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Abstract. Accurate traffic models are of decisive importance for well-founded traffic engineer-
ing and represent the basic framework for comprehensive simulation studies as modelling of 
traffic demand. Using traffic count and speed measurements of road segments is a common 
approach for the calibration of a realistic traffic simulation although the data acquisition process 
can be at very extensive costs. From an academical point of view, there have been many 
studies addressing the problem of calibration. In this respect, the microscopic simulation soft-
ware SUMO offers the usage of the tools flowrouter and routesampler for generating network 
simulations on the base of traffic count measurements. In this paper, we propose a robust 
method for the calibration of microscopic traffic simulations by using vehicle count and speed 
measurements from collected GPS-data. The developed approach is a two-step optimization 
process: The application of integer linear programming (ILP) as a priori optimization is followed 
by adopting an evolutionary algorithm for minimizing the a posteriori deviation between real 
and simulated traffic data. As a proof of concept, the proposed method is tested in a subnet-
work model of the inner city of Friedrichshafen and compared with the ready-to-use tools from 
SUMO. The suggested method indicates a promising correlation between simulated and real 
traffic data showing better calibration results in comparison to the aforementioned functions 
SUMO provides. Since the approach is network-independent, it also offers the possibility of 
large-scale traffic calibration. 

Keywords: Traffic Simulation, Calibration, Integer Linear Programming, Evolutionary Algo-
rithm 

1. Introduction 

As a part of traffic engineering, the realistic modelling of travel demand is an imperative com-
ponent for investigating and evaluating different traffic policies and measures. A common ap-
proach of generating simulative traffic demand is the usage of real traffic data. The origin of 
such data can be manifold ranging from induction loops, manual counts or even centrally col-
lected GPS-data of vehicles. Independent of the source of the data, traffic demand modelling 
is always combined with an optimization and a calibration process since reality must be repro-
duced in the best possible way. In this respect, Ciuffo et al. [1] provide a very good overview 
of calibration methods for traffic simulations. 

SUMO offers different tools to generate traffic demand from traffic counts, namely flow-
router and routesampler. Both tools use edge-based counts for producing demand, whereby 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-1111-2222-3333
https://orcid.org/0000-1111-2222-3333


Stang and Bogenberger | SUMO Conf Proc 5 (2024) 

 

the idea of both approaches is different. As described in [2], the tool flowrouter calculates 
routes and corresponding traffic flows by solving a maximum flow problem with given counting 
data. On the other hand, routesampler uses an initial set of routes in combination with counting 
data and samples the routes without exceeding the target counts. In this sense, the sampling 
process is formulated as a linear programming problem. However, both approaches just con-
sider a priori optimization resulting in not negligible deviations compared to the specified count 
values. Furthermore, both tools do not offer any possibility for speed calibration. 

In this paper, we propose a robust method for the calibration of microscopic traffic sim-
ulations by using vehicle count and speed measurements from collected GPS-data. The de-
veloped approach is a two-step optimization process: The application of integer linear pro-
gramming (ILP) as a priori optimization is followed by adopting an evolutionary algorithm for 
minimizing the a posteriori deviation between real and simulated traffic data. As a proof of 
concept, the proposed method is tested in a subnetwork model of the inner city of Frie-
drichshafen and compared with the ready-to-use tools from SUMO. The remainder of the paper 
is organized as follows. The second section gives an overview of the considered network and 
demand data for the city of Friedrichshafen. In the third section the proposed methodology for 
the optimization and calibration is presented. The fourth section shows the results of the study, 
and in the final section a conclusion and outlook are given. 

2. Network 

For simulative designing of travel demand, a subnetwork of Friedrichshafen with one main 
track ranging from Henri-Dunant-Strasse to Löwentaler-Strasse is chosen. The selected track 
has a total length of approximately three km. In this respect, figure 2-1 shows the network 
described with its main track colored in red and the corresponding SUMO network. For getting 
realistic vehicle traffic assumptions, a dataset for 100 segments along the track with its adja-
cent access and exit roads was requested at the GPS-supplier TomTom. Eventually, the final 
dataset entails a timeframe of 36 months from 2017 to 2019 containing representative infor-
mation about vehicle counts and speed distribution for weekdays and weekend days. For the 
sake of simplification, the dataset of each segment finally is aggregated resulting in one rep-
resentative working day and weekend day with a time interval of two hours for each month of 
each year. 

(a) (b) 

 

 

 

Figure 2-1. Real network of Friedrichshafen (a) [3], SUMO network of Friedrichshafen (b) 
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Furthermore, the obtained GPS-data are extrapolated to the total traffic population by 
TomTom. Following picture shows the aggregation process exemplarily for one of the 36 
months. It has to be mentioned that the final aggregation process as well as the data prepara-
tion and network generation in SUMO were carried out not by the authors but by TomTom and 
a department at ZF Friedrichshafen AG, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2. Aggregation process 

3. Methodology 

The following sections describe the proposed methodology for the optimization and calibration 
of microscopic traffic simulations by using traffic measurements from collected GPS-data. As 
mentioned above, the approach consists of two optimization loops, namely inter linear pro-
gramming for a priori optimization of the traffic counts as well as an evolutionary algorithm for 
a posteriori optimization of counts and mainly speed distribution. Since each segment of the 
TomTom-dataset can be interpreted as detector loop in SUMO, we will call them “detectors” 
and edges containing such ones “detector edges” in the following explanations. 

3.1 A priori optimization 

The first step of the a priori optimization is very similar to the tool routesampler and starts with 
creating an initial set of routes for the considered network. This can be realized with the pro-
gram randomtrips offered by SUMO and generating random routes. As a kind of pre-filter, only 
those of the generated routes are considered which include detector edges. With this initial 
start point the mathematical problem can be formulated as follows: How often does every route 
have to be chosen to match with the real vehicle counts of each detector edge? 

To solve this problem, conventional integer linear programming with the following form 
will be adopted [4]: 
 

 min𝒄𝑇𝒙  

 subject to:  

 𝒃𝑙 ≤ 𝑨𝒙 ≤ 𝒃𝑢  
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 𝒙 ≥ 𝟎  

 𝑥𝑖 ∈  ℤ (3-1) 

 
In concrete terms, 𝒄 contains the coefficients of the object function. The vectors 𝒃𝑙 and 

𝒃𝑢 represent the lower and upper bounds of the vehicle counts, whereby the lower limit will be 
set with zeros and the upper limit with the recorded vehicle counts of each detector edge 
𝐷𝑖 (𝑖 = 1,… ,𝑚). The decision variables of 𝒙 are constrained to be non-negative.  
 

 𝒃𝑢 =

[
 
 
 
 

𝑐𝑜𝑢𝑛𝑡𝑠, 𝐷1

𝑐𝑜𝑢𝑛𝑡𝑠, 𝐷2

⋮
𝑐𝑜𝑢𝑛𝑡𝑠, 𝐷𝑚−1

𝑐𝑜𝑢𝑛𝑡𝑠, 𝐷𝑚 ]
 
 
 
 

 (3-2) 

 
Creating matrix 𝑨 is a two-stage process: The first step includes setting up an auxiliary 

matrix 𝑨′ ∈  ℤ 𝑚×𝑛 with all detector edges placed in the same order, i.e., 𝑎𝑖𝑗
′ = 𝐷𝑖. Here, n is 

equivalent to the total number of initialized routes. Matrix 𝑨′ is then transformed by running 
through each route and checking if the route contains a detector edge. If this is the case, the 
position of the corresponding detector edge in matrix 𝑨′ is set to one, otherwise to zero. The 
result of the projection represents the binary matrix 𝑨. 
 

 𝑨′ = 

[
 
 
 
 

𝐷1 𝐷1 ⋯ 𝐷1

𝐷2 𝐷2 ⋯ 𝐷2

⋮ ⋮ ⋮ ⋮
𝐷𝑚−1 𝐷𝑚−1 ⋯ 𝐷𝑚−1

𝐷𝑚 𝐷𝑚 ⋯ 𝐷𝑚 ]
 
 
 
 

 ⇒ 𝑨 =  [𝑎𝑖𝑗]𝑚×𝑛
 𝑤𝑖𝑡ℎ 𝑎𝑖𝑗 = {

1 𝑖𝑓 𝑎𝑖𝑗
′ ∈ 𝑅𝑜𝑢𝑡𝑒 𝑗,

0 𝑒𝑙𝑠𝑒.
 (3-3) 

 
The resulting inequality of the integer linear programming problem can be written with 

following structure. 
 
 
 

 

[
 
 
 
 
0
0
⋮
0
0]
 
 
 
 

≤

[
 
 
 
 

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮ ⋮
𝑎(𝑚−1)1 𝑎(𝑚−1)2 ⋯ 𝑎(𝑚−1)𝑛

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛 ]
 
 
 
 

[
 
 
 
 

𝑥1

𝑥2

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 

≤

[
 
 
 
 

𝑐𝑜𝑢𝑛𝑡𝑠, 𝐷1

𝑐𝑜𝑢𝑛𝑡𝑠, 𝐷2

⋮
𝑐𝑜𝑢𝑛𝑡𝑠, 𝐷𝑚−1

𝑐𝑜𝑢𝑛𝑡𝑠, 𝐷𝑚 ]
 
 
 
 

 (3-4) 

 

 
The objective of the optimization problem is defined as the maximization of the sum of 

the vehicles counts along all routes. Consequently, the corresponding minimization problem 
can be derived in a simple way. 
 

 𝒄𝑇 = [∑𝑎𝑖1

𝑚

𝑖=1

∑𝑎𝑖2

𝑚

𝑖=1

⋯ ∑𝑎𝑖𝑛

𝑚

𝑖=1

]  

 max𝐹(𝑥) = ∑𝑎𝑖1 ∙ 𝑥1 + ⋯+ ∑𝑎𝑖𝑛 ∙ 𝑥𝑛

𝑚

𝑖=1

𝑚

𝑖=1

= ∑∑𝑎𝑖𝑗 ∙ 𝑥𝑗

𝑚

𝑖=1

𝑛

𝑗=1

  

 min𝐹(𝑥) = − ∑∑𝑎𝑖𝑗 ∙ 𝑥𝑗

𝑚

𝑖=1

𝑛

𝑗=1

 (3-5) 
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3.2 A posteriori optimization 

As the result of the integer linear programming problem only represents the multipliers of each 
route to meet the vehicle counts before any simulation process, a second optimization loop is 
necessary making the calibration also of the recorded mean vehicle speed next to vehicle 
counts possible. This is realized by a combination of the ILP algorithm with an evolutionary 
algorithm where the first one serves as an initial start point for the optimization through an 
evolutionary algorithm. Figure 3-1 shows the typical structure of an evolutionary algorithm with 
the main operators initialization, selection, recombination, mutation and reinsertion. These op-
erators describe the characteristics of a simply structured evolutionary algorithm extended by 
the empirical data of TomTom and the elements of integer linear programming. An evolutionary 
algorithm starts with an initial population of parameter-sets and calculates the objective to op-
timize (in our case the deviation of vehicle counts and speed). A defined number of parameter-
sets are stored and combined with each other. This describes the selection and recombination 
process. Prior to reinsertion into the initial quantity, the recombined parameter-sets are slightly 
modified by mutation around a specified range. The whole process is repeated until the termi-
nation criteria are reached. In our case, the parameter-set consists of the multipliers 𝒙 for each 
route and the maximum allowed vehicle speed 𝒗 of each detector edge. For further details of 
evolutionary algorithms in general, the authors refer to [5]. 

 

 

 

 

 

 

Figure 3-1. A posteriori optimization, following [5] 

In order to not obtain only the same parameter-set of multipliers for the initial population, 
equation (3-5) is slightly changed by the variable 𝑐 ∈ ℝ modified for each element of the pop-
ulation randomly between one and two. 
 

 min𝐹(𝑥) = − ∑(∑𝑎𝑖𝑗

𝑚

𝑖=1

)

𝑐

∙ 𝑥𝑗

𝑛

𝑗=1

 (3-6) 

4. Simulation results 

As a proof of concept, the proposed methods of optimization and calibration are tested with 
the described network model of the inner city of Friedrichshafen for one representative day of 
the available dataset and compared with the ready-to-use tools flowrouter and routesampler. 
For the routesampler and the ILP algorithm the same initial routes created by randomtrips are 
applied. Hereinafter, the results of the SUMO-tools, the ILP algorithm and the combined ap-
proach of ILP and evolutionary algorithm are presented. In general, SUMO-version 1.19.0 and 
the HiGHS algorithm [6] provided by the scipy library [7] for solving the ILP problem are used. 

In the following, the Mean-Absolute-Error MAE is used as goodness-to-fit measure for 
the comparison between real and simulated traffic measurements. Figure 4-1 shows the pre- 
and post-simulation results of the vehicle counts for the tools flowrouter, routesampler and the 
ILP algorithm. The pre-simulation results for flowrouter and routesampler are calculated by 
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determining the vehicle counts for each detector within one time interval through the corre-
sponding route- and flow-files, respectively. The option --respect-zero is set for flowrouter 
meaning that detectors with no available data in one or more time intervals are also taken into 
account. As one can recognize, the designed ILP algorithm shows better results in terms of 
vehicle counts in comparison to the tools flowrouter and routesampler for every time interval 
of the selected day. The difference between the pre- and post-simulation results can be ex-
plained by a possible time overlap of one route starting in the time interval of creation but 
ending in the subsequent one. As mentioned before, the ILP algorithm just focusses on a priori 
optimization of the vehicle counts and not of the mean speed. Nevertheless, the resulting val-
ues of the mean speed of each time interval will be depicted for the sake of completeness. For 
a better understanding of the results, the mean values of the recorded traffic data over all 
detector edges for every time interval are presented in addition. 

 

 

 

 

 

 

 

 

 

 

Figure 4-1. ILP optimization, compared to flowrouter and routesampler 

The a posteriori optimization with the combination of ILP and evolutionary algorithm 
(EA) exemplarily will be applicated for one single time interval of the day with sufficient traffic 
demand (6-8 a.m.). To consider the overlap with the preceding time intervals and to get the 
best comparison with the ILP algorithm, those intervals are just optimized by ILP. The simula-
tion parameters are set according to table 4-1. Termination criteria are defined as a compro-
mise between computation time and accuracy. As one obviously can see from figure 4-2, the 
results show the potential of the two-step optimization process improving the match with the 
mean speed and even the vehicle counts with respect to the ILP algorithm. 

 

 

 

 

 

 

 

 

Figure 4-2. ILP+EA optimization 
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Table 4-1. Simulation parameters of a posteriori optimization 

Parameters  

Changing parameter c of equation (3-6) [ … ] 

Number of initial parameter-sets/initial population 10 

Number of reinserted parameter-sets 5 

Mutation range after recombination  ± 10 % for x and v 

Termination criteria MAE for count/speed < 10/4.5 km/h OR Iterations > 2000 

5. Conclusion 

In this paper, a robust method for the calibration of microscopic traffic simulations by using 
vehicle count and speed measurements from collected GPS-data is presented. The core of 
the calibration includes two optimization loops with an integer linear programming and evolu-
tionary algorithm. In this respect, the application of the described evolutionary algorithm can 
be interpreted as an extension of the integer linear programming algorithm making a posteriori 
calibration of the mean speed values next to vehicle counts realizable. 

The proposed method of the sole application of integer linear programming was de-
scribed, implemented and tested in a subnetwork of Friedrichshafen. The deviation of vehicle 
counts was evaluated and compared with the SUMO tools flowrouter and routesampler. The 
presented method performed better than the aforementioned functions provided by SUMO alt-
hough the tool routesamper follows a similar approach according to the developers’ doc  e  
tation. The usage of an evolutionary algorithm combined with the ILP approach exemplarily 
was demonstrated for one time interval of one representative day thus better approximating 
the recorded mean vehicle speed. Since the approach is generic, it also offers the possibility 
of large-scale traffic calibration. 

For further analysis, the authors will enhance the approach of the combined optimiza-
tion for a larger time range including further information of the collected dataset. Next to the 
modelling of travel demand, this method will also provide the possibility of scenario generation 
for AD/ADAS-Testing with the help of a microscopic traffic simulation. 
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