

Leveraging SUMO for Real-World Traffic Optimization

Alon Bublil, Olga Dobrilko

Paper Target

Addressing real-world traffic challenges utilizing SUMO simulations

Importance of testing and validating traffic management solutions before deploying in the field.

Agenda

Terminology

- NoTraffic Technology
- ATSPM
- Realistic Micro-Simulation in SUMO
 - SUMO Network
 - Simulation Scenario
 - Traffic Light Controllers
 - Calibration
- Real-world application of SUMO

NoTraffic Overview

NoTraffic Smart & Connected Intersection

Detection & Tracking

Powered by AI algorithms - Detecting Vehicles & Vulnerable Road Users

- Data sampled at f > 1 Hz
- Classification: car, bus, truck, pedestrian, bicycle and more
- Position: lane, distance from stop bar, direction, speed
- Yielding a robust and extensive dataset
- This dataset is used for real-time optimization and data analytics

notraffic

Sensor Units

Sensor Provides Trajectories Per Approach

Sensor Units

Lanes & connections

Automated Traffic Signal Performance Measures

- Traffic counts
- Average delay per vehicle
- Arrival on Green AoG
- Split Failure

Realistic Micro-Simulation in SUMO

Key steps

I

- SUMO Network
- Simulation Scenario
- Traffic Light Controllers
- Calibration

Network Layout Challenges

SUMO Network Generation

Standard single intersection

Sensor view:

- Lanes
- Trajectories
- Intersections locations

SUMO Network generation based on:

Nodes, edges, connections

netconvert

- --node-files=model.nod.xml
- --edge-files=model.edg.xml
- --connection-files=model.con.xml
- --output-file=model.net.xml

SUMO view:

- Lanes
- Connections
- Nodes

Real-World Scenario

Counts distribution

- Counts by 1 min distributed uniformly:
 - ~40-50% calibration success rate
- **4** Counts by 1 fps:
 - ~70-80% calibration success rate

Software-in-the-loop (SIL)

Main components

- SUMO:
 - detected & crossed road users
- Virtual Controller:
 - Integrated controller configuration

Calibration Key Steps

- Metrics for calibration:
 - Average delay
 - Arrivals on Green
 - Counts
- Car-Following model selection (Weidemann 99 model)
- Input parameters for calibration
- Calibration method

Calibration - Input parameters

- Standard parameters:
 - Speed
 - Acceleration
 - Tau
- Additional parameters:
 - stratupDelay
 - jmDriveAfterYellowTime
 - CC2

Parameter	Default Value	Lower Bound	Upper Bound	Description
CCI (tau)	1.2 s	0.5 s	2.5 s	Desired headway time between lead/prioritized and following vehicles.
CC2	8 m	lm	10 m	Following variation distance.
CC8 (accel)	2.0 m/s²	0.5 m/s²	5.0 m/s²	Standfill acceleration.
minGap	2.5 m	0.5 m	5 m	Empty space after leader.
desiredMaxSpeed	Varies by road user	1.39 m/s	50 m/s	Road user speed by type.
startupDelay	0 s	0 s	3 s	Delay time before starting to drive after having had to stop.
jmDriveAfterYello wTime	-1 s	-1 s	5s	Violation yellow light if the light had changed more recently than the given threshold.

Calibration - Method

- Simple grid search on input parameters permutations.
- Error between simulation vs. field ATSPMs is calculated by following steps:

Step	Formula	Description
Values scaling	$E_p = \frac{e_p}{M-m}, O_p = \frac{O_p}{M-m}$	o_p = unscaled observed metric in simulation averaged over the entire scenario period per phase e_p = unscaled expected metric in field averaged over the entire scenario period per phase M = Maximum metric value per phase m = minimum metric value per phase
Metric error calculation per phase	$\chi^{2} = \sum_{p=1}^{n} \frac{(O_{p} - E_{p})^{2}}{E_{p}}$	O_p = scaled observed metric in simulation averaged over the entire scenario period per phase E_p = scaled expected metric in field averaged over the entire scenario period per phase
Total Error	$error = \frac{1}{3} \cdot \sqrt{\chi^2_{total.count}} + \frac{1}{3} \cdot \sqrt{\sum_{p=1}^n \chi^2_{avg}}$	$\frac{1}{1.delay(p)} + \frac{1}{3} \cdot \sqrt{\sum_{p=1}^{n} \chi^2_{AoG(p)}}$

Input parameters that yield the minimum error and meet the specified thresholds are selected.

Calibration - Results

avg_delay - 157

Arrivals on Green - 157

Number of Vehicles

Parameter	Value
CCI	1.2 s
CC2	4 m
CC8	2.5 m/s²
minGap	1.4 m
desiredMaxSpeed	17.89 m/s
startupDelay	0 s
jmDriveAfterYellowTime	1 s

Steps to solve field issues

Reproduce the issue in simulation 🕝

Solve the issue in simulation 🖑

Verify the solution is stable \otimes

Deploy in the field with confidence \bigcirc

Monitor 📈

Case Study: Arizona, USA - May 2023

Reproduce the issue

 Using the calibrated model and the scenario from the time of the incident

Solve the issue in simulation

Several strategies were tested in our optimization algorithm

The one we used is called **flush queue**

Verify the Solution is Stable

avg_delay - I25

Deploy & Monitor

Avg. delay: field data - before vs. after flush queue implementation

Conclusion

- Quality In, Quality Out (QIQO)
- SUMO plays a vital role in our system and is integral to our business operations.
- Examples Await—Let's Watch!

Customer Case Studies

Contacts: olga@notraffic.tech alon@notraffic.tech