
SUMO User Conference 2024

TIBconferencesession

TIB-OP will set DOI with \TIBdoi

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Submitted: 2024-02-22

Sumonity: Bridging SUMO and Unity for Enhanced
Traffic Simulation Experiences

Mathias Pechinger1 , and Johannes Lindner1

1Technical University of Munich, Chair of Traffic Engineering and Control, Germany

*Correspondence: Mathias Pechinger, mathias.pechinger@tum.de

Abstract: This paper presents ”Sumonity,” an interface that bridges SUMO (Simulation
of Urban MObility) and Unity, combining SUMO’s robust traffic modeling capabilities
with Unity’s advanced graphical and physical engine, enhancing realism in traffic simu-
lations. The study explores Sumonity’s development and implementation, showcasing
its capabilities. The interface offers a significant improvement in simulation fidelity by
adopting a pure pursuit control approach within Unity for simulating each traffic agent.
This methodological shift allows for more granular control over individual vehicle be-
haviors, aligning with autonomous and common vehicle dynamics. The paper also
discusses the broader implications of Sumonity for future research in this field.

Keywords: Co-Simulation, Unity, Vehicle Control, Traffic Simulation

1 Introduction

The complexity of urban traffic systems necessitates the use of sophisticated simulation
tools. Simulation of Urban MObility (SUMO) has established itself as a significant open-
source platform for large-scale traffic simulations. Its microscopic simulation capabili-
ties are utilized in various articles, looking at location privacy preservation Hayat2023,
modeling dynamic vanpooling Qurashi2020ModelingAD or platooning of autonomous
vehicles 5625277. In addition to papers facilitating the software, there is also a lot of
work on calibrating SUMO simulations Keler˙Kunz˙Amini˙Bogenberger˙2023, 9606704,
Harth˙Langer˙Bogenberger˙2022, Yadavilli2020.

Considering the capabilities of microscopic traffic simulations, the limitations within
the vehicle models must be considered. There are several models, such as the Gipps,
Newell or IDM GIPPS1981105, NEWELL2002195, IDM˙Treiber2000, which were com-
pared to actual traffic data, resulting in an Root Mean Squared Percent Error (RMSPE)
of 15.50% Punzo2005 or an Mean Absolute Percentage Error (MAPE) between 12%
and 17% Brockfeld2005, concerning the position of the vehicles. Therefore, one can
assume that microscopic simulations are bound to these limitations. Current research
aims to also include human factors such as task saturation into human driver models
to increase their validity VANLINT201863.

Besides the limitations of the vehicle models in Microscopic Traffic Simulators (MTS),
the method brings some limitations. MTS abstracts individual vehicles to 2D shapes

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2371-9870
https://orcid.org/0000-0001-9385-2453


Pechinger and Lindner | SUMO User Conference 2024

responding to surrounding traffic via actions, such as accelerations and lane changes
Barcelo2011. Today’s research not only focuses on use cases for which MTS are
developed initially but further extends the application fields of MTS as described below.
Therefore, the approach of microscopic traffic simulation also reaches its limits.

Some research suggests implementing sub-microscopic co-simulation environments
to increase simulation fidelity. In these cases, the microscopic simulation vehicles are
shared with a sub-microscopic simulation environment that utilizes more accurate mod-
eling of agents. Pechinger et al. [Pechinger2023T˙ITS] used such a co-simulation
architecture to evaluate collective perception systems and their impact on visual oc-
clusion. Szalay et al. [9108745] used this strategy in combination with a mixed reality
environment to evaluate automated vehicle development. In another article, SUMO
and the game engine Unity were connected to assess a special driving algorithm by
looking at different levels of congestion 9646262.

Another field of research, in which similar a co-simulation frameworks are used or
could benefit of, is studying interaction of various road user groups, such as pedestri-
ans, cyclists and manually driven or automated vehicles (AVs). For instance, Lindner2022IV,
Lindner2022ITSC investigates the interaction of cyclists and an autonomous vehicle
using smartphone-based Human-Machine-Interface (HMI) in urban traffic using a cou-
pled bicycle-AV simulator. With a car driving simulator, Denk2023 investigate the inter-
action of human drivers and cyclists in the safety-critical right turn situation. All of these
studies are conducted with simulators that rely on sophisticated 3D-graphics for high
immersion of the person under test. Additionally, realistic road user behavior is essen-
tial for valid representation of traffic scenarios in simulator experiments. The examples
above highlight the necessity and research interest for tools interfacing MTS and 3D
game or render engines.

Unity’s prominence as a game development engine offers exceptional graphical and
physics simulation capabilities, making it an ideal candidate for enhancing the visu-
alization and interactivity of traffic simulations. Its integration with traffic simulation
tools like SUMO can significantly improve the usability and realism of these simula-
tions, offering a more dynamic and engaging user experience. Unity’s straightforward
integration with Virtual Reality (VR) technology leverages state-of-the-art simulation
approaches. As a result, this software combination is used with dynamic driving simu-
lators sekeran2023investigating.

This article introduces our interface between SUMO and Unity, called Sumonity. We
combine SUMO’s robust traffic modeling capabilities with Unity’s advanced engine.
This integration is poised to improve traffic simulations, offering enhanced realism and
an intuitive user interface, making it a valuable open-source tool for researchers, urban
planners, and educators. Previous work considering SUMO-Unity co-simulations are
discussed in Section 2. In the next Section, the methodology of our architecture is ex-
plained, followed by a discussion of simulation results in Section 4. Finally, the article
is summarized in the conclusion section.

2 Previous Work

The integration of Unity and Simulation of Urban MObility (SUMO) is discussed in re-
cent traffic simulation research, primarily aimed at enhancing the realism and appli-
cability of traffic models in urban planning and vehicular communication systems. A
notable study by GameTheoryBasedRampMerging introduced a game theory-based
strategy for ramp merging in mixed traffic environments. This research utilized a co-



Pechinger and Lindner | SUMO User Conference 2024

simulation environment combining Unity for visual representation and SUMO for traf-
fic simulation, demonstrating the effectiveness of their merged strategy in handling
complex traffic scenarios. While they did use a SUMO-Unity architecture they only
pointed out that it enables human in the loop simulation architectures. Furthermore,
ConnectionSUMOUnity3D explored the connection between SUMO and the Unity 3D
game engine to evaluate Vehicle-to-Everything (V2X) communication systems. This
study highlighted the practical application of integrating these two platforms, provid-
ing a robust simulation environment to test and develop traffic light signal assistant
solutions. The work of CouplingSUMOMotionPlanning extended the application of
this integration to the domain of automated vehicles. By coupling SUMO with the mo-
tion planning framework Common Road Althoff2017, the study enhanced the sim-
ulation accuracy for autonomous vehicle behaviors in traffic, offering significant in-
sights into their operational dynamics. Additionally, the extension of the 3DCoAu-
toSim platform, as discussed by 3DCoAutoSimSUMOUnity, included the simulation
of pedestrian and vehicle interactions. This development is crucial for creating more
comprehensive urban simulations, considering vehicular and pedestrian traffic. Lastly,
MicroscopicDriverCentricSimulator presented a microscopic driver-centric simulator
that links Unity and SUMO. This approach focuses on individual driver behaviors, con-
tributing to a more detailed and nuanced understanding of traffic flows and individual
decision-making processes.

In addition to presented work using SUMO and Unity, there are solutions utilizing
Aimsun Next and Simcenter Prescan to enable co-simulation. This setup was used
in previous work to analyze cyclist safety with respect to an Connected Automated
Vehicle (CAV) in an urban environment Pechinger2021bike. Furthermore the auto-
mated vehicle simulator CARLA DosovitskiyRCLK17 is used in other works, which
are mainly focused on individual automated vehicles, whereas we want to consider
larger road networks. We want to point out, that both Unity and Unreal Engine, utilized
by CARLA, could be used for a sub-microsopic co-simulation. Nevertheless, looking at
a faster and more convenient implementation of C# used by Unity offers advantages
compared to C++, used in Unreal Engine. In addition, the asset store of Unity is much
larger, speeding up the development process by using existing models for, e.g., traffic
participants.

In conclusion, while the reviewed literature demonstrates significant advancements
in traffic simulation through the combination of Unity and SUMO, the architecture pre-
sented in this work, introduces a enhancement to this paradigm. Unlike the conven-
tional methodologies where SUMO predominantly drives the simulation of traffic flow,
and Unity serves as a visualization conduit, this project adopts the pure pursuit con-
trol approach within Unity for simulating each traffic agent; it transcends the traditional
usage of Unity as merely a graphical interface. This methodological shift towards im-
plementing autonomous navigation imparts a granular control over individual vehicle
behaviors, aligning more closely with the intricacies of autonomous and common vehi-
cle dynamics. This is particularly advantageous for applications demanding high preci-
sion in vehicle behavior modeling, such as autonomous driving research and advanced
traffic management systems. Lastly, we provide our implementation on GitHub1 to the
scientific community, encouraging joint development and utilization by research and
industry.

1https://github.com/TUM-VT/Sumonity



Pechinger and Lindner | SUMO User Conference 2024

3 Methodology

For our architecture, we connect SUMO and Unity using our Sumonity interface. Figure
1 shows the basic setup, including images from the simulation environment. On the left
side, the microscopic SUMO simulation; on the right side, the sub-microscopic Unity
simulation, and in the middle, the Sumonity Interface is shown.

Figure 1. Illustration of the basic architecture of the Sumonity, SUMO/Unity interface.

Figure 2 provides closer insights into the architecture. The microscopic simulation is
connected using SUMO’s Traffic Control Interface (TraCI) functionality to retrieve infor-
mation in Table 1, discussed later. A significant advance compared to previous work is
the integration of proper vehicle control algorithms into the co-simulation architecture.
We use a Proportional–Integral–Derivative (PID) controller type for longitudinal control
and a Pure Puresuit Control (PPC) system for lateral controls for each agent. Within
the Python environment, we evaluate the lookahead point needed for the PPC. Details
on the implementation are given in Section 3.3. On the Unity C# part of the Sumonity
interface given on the right side of Figure 2, we implement the controls that utilize in-
formation from the TraCI connection. Finally, we connect the control outputs, such as
target steering angle, driving torque, and velocity, to physics-based/rigid body assets.

Not presented in this paper, but also included in the interface, is the direct repre-
sentation of SUMO vehicles in Unity. The position and rotation information is directly
transferred to Unity objects. This approach might have benefits in performance and
usability, but lacks realistic vehicle physics.

Figure 2. Illustration of the detailed architecture of the Sumonity, SUMO/Unity interface.



Pechinger and Lindner | SUMO User Conference 2024

3.1 Map Setup

Sumonity depends on aligning the SUMO environment and Unity. Therefore, we have
established a strategy given in Figure 3. The process begins with georeferenced
CityGML objects and satellite images to create the digital twin for our simulations. This
data is used within Mathworks Roadrunner2, which can generate an OpenDRIVE map
and a 3D map representation as Filmbox. Finally, we load the corresponding files in
Unity and SUMO

Figure 3. Details on the creation of the aligned SUMO and Unity map.

3.2 Agent Info

Sumonity currently supports the following SUMO vehicle types, but is not limited to
them as everyone can implement further types using our open-source repository:

• passenger vehicle
• bicycle
• bus
• taxi
• pedestrian

Each traffic participant inherits the properties in Table 1. The unique identifier id, is
used to handle a dictionary for the agents. The vehicle type is used to classify the agent
based on the above-mentioned list, e.g., a passenger vehicle. The position, orientation,
and speed contain the pose information, and the signal is used for the indicator lights.
In addition to previous work, we include the look-ahead point used by the PPC.

Table 1. SerializableVehicle Class Properties

Property Name Description
id Unique identifier of the vehicle
vehicle type Type of the vehicle
position X and Y coordinate of the vehicle’s position
orientation Rotation angle of the vehicle
speed Speed of the vehicle
signals Signal flags of the vehicle
look-ahead point X and Y coordinate of the look-ahead point

2https://de.mathworks.com/products/roadrunner.html



Pechinger and Lindner | SUMO User Conference 2024

3.3 Vehicle Control

Vehicle control is executed for each agent and implemented for vehicles, while the
approach works for pedestrians as well. The architecture is divided into longitudinal
and lateral control, as explained in the following.

3.3.1 Longitudinal Control

The longitudinal control is based on a PID system, where the control only utilizes P-
Controllers given in Figure 4. We are using the reference position pref and reference
velocity vref from SUMO. The System is evaluated using the Realistic Car Controller
Pro from the Unity asset store, including a model for the engine, clutch, gearbox, differ-
ential, axles, and wheels to provide the actual position pact and actual velocity vact. Two
proportional controllers P1 and P2 are used to generate control inputs u1 and u2. Adding
u1 and u2 and dividing the result by two, uin is derived, which is the torque input to our
vehicle. The division by two could be removed by adjusting the gains of P1 and P2; we
present it like this, as it is our tested version of the architecture. We chose the gains of
the controllers to be K1 = 15 and K2 = 1. The comparatively high gain of the positional
controller to the velocity controller pushes for positional error reduction while the veloc-
ity controller smoothes the generated torque input uin. Although a pure position-based
control approach using a full PID controller utilizing integral and derivative parts should
be possible, our approach is far easier to parameterize.

Figure 4. Block diagram of the control loop used for longitudinal control.

3.3.2 Lateral Control

The lateral control is based on the PPC approach, a common control strategy intro-
duced in 1992 by Coulter-1992-13338. It stands out because of its computationally
effective path-tracking logic. The look-ahead point, evaluated on the Python part, is a
significant input for the control of this system. Figure 5 highlights the basics of how
the PPC evaluates the reference steering angle δref . In this case, we are referring to
the steering angle as a reference due to the challenge that, depending on your vehi-
cle model, the steering actuation may include a time constant to model real steering
actuator behavior. On the left side of Figure 5, we can see a qualitative trajectory
representation of the vehicle, extracted from SUMO, using TraCI.



Pechinger and Lindner | SUMO User Conference 2024

Figure 5. Image of the evaluation of the target position, used to derive the reference steering angle δref .

Based on the position of the ego vehicle, the look-ahead point is derived by evaluating
the Look-Ahead Distance (LAD) along the track. Based on the current velocity, this
distance can be adaptive to increase control stability at higher speeds. As a result we
increase the LAD for higher velocities. The LAD is derived as follows,

LAD =

{
LADmin if vref < LADmin

min(vref · kLAD,LADmax) else

where LADmin is the minimum and LADmax the maximum LAD and kLAD a multiplier
to account for distance adjustments depending on the vehicle’s velocity. In our case,
we have used kLAD = 1, which must be greater or equal to one if it would be changed.
The minimum and maximum values are discussed in the Results section. Another
noteworthy feature that can be observed in Figure 5 is the offset of the ego vehicle
from the reference track, as we are using the actual position of the agent and not the
one from sumo, because we are controlling the actual vehicle and are using SUMO to
derive the look-ahead point. The basic principle of the pure pursuit approach is given
on the right side of Figure 5. We draw two lines originating from the base of the ego
vehicle. One is in line with the forward-facing axis and one intersects with the center
and the look-ahead point. The angle between both can be used as reference steering
angle δref .

Figure 6 shows a vehicle and a bicycle in an active Sumonity co-simulation. The
picture also depicts the pure pursuit following points by red spheres on the road surface,
used for debugging and validation purposes.

Figure 6. 3D representation showing the simulation running in unity.

Our approach has one minor difference with reference to the standard PPC: We de-
rive the look-ahead point using the position of the vehicle in the SUMO simulation pref



Pechinger and Lindner | SUMO User Conference 2024

instead of the position in the Unity simulation pact. Therefore, the lateral control will be-
come unstable if the longitudinal controls fail to track the position correctly. This could
be fixed by sending the actual position to the SUMO simulation or sending the extracted
trajectory for the vehicle to the Unity C# component. Nevertheless, we achieve reason-
able longitudinal control accuracy and neglect this concern, which is proven in Section
4.

4 Results

This Section discusses the results, showing our architecture’s validity and explaining
different design decisions.

Figure 7 shows the reference trajectory gathered from the agent in SUMO, whose
trajectory we intend to follow. The blue solid line shows the actual trajectory driven by
the vehicle in Unity, and the red dashed line shows the reference trajectory we intend to
follow. We can see that we closely match the reference except for turning movements.
This results from the PPC, discussed in the following.

Figure 7. Overlayed trajectory plot indicating actual and reference trajectory .

Figure 7 includes position markers that are aligned with the x-axis of Figure 8 in
order to easily understand the positional error. In the beginning, at about 10 meters,
we can see the first error peak, resulting from the different acceleration behaviors of
the SUMO and Unity vehicle. At 20 meters our vehicle in Unity caught up to the SUMO
one. At 45 and 78 meters we can see two additional peaks that show a deviation
from the reference trajectory, which are a result of two lane change maneuvers. The
same effect can be observed at 128 meters when the vehicle performs a right turn.
This error is related to the PPC system and, as mentioned before, is discussed later
on. In addition, we can see a kind of oscillation of the error between 0 and 0.5 meters.
This results from the difference in simulation time frequencies, as our SUMO simulation
runs at approximately 10 Hz and Unity at 50 Hz in soft real-time conditions. The sumo
update rate limitation of 10 Hz ensures real-time execution performance. Therefore,
it is impossible for our controller to improve the error, as the positional resolution is



Pechinger and Lindner | SUMO User Conference 2024

about 0.5 meters. We, therefore, conclude proper position tracking using our control
architecture.

Figure 8. Positional error comparing the actual and the reference trajectory.

The PPC effect on lateral deviation to the reference trajectory is mentioned before
and discussed here based on Figure 9. Four sub-figures can be seen, each one show-
ing simulations varying LADmin from 5 to 8 meters. Starting with Figure 9a, we can
see that a low LAD results in the overshoot looking at the actual trajectory. This is not
ideal; because, we would obstruct traffic on the opposing left lane, which could result
in a potential accident. With a higher LAD given in Figure 9c, we can observe the sim-
ulated vehicle to slightly cut the corner. With reference to Figure 8, we can see that
we deviate from the reference by 1.5 meters. Another point worth mentioning is the
qualitative turning movement. The SUMO simulation does not consider actual turning
movements or a drivable path for our vehicle. Nevertheless, in our case, the vehicle
must comply with its physical constraints. The PPC approach resembles exactly what
we need. We have to cut the corner given by the SUMO path to achieve natural driving
behavior. This position tracking error is, therefore, rather beneficial than a downside
of our implementation. We can improve the overall path tracking further by adjusting a
gain value multiplied by the reference steering angle δref . In our case, δref is multiplied
by steering gain ksteer to achieve a steering angle percentage Psteer between ±100%
for left and right steering, according to Equation 1.

Psteer = δref × ksteer (1)

In our simulation, we chose ksteer = 0.05. Finally, in Figure 9d, we can see that
LADmin = 8, resulting in even more deviation from the reference track, which leads us
to choose LADmin = 7.

Figure 10 shows the reference steering angle with a valid range from ±100%, as
this is the input to the vehicle model in Unity, setting up respective maximum steer-
ing angles. Therefore, the requested steering angle at 17.5 seconds is clipped in the
simulation, and the vehicle will not achieve the desired steering angle. The plot shows
several ripples in a spike-shaped form. This is a result of the different simulation fre-
quencies. As we can see from the positional error, this is an acceptable behavior. One
could solve the ripples by adding a low pass filter. We do not want to use one here, as
a responsive control system may not contain filters, because they would degrade the
path tracking for a smoother steering behavior.



Pechinger and Lindner | SUMO User Conference 2024

(a) LADmin = 5 (b) LADmin = 6

(c) LADmin = 7 (d) LADmin = 8

Figure 9. Influence of the LAD on the lateral deviation for a right turn at an intersection.

Figure 10. Reference steering angle δref for the vehicle running in Unity plotted over the simulation time.

Figure 11 shows the torque input. Here, we can see a typical oscillating behavior,
which is the expected output by a control algorithm. We can achieve precise position
tracking using this torque input; nevertheless, this approach differs from human-driven
vehicles, with their typical lift and coast driving behavior. The goal of our control is
to track the position of the SUMO vehicles closely in order to match vehicle positions



Pechinger and Lindner | SUMO User Conference 2024

between SUMO and Unity; applying lift and coast behavior would result in position
difference, which we cannot accept, as vehicles from SUMO would collide in Unity.

Figure 11. Reference torque input uin for the vehicle running in Unity plotted over the simulation time.

Figure 12 shows the desired velocity from the SUMO vehicle, compared to the current
velocity driven by the vehicle in Unity at the given simulation time. We can observe
that the vehicle’s velocity in Unity oscillates around the desired velocity. Here, we are
dealing with a trade-off between position and velocity tracking. On the one hand, we
want to accurately track the vehicle’s velocity in SUMO. On the other hand, we want
to track the position precisely. Our control is focused on the position rather than the
velocity, as we do not want colliding vehicles in the Unity environment. Therefore,
the deviation from the desired velocity is in an acceptable range from a qualitative
standpoint looking at the given data.

Figure 12. The velocity tracking performance of the simulated vehicle in Unity compare to the reference
from SUMO.



Pechinger and Lindner | SUMO User Conference 2024

5 Conclusion

In this article, we have presented our SUMO, Unity interface: Sumonity. We ran simula-
tions and evaluated the performance of a physics-based car in Unity. We can accurately
track the position of vehicles from SUMO. Furthermore, we improve the lateral driving
behavior by introducing the PPC architecture. The framework is disclosed alongside
this publication, and we strongly encourage fellow researchers or industry to utilize the
system, as it offers open-source advantages, such as complete insight into all parts of
the system, compared to similar commercial co-simulation solutions.

Sumonity interfaces different kinds of vehicles. Nevertheless, it is limited regard-
ing pedestrian simulations. We are testing an improved position-tracking approach for
pedestrians, which still needs to be implemented in the architecture’s stable branch.
Furthermore, traffic light synchronization is still being implemented and will be added
to a future release. From our literature review, we can see that there are several in-
terfaces for SUMO co-simulation architecture, which need to be maintained and ap-
propriately documented. We offer a novel state-of-the-art platform to perform SUMO
co-simulations incorporating Unity, enabling 3D-simulation studies.

Underlying and related material

The implementation of the given framework is published on the GitHub page of the
Chair of Traffic Engineering and Control of the Technical University of Munich:
https://github.com/TUM-VT/Sumonity

Author contributions

Mathias Pechinger and Johannes Lindner both played substantial roles in conceptu-
alizing the work, contributing to developing the research’s core ideas and objectives.
Mathias Pechinger was responsible for collecting and managing data (Data Curation)
and conducting the formal analysis, including the evaluation and interpretation of data.
Johannes Lindner was instrumental in acquiring the necessary funding for the research
project (Funding Acquisition). The investigation, primarily conducted by Pechinger, in-
volved undertaking the empirical or experimental work required for the research. Both
Pechinger and Lindner contributed to the methodology, with Lindner providing the initial
idea and implementation and Pechinger making significant enhancements and further
developments. Pechinger also managed and coordinated the research project’s ad-
ministrative aspects (Project Administration) and created visual representations of the
data, including figures, tables, and diagrams (Visualization).

In software development, both Lindner and Pechinger contributed significantly; Lind-
ner with the initial system implementation and Pechinger with substantial enhance-
ments and additional developments. The validation of the research results, ensuring
the findings were robust and reproducible, involved efforts from both authors. The orig-
inal draft of the manuscript was primarily written by Mathias Pechinger, who also led
most of the manuscript’s writing (Writing – Original Draft). Both authors were involved
in the review and editing process, refining the manuscript and ensuring its intellectual
content was critically evaluated (Writing – Review & Editing).

Both authors have approved the submitted version (and any substantially modified
version that involves the author’s contribution to the study) and have agreed to be
personally accountable for their own contributions. They commit to investigating and

https://github.com/TUM-VT/Sumonity


Pechinger and Lindner | SUMO User Conference 2024

resolving any questions related to the accuracy or integrity of any part of the work,
ensuring the resolution is documented in the literature.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was funded by the German Federal Ministry for Economic Affairs and Cli-
mate Action (BMWK) and by the European Union in the frame of NextGenerationEU
within the project STADT:up (FKZ 19A22006T). In addition this work was funded by
the Federal Ministry of Education and Research (BMBF), Germany, under the project
MCube (Clusters4Future) DatSim.

Acknowledgements

We have used the Generative Pre-training Transformer (GPT) from SciSpace for an
initial Literature review with a review done by ourselves. Overall, we did double-check
all literature content created by the model.


	Introduction
	Previous Work
	Methodology
	Map Setup
	Agent Info
	Vehicle Control
	Longitudinal Control
	Lateral Control


	Results
	Conclusion

