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Abstract: This paper presents an innovative calibration method for car-following (CF)
models in the Simulation of Urban MObility (SUMO) using real-world trajectory data
from a 1.5 km signalized urban corridor, captured by roadside radars. By applying a so-
phisticated track-level association and fusion methodology, the study extends trajectory
analysis beyond individual radar fields of view. The enhanced data is then utilized to re-
fine the Krauss, IDM, and W99 CF models within SUMO, addressing the literature gap
by integrating SUMO into the calibration loop, thereby accommodating the simulator’s
integration scheme and any model adaptations. The research identifies that default
SUMO models tend to exhibit shorter time headways compared to real-world data, with
calibration effectively reducing this discrepancy. Moreover, the W99 model, despite its
unrealistic acceleration profiles when calibrated without considering acceleration, most
accurately captures the higher-end energy consumption distribution. Conversely, the
IDM model, with its default parameters, provides the closest approximation to observed
acceleration behaviors, highlighting the nuanced performance of CF models in traffic
simulation and their implications for energy consumption estimation. Detailed results
of optimized parameters for each CF model are provided in appendix in addition to
distribution information that may be useful for other modelers to use directly or other
datasets to be compared in the future (including expansion of the work to include vehi-
cle classification).

Keywords: traffic micro-simulation, car-following models, car-following calibration, in-
telligent driver model, roadside radar data

1 Introduction

Traffic micro-simulation can play a critical role in evaluating vehicle emissions and en-
ergy consumption of any size traffic network, with the accuracy of these simulations
being heavily dependent on the underlying models that simulate individual driver be-
havior and energy consumption. Among these, the car-following (CF) model is partic-
ularly important, as it governs the longitudinal interactions between vehicles. As traffic
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simulations become increasingly utilized for a variety of applications, from environ-
mental impact studies to traffic management, the precision of CF models in mirroring
actual driving patterns is paramount. It is this precision, combined with robust energy
consumption models, that lends confidence to the simulation results, making the cal-
ibration of CF models a fundamental step in the development of reliable and robust
traffic simulation systems.

The well-documented need for calibration in traffic simulation is highlighted by the di-
versity of approaches present in the literature, commonly categorized into capacity cal-
ibration, route/demand calibration, and individual trajectory-based calibration [1], [2].
While capacity and route/demand calibrations often rely on aggregate measures like
loop detector counts, travel times, and saturation flow rates, they may not capture the
intricacies of individual vehicle behavior accurately [2], [3] which would lead to poor ac-
curacy in energy consumption estimates. For applications where the precision of each
vehicle’s trajectory is necessary, such as in the estimation of energy or emissions, it is
crucial to ensure that simulated driver behavior is closely aligned with real-world data
in the region of interest. This alignment is essential because variables such as accel-
eration, deceleration, jerk, and speed greatly influence vehicle-level emissions and fuel
consumption [4]–[6]. Calibrating a model to both traffic volume and localized CF model
behavior is thus vital. However, the CF model calibration process is computationally
demanding and typically depends on a database of real vehicle trajectories, which
are challenging to obtain in the field. Researchers often resort to using the NGSIM
database, which was collected nearly two decades ago and primarily includes free-
way driving data that is distinctly different from the signalized corridors modeled in this
study [7]. To address this, previous research investigated the ”physicality” of CF mod-
els — whether real-world measurable parameters, such as acceleration distributions,
could be directly applied to CF models, thereby circumventing the need for complex
optimization algorithms. The findings indicated that this approach was insufficient and
that trajectory-based CF model calibration was necessary [8].

Despite the extensive body of research on CF model calibration, there appears to be
a gap concerning calibration that incorporates traffic simulation software directly within
the loop. This inclusion is critical, as an examination of the SUMO source code re-
veals modifications to the CF models1. Additionally, the discrete integration scheme
employed in numerical simulations and the impact of simulation step size warrant con-
sideration. Previous research has explored these aspects, with Treiber et al. recom-
mending the ballistic integration scheme for small step sizes [9], while Ciuffo et al.
suggested that the influence of integration step size is not easily discernible [10].

Building on this foundation, the current work presents the calibration of Simulation of
Urban MObility (SUMO) [11] CF models using trajectories from a 1.5 km long urban
corridor. These trajectories were captured by roadside radars, which were deployed
as part of an intelligent transportation system (ITS) being used for traffic signal control
optimization development. A sophisticated track-level association and fusion method-
ology is introduced, enhancing the trajectories beyond the field of view of individual
radars and enabling the identification of leader-follower pairs with intricate interactions.
For the first time, to the authors’ knowledge, SUMO is utilized in the loop for CF model
calibration, moving beyond the traditional use of mathematical representations. The
calibration results are detailed and benchmarked against the default vehicle models
in SUMO, with recommendations offered to guide future modelers in their simulation
endeavors.

1Reference to IDM Modifications

https://github.com/eclipse-sumo/sumo/blob/9e882d67182e9dc57d8df5716f8de5d02a5dbac0/src/microsim/cfmodels/MSCFModel_IDM.cpp#L186-L188
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2 Background

2.1 Car Following Models

Since the 1950s, various CF models have been developed, ranging from early concepts
by Reuschel [12] and Pipes [13] to contemporary mathematical, data-driven, and hy-
brid models [14]. Among these, mathematical models like the Intelligent Driver Model
(IDM) [15] remain widely used in traffic simulation software, including SUMO. This sec-
tion briefly introduces the Krauss model, the default CF model in SUMO, the IDM, and
the Wiedemann 99 (W99) model, each with its unique parameters and approaches to
modeling vehicle dynamics. Below follows a brief description of each of the considered
models.

Krauss Model: The Krauss CF model, the default for SUMO, ensures collision-free
travel by calculating a safe speed, vsafe, for each following vehicle at every simulation
step [16], [17]:

vsafe(t) = vl +
g(t)− vl(t) · τ

vf
b·vf

+ τ
(1)

Here, g(t) represents the gap to the leading vehicle, τ the reaction time, and b the
comfortable braking deceleration. The desired speed, vdes(t), factors in the vehicle’s
maximum acceleration and the driver’s behavior:

vdes(t) = min [vsafe(t), vf (t) + a, v0] (2)

with a characterizing the driver’s preferred maximum acceleration and b the maximum
deceleration. The model allows tuning of a, b, and τ to match driver behavior [18].

Intelligent Driver Model (IDM): The IDM CF model, conceptualized by Treiber et al.
in 2000, defines a vehicle’s acceleration v̇f as a function of its velocity, the gap to the
leading vehicle, and the velocity difference between the vehicles [15]:

v̇f (vf , s,∆v) = a

[
1−

(
vf
v0

)δ

−
(
s∗(vf ,∆v)

s

)2
]

(3)

The desired minimum gap s∗ depends on the current velocity and the relative velocity,
with the free-flow speed v0 modeled as a speed factor SFv times the speed limit:

s∗(vf ,∆v) = s0 + τvf +
vf∆v

2
√
ab

(4)

where s0 represents the minimum acceptable gap between vehicles during standstill.
W99 Model: The Wiedemann 99 (W99) CF model, is an advancement of Wiedemann’s
1974 model, which has been widely adopted in traffic simulation software such as
VISSIM. It simulates vehicular behavior by integrating both physical and psychologi-
cal factors of driving, including stationary and dynamic following distances, perception
thresholds, and acceleration behavior [19]. The W99 model is comprised of several
equations, which have been skipped for brevity, but in general, it is parameterized by
10 parameters {cc0, cc1, ...cc9}.

3 Methods

3.1 Radar Processing

The focus of this work is a four-lane divided state highway in Tuscaloosa, Alabama,
which is a primary conduit for east-west traffic flow, especially during peak commuting
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hours. This arterial route connects residential areas in the west with the urban center of
Tuscaloosa to the east. The study zeroes in on the highway’s main lanes, as depicted in
black in Figure 1, to derive detailed vehicle trajectories across the network’s signalized
intersections.

Radar 2

Radar 1

Radar 3

Radar 4

Radar 5

Radar 6

N

EB Lane 1

EB Lane 2
WB Lane 2

WB Lane 1

Figure 1. The network of interest shown with the FoV of all 6 radars. The colored region is drawn to the
95th percentile of range. The zoomed intersection shows the lane centerlines that are used as
the Frenet frames in both the eastbound (EB) and westbound (WB) directions. The centroid
of the network is located at (33.235, -87.614).

To capture traffic dynamics, six iSYS-5220 radar units from InnoSenT GmbH2 in-
corporated into Econolite’s EVO system are employed. These radars, which perform
onboard data processing and output vehicle tracks via an API, have undisclosed propri-
etary algorithms. Consequently, this research approaches the radar system as a black-
box. Data collection is executed at 75ms intervals, with synchronization on a central
computer and subsequent resampling to a 100ms interval for analysis. The radar units
are strategically positioned at three adjacent, signalized intersections along the studied
highway, as illustrated in Figure 1, which presents an overview of the network centered
at coordinates (33.235, -87.614). The shaded areas in the figure represent the radars’
Field of View (FoV), determined by the 95th percentile of vehicle detection range. The
average radar track from an individual radar extends 146 meters.

3.1.1 Fusion and Association

Work by Sharma et. al has shown that car-following calibration is highly sensitive to
the length and completeness of vehicle trajectories [20]. The vehicle tracklets from
the individual radars are in-complete, that is they may only capture one acceleration
or deceleration event. To form longer, more complete trajectories, sensor fusion of the
six radars is utilized. Below follows a brief description of the sensor fusion process.
Readers more interested in car-following calibration can skip, those looking for more
information are directed to a to-be-published work [21]

The first step in the fusion process involves mapping measurements into a unified
coordinate system. This study employs a two-step transformation: initially from the
radar’s local system to Universal Transverse Mercator (UTM) coordinates, and subse-
quently from UTM to the Frenet coordinate system. The radar-to-UTM transformation
is anchored on the known UTM position of the radar and the calibrated rotation angle,
θ. After transforming radar coordinates to Universal Transverse Mercator (UTM) coor-

2https://www.innosent.de/

https://www.innosent.de/
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dinates, the data is further converted to the Frenet or curvi-linear coordinate system.
This curvilinear coordinate system is parameterized with the path distance (s) and the
perpendicular distance from the centerline, d. It is particularly advantageous for mod-
eling the constrained motion of vehicles as they navigate within lanes, adhere to traffic
patterns, and execute maneuvers such as lane changes [22], [23].

After the radar data has been transformed in the Frenet frame, the data is filtered
using an Interacting Multiple Model (IMM) filter [24]. This filter runs multiple Kalman
filters in parallel, each assuming a different motion model, thus enhancing the tracking
of maneuvering targets. The IMM maintains a set of model probabilities µt that indicate
the likelihood of each motion model describing the current vehicle behavior, aiding
in the categorization of different driving patterns such as lane changes and constant
or variable speed driving [22]. This study incorporates three motion models into the
IMM filter: constant velocity lane-keeping (CVLK), constant acceleration lane-keeping
(CALK), and constant acceleration lane-changing (CALC), as informed by [25]. For
short-term trajectory predictions, especially when radar data is missing at the edges of
the FoV, the IMM filter uses these models to extrapolate vehicle positions, setting the
probability of lane-change and acceleration to zero to reduce lateral and longitudinal
error. Vehicle lane occupancy is then inferred by comparing the d dimension of the
filtered trajectory to the known lane widths, thus determining whether a vehicle is in
Lane 1 or Lane 2 as they are shown in Figure 1.

The IMM filter is applied to trajectories from the 6 radars independently. After the
filter is applied, the trajectories are associated, using a probabilistic gating method
based on the association likelihood distance [26]. This study utilizes a simplified vehicle
track association method that relies on the geometric configuration of the roadways.
By assuming a single leader for each follower vehicle and that the path distance of
the leader exceeds that of the follower, the association process is streamlined. For
each identified leader-follower pair, the association likelihood distance is calculated,
incorporating the position of multiple points (front, rear, and centroid) on the vehicle to
mitigate biases introduced by radar hand-offs.

After associating vehicle tracks, Covariance Intersection (CI) is utilized to fuse the
associated radar tracks. CI is ideal when the correlation between tracks is unknown,
allowing for the combination of state estimates and covariances without explicit corre-
lation data [27]. Specifically, an adaption of CI, namely ImprovedFastCI, is utilize to
streamline the process [28], [29]. After fusion, the trajectories that have been success-
fully associated and fused have an average length of 705 meters, as compared to the
average length of 146 meters recorded by any one radar.

3.2 Trajectory Identification & Processing

The calibration of car-following models requires precise identification of leader-follower
vehicle pairs. To facilitate this process, data was collected using radar throughout a
24-hour period from the afternoon of March 12, 2023, to the evening of March 13,
2023. The substantial dataset, consisting of 73,084 vehicles, served as a foundation
for a highly selective identification process of leader-follower pairs, which is pivotal for
the calibration of the models. A snippet of this dataset is shown in Figure 2, which
highlights the abundance of high density traffic flow, as well as the impact that traffic
signals have on the flow.

As the calibration has been shown to be sensitive to the completeness of vehicle tra-
jectories, and considering that incomplete data can significantly skew validation results,
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Figure 2. Time-space diagram showing fused trajectories from the EB Lane 1 in Figure 1. Plotted un-
derneath are the light states of the three traffic signals in the network at their corresponding
s position. Trajectories that are the same color represent the same vehicle, with colors being
recycled every 10 vehicles.

it is recommended to utilize comprehensive trajectories. These trajectories should en-
capsulate a variety of driving behaviors, such as free acceleration, cruising, accelera-
tion, deceleration, following, and standstill [20]. The research aimed to select trajec-
tories that included most of these driving conditions to enhance the accuracy of the
calibration process while also managing the size of the calibration dataset.

The algorithmic identification process sorted vehicles by their longitudinal position
within the lane to differentiate leaders from followers. To ensure that the calibration
was done on vehicles that had periods of both acceleration and deceleration, followers
were filtered to only include those exhibiting deceleration less than −0.5m/s2 and accel-
eration greater than 0.5m/s2. Furthermore, only leader-follower pairs that maintained
their relationship for more than 10s were retained. The time headway between vehicles
was either required to be less than 5s at some point during the encounter, based on the
assertion that headway times longer than 5s fall outside of the car-following regime [5],
[30], or, the distance between pairs needed to reduce to between 1 to 10m, and the
following vehicle’s velocity had to dip below 5m/s and exceed 15m/s at various points.

Applying these selection parameters resulted in a significant reduction of the ini-
tial dataset to 2,397 trajectory pairs. The study did not include the identification of
free acceleration and deceleration phases due to the complexity of the traffic net-
work, which features traffic signals and side streets that impact driver behavior and
decision-making. The complex interactions within the network present challenges that
go beyond the scope of this study, focusing instead on the scenarios most relevant to
traditional car-following dynamics.

3.2.1 Trajectory Smoothing

The data association and fusion process, as detailed in Section 3.1.1, undergoes fur-
ther refinement to isolate smooth trajectories suitable for calibration. The literature
presents various methods for smoothing data, including low-pass filters, Kalman filter-
ing, and wavelet transforms, with a comprehensive review in [31]. A primary concern
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in this process is ensuring ”data consistency,” which entails maintaining both spacing
and velocity in a manner that accurately reflects the vehicle’s movement.

To achieve this, the study employs a low-pass Butterworth filter with a cutoff fre-
quency of 0.25Hz. The Interactive Multiple Model (IMM) filter, described in Section 3.1.1,
is used on data that has already undergone preliminary filtering. Due to the unknown
true process and noise covariance matrices, the study assumes high process noise
with σs = 8m/s2. This assumption is necessary to account for the positional ”jumps”
that can occur during radar handoffs, which introduce noise into the filter’s output. To
more accurately capture the vehicle’s true dynamics, a sixth-order Butterworth filter is
implemented. The low cutoff frequency of 0.25Hz for the Butterworth filter effectively
attenuates high-frequency noise, preserving the fundamental dynamics of the vehicle’s
motion. Following the work of [32], the filter is applied to the velocity measurements,
independent of the positional data.

3.3 Calibration

The calibration of car-following models in SUMO framework necessitates the careful
selection of both an optimization method and an error metric. The academic discourse
includes extensive discussions on these topics; notably, Punzo et al. have provided
a comprehensive summary of different error metrics and offered recommendations on
the most suitable measure of performance (MoP) and optimization algorithm for such
tasks [33]. The overarching optimization problem inherent in calibrating a car-following
model can be formulated as:

min
β

f (MoPobs,MoPsim)

s.t. LBβ ≤ β ≤ UBβ

In this context, f (MoPobs,MoPsim) denotes the car-following behavior to be optimized,
serving as the objective function, while β represents the set of model parameters sub-
ject to calibration [20]. The evaluation of the objective function is conducted using
SUMO-in-the-loop within this work. Due to the inherent non-linear behavior of car-
following models and the use of a discrete simulator, the resulting reward structure
is characteristically noisy. This noise can cause conventional gradient-based opti-
mization methods to become trapped in local minima, rendering them ineffective [34].
Consequently, the literature generally favors genetic algorithms or other gradient-free
methods, which are better suited to handling non-smooth objective functions and have
demonstrated superior performance in this domain.

In this research, the Nevergrad optimization library is employed, which features the
NGOpt meta-algorithm. NGOpt is designed to intelligently select the most appropriate
gradient-free method for a given problem, taking into account the problem’s dimension-
ality and the computational resources available [35].

3.3.1 SUMO Simulation Setup

The SUMO network used for calibration is a comprised of a single edge with a length of
1.8 km, ensuring that it was able to accomodate the longest trajectories in the dataset.
The speed limit within the simulation was set at 22.35 meters per second to match the
real-world speed limit of 50 miles per hour. Each leader-follower pair was introduced
into the simulation environment using SUMO’s Traffic Control Interface (TraCI). TraCI
was used to control the leader vehicle’s position and velocity throughout each trial, also
storing both the leader and follower’s positions and velocities. The follower vehicle’s
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parameters were set using SUMO’s vType tag in an additional file, as not all parameters
are accessible via the TraCI API.

3.3.2 Measures of Performance

Previous publications have recommended using Normalized Root Mean Square Error
of spacing (s), velocity (v), and acceleration (a) over other metrics in terms of calibration
precision [33], as defined as

NRMSE(s, v, a) = NRMSE(s) + NRMSE(v) + NRMSE(a) (5)

where the Normalized Root Mean Squared Error for every observed variable, X, is
written as

NRMSE(X) =
RMSE(X, X̂)√

1
n

∑n
i=1(Xi)2

(6)

and X̂ represents the simulated variables.

As shown in Punzo et al., it is preferable to use Eq. (5) as the error metric, namely
due to it being Pareto-efficient [33]. Pareto-efficiency is key as optimizing to only one
objective (e.g., s) may worsen error on other objectives (e.g., v or a). Using a Pareto-
efficient metric will optimize error on all concerned objectives. Because the dataset
included smoothed acceleration data, as outlined in Section 3.2.1, Eq. (5) includes a.
According to the recommendation presented by Punzo et al., utilizing a is preferable if
acceleration data is clean.

4 Results

The described calibration methodology was systematically applied to the identified tra-
jectories. Prior to the initiation of calibration, measures of performance (MoPs) were
evaluated for each leader-follower pair using the default parameters provided by SUMO.
When the departure speed was higher than default speed factor, SUMO updated the
speed factor of the inserted vehicle to match the departure speed. After simulating
with the default parameters, the optimization of each car-following model was con-
ducted utilizing the NGOpt algorithm, with a computational budget set to 2000 rounds
and an early termination criterion after 100 rounds without improvement. Throughout
the optimization process, a recurring issue arose where TraCI reported a collision be-
tween leader-follower pairs. To address the impact of these collisions on the outcomes,
a substantial penalty score was assigned to simulation runs reporting a collision to dis-
courage unsafe value assignment during optimization.

This optimization process was executed on a server equipped with 128 cores, en-
abling 128 parallel optimization instances. Each simulation iteration was configured
with a step size of 0.1 seconds, and the ballistic integration scheme was activated
within SUMO, version v1.19.0. The mean optimization time for one trajectory pair was
44.82s (σ = 40.64s, P50% = 30.76s). The associated code has been made publicly ac-
cessible on GitHub.

Before presenting the results of the calibration across the entire set of trajectories,
a detailed examination of the calibration outcomes for a selected vehicle is illustrated
in Figure 3. The vehicle in question was chosen based on its ranking, which aligns
closely with the 75th percentile in terms of RMSE for both spacing and velocity. The
figure elucidates several overarching trends that will be discussed later. In this sample
case, the leader is initially stationary approximately 150 m ahead of the follower as it

https://github.com/UnivOfAlabama-BittleResearchGroup/sumo-cf-calibration
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enters the network. Notably, it is observed that the default parameter settings for both
the IDM and Krauss models tend to favor shorter time headways. This is evident in the
positional plots most easily around 40 seconds as the dotted line is always closest to
the leader, as well as in the acceleration profiles when approaching a stationary vehicle
at the beginning of the simulation interval with all default models initially accelerating.
Additionally, a distinctive ”sawtooth” velocity profile emerges when the W99 model is
calibrated using NRMSE(s, v).

Figure 3. Comparison of calibrated vs default trajectories in a car-following scenario. The three rows
are the three models considered, with velocity in the first column and position in the second.
The plotted trajectory was selected by finding the vehicle nearest the 75th percentile of loss in
acceleration, velocity, and spacing when simulating with the default parameters.

The figure also highlights the ability of the calibrated IDM model to best approximate
the smooth velocity of the real vehicle, and subsequently results in smooth accelera-
tions and jerk, a topic which has been found in other literature as well [36].

4.1 Error Comparison

The calibration outcomes for the three car-following models detailed in Section 2.1
are depicted in Figure 4, with further summary provided in Table 1. As previously
mentioned a subset of simulations led to collisions, with the default parameters of the
Krauss model resulting in 762 collisions between following and leading vehicles. This
is contrasted with 81 collisions for the W99 model and only 3 for the IDM when utilizing
default parameters. For the purpose of analysis in Figure 4, leader-follower pairs that
ended in a collision have been excluded. Despite this, the benefit of calibration on the
car-following models’ performance is evident, with notable improvements observed in
the RMSE of both spacing and velocity.
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Figure 4. RMSE of position, velocity, and acceleration after calibration of the Krauss, IDM, and W99
models. The red color denotes the MoPs evaluated with SUMO default parameters, while grey
and blue represent calibration with the NRMSE(s, v) and NRMSE(s, v, a) MoPs, respectively.

The calibration of traffic simulation models markedly improves their predictive accu-
racy, as evidenced by the performance metrics summarized in Table 1. Focusing on
the default parameters, the IDM model appears less accurate with a spacing RMSE
(P50%) of 10.21 and a velocity RMSE (P50%) of 1.61 compared to its calibrated states.
However, upon calibration targeting both spacing and velocity (NRMSE(s, v)), the IDM
model achieves the best spacing RMSE (P50%) of 2.14 and a notably good velocity
RMSE (P50%) of 0.79. This demonstrates a significant improvement over the default
settings, indicating the IDM model’s potential when properly tuned. When considering
the inclusion of acceleration in the calibration target (NRMSE(s, v, a)), the IDM model
again stands out, achieving the best acceleration RMSE (P50%) of 0.47 and the second-
best spacing RMSE (P50%) of 2.6. This calibration also results in the highest number of
best fit vehicles at 973, tying for the fewest crashes at 1, which underscores the model’s
robustness in traffic flow representation and safety.

Table 1. Statistically Summary of the calibration process. The best value in each column is bolded,
with the second best being underlined. The best fit vehicle is selected by identifying number of
leader-follower pairs where that model minimizes the (NRMSE(s, v, a).

RMSE(a) RMSE(s) RMSE(v) Vehicle #
Model Model Label P50% P95% P50% P95% P50% P95% Best Fit Crash

IDM
NRMSE(s, v) 0.53 1.21 2.14 7.94 0.79 1.93 346 1
NRMSE(s, v, a) 0.47 0.99 2.6 8.74 0.78 1.97 973 1
Default 0.69 1.35 10.21 42.0 1.61 4.56 11 3

Krauss
NRMSE(s, v) 0.79 1.54 2.97 10.74 0.97 2.32 49 25
NRMSE(s, v, a) 0.55 1.03 3.98 15.95 0.99 2.39 141 25
Default 0.85 1.65 11.04 44.95 1.78 5.03 0 762

W99
NRMSE(s, v) 1.29 2.4 3.07 11.11 1.13 2.4 17 1
NRMSE(s, v, a) 0.63 1.11 5.23 16.5 1.13 2.68 77 1
Default 0.66 1.25 8.38 39.5 1.36 4.06 18 81

In simulations using default parameters, the W99 model stands out with the low-
est RMSE for spacing (µs = 13.11, σ = 15.33), statistically outperforming the IDM
(µs = 14.74, σ = 15.34) and Krauss (µs = 16.03, σ = 16.3) models as confirmed by
a post-hoc Durbin-Conover test. Despite this strong baseline, the W99 model does not
show the same level of improvement upon calibration; its best calibrated spacing RMSE
is 3.07, which is higher than the best results of the IDM. Similarly, the Krauss model’s
calibrated spacing RMSE peaks at 2.97, unable to surpass the IDM’s calibrated ver-
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sions. Furthermore, including acceleration in the calibration target generally detracts
from the spacing RMSE performance for all models.

In contrast, the IDM model’s calibrated performance is superior, irrespective of the
calibration target. Whether the calibration target is NRMSE(s, v, a) (µs = 3.73, σ =
6.45) or NRMSE(s, v) (µs = 3.19, σ = 6.16), the IDM achieves the lowest RMSE for
spacing, with the latter target outperforming the former. This pattern is also reflected
in the RMSE of velocity, where the IDM excels when calibrated. Additionally, the IDM
maintains the highest vehicle fit count at 973 and ties with the W99 for the fewest
crashes at 1, highlighting its calibration potential and robustness in traffic flow prediction
and safety.

4.1.1 Headway

Further analysis of the impact is presented through empirical cumulative distribution
functions (eCDFs) in Figure 5. The four subfigures represent the eCDFs of velocity,
acceleration, headway and energy consumption. Plotted in solid black is the eCDF of
real-world observations, with the CF-models plotted on top. The velocity, acceleration,
and headways are instantaneous values. The energy eCDF is generated using the
total energy consumption of the follower vehicle, with further discussion in Section 4.2.

Both spacing and velocity factor into the the time headway (τ ) distribution depicted
in the bottom left of the figure. Time headway is defined as the ratio of the spacing be-
tween the leading (sl) and following (sf ) vehicles to the velocity of the following vehicle
(vf ), as expressed below

τ =
sl − sf
vf

(7)

The empirical cumulative distribution functions (eCDFs) indicate that simulations em-
ploying default SUMO parameters generally result in a compressed range of headways.
To enhance the relevance of the headway measurements, instances where the velocity
is less than 1m/s are excluded to mitigate the influence of low speeds on headway
inflation. Furthermore, the headway data is confined to a range of 0 − 10s. The me-
dian real-world headway is observed to be 3.22s, with an interquartile range (IQR)
spanning from 2.16s to 4.89s. By comparison, the default configurations of the IDM
(P50% = 2.15s, IQR = 1.81−3.26s) and Krauss (P50% = 2.09s, IQR = 1.72−3.14s) mod-
els result in notably narrower headways. Even though the W99 model with its default
parameters offers a better approximation, it still tends to underestimate driver head-
ways. The implications of these findings are significant for localized simulation, given
that time headway is a fundamental element of traffic flow analysis, with the inverse of
time headway correlating to traffic flow rate [37].

The disparity between simulated and empirical headways might appear to contra-
dict earlier studies, which asserted that default IDM and Krauss parameters closely
mirrored observed headways [8]. However, it is crucial to recognize that the previous
research focused on headway measurements at a static location, while the data pre-
sented in Figure 5 includes headways calculated at every step of the simulation, thus
encompassing a broad spectrum of network locations and driving scenarios. Con-
sequently, although default parameters might accurately replicate headways at inter-
sections, as observed in the previous study, they tend to undervalue headways when
considering an entire corridor in this study.

Nevertheless, the headway eCDFs in Figure 5 demonstrate the effectiveness of
calibration in aligning with the observed headway distribution. Post-calibration, all
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Figure 5. Cumulative distribution functions of velocity, acceleration, headway, and energy consumption
moving from top-left to bottom right with each CF-model shown for each parameter. Plotted in
black are the observed values from the real world. The three colors represent the 3 considered
CF-models, with the line style representing the model calibration scheme - including simulating
with the SUMO default parameters.

three models closely match the empirical distribution. Notably, the IDM calibrated with
NRMSE(s, v) achieves the lowest RMSE at 0.68s and exhibits a strong positive correla-
tion (r(475597) = 0.93, p ≪ 0.01) with the real-world headways. The IDM is followed by
Krauss and W99 in their performance rankings, with calibrations targeting NRMSE(s, v)
showing statistically significant improvements for all models, as confirmed by the Mann-
Whitney U test.

4.1.2 Acceleration

The results presented in Figure 5 for acceleration reveal that both the IDM and W99
models are capable of replicating realistic acceleration behaviors when using default
parameter values. Both models exhibit a mean RMSE of less than 0.8m/s2, with the
default parameters of both models surpassing the performance of the Krauss (µRMSE =
0.85m/s2) and W99 (µRMSE = 1.29m/s2) when calibrated using NRMSE(s, v) as the
optimization objective. Prior work characterizing similar eCDF results based on road
side radar did not find this agreement and rather noted a strong disagreement [8]. After
detailed analysis this was a result of the approach to extract behaviors using a piece-
wise linear fit rather than the smoothing approach used in this work as well as its use
of all trajectories rather than only followers.

Incorporating acceleration into the measure of performance (MoP) reduces the mean
RMSE for all models, with the IDM model achieving the best performance (µRMSE =
0.85m/s2). However, according to the principle of Pareto efficiency, optimizing for ac-
celeration in the objective function can result in diminished performance in other di-
mensions, such as spacing [33], [38]. This trade-off is observed in this study, as em-
ploying NRMSE(s, v, a) leads to increased spacing errors for all models. Notably, the
calibration of the W99 model using NRMSE(s, v) results in a higher RMSE for accel-
eration compared to simulations with the default parameters, as indicated by Figure 4.
This phenomenon is also reflected in the characteristic ”sawtooth” pattern observed



M. Schrader et al | SUMO UC 2024

in the velocity profile of the W99 model, prevalent across trajectories calibrated with
NRMSE(s, v).

Figure 6a further explores the distribution of accelerations through kernel density es-
timates (KDEs) of instantaneous acceleration for the three models, overlaid with the
observed acceleration distribution. The KDEs underscore default IDM parameters pro-
ficiency in approximating the shape of the real-world acceleration distribution, albeit
with a marginally higher likelihood of sharp decelerations and aggressive accelerations.

(a) Comparison of instantaneous acceleration distributions between real-world observations and simu-
lations with default and calibrated parameters.

(b) Filled-area plots showing the range from the 50th to the 90th percentile of positive accelerations
versus the velocity at which the acceleration occurred.

Figure 6. Exploration of acceleration behavior for the three car-following models, showcasing simula-
tions with both default and optimized parameters.

Figure 6b further investigates acceleration by incorporating the velocity dimension.
Here, positive acceleration values are categorized in 1m/s bins, and the range from
the 50th to the 90th percentile is plotted. The curve of real-world values clearly demon-
strates the decreasing tendency and capability for acceleration as vehicle speed in-
creases. The IDM model’s propensity for high acceleration with default parameters is
more pronounced, where simulations consistently overestimate the 90th percentile of
acceleration across various speeds. In contrast, the calibrated IDM model tends to
underestimate the 90th percentile of acceleration as a function of velocity. This is likely
a result of the coupled optimization when calibrating to NRMSE(s, v, a).

The Krauss model performs very well with default parameters, though it is slightly
worse than IDM. When calibrating to NRMSE(s, v, a) it seems to be the best at cap-
turing the high speed accelerations. Otherwise Krauss performs similarly to IDM when
calibrated.
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The acceleration distribution of the W99 model differs markedly from both the real-
world data and the IDM, as evidenced by Figures 6a and 6b. The distributions exhibit
multimodality, whether calibrated or not. In its uncalibrated state, the W99 model over-
estimates the prevalence of high accelerations, as denoted by the prominent gray peak
in the KDE at 2m/s2. Moreover, the 90th percentile of positive acceleration remains
constant at 2m/s2 across all velocities. This model artifact, which leads to unreal-
istic maximum accelerations, has been previously acknowledged in the literature [4].
While an adaptation to the model was proposed to mitigate this issue, our findings
suggest that through calibration, the W99 model can more accurately represent the
acceleration-speed relationship, closely mirroring the empirical data as shown in Fig-
ure 6b calibrating to NRMSE(s, v, a).

However, Figure 6b also highlights the acceleration error introduced when calibrating
to NRMSE(s, v), as it drastically over-estimates the P90% at all speeds. This overesti-
mation is corroborated by the fat-tail of high accelerations observed in both Figures 6a
and 5, suggesting a systematic bias in the calibration process when acceleration is not
explicitly included in the MoP. Additionally, the W99 model still exhibits an ”acceleration
cliff,” a phenomenon identified by Lu et al. [39] as stemming from transitions between
model regimes. This results in a lack of acceleration instances in the (0m/s2, 0.5m/s2]
range, leading to abrupt transitions from no acceleration to relatively high acceleration
and potentially contributing to perceived jerkiness in vehicle motion.

4.2 Energy Consumption

When the goal of traffic simulation is emissions or fuel consumption estimation, the
accurate modelling of the vehicle trajectory becomes increasingly important, particu-
larly the power requirements under varying traffic conditions. To analyze the impact
of calibration on energy consumption estimates and the implications of acceleration
differences presented in Section 4.1.2, the instantaneous power P exerted by the ve-
hicle’s wheels, as a function of velocity v and acceleration a, was computed using the
equation3

P (v, a) =
v

1000

(
g(m+ L)

(
Fr0 + Fr1v + Fr4v

4
)
+

ACwρ

2
v2 + a (mrf +R + L)

)
(8)

where m represents the mass of the vehicle, L the loading, g the gravitational accelera-
tion, Fr0−4 are rolling resistance coefficients, A the frontal area, Cw the drag coefficient,
ρ the air density, rf the rotational mass factor, and R the reduced mass of the wheel.
The constants were taken from the PHEMLightV5 PC EU4 G model in SUMO 4.

The integration of this power over the course of a driving cycle yields the total energy
consumption E, given by

E =

∫
max (0, P (v(t), a(t))) dt, (9)

which accounts for velocity and acceleration changes over time, with assumption of
zero energy required during deceleration, and is commonly written in units of kWh.

To analyze the difference between car-following models in predicting the fuel con-
sumption of a trajectory, we consider each followers E. Thus, the car-following model
becomes a parametric function to predict energy consumption:

Ê = fCF model (βl,f , sl, vl) (10)
3Taken from SUMO’s wheel power calculation
4PHEMLightV5 PC EU4 G constants

https://github.com/eclipse-sumo/sumo/blob/98e67f4ff9aee0694367bdadec9a5b615157a588/src/utils/emissions/HelpersPHEMlight5.cpp#L147
https://github.com/eclipse-sumo/sumo/blob/main/data/emissions/PHEMlight5/PC_EU4_G.PHEMLight.veh
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Table 2. Model evaluation metrics for the predicted energy consumption of the calibrated car following
models. The best performing model is bolded, with the second best being underlined. All units
are in kWh.

Model Evaluation Summary Statistics (kWh)
Model Opt Metric R2 RMSE P50% P90% P99% Total

IDM
NRMSE(s, v) 0.853 0.030 0.121 0.224 0.306 204
NRMSE(s, v, a) 0.873 0.028 0.119 0.223 0.297 201
Default 0.785 0.036 0.134 0.239 0.323 230

Krauss
NRMSE(s, v) 0.584 0.051 0.137 0.275 0.451 250
NRMSE(s, v, a) 0.886 0.027 0.120 0.241 0.317 211
Default 0.590 0.050 0.150 0.268 0.374 267

W99
NRMSE(s, v) 0.486 0.056 0.151 0.284 0.453 265
NRMSE(s, v, a) 0.851 0.030 0.133 0.252 0.342 227
Default 0.775 0.037 0.136 0.257 0.356 236

Real World Observed - - 0.125 0.247 0.342 221

where βl,f denotes the set of car-following model parameters describing the follower,
sl is the leader’s position, vl is the leader’s velocity, and Ê is the predicted energy con-
sumption. The accuracy of each model is assessed using loss metrics, such as the R2

score, which quantifies the proportion of variance in the observed energy consumption
that is predictable from the model.

The primary objective of utilizing traffic microsimulation is not to predict the fuel con-
sumption of known trajectories; in those instances, the trajectories would be directly
passed through a fuel consumption model. Instead, the aim is to model the fuel con-
sumption within a traffic network where it is impractical for the modeler to observe all
trajectories. Under these circumstances, the overall statistics highlighted in Table 2
are less pertinent. This is due to interactions between subsequent vehicles, where the
error in predicting one vehicle’s behavior is not independent of the errors in recreat-
ing the trajectories of other vehicles, especially that of the leading vehicle. Therefore,
while individual model performance metrics such as R2 scores, RMSE, and descriptive
statistics are presented in 2, they must be contextualized within the broader objective
of modeling network-level fuel consumption where the interdependencies of vehicle
behaviors play a significant role.

The evaluation metrics for predicted energy consumption across various calibrated
car-following models reveal that the Krauss model calibrated with NRMSE(s, v, a) out-
performs the others, achieving the highest R2 value of 0.886 and the lowest RMSE of
0.027 kWh. This indicates a strong alignment with real-world energy consumption pat-
terns. The IDM model follows closely when calibrated with NRMSE(s, v, a), with a R2

value of 0.873 and an RMSE of 0.028 kWh though calibrating to NRMSE(s, v) is only
slightly worse for IDM. For Krauss however, calibrating to NRMSE(s, v) actually has a
worse R2 than default, which underscores the value of including acceleration in the op-
timization metric for enhancing model accuracy. In terms of median energy consump-
tion (P50%), the IDM model prediction of 0.121 kWh when calibrated with NRMSE(s, v)
most closely matches the real-world observation of 0.125 kWh (shown in bottom row
of Table 2). However, the IDM and Krauss calibrated models underestimate the high
energy consumers, as indicated by their underprediction of the P99th and the total en-
ergy consumption. This could be partly explained by Figure 6b, where neither capture
the upper-bound of accelerations.

On the other hand, the W99 model, despite its improvements when calibrated with
acceleration, shows a lower performance compared to the Krauss and IDM models,
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with an R2 value of 0.851 and an RMSE of 0.030 kWh. However, it is noteworthy that
the W99 model calibrated with NRMSE(s, v, a) predicts the highest P90% and P99% val-
ues, suggesting a better capture of higher-end energy consumption scenarios. The
W99 model, although not the best performer in other metrics, still manages to pre-
dict the total energy consumption most accurately at 227 kWh when calibrated with
NRMSE(s, v, a) compared to 221 kWh predicted from the real-world follower trajecto-
ries.

In reviewing the default configurations of the car-following models, it is evident that
all of them overestimate the total energy consumption compared to the observed real-
world data. This can be seen in both Figure 5 with the eCDF of energy and in Table 2
in the total kWh results. Among the default models, the IDM exhibits the most accurate
prediction, with a total energy consumption of 230 kWh. It has the best fit with an
R2 value of 0.785, indicating that while the model can capture a substantial portion
of the variance in energy consumption, there is still a significant amount that it does
not account for. The Krauss model’s default configuration is the least predictive, with
an R2 value of 0.590, highlighting a considerable gap between the model’s predictions
and actual energy usage. The calibration process enhances the R2 values across
all models, with the Krauss model showing the most significant improvement when
acceleration is included in the optimization, bringing its R2 up to 0.886.

When considering the calibration of the Krauss and W99 models with NRMSE(s, v),
the performance is suboptimal. The Krauss model, in particular, has an R2 value of
just 0.584 under this calibration, and the W99 model’s performance is similarly poor
with an R2 of 0.486. This aligns with expectations set by the acceleration distributions
discussed in Section 4.1.2, where it was noted that both models struggle with accu-
rately capturing realistic acceleration behaviors without the inclusion of acceleration in
the calibration metric.

4.3 Calibrated Parameter Distribution Discussion

The primary aim of this research was to identify the car-following model parameters
that best fit the network depicted in Figure 1. As demonstrated in Section 4.1, calibra-
tion significantly enhances the performance of the default car-following models within
the SUMO environment. Given that calibration was applied to 2,397 trajectory pairs,
the ”optimal” parameters derived do not represent singular values but rather span a
range of values, each assuming different distributional forms. A comprehensive sum-
mary of the calibrated parameters for all three car-following models is provided in the
appendix. It is crucial to acknowledge that the dataset encompasses a diverse fleet,
including passenger cars, SUVs, and various heavy trucks. Although SUMO permits
the modeling of such mixed fleets, this comparison has been simplified to focus solely
on personal cars for clarity. Future work may update this result to include classification
based on radar or camera identification. For ease of implementation, the model pa-
rameters are presented below with their SUMO naming convention 5. As an example,
τ from Section 2.1 is tau, b is decel, s0 is minGap, and a is accel.

A subset of model parameters, particularly those commonly subject to calibration, are
illustrated in the histograms (Figures 7, 8, 9), with the SUMO default values indicated by
solid vertical lines. In line with the discussions from Section 4.1.2, the IDM parameters
depicted in both Figure 7 and Table 3 in the appendix exhibit remarkable similarity,
regardless of the calibration metric used. Comparing the calibrated IDM model median

5SUMO Vehicle Type Definitions

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#available_vtype_attributes
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values to the default parameters, notable differences emerge in the decel, minGap, tau,
and actionStepLength parameters with generally good agreement for accel.

Figure 7. Histogram of select IDM parameters calibrated using NRMSE(s, v) vs. NRMSE(s, v, a). The
vertical line represents the SUMO default value for the parameter.

The deceleration distribution of the calibrated IDM models are right skewed with a
mean (2.73m/s2) and median (2.41m/s2) much lower than the default value in SUMO.
Because the parameter is shared between multiple car-following models, its likely that
the value was originally chosen according to the Krauss model (the default model in
SUMO) where the calibrated mean and the median (µ = 3.70, P50% = 3.75m/s2) match
more closely. The calibrated findings of IDM revealing a deceleration parameter ≪ 4.5
matches results from prior literature [36], [40].

The calibrated minGap values for the IDM (P50% = 3.97m) and W99 (P50% = 5.53m)
models are substantially larger than the default model’s values in SUMO. This discrep-
ancy may be due to measurement inaccuracies in the radar data, particularly as the
radar’s vehicle length output, which is directly relevant to minGap, has been found to
contain significant errors. The calibration may be compensating for these inaccura-
cies in the radar length estimates. When simulating with a step size of less than 1
second (0.1 seconds in this study), the SUMO documentation recommends using an
actionStepLength larger than the simulation step size. Despite this recommendation,
the default remains as the step size. The calibration results from this study suggest an
optimal actionStepLength range of 0.2 - 0.4 for all three models.

It is also noteworthy that the Krauss and IDM parameter distributions are not Gaus-
sian and exhibit a right skew. For the Krauss model, the optimal sigma distributions for
NRMSE(s, v) versus NRMSE(s, v, a) differ markedly, suggesting that sigma is a critical
parameter for approximating smooth and realistic accelerations, alongside acceleration
itself. However, a more detailed sensitivity analysis is required for a definitive conclu-
sion. Similar to the IDM, the calibrated Krauss decel parameter is lower than SUMO’s
default values, albeit to a lesser extent. Additionally, the mean of the calibrated head-
way parameter (tau for Krauss and IDM, and cc1 for W99) is higher than the default
values, which is consistent with the headway results presented in Section 4.1.1.

5 Summary, Conclusions & Future Work

This research presents a comprehensive methodology for calibrating SUMO’s CF mod-
els, utilizing detailed vehicle trajectory data obtained from a 1.5 km urban corridor
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Figure 8. Histogram of select Krauss parameters calibrated using NRMSE(s, v) vs. NRMSE(s, v, a).
The vertical line represents the SUMO default value for the parameter.

equipped with ITS radar sensors. The track-level association and fusion approach used
in this study facilitates the identification of complex leader-follower dynamics. Notably,
this work represents the first known instance of employing SUMO in a closed-loop cali-
bration process, marking a departure from the conventional practice of utilizing abstract
mathematical models. The calibration outcomes have been thoroughly presented and
assessed against SUMO’s default vehicle models, yielding recommendations that are
expected to significantly benefit future modeling efforts within traffic simulations.

The research findings highlight that different models excel in different respects. For
instance, the W99 model, with its default parameters, minimizes errors in spacing, ac-
celeration, or velocity. However, once calibrated, the IDM model outperforms others
across various metrics. To optimize the W99 model, it was imperative to factor in accel-
eration error in the minimization metric to avoid introducing velocity inconsistencies and
subsequent unrealistic acceleration behaviors. Examining the best NRMSE(s, v, a)
among the three calibrated models, the IDM adjusted using NRMSE(s, v, a) emerges
as superior for 60% of the vehicles, with IDM tailored to NRMSE(s, v) ranking second
at 22%.

Moreover, when the objective is to replicate realistic accelerations and generate fol-
lower trajectories that align closely with real-world energy consumption, the calibrated
Krauss model stands out in predictive capability overall, though the calibrated W99
model best represents high energy-consuming vehicles. The calibration process also
disclosed that all default models are inclined to overestimate total energy consump-
tion, with the IDM being the most precise and the Krauss model exhibiting the most
substantial overestimation among the default models.

The study also reveals notable discrepancies between the optimal parameters and
SUMO’s default parameters. It suggests that an actionStepLength of 0.2-0.4 seconds
is ideal when simulating with a step size of 0.1 seconds. Furthermore, the calibrated
parameters for time headway demonstrate a mean higher than the default settings in
SUMO by at least 0.5 seconds. It is unclear how generalizable these conclusions are
to other traffic scenarios; however, detailed results of optimized parameters for each
CF model are provided in appendix in addition to distribution information that may be
useful for other modelers to use directly or other datasets to be compared in the future.
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Figure 9. Histogram of select W99 parameters calibrated using NRMSE(s, v) vs. NRMSE(s, v, a). The
vertical line represents the SUMO default value for the parameter.

The study acknowledges limitations, including the lack of a hold-out or test set, which
means the models were assessed on the same dataset used for training, potentially
impacting the broader applicability of the results. Additionally, the ultimate purpose of
car-following models in SUMO extends beyond generating precise follower trajectories;
it also encompasses the accurate reproduction of overall traffic flow. Future work will
aim to overcome these limitations by incorporating a validation phase and investigating
the effects of correlated versus uncorrelated sampling at the trajectory level. It will also
assess the influence of calibrated versus uncalibrated models on macroscopic traffic
flows. A sensitivity analysis is proposed as a valuable future endeavor to pinpoint
critical parameters, which could streamline the calibration process by narrowing the
calibration space.

Subsequent research will delve into the resilience of the models to variations in sim-
ulation step size and the impact of diverse driving behaviors, including lane-changing,
approaching traffic signals, starting from a stop, and merging maneuvers. The study
also highlights the importance of accounting for different vehicle types in simulations
and suggests that the calibration of the W99 model should consider velocity profile
smoothness. Introducing penalties for erratic acceleration during calibration could re-
fine the accuracy and realism of the simulations. These future research avenues will
build on the current findings to create traffic simulations that more faithfully reflect real-
world driving patterns, thereby advancing the efficacy of intelligent transportation sys-
tems.
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car class, with the value being given as the µ. The lower and upper bounds of the
optimization constraints are also shown. Certain parameters were further constrained
to be multiples of the simulation step size, such as actionStepLength.

Table 3. Calibrated results of the IDM CF-model. LB stands for the lower-bound on optimization and
UB the upper bound. All parameters are in the naming convention and units presented in the
SUMO documentation

Calibration Cal. Calibrated Parameters
Parameter LB UB Target µ σ P10% P50% P95%

accel 0.1 6.0
Default 2.60 - - - -
NRMSE(s, v, a) 2.63 1.27 1.13 2.45 5.04
NRMSE(s, v) 2.95 1.38 1.28 2.78 5.45

actionStepLength a 0.1 1.0
Default 0.10 - - - -
NRMSE(s, v, a) 0.33 0.25 0.10 0.20 0.90
NRMSE(s, v) 0.43 0.27 0.10 0.40 0.90

decel 0.1 7.0
Default 4.50 - - - -
NRMSE(s, v, a) 2.73 1.86 0.56 2.41 6.35
NRMSE(s, v) 2.66 1.87 0.44 2.39 6.19

delta 1.0 10.0
Default 4.00 - - - -
NRMSE(s, v, a) 4.75 2.54 1.44 4.57 9.21
NRMSE(s, v) 4.99 2.59 1.48 4.92 9.43

minGap 0.1 10.0
Default 2.50 - - - -
NRMSE(s, v, a) 4.12 2.34 1.05 3.97 8.60
NRMSE(s, v) 4.10 2.41 0.98 3.87 8.66

speedFactor 0.8 1.8
Default 1.00 - - - -
NRMSE(s, v, a) 1.27 0.27 0.89 1.26 1.71
NRMSE(s, v) 1.27 0.27 0.89 1.26 1.73

stepping a 0.1 1.0
Default 0.25 - - - -
NRMSE(s, v, a) 0.55 0.23 0.23 0.55 0.94
NRMSE(s, v) 0.54 0.23 0.22 0.54 0.92

tau 0.1 5.0
Default 1.00 - - - -
NRMSE(s, v, a) 1.87 1.07 0.67 1.69 4.01
NRMSE(s, v) 1.89 1.05 0.69 1.68 4.00

aConstrained in optimization to a multiple of the simulation step size

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_model_parameters
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Table 4. Calibrated results of the Krauss CF-model. LB stands for the lower-bound on optimization and
UB the upper bound. All parameters are in the naming convention and units presented in the
SUMO documentation

Calibration Cal. Calibrated Parameters
Parameter LB UB Target µ σ P10% P50% P95%

accel 0.1 7.0
Default 2.60 - - - -
NRMSE(s, v, a) 2.63 1.36 1.10 2.39 5.20
NRMSE(s, v) 3.49 1.56 1.61 3.35 6.30

actionStepLength a 0.1 1.0
Default 0.10 - - - -
NRMSE(s, v, a) 0.40 0.28 0.10 0.30 0.90
NRMSE(s, v) 0.42 0.27 0.10 0.40 0.90

decel 0.1 7.0
Default 4.50 - - - -
NRMSE(s, v, a) 3.70 1.56 1.63 3.75 6.36
NRMSE(s, v) 3.81 1.52 1.77 3.82 6.48

sigma 0.1 1.0
Default 0.50 - - - -
NRMSE(s, v, a) 0.34 0.20 0.12 0.30 0.75
NRMSE(s, v) 0.51 0.22 0.21 0.51 0.91

sigmaStep 0.1 1.0
Default 0.10 - - - -
NRMSE(s, v, a) 0.49 0.23 0.18 0.49 0.89
NRMSE(s, v) 0.50 0.22 0.19 0.49 0.89

speedFactor 0.8 1.8
Default 1.00 - - - -
NRMSE(s, v, a) 1.30 0.26 0.94 1.30 1.73
NRMSE(s, v) 1.30 0.26 0.94 1.31 1.73

tau 0.5 5.0
Default 1.00 - - - -
NRMSE(s, v, a) 2.10 1.10 0.85 1.87 4.41
NRMSE(s, v) 1.77 1.06 0.66 1.51 4.01

aConstrained in optimization to a multiple of the simulation step size

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_model_parameters
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Table 5. Summary statistics for the calibrated W99 model. LB stands for the lower-bound on optimization
and UB the upper bound. All parameters are in the naming convention and units presented in
the SUMO documentation

Calibration Cal. Calibrated Parameters
Parameter LB UB Target µ σ P10% P50% P95%

actionStepLength a 0.1 1.0
Default 0.10 - - - -
NRMSE(s, v, a) 0.41 0.27 0.10 0.40 0.90
NRMSE(s, v) 0.45 0.28 0.10 0.40 1.00

cc1 0.0 5.0
Default 1.30 - - - -
NRMSE(s, v, a) 1.69 0.98 0.54 1.56 3.57
NRMSE(s, v) 2.01 1.19 0.66 1.79 4.59

cc2 0.0 10.0
Default 8.00 - - - -
NRMSE(s, v, a) 5.99 2.35 2.78 6.05 9.65
NRMSE(s, v) 4.45 2.49 1.04 4.41 8.82

cc3 -20.0 0.0
Default -12.00 - - - -
NRMSE(s, v, a) -11.26 4.69 -17.59 -11.40 -3.01
NRMSE(s, v) -10.88 4.85 -17.59 -10.86 -2.48

cc4 -5.0 0.0
Default -0.25 - - - -
NRMSE(s, v, a) -1.81 1.25 -3.65 -1.62 -0.12
NRMSE(s, v) -2.24 1.32 -4.12 -2.16 -0.19

cc5 0.1 5.0
Default 0.35 - - - -
NRMSE(s, v, a) 1.97 1.33 0.36 1.72 4.52
NRMSE(s, v) 2.31 1.25 0.63 2.29 4.55

cc6 0.1 20.0
Default 6.00 - - - -
NRMSE(s, v, a) 7.03 4.94 1.14 6.28 16.76
NRMSE(s, v) 8.24 5.25 1.39 7.94 17.96

cc7 -1.0 1.0
Default 0.25 - - - -
NRMSE(s, v, a) -0.10 0.47 -0.74 -0.11 0.73
NRMSE(s, v) -0.04 0.50 -0.73 -0.04 0.84

cc8 0.0 8.0
Default 2.00 - - - -
NRMSE(s, v, a) 2.38 1.89 0.52 1.72 6.62
NRMSE(s, v) 3.65 2.10 0.95 3.60 7.36

cc9 0.0 8.0
Default 1.50 - - - -
NRMSE(s, v, a) 3.98 2.05 1.14 3.94 7.50
NRMSE(s, v) 4.02 2.03 1.21 4.05 7.44

minGap 0.0 20.0
Default 2.50 - - - -
NRMSE(s, v, a) 6.18 4.30 1.00 5.53 14.38
NRMSE(s, v) 5.30 4.14 0.70 4.39 13.28

speedFactor 0.8 1.5
Default 1.00 - - - -
NRMSE(s, v, a) 1.12 0.20 0.84 1.12 1.44
NRMSE(s, v) 1.12 0.19 0.85 1.13 1.44

aConstrained in optimization to a multiple of the simulation step size

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_model_parameters
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