LCOV - code coverage report
Current view: top level - src/utils/common - PolySolver.cpp (source / functions) Coverage Total Hit
Test: lcov.info Lines: 44.2 % 43 19
Test Date: 2025-01-02 15:43:51 Functions: 50.0 % 2 1

            Line data    Source code
       1              : /****************************************************************************/
       2              : // Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
       3              : // Copyright (C) 2001-2024 German Aerospace Center (DLR) and others.
       4              : // This program and the accompanying materials are made available under the
       5              : // terms of the Eclipse Public License 2.0 which is available at
       6              : // https://www.eclipse.org/legal/epl-2.0/
       7              : // This Source Code may also be made available under the following Secondary
       8              : // Licenses when the conditions for such availability set forth in the Eclipse
       9              : // Public License 2.0 are satisfied: GNU General Public License, version 2
      10              : // or later which is available at
      11              : // https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
      12              : // SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
      13              : /****************************************************************************/
      14              : /// @file    PolySolver.cpp
      15              : /// @author  Jakub Sevcik (RICE)
      16              : /// @author  Jan Prikryl (RICE)
      17              : /// @date    2019-12-06
      18              : ///
      19              : //
      20              : /****************************************************************************/
      21              : #include <config.h>
      22              : 
      23              : #include <math.h>
      24              : #include <cmath>
      25              : #include <limits>
      26              : #include <utils/geom/GeomHelper.h>  // defines M_PI
      27              : #include "PolySolver.h"
      28              : 
      29              : 
      30              : // ===========================================================================
      31              : // member method definitions
      32              : // ===========================================================================
      33              : std::tuple<int, double, double>
      34            0 : PolySolver::quadraticSolve(double a, double b, double c) {
      35              :     // ax^2 + bx + c = 0
      36              :     // return only real roots
      37            0 :     if (a == 0) {
      38              :         //WRITE_WARNING(TL("The coefficient of the quadrat of x is 0. Please use the utility for a FIRST degree linear. No further action taken."));
      39            0 :         if (b == 0) {
      40            0 :             if (c == 0) {
      41              :                 return std::make_tuple(2, std::numeric_limits<double>::infinity(), -std::numeric_limits<double>::infinity());
      42              :             } else {
      43              :                 return std::make_tuple(0, NAN, NAN);
      44              :             }
      45              :         } else {
      46            0 :             return std::make_tuple(1, -c / b, NAN);
      47              :         }
      48              :     }
      49              : 
      50            0 :     if (c == 0) {
      51              :         //WRITE_WARNING(TL("One root is 0. Now divide through by x and use the utility for a FIRST degree linear to solve the resulting equation for the other one root. No further action taken."));
      52            0 :         return std::make_tuple(2, 0, -b / a);
      53              :     }
      54              : 
      55              :     double disc, x1_real, x2_real ;
      56            0 :     disc = b * b - 4 * a * c;
      57              : 
      58            0 :     if (disc > 0) {
      59              :         // two different real roots
      60            0 :         x1_real = (-b + sqrt(disc)) / (2 * a);
      61            0 :         x2_real = (-b - sqrt(disc)) / (2 * a);
      62              :         return std::make_tuple(2, x1_real, x2_real);
      63            0 :     } else if (disc == 0) {
      64              :         // a real root with multiplicity 2
      65            0 :         x1_real = (-b + sqrt(disc)) / (2 * a);
      66              :         return std::make_tuple(1, x1_real, NAN);
      67              :     } else {
      68              :         // all roots are complex
      69              :         return std::make_tuple(0, NAN, NAN);
      70              :     }
      71              : }
      72              : 
      73              : std::tuple<int, double, double, double>
      74           70 : PolySolver::cubicSolve(double a, double b, double c, double d) {
      75              :     // ax^3 + bx^2 + cx + d = 0
      76              :     // return only real roots
      77           70 :     if (a == 0) {
      78              :         //WRITE_WARNING(TL("The coefficient of the cube of x is 0. Please use the utility for a SECOND degree quadratic. No further action taken."));
      79              :         int numX;
      80              :         double x1, x2;
      81            0 :         std::tie(numX, x1, x2) = quadraticSolve(b, c, d);
      82              :         return std::make_tuple(numX, x1, x2, NAN);
      83              :     }
      84           70 :     if (d == 0) {
      85              :         //WRITE_WARNING(TL("One root is 0. Now divide through by x and use the utility for a SECOND degree quadratic to solve the resulting equation for the other two roots. No further action taken."));
      86              :         int numX;
      87              :         double x1, x2;
      88            0 :         std::tie(numX, x1, x2) = quadraticSolve(a, b, c);
      89            0 :         return std::make_tuple(numX + 1, 0, x1, x2);
      90              :     }
      91              : 
      92           70 :     b /= a;
      93           70 :     c /= a;
      94           70 :     d /= a;
      95              : 
      96              :     double disc, q, r, dum1, s, t, term1, r13;
      97           70 :     q = (3.0 * c - (b * b)) / 9.0;
      98           70 :     r = -(27.0 * d) + b * (9.0 * c - 2.0 * (b * b));
      99           70 :     r /= 54.0;
     100           70 :     disc = q * q * q + r * r;
     101           70 :     term1 = (b / 3.0);
     102              : 
     103              :     double x1_real, x2_real, x3_real;
     104           70 :     if (disc > 0) { // One root real, two are complex
     105            0 :         s = r + sqrt(disc);
     106            0 :         s = s < 0 ? -cbrt(-s) : cbrt(s);
     107            0 :         t = r - sqrt(disc);
     108            0 :         t = t < 0 ? -cbrt(-t) : cbrt(t);
     109            0 :         x1_real = -term1 + s + t;
     110              :         term1 += (s + t) / 2.0;
     111              :         x3_real = x2_real = -term1;
     112              :         return std::make_tuple(1, x1_real, NAN, NAN);
     113              :     }
     114              :     // The remaining options are all real
     115           70 :     else if (disc == 0) { // All roots real, at least two are equal.
     116            0 :         r13 = r < 0 ? -cbrt(-r) : cbrt(r);
     117            0 :         x1_real = -term1 + 2.0 * r13;
     118            0 :         x3_real = x2_real = -(r13 + term1);
     119              :         return std::make_tuple(2, x1_real, x2_real, NAN);
     120              :     }
     121              :     // Only option left is that all roots are real and unequal (to get here, q < 0)
     122              :     else {
     123           70 :         q = -q;
     124              :         dum1 = q * q * q;
     125           70 :         dum1 = acos(r / sqrt(dum1));
     126           70 :         r13 = 2.0 * sqrt(q);
     127           70 :         x1_real = -term1 + r13 * cos(dum1 / 3.0);
     128           70 :         x2_real = -term1 + r13 * cos((dum1 + 2.0 * M_PI) / 3.0);
     129           70 :         x3_real = -term1 + r13 * cos((dum1 + 4.0 * M_PI) / 3.0);
     130              :         return std::make_tuple(3, x1_real, x2_real, x3_real);
     131              :     }
     132              : }
     133              : 
     134              : 
     135              : /****************************************************************************/
        

Generated by: LCOV version 2.0-1