chosenList[i].second;
    1668           45 :         if (i < (int)leftStates.size()) {
    1669           90 :             std::string left1 = filterState(leftStates[i], fromEdges, e1);
    1670           45 :             if (left1 != "") {
    1671           70 :                 logic->addStep(dur, left1, minMinDur, maxDur, earliestEnd, latestEnd, vehExt, yellow, red, toString(phaseNameLeft));
    1672              :             }
    1673              :         }
    1674           45 :         if (e2 != nullptr) {
    1675           34 :             std::string straight2 = filterState(straightStates[i], fromEdges, e2);
    1676           68 :             straight2 = patchNEMAStateForCrossings(straight2, crossings, fromEdges, toEdges, e2, e1);
    1677              : 
    1678           68 :             logic->addStep(dur, straight2, minMinDur, maxDur, earliestEnd, latestEnd, vehExt, yellow, red, toString(phaseNameLeft + 1));
    1679           34 :             if (i < (int)leftStates.size()) {
    1680           68 :                 std::string left2 = filterState(leftStates[i], fromEdges, e2);
    1681           34 :                 if (left2 != "") {
    1682           44 :                     logic->addStep(dur, left2, minMinDur, maxDur, earliestEnd, latestEnd, vehExt, yellow, red, toString(phaseNameLeft + 4));
    1683              :                 }
    1684              :             }
    1685              : 
    1686              :         }
    1687           45 :         std::string straight1 = filterState(straightStates[i], fromEdges, e1);
    1688           45 :         if (straight1 == "") {
    1689            1 :             delete logic;
    1690              :             return nullptr;
    1691              :         }
    1692           88 :         straight1 = patchNEMAStateForCrossings(straight1, crossings, fromEdges, toEdges, e1, e2);
    1693           88 :         logic->addStep(dur, straight1, minMinDur, maxDur, earliestEnd, latestEnd, vehExt, yellow, red, toString(phaseNameLeft + 5));
    1694           44 :         phaseNameLeft += 2;
    1695              :     }
    1696              :     std::map<int, int> names; // nema phase name -> sumo phase index
    1697          156 :     for (int i = 0; i < (int)logic->getPhases().size(); i++) {
    1698          134 :         names[StringUtils::toInt(logic->getPhases()[i].name)] = i;
    1699              :     }
    1700              : 
    1701           22 :     filterMissingNames(ring1, names, false);
    1702           22 :     filterMissingNames(ring2, names, false);
    1703           22 :     filterMissingNames(barrier1, names, true, 8);
    1704           22 :     filterMissingNames(barrier2, names, true, 6);
    1705           22 :     if (ring1[0] == 0 && ring1[1] == 0) {
    1706            1 :         ring1[1] = 6;
    1707              :     }
    1708           22 :     if (ring1[2] == 0 && ring1[3] == 0) {
    1709            3 :         ring1[3] = 8;
    1710              :     }
    1711           22 :     fixDurationSum(logic, names, ring1[0], ring1[1], ring2[0], ring2[1]);
    1712           22 :     fixDurationSum(logic, names, ring1[2], ring1[3], ring2[2], ring2[3]);
    1713              : 
    1714           44 :     logic->setParameter("ring1", joinToString(ring1, ","));
    1715           44 :     logic->setParameter("ring2", joinToString(ring2, ","));
    1716           44 :     logic->setParameter("barrierPhases", joinToString(barrier1, ","));
    1717           44 :     logic->setParameter("barrier2Phases", joinToString(barrier2, ","));
    1718              :     return logic;
    1719           23 : }
    1720              : 
    1721              : 
    1722              : std::string
    1723          158 : NBOwnTLDef::filterState(std::string state, const EdgeVector& fromEdges, const NBEdge* e) {
    1724              :     bool haveGreen = false;
    1725         2354 :     for (int j = 0; j < (int)fromEdges.size(); j++) {
    1726         2196 :         if (fromEdges[j] != e) {
    1727         1602 :             state[j] = 'r';
    1728          594 :         } else if (state[j] != 'r') {
    1729              :             haveGreen = true;
    1730              :         }
    1731              :     }
    1732          158 :     if (haveGreen) {
    1733          135 :         return state;
    1734              :     } else {
    1735           23 :         return "";
    1736              :     }
    1737              : }
    1738              : 
    1739              : void
    1740           88 : NBOwnTLDef::filterMissingNames(std::vector<int>& vec, const std::map<int, int>& names, bool isBarrier, int barrierDefault) {
    1741          352 :     for (int i = 0; i < (int)vec.size(); i++) {
    1742          264 :         if (names.count(vec[i]) == 0) {
    1743           52 :             if (isBarrier) {
    1744           10 :                 if (names.count(vec[i] - 1) > 0) {
    1745            6 :                     vec[i] = vec[i] - 1;
    1746              :                 } else {
    1747            4 :                     vec[i] = barrierDefault;
    1748              :                 }
    1749              :             } else {
    1750           42 :                 vec[i] = 0;
    1751              :             }
    1752              :         }
    1753              :     }
    1754           88 : }
    1755              : 
    1756              : void
    1757           44 : NBOwnTLDef::fixDurationSum(NBTrafficLightLogic* logic, const std::map<int, int>& names, int ring1a, int ring1b, int ring2a, int ring2b) {
    1758              :     std::set<int> ring1existing;
    1759              :     std::set<int> ring2existing;
    1760              :     if (names.count(ring1a) != 0) {
    1761              :         ring1existing.insert(ring1a);
    1762              :     }
    1763              :     if (names.count(ring1b) != 0) {
    1764              :         ring1existing.insert(ring1b);
    1765              :     }
    1766              :     if (names.count(ring2a) != 0) {
    1767              :         ring2existing.insert(ring2a);
    1768              :     }
    1769              :     if (names.count(ring2b) != 0) {
    1770              :         ring2existing.insert(ring2b);
    1771              :     }
    1772           44 :     if (ring1existing.size() > 0 && ring2existing.size() > 0 &&
    1773              :             ring1existing.size() != ring2existing.size()) {
    1774              :         int pI; // sumo phase index
    1775            6 :         if (ring1existing.size() < ring2existing.size()) {
    1776            0 :             pI = names.find(*ring1existing.begin())->second;
    1777              :         } else {
    1778            6 :             pI = names.find(*ring2existing.begin())->second;
    1779              :         }
    1780            6 :         const auto& p = logic->getPhases()[pI];
    1781            6 :         SUMOTime newMaxDur = 2 * p.maxDur + p.yellow + p.red;
    1782            6 :         logic->setPhaseMaxDuration(pI, newMaxDur);
    1783              :     }
    1784           44 : }
    1785              : 
    1786              : /****************************************************************************/
        

Generated by: LCOV version 2.0-1