Perspectives on an ALKS model in SUMO

Robert Alms, Benjamin Coueraud, Peter Wagner, DLR Institute of Transportation Systems SUMO User Conference, Berlin, Germany 15 May 2024

Alms, Coueraud, Wagner, DLR-TS, 15 May 2024

Short agenda

Example 1 Introduction about ALKS

- **Partial reproduction of UN Reg. No. 157**
- Conclusions & Outlook

Bonn

Introduction

ALKS = Automated Lane Keeping System

EXTER: essentially level 3 automated driving

Agreement

Concerning the Adoption of Harmonized Technical United Nations Regulations for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of these **United Nations Regulations***

(Revision 3, including the amendments which entered into force on 14 September 2017)

Addendum 156 - UN Regulation No. 157

Amendment 4

01 series of amendments - Date of entry into force 4 January 2023

Uniform provisions concerning the approval of vehicles with regard to **Automated Lane Keeping Systems**

This document is meant purely as documentation tool. The authentic and legal binding text is: ECE/TRANS/WP.29/2022/59/Rev.1.

UNITED NATIONS

[https://unece.org/transport/documents/2023/03/standards/u](https://unece.org/transport/documents/2023/03/standards/un-regulation-no-157-amend4) n-regulation-no-157-amend4

■ Reg. 157 lays down safety requirements

ALKS: about to enter the market

MAGAZINE FOR MOBILITY AND SOCIETY

Easy Tech: Conditionally automated driving with the DRIVE PILOT

Ready for the next level.

ABS, airbag, ESP®, Active Distance Assist DISTRONIC - these are just a few of the technical innovations in which the S-Class set benchmarks in terms of driving safety and comfort. Now it's ready for the next level: The DRIVE PILOT will enable the S-Class to take over certain driving tasks. This will make it the first series production vehicle from Mercedes-Benz to master conditionally automated driving at Level 3.

10 min reading time

[https://group.Mercedes-benz.com/company/magazine/technology](https://group.mercedes-benz.com/company/magazine/technology-innovation/easy-tech-drive-pilot.html)innovation/easy-tech-drive-pilot.html

TECH

BMW 7 Series Receives Approval Level 3 Automated Driving in Germany

Home » BMW 7 Series Receives Approval Level 3 Automated Driving in Germany

[https://www.bmwblog.com/2023/09/26/bmw-7-series-receives](https://www.bmwblog.com/2023/09/26/bmw-7-series-receives-approval-level-3-automated-driving-in-germany/)approval-level-3-automated-driving-in-germany/

→ **Motivation: Can we have an ALKS model in SUMO?**

Short summary of UN ECE Reg. 157

- Not a nice read!
- operational speed up to 60 km/h (theoretically up to 130 km/h, if system MRM lane change capable)
- so-called "performance models" (= cf models):
	- Regulation 157
	- CC human driver
	- \blacksquare FSM

Notation

- $\bullet V_y$: lateral speed of challenger (speed jumps from 0 to V_y)
- $\blacksquare d_{x0}$: initial distance between front of ego and back of challenger
- $d_v = 1.6m$ (fixed): lateral distance between left side of challenger and right side of ego
- ℓ_e, ℓ_c (fixed): the lengths of the two vehicles

Most interesting: cut-in

 V_y = -1 m/s, d_{x0} = 19m, $V_{challanger}$ = 30 km/h

9

Most interesting: cut-in

 V_y = -1 m/s, d_{x0} = 19m, $V_{challanger}$ = 30 km/h

10 Alms, Coueraud, Wagner, DLR-TS, 15 May 2024

Partial reproduction of UN ECE R157

Source: German Aerospace Center

Gladi

OD V

1. Reproduce collision classification from R157

2. Comparison of models provided by the JRC repository: <https://github.com/ec-jrc/JRC-FSM/tree/main>

see also:

Mattas et al., Driver models for the definition of safety requirements of automated vehicles in international regulations. Application to motorway driving conditions. Accid. Anal. Prev. 2022, 174, 106743.

Two step analysis:

Two step analysis:

1. Reproduce collision classification from R157: e.g. Figure 7, Annex 3

1. Collision classification with SUMO

Two example outputs with simple continuous lane-change model:

SUMO's lane-change mechanism explained

- note: default lane change is instantaneous (not applicable here)
- simple continuous lane change model with lateral velocity
	- SUMO' lane change model reserves a corridor for lane changes to ensure safe gaps

- \rightarrow leads to immediate reaction by ego vehicle
- \rightarrow deceleration to ensure safe gap is overridden by Ic model

2. Model comparison

→**Delayed detection and reaction by the other models lead to curved collision pattern**

sonr

Conclusions

■ sublane model probably better suited for further developments (wait for next slide…)

final remarks:

- 1. UN ECE R157 maybe a bit feeble: seems easy to implement better / safer models
- 2. Further questions regarding string stability and capacity:
	- (relatively large) headway $\tau = 1.6s$ as minimum required
	- current ACC systems prone to show string instable platoon behavior (**OpenACC JRC database**: [https://data.jrc.ec.europa.eu/dataset/9702c950-c80f-4d2f-982f-44d06ea0009f\)](https://data.jrc.ec.europa.eu/dataset/9702c950-c80f-4d2f-982f-44d06ea0009f)

Outlook: deploying the sublane model (work in progress)

Ego speed 60 (km/h), Cut-in speed 20 (km/h) CC human driver 1.4 **Reg157 Fuzzy SM RSS** $\begin{array}{c} 1.2 \\ E \to 1.0 \\ 0.8 \\ E \to 0.6 \\ 0.4 \end{array}$ SUMO ACC 0.8 0.6 \times 0.2 $0.0 -$ 10 20 30 40 50 60 Ω Initial distance (m)

sublane model continuous lane change model

Imprint

- Topic: ALKS for SUMO
	- Date: 14 May 2024
	- Author: Robert Alms, Peter Wagner

- Institute: Institute of Transportation Systems, DLR, and TU Berlin, Dynamic Modelling and Control of Transportation Systems
- Credits: All Figs are "DLR (CC BY-NC-ND 3.0)", if not stated otherwise

Driver model for the cut-in scenario

source: R157, Fig. 2, p.42

The red line…

- boundary between interupt backwards and side collision under the assumption, that both vehicles keep their speeds (no reaction!);
- $\bullet \rightarrow$ connects initial distance d_{x0} (and speed difference Δv) determining overtaking time t_x to the time needed for the challenger to move lateral the distance d_v to tackle the ego from the side, t_v
- **May write down an equation** $t_x = t_y$ **, where** $t_x = d_y/V_y$ and $t_x = (d_{x0} + \ell_c + \ell_e)/\Delta v$
- **And then end up with:** $V_y =$ d_{y} $d_{x0}+e_{c}+e_{e}$ $\Delta \nu;$
- \blacktriangleright \blacktriangleright if lateral speed V_v is smaller than the expression on the r.h.s., then the challenger is too slow and ends up behind the ego.

40 km/h

40 km/h

Ego speed 130 (km/h), Cut-in speed 60 (km/h) CC human driver $1.4 +$ Reg157 $\frac{1}{20}$ 1.2 Fuzzy SM **RSS** $= 1.0$ SUMO_ACC $0.8 \frac{2}{5}$ 0.6 - $\frac{2}{9}$ 0.4 $0.2 0.0 +$ 20 40 60 80 100 120 Initial distance (m)

100 km/h

Ego speed 70 (km/h), Cut-in speed 30 (km/h)

60 80

Initial distance (m)

20 40 CC human driver

100 120

Reg157

· Fuzzy SM **RSS**

SUMO_ACC

60

 $\overline{0}$

20

Space headway $d_{x\rm 0}$

40

60

Space headway $d_{x\rm 0}$

40

20

 Ω

 Ω

 $\overline{0}$

20

Space headway d_{x0}

40