GEFÖRDERT VOM

Finanziert von der Europäischen Union NextGenerationEU

Lambus cybob

Simulating Traffic Networks

Driving SUMO towards digital twins

Axel Schaffland, Jonas Nelson, and <u>Julius Schöning</u> 14/05/2024

Hochschule Osnabrück – Fakultät Ingenieurwiss. und Informatik

Completely without personal reference

The modern way of drawing

Idea from: https://www.linkedin.com/posts/manuel-villavieja-beck-1714a023a_are-so-called-prompt-engineers-the-new-activity-7049459145556598784-wSCC (10/04/2024)

intelligent pendeln

intelligent pendeln

Intelligent Intermodal Commuter Traffic

The research project and its aim

Intelligent Intermodal Commuter Traffic

- Motivation: Increase in individual and commuter traffic in
 - Osnabrück (pop. 165,000 / 128,700 commuters)
 - Münster (pop. 317,700 / 219,400 commuters)

Solution approach:

 Merging official and publicly available traffic data with sensor technology, crowdsourcing and citizen participation

- Protection of privacy through anonymized data collection
- Development and testing of business models oriented towards the common good with a focus on the intelligent use of different means of transport
- Cooperation partners: SWO Netz GmbH, Stadt Osnabrück, Hochschule Osnabrück, Universität Münster, items GmbH & Co. KG, iotec GmbH, Lambus GmbH, cybob communication GmbH

Simulating Traffic Networks

Data of a crossing

Bus:

- # passengers

61 i

- delay in min
- position
- route

Source: City of Osnabrück

Rector .

Intersection:

right turners # left turners

- # trucks / min

- # cars / min

Pedestrian lights: - # pedestrians

> Bike lane: - # bicycles

- direction
- lane quality

Environmental sensors:

- temperature
- precipitation
- wind
- pollutant concentrations

Parking lots: - occupancy status - type

Bus Stop:

- # passengers
- delays in min
- position
- routes

Car: - route - origin-destination

Bike:ride historyorigin-destination

Simulating Traffic Networks

Sensor-based traffic simulation

Motivation: Sensor-based traffic simulation

- improving public transportation
- reduction of environmental pollution
- human-centered urban planning
- traffic flow optimization
- improving the quality of life
- accident prevention
- real-time traffic management
- ----
- pedestrian
- bus R42

- cyclist
- car (3 passengers) -

Motivation: Sensor-based traffic simulation

Supermanzana Barcelona

Leezenflow Münster

Traffic Circulation Plan Groningen

intelligent pendeln https://esmovilidad.mitma.es/noticias/programa-supermanzanas-de-barcelona (10/04/2024) https://smartcity.ms/leezenflow/ (10/04/2024) S. Tsubohara (2007). The effect and modification of the Traffic Circulation Plan (VCP)

Solutions: Sensor-based traffic simulation - GPS tracker

Solutions: Sensor-based traffic simulation - Video cameras

Solutions: Sensor-based traffic simulation - Sensors

Simulating Traffic Networks

Driving SUMO towards digital twins

Driving SUMO towards digital twins

Driving SUMO towards digital twins

A. Schaffland, J. Nelson und J. Schöning, "Simulating Traffic Networks: Driving SUMO towards digital twin," SUMO User Conference, to be published 2024 pendeln

Simulating Traffic Networks

Static data

Static data: Sources

Static data: Fusion

- embedding all data sources in the GIS
- utilization:

. . .

- creation of the traffic network
- definition of new sensor positions
- assignment of sensor position, masts, locations

- publication as WMS / WFS for integration into other GIS systems
- publication as a website for direct use in the browser

Static data: Fusion

Static data: Network generation

- recording your own 360° videos
- update and correction of OpenStreetMap data
- conversion of OpenStreetMap data to SUMO mesh
- renewed correction of OpenStreetMap data
- conversion of OpenStreetMap data to SUMO mesh again
- final adjustments to the SUMO network
- assignment of the signal programs to the individual signal systems

Static data: Network generation

Creation of missing static data

Static data: Signal systems

Modeling of signaling systems and dependencies

Simulating Traffic Networks

Dynamic data

Static data: Sources

Static data: Sources

Passive Infrared Sensors

- traffic volume measurement
- measurement of traffic speed
- differentiation of different road users by vehicle length
- Smart Cameras
 - measurement of turning behavior at individual intersections
 - AI-based differentiation of different road users
- Further sensor technology for
 - public transport: capacity utilization, delay...
 - shared mobility: positioning, availability...
 - non-motorized individual transport: bicycles, pedestrian walkways...

A. Schaffland, J. Nelson und J. Schöning, "Simulating Traffic Networks: Driving SUMO towards digital twin," SUMO User Conference, to be published 2024

Dynamic data: Positioning of smart cameras

Depends on requirements

- turning behavior at intersections
 - two cameras per intersection, each measuring two directions of travel
 - viewing direction diagonally across the intersection
 - traffic light pole
- speed, flow
 - measurement in free flowing traffic
 - viewing direction away from the intersection
 - traffic light pole or lamppost.

A. Schaffland, J. Nelson und J. Schöning, "Simulating Traffic Networks: Driving SUMO towards digital twin," SUMO User Conference, to be published 2024

Dynamic data: Data output

- sensors send data to traffic computer
- data is copied to high-performance timeseries database
- SUMO and other applications access the database

Dynamic data: Database

Dynamic data: Routing and demand modeling

- sensors only measure macroscopic count data
- microscopic simulation means
 - simulation of all road users as individuals
 - individuals drive from origin-destination
 - all individuals follow fixed routes
- \Rightarrow How can routes be generated from count data?

Dynamic data: Routing and Demand Modeling

- SUMO Demand Modeling Algorithms
- assignment of sensors to positions in the traffic network
- retrieving sensor data for the simulation period from the database
- data cleansing and conversion (routes to lanes, units)
- generation of routes for each vehicle so that
 - # vehicles measured at the measurement points matches the simulation
 - avg. simulated speeds with the avg measured speeds match the measured speeds
 - excess vehicles leave the network at other positions or missing vehicles start at other positions
- estimation or randomization of
 - individual routes and speeds
 - driving behavior: Overtaking, acceleration, safety distances
 - vehicle parameters: dimensions, consumption, environmental impact

Simulating Traffic Networks

Outlook

Outlook

Next Goals

- collection and fusion of traffic data
- analysis, simulation and forecasting

Motivation

- identification of possibilities for promotion of alternative means of transport
- development of effective solutions to improve traffic flow and mobility in cities
- contributing to the creation of more pleasant and environmentally friendly urban traffic environments

Challenges

- data situation, fusion, metadata
- macroscopic data vs. microscopic simulation

Completely without personal reference

The modern way of drawing

Without any personal reference!

But close to reality!

today

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Projektpartner: SWO®

Prof. Dr. Julius Schöning j.schoening@hs-osnabrueck.de

Publications

OSNABRUCK[®]

DIE | FRIEDENSSTADT

Universität

Münster

HOCHSCHULE OSNABRÜCI

Research Gate

items Cotec

electronic solutions

