Integration Traffic Signal Control From Synchro to SUMO

Yiran Zhang May 15, 2024

Intelligent Urban Transportation Systems UNIVERSITY of WASHINGTON

SUMO User Conference **2024** 13-15 May • Berlin

Outlines

- > Introduction & Motivation
- > Traffic signal control integration
- > Conclusion & Future Step

Introduction & Motivation

> Current traffic simulation

- Macroscopic: Focuses on the traffic at a low level of detail where the traffic stream is represented in an aggregated level, such as speed, flow, and density.
- Microscopic: Details individual vehicle and pedestrian movements, allowing for the simulation of specific behaviors like car-following and lane-changing.
- Mesoscopic: A hybrid approach blending macroscopic and microscopic elements, offering more detailed analysis than macroscopic models but less resource-intensive than microscopic simulations.
- Submicroscopic: Provides intricate details of each vehicle, including internal mechanics such as gear shifting, suitable for in-depth vehicle dynamics analyses

Cont.

> When & Why is simulation integration needed?

- Large-Scale Simulations
 - Extracting network features from existing simulations vs. manual coding
- Multiscale Simulation Connectivity
 - Seamless connectivity and communication across different simulation platforms are crucial for multiscale simulations.
- Data sharing
 - When data providers offer information from different simulation platforms, it is essential for researchers to adeptly transfer these features to maintain data integrity and relevance.

Therefore

> The aim of this study

- Understand the feasibility and effectiveness of simulation integration, specifically traffic signal timing
- Identify potential obstacles and problems

> Case study

- Synchro vs. SUMO
- Traffic signal timing
- Study area
 - o Downtown Seattle, USA

Synchro vs. SUMO

> Synchro (widely used in public agency) → why we use synchro as feature transform

 "Synchro is a macroscopic analysis and optimization software application. Synchro supports the Highway Capacity Manual's (HCM) 6th Edition, 2010 and 2000 for signalized intersections, unsignalized intersections and roundabouts. Synchro also implements the Intersection Capacity Utilization method for determining intersection capacity." specifically in traffic signal optimization

> SUMO

 "Simulation of Urban MObility" (SUMO) is an open source, highly portable, microscopic and continuous traffic simulation package designed to handle large networks. It allows for intermodal simulation including pedestrians and comes with a large set of tools for scenario creation."

Cont.

> Current convert simulations/packages

- SUMO Netconvert
 - Convert network to SUMO, covers
 - VISUM, VISSIM, MATsim, Shapefile, OSM
 - \circ However
 - Manual work is suggested
- VISSIM import
 - Available to import Synchro files
 - However
 - Requires the latest version of Synchro
 - Multiple errors may occur if actual controller timing sheets not matched

Traffic signal control integration – 4 stages

- **1. Data Preparation**
- 2. Connection-to-Direction Mapping
- 3. Signal Phase Mapping
- 4. Data Revision & Output

UNIVERSITY of WASHINGTON Intelligent Urban Transportation Systems W

Stage 1: Data Preparation

> Network data structure in Synchro

- Format: Comma-Separated Value Table (.csv)
- Network (General settings)
- Nodes (Geo-location of each intersection)
- Links (Settings for links)
 - # of lanes, distance, grade, speed, direction (e.g., NB, SB)
- Lanes (Detailed lane info)
 - Direction (NBL, NBT)
- Timeplans (Signal timing plans for each intersection)
 - Control type, cycle length, offset
- Phases (Signal phases each intersection)
 - o Min/Max Green, Yellow, Red, BRP

Stage 1: Data Preparation

> Network data structure in SUMO

- Format: XML
- Configuration (General settings)
- Edge (setting for edges)
 - Length, geo-location, ROW
- tlLogic (traffic light logics)
- Junction (settings for intersections)
 - o Intlanes, location
- Lane & Connection (relationship between two lanes)
 - Fromlanes, tolanes, direction

Synchro vs. SUMO

Features	Synchro	SUMO
	X Ped lanes	✓ Ped lanes
	X Bus lanes X light rail	 ✓ Bus lanes ✓ Light rail
Road Link	Link	Edge
	Lanes	Lane & Connections
	Nodes	Junction
Signal control	Timeplans & Phases	tlLogic
General settings	Network	configuration

Stage 2: Connection-to-Direction Mapping

SUMO

sample

	ID II	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR	EBL	EBT	EBR	EBR2	WBL2	WBL	WBT	WBR	
Jp Node	6	8	8	3	8			7	7	7	3	3	3			9	9	
Dest Node	6	3		,	9			9	8	3	7	9	8			8	3	
anes	6	0	()	0			0	1	0	1	2	0			1	1	
Phase1	6								4		5	2				1	6	
PermPhas	6							4			6					2		
Allow RTO	6	1			1			1	1	1	1	1	1			1	1	
Timeplans]																		
RECORDN IN	rid (ATA																
Control Ty	6	3																
Cycle Len	6	60																
Offset	6	52											ω	100				
Phases]												536	5369					
RECORDN IN	rid (01	D2	D3	D4	D5	D6	D7				> 8	Ŭ,	*				
BRP	6	111	112	2	l1 21	2 12	21	122	2			5	51					
linGreen	6	5	1	,		7	5	7				#9	#2					
1 axGreen	6	8.5	17.	5	21	.5 6	.5	19.5										
/ehExt	6	3	0.2	2		2	2	0.2					, I					
ellow	6	3.5	3.5	i	3	.5 3	.5	3.5										
AllRed	6	0	:			1	0	1				<u>></u>		*				
tlLogic : <param 1<br=""/> <param 1<="" th=""/> <th>cey="m cey="d cey="p</th> <th>ax-gaj etecto assino</th> <th>p" valu pr-gap" g-time"</th> <th>e="3.(value value</th> <th>)"/></th> <th>/></th> <th>"0" t</th> <th>ype="ac</th> <th>¥ -2937</th> <th>53571#1</th> <th>Y B</th> <th></th> <th></th> <th></th> <th>Legend</th> <th>d</th> <th></th> <th></th>	cey="m cey="d cey="p	ax-gaj etecto assino	p" valu pr-gap" g-time"	e= "3.(value value)"/>	/>	" 0 " t	ype=" ac	¥ -2937	53571#1	Y B				Legend	d		
					ue="fa	100"/>			293	30		*	2 I V			_		
<param 1<="" td=""/> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>33569015</td> <td>-</td> <td>lge ID</td> <td></td>									×.						33569015	-	lge ID	
<param 1<br=""/> <param 1<="" td=""/> <td>cev="f</td> <td></td> <td>(4)</td> <td></td> <td>1 8</td> <td>Co</td> <td>onnectior</td> <td>LinkIndex</td>	cev="f												(4)		1 8	Co	onnectior	LinkIndex
<param 1<="" td=""/> <td></td> <td>req" '</td> <td>/alue=</td> <td>500 //</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>ن</u> ال</td> <td>ι Υ</td> <td>40</td> <td></td> <td>~</td> <td>onnectior</td> <td></td>		req" '	/alue=	500 //								<u>ن</u> ال	ι Υ	40		~	onnectior	

<connection from=":53073250_w2" to=":53073250_c1" fromLane="0" toLane="0" tl="53073250" linkIndex="8" dir="s" state="M"/>

Stage 2: Connection-to-Direction Mapping

> Signal timing rule in SUMO

- Numbered in a clockwise pattern starting from 0 to 12 o'clock
- Pedestrian phases is specified after vehicle phases

Stage 2: Connection-to-Direction Mapping

Stage 3: Signal Phase Mapping

> Ring barrier control

Stage 3: Signal Phase Mapping Signal timing setting in Synchro

🔶 🗁 🖽 🛱 🖕 🦘	e =		Synchro 1	10 - C:\Use	ers\dell\Desktop	o∖Traffic	ignal\Bigger	r_Seattle.syn	æ _ æ
File Home Opti	ons Transfer	Optimize Reports Help							
Map View	: ⊭ ¥ब्ब् : @ Q Q Q	View Ports Unane Settin	Volume Settings	Timing Settings		nrrier	*	HCM 6th Ed ↓ Int. Results → ↓ Mvmt Results → ↑ Mvmt Results → ↑ Mvmt Results → ↑ Mvmt Results → ↑ Mvmt Results →	ults *
Mapping	Ta Zoom	View Options Lan	es & Volumes		Signal Timing		Detection	HCM 6th Edition HCM 2010	Simulation Display Results
< 📰 \varTheta 🔶 🔶 🗙								164 Western Ave	re & Western Ave W/Denny Way
NODE SETTINGS		TIMING SETTINGS	EBT EBR WBL	← WBT	NWL NWB	A PED	HOLD		
de #	164	Lanes and Sharing (#RL)	≜ ↑⊅	<u>†††</u>	ሻሻሻ	-	-		
one:		Traffic Volume (vph)	1033 67 0) 993	284 0	—	—		
East (ft):	1264561	Future Volume (vph)	1033 67 0) 993	284 0	25	117		
North (ft):	229386	Turn Type			Prot —	—	—		
Elevation (ft):	0	Protected Phases	6 – –	9	m —		5		
escription	Ph9 = Ph2 w/ trailin	Permitted Phases			_	—	—		
ontrol Type	Pretimed	Permitted Flashing Yellow				—	_		
ycle Length (s):	140.0	Detector Phases	6	-	4 —	—	—		
ock Timings:		Switch Phase	0		0 —	—	_		
ptimize Cycle Length:	Optimize	Leading Detector (ft)	0	-	0 —	—	—		
ptimize Splits:	Optimize	Trailing Detector (ft)	0		0 —	-	_		
ctuated Cycle(s):	140.0	Minimum Initial (s)	1.0 — —		7.0 —	—	5.0		
atural Cycle(s):	90.0	Minimum Split (s)	23.0 — —		24.0 —	-	16.0		
ax v/c Ratio:	0.91	Total Split (s)	68.0 — —		50.0 —	—	22.0		
itersection Delay (s):	25.0	Yellow Time (s)	3.5 — —		3.5 —	-	3.5		
tersection LOS:	С	All-Red Time (s)	6.0 — —		1.0 —	—	6.0		
CU:	0.61	Lost Time Adjust (s)	0.0 0.0 0.0		0.0 0.0	-	-		
CULOS:	В	Lagging Phase?				—			
iffset (s):	50.0	Allow Lead/Lag Optimize?				—			
eferenced to:	TS2 - 1st Green	Recall Mode	Max — — 30 30 30		Max — 25 30	- 30	Max		
eference Phase: 165 Ø2 (R)	2+6 · FRT	Speed limit (mph)	<u> 30 30 3</u> 1	<u>1 30</u>	25 30	30	25	#164#165	
) s 164								50 s	
₩Ø6 (R) 3 s					22 s	Ø5			
164#165					22.5				
← → Ø9									
-99									

Stage 3: Signal Phase Mapping Signal setting in SUMO

```
<tllogic id="0" programID="my_program" offset="0" type="actuated"

<param key="max-gap" value="3.0"/>

<param key="detector-gap" value="2.0"/>

<param key="passing-time" value="2.0"/>

<param key="show-detectors" value="false"/>

<param key="show-detectors" value="false"/>

<param key="file" value="NULL"/>

<param key="freq" value="300"/>

<phase duration="31" minDur="5" maxDur="45" state="GrGr"/>

....

</tllogic>
```


Stage 3: Signal Phase Mapping

- > Find phase combination
- > Generate states for green phases
- > Generate Yellow/Red phases

Stage 4: Data Revision & Output

> Logging and Analysis

 Logs are generated detailing intersection IDs and causes of issues for further analysis.

> Validation and Quality Assurance

- Validation steps are integrated at each stage to ensure SUMO's signal phases align with those in Synchro.
- Checking conflict phases
- Discrepancies are identified, indicating possible misalignments.

> Manual Revisions

- Mismatched intersections necessitate manual revisions to correct misalignments.

Case Study: SUMO simulations in downtown Seattle Original network extracted from OSM

> Study region

- North: Mercer St
- South: Atlantic St
- West: Alaskan Way
- East: 12th Ave

> Available network feature

- Pedestrian lane
- Bus stop
- Link light rail
- TAZ

Case study

Diverse intersections in Downtown Seattle

Results

Synchro

Ø2 (R)	Øı	√ Ø3	> 04	
32 s	20 s	13 s	35 s	
↑ 05 ↓ 06 ()	٤)	← Ø8		▶ _{Ø7}
13 s 39 s		35 s		13 s

Phases								
dur	min	max	state	nxt	name			
5.00	5.00	8.50	rrrrgGGGrrrrrrrrGrrr	89	(D2,D5)			
5.00	5.00	8.50	rrrrrrrGrrrrrrGrrrr	10	(D1,D5)			
7.00	7.00	27.50	rrrrgGGrrrrrgGGrGrGr	11	(D2,D6)			
5.00	5.00	15.50	rrrrrrrrrgGGGrrGr	12	(D1,D6)			
5.00	5.00	8.50	gGGGrrrrrrrrrrrG	14 15	(D3,D8)			
7.00	7.00	30.50	gGGrrrrrgGGrrrrrGrG	16	(D4,D8)			
5.00	5.00	8.50	rrrGrrrrrrGrrrrrrr	17	(D3,D7)			
5.00	5.00	8.50	rrrrrrrgGGGrrrrrGrr	18	(D4,D7)			
3.50			rrrryyyGrrrrrrrryrrr	1	(D2,D5)-(D1,D5)-Y			
3.50			rrrrgGGyrrrrrrrGrrr	2	(D2,D5)-(D2,D6)-Y			
3.50			rrrrrrryrrrrrrGrrrr	3	(D1,D5)-(D1,D6)-Y			
3.50			rrrryyyrrrrrgGGryrGr	3	(D2,D6)-(D1,D6)-Y			
3.50			rrrrrrrrryyyyrryr	13	(D1,D6)-(D3,D8)-Y			
1.00			rrrrrrrrrrrrrrrr	4	(D1,D6)-(D3,D8)-R			
3.50			gGGyrrrrrrrrrrrG	5	(D3,D8)-(D4,D8)-Y			
3.50			yyyGrrrrrrrrrrry	6	(D3,D8)-(D3,D7)-Y			
3.50			yyyrrrrrgGGrrrrrGry	7	(D4,D8)-(D4,D7)-Y			
3.50			rrryrrrrrrGrrrrrrr	7	(D3,D7)-(D4,D7)-Y			
3.50			rrrrrrryyyyrrrrryrr	19	(D4,D7)-(D2,D5)-Y			
1.00			rrrrrrrrrrrrrrrrr	0	(D4, D7) - (D2, D5) -R			

Signal integration results

Scenario		Successful Converted Intersections	Success Rate
Dearborn Street Arterial	5	5	100%
Downtown Seattle	281	239	85.1%

168 TAZs 39286 edges

Simulation display

Intelligent Urban Transportation Systems

Conclusion & Future Step

> Conclusion

- Proposed four-stage approach and the integration Process
 Examined
- Developed a semi-automated pipeline in Python
- Tested on two Synchro models in downtown Seattle with an 85% success rate

> Future Step

- Framework Expansion
- Algorithmic Enhancements (for higher accuracy)
- Advanced Features (Coordinated signal control)
- Broader Integration Goals (not just traffic signal)

THANKS! QUESTIONS & COMMENTS?

Intelligent Urban Transportation Systems UNIVERSITY of WASHINGTON