
CTRG 2011

1

Development of an Interface between Signal

Controller and Traffic Simulator

 Ashutosh Bajpai Tom V Mathew

 Research Assistant Associate Professor

 Civil Engineering, IIT Bombay Civil Engineering, IIT Bombay

 Maharashtra, 400076 India Maharashtra, 400076 India

 +918828828496 +912225767349

 ashutosh.bajpai@iitb.ac.in vmtom@civil.iitb.ac.in

ABSTRACT: Adaptive Traffic Control algorithm is an important strategy to manage traffic at an intersection.

These are an improvement of vehicle actuated signal control, where explicitly strategies are formulated to

compute the signal timing considering the current traffic state obtained from sensors. However, field evaluation

of these strategies is cumbersome and expensive and hence simulators which model traffic system can be a good

alternative. The main challenge in this is a good interface between the signal control system and the traffic

simulators. The signal control system needs the state of the junction in terms of vehicle occupancy at every

instant. On the other hand, traffic simulator needs information on whether the signal state has changed. This two

way communication requires an efficient interface which is similar to client-server architecture. The simulator

acts as the server where as the adaptive control strategy act like client. This paper proposes an efficient interface

to couple adaptive control strategy and traffic simulator. This interface mediates between traffic control system

and traffic simulator and provides online interaction to simulation from the control strategy. This interface

facilitates pure procedural routines to communicate and is written in C language along with Python/C API.

Additionally, a module to estimate the vehicular delay due to the control strategy is developed. This delay is

estimated by defining effective length of queue, which is provided as a user input.

This interface is tested using SUMO (Simulation for Urban Mobility), which is an open source, microscopic,

space continuous and time discrete simulator developed by German Aerospace Centre. The traffic control

strategy is analogous to the HCM vehicle actuated traffic control except that there is a queue prediction model

which computes upper limits on the maximum green time. An isolated four arm junction having four phases is

simulated for various flow conditions. The simulator supplied the state of the downstream detector to the traffic

control algorithm at every simulation step and the control algorithm determines the signal time strategies (phase

termination, green extension, and maximum green time). These strategies are communicated to the simulator.

These communications were facilitated by the proposed interface. The average stopped delay is computed as the

performance parameter. The interface was also coupled with another traffic simulator (VISSIM) and the results

are compared. This interface justifies the concept of reusability by the evaluation of number of control strategy.

Key words: Traffic simulator, Signal controller, Procedural Interface, SUMO (Simulation of

Urban Mobility), VISSIM (Verkehr In Städten - SIMulationsmodell).

1. Introduction

Increasing traffic congestion is a source of time loss and expense to users and managers of

transportation systems. The transportation professionals and agencies are persistently

searching for ways to mitigate urban traffic congestion, while minimizing costs and

maintenance requirements. One of the effective ways of managing traffic is by using traffic

signals which separates conflicting movements and assigns time for these movements.

However, in urban areas, traffic signals limit the road capacity resulting in congestion.

Mitigating traffic congestion, therefore, relies heavily on an efficient and well-managed

traffic signal control system.

Most signal control systems determine signal timings for various time-of-day such as

morning and evening peak. Signal timing plans, however, are inflexible and do not change

during each of these time-of-day intervals and are hence called fixed-time plans. These

mailto:ashutosh.bajpai@iitb.ac.in
mailto:vmtom@civil.iitb.ac.in

CTRG 2011

2

operate with the fundamental assumption that volumes are stable and one cycle length

remains optimal throughout a design period. However, such volume stability is rare and

traffic usually builds to a peak and then gradually subsides during a period. This implies that

fixed time controller may operate optimally for a short interval when current volumes match

the design volumes and sub-optimally during other intervals.

To address the above limitation, vehicle actuated traffic controllers are being widely used

which respond to current traffic state obtained from vehicle sensors and various studies have

reported significant improvement in the performance [1, 6]. The main feature of all most all

actuated controllers is the ability to adjust the duration of the active phase in response to the

traffic flow. Green time for a phase is a function of the traffic flow and can be varied between

pre-specified minimum and maximum green times. Although they operate in real time, the

signal timing cannot be claimed as optimal. Adaptive traffic controllers are, therefore,

proposed to improve the performance of the vehicle actuated controller by computing the

timing based on the predicted traffic state. The traffic state can be predicated from the

upstream vehicle sensors for the current cycle or stop-line detection for next cycle.

Several algorithms proposed for adaptive traffic controller‟s claims superiority. Evaluation of

these control algorithms by implementing in the field is not feasible primarily because it

affect the existing users, sometimes adversely. However, simulators which model the traffic

system are a good alternative to field evaluation. The main challenge is to have a good

interface between the signal control system and the traffic simulators. The signal control

system needs the state of the junction in terms of vehicle occupancy at every instant. On the

other hand, the traffic simulator needs state of the signal, also at every instant. This two way

communication requires an efficient interface similar to client-server architecture. The traffic

simulator acts as the server where as the signal controller acts like a client.

There is several engineering software that require similar interfaces [3-4]. For instance,

asynchronous interface between ABAQUS and HEREZH++ is a good example of inter-

process communication [3]. This paper proposes an efficient interface to couple traffic

simulators and a signal controller. The remainder of the paper is structured as follows. First, a

brief overview of the signal control algorithm and the traffic simulators used in this study are

described. Then, the development and implementation aspects of the proposed interface are

elaborated. Finally, evaluation of the control strategy using the developed interface is

presented.

2. Signal Control

The signal control algorithm tries to reduce the average stopped delay of the vehicles queued

up due to the signal. It defines phase terminating conditions using minimum and maximum

green times and a threshold headway (gap between the vehicles). These minimum and

maximum bounds for green time for each phase are adjusted based on the state of the phase

in the immediate previous cycle and history of traffic data obtained from the past few cycles.

The algorithm monitors the performance at the end of each phase and, if required, re-sets the

green time bounds. In this strategy, prediction of queues is done by a linear regression model

which is used to set the green time bounds. This control strategy enables the system to adapt

to the stochastic and dynamic behaviour of traffic flow at the intersection [5]. Another

important motivation for the development of this algorithm is to address the challenges posed

by heterogeneous traffic. Heterogeneous traffic, observed in various cities of the developing

countries, is characterized by non-lane based movement and mixed vehicle type [2]. Various

attempts have been made to incorporate heterogeneous aspects [6]. The key features of this

CTRG 2011

3

system are downstream (stop-line) detection, variable loop size, logical grouping of phases,

and dummy phases [6].

3. Traffic Simulator

Traffic models are mainly based on analytical or simulation approaches. The analytical

models often use queuing theory, optimization theory or differential equations that can be

solved analytically to model the road traffic. Although these models are mathematically

sound, they often do not account variation of traffic system over time especially if the

geometry is complex. On the other hand, traffic simulation models are able to respond to

changes over time and use stochastic functions to reproduce the dynamics of a traffic system.

Traffic simulation has become a powerful and cost-efficient tool for investigating traffic

systems [7]. It can, for instance, be used for evaluation of different traffic management

strategies. Traffic simulators offer the possibility to experiment in a safe and non-disturbing

way with an existing or non-existing traffic system. Traffic simulation models are typically

classified according to the level of detail at which they represent the traffic stream. Three

categories are generally used, namely: Macroscopic, Mesoscopic and Microscopic.

Macroscopic models use a low level of detail, both regarding the representation of the traffic

stream and interactions. Mesoscopic models often represent the traffic stream at a rather high

level of detail, either by individual vehicles or packets of vehicles. Microscopic models

represent the traffic stream at a very high level of detail. They model individual vehicles and

the interaction between them. Micro models consist of several sub-models called as

behavioural models that handle specific interactions. The most essential behavioural model is

the car-following model, which handles the longitudinal interaction between two preceding

vehicles. Other important behavioural models include models for lane-changing, gap

acceptance, overtaking, ramp merging, and speed adaptation. The intersection modelling in a

simulator refers to the control and flow of each vehicle at an intersection. For intersection

modelling, a traffic simulator has two major blocks - a traffic simulation model and a signal

controller module. The simulator will represent the real world field condition of how the

vehicles move in a road network. The virtual detector placed in the simulated network will

give the vehicle arrival data to the signal control module. The signal control module in turn

receives all the data and computes the signal timings at specified time. These times are given

back to the traffic simulator to adjust its signal timing. Major building blocks of the simulator

include: vehicle representation, vehicle generation, mid-block model (vehicle following

model, lane changing, and vehicle movement), intersection model (signal system, turning

movement, and vehicle movement), detector simulator, and data extractors [5].

4. Interface between Signal Controller and Traffic simulator

A traffic simulator imitates the real behaviour and characteristics of the traffic pattern with

the amalgamation of different traffic models like car following model and lane changing

model. An interface allows a user to set traffic parameters for a specific control strategy as

well as retrieve the state of the signal.

Most of the issues pertaining to interface development such as design, security issues,

modularity, and easy-to-devise can be addressed by following client-server architecture.

Several software development life cycle issues need to be considered while designing the

interface which includes: reusability, modularity, abstraction, and fault tolerance. Proposed

interface cover most of these issues.

CTRG 2011

4

4.1 Interface architecture

 Traffic Network

Fig.1 Architecture of the interface which couples signal controller and traffic simulator

The interface provides communication between the two independent processes by granting

access to set and get states. In the current problem, traffic simulator grants access to the

signal controller to set the signal states and get the vehicle detector state. In this two-way

communication a user defined control strategy can pass and retrieve the information using the

procedural members of the interface.

Signal control algorithms needs flow, occupancy, and detector state to optimally allocate

green time. The retrieving procedures should facilitate extraction of such information from

traffic simulator in terms of detector output or signal state. On the other hand, signal control

algorithm sends some packets carrying information regarding phase timing or termination

condition and the interface should have procedures to set them. Stopped delay is the output

which is generated by interface by calling some procedures. The architecture of the interface

which couples signal controller and traffic simulator is shown in Fig 1.

4.2 Solutions for the interface communication

The interface which couples the signal controller and the traffic simulator should exchange

data rapidly. Inter process communication (IPC) provides a mechanism for exchanging data

between processes (either on the same or different networked computers) and enables

communication between applications even though they may be written in different languages

and for different operating systems. The problem associated with inter process

communication is handled by an efficient transaction control. This transaction control is

achieved by developing the system in half-duplex mode which allows only one way

communication in a given instant. In other words, if the signal control algorithm retrieves

data using the interface procedure, then it cannot simultaneously set any other traffic

parameters. The half-duplex mode also provides an efficient mechanism for collision control.

The solution to the communication problem between two different grammars is achieved by

python/C API. Python is a programming language that allows quick implementation and easy

integration. It also allows dual development approach; top down (procedural) and bottom up

(object oriented) approach.

 Signal Controller

Traffic Simulator

 Interface

 INPUT
Signal/flow

 Data

 OUTPUT
Network/De-

-tector Data

Delay

Module

CTRG 2011

5

4.3 Estimation of Intersection delay

Vehicular delay is one of the important parameter to evaluate the performance of the

signalized intersection. Highway Capacity Manual (TRB, 2000) is using delay as the

performance indicator to divide the level of service of a signalized intersection and the same

is used in estimating the optimum cycle length. The delay models proposed by HCM are

empirical in nature and gives aggregate delay values. However, accurate delay values can be

estimated from the simulator [6]. Such a delay measure will be useful in modelling and

evaluation of intersection models and traffic controls systems. Although the concept of delay

is simple, several issues arise while implementation. For example, apart from traffic signal,

delay may occur due to various factors including quality of progression, traffic volumes, and

intersection capacity. Here, we qualify the delay as stopped delay and defines the average

duration a vehicle stops at an intersection having traffic signal. Two issues arise here. First,

the effective length that needs to be considered upstream of the intersection for each approach

here it is user defined with default value of half of the lane length. It assumes that the signal

has effect only in this section. However, if this length is higher than the lane length, the later

is used. Second, often vehicles crawls near the intersection and considering absolute stopping

time may be unrealistic. Hence, the stop actually means vehicle moves at a crawling speed.

The user has to specify this speed and vehicle in the „effective length‟ have a speed lower

than the crawling speed would be considered as waiting. This algorithm is divided into three

procedures, namely EFFECTIVE LENGTH, DELAY_INTERSECTION, and GET DELAY.

4.3.1 Procedure: EFFECTIVE LENGTH

The first procedure is to compute the effective length of each lane considering user input.

Default value of effective length is half of the lane length in case of not defined. The

variables used in this procedure are given below.

1. user_Def_Len – variable containing value of lane length defined by user.

2. effective length – temporary variable containing value of effective length.

3. lanes_Length – containing value of length of lane.

The algorithm involves the calculation of effective length of a lane which is used in

calculation of intersection delay. It gets called from DELAY_INTERSECTION procedure.

Pseudo code for this procedure is given in Fig 2.

PROCEDURE: EFFECTIVE LENGTH (lanes_Length)

1: if Define user_Def_Len
 11: Initialize variable user_Def_Len

 12: if user_Def_Len >=: lanes_Length

 effective length =: lanes_Length
 else effective length =: user_Def_Len

2: if NotDefine user_Def_Len

 effective length =: lanes_Length /2
3: return effective length

Fig.2 Effective length algorithm in intersection delay calculation

4.3.2. Procedure: DELAY_INTERSECTION

Second procedure estimates the intersection delay for each junction defined by user.

Threshold speed is also the input to the procedure from user side else default value is 0.5

m/s
2
. This procedure also integrates the other two procedures. The variables used in this

procedure are given below.

1. junction_Id – variable containing the id‟s of all junctions in network.

2. user_Junction_Id – variable containing the ids of all junctions defined by user.

3. lanes_Id – used to contain the ids of lanes related to specific junction.

CTRG 2011

6

4. lanes_Length – accommodating the length of each lane.

5. eff_Len_Lanes_Id – hosting value of effective length for each lane

6. veh_Id – variable contains the ids of all vehicles in a selected lane.

7. pos_Veh_Id – variable hosts the position of each vehicle in a lane.

8. speed_Veh_Id – getting the speed of all vehicle which cleared position criteria.

9. counter_Lanes_Id – contain the total waiting step for a lane.

10. nof_Veh_Lanes_Id – hosts the total no of vehicle in each lane.

11. th_Speed – user defined.

This procedure is main link to call the algorithm to get intersection delay which

communicates with other two procedures. First it calls the EFFECTIVE_LENGTH procedure

then calculates the delay on each lane individually and then transfers the call to

GET_DELAY procedure to get intersection delay. It also generates the network level delay.

Pseudo code for this procedure is given in Fig 3.

PROCEDURE: DELAY_INTERSECTION (simulation)

1: Initialize variable junction_Id
2: Initialize variable user_Junction_Id and th_Speed

2: for j  1 to Len (junction_Id)

 21: for k  1 to Len (user_Junction_Id)
 211: if (junction_Id[j] = =: user_Junction_Id[k])

 Initialize lanes_Id[k]

 212: for i 1 to Len (lanes_Id[k])
 Initialize lanes_Length[k][i]

3: for each Cycle

 31: for each lanes_Id
 eff_Len_Lanes_Id =: effectiveLength (lanes_Length)

4: for each simulation step

 41: for k  1 to Len (user_Junction_Id)
 411: for j  1 to Len (lanes_Id[k])

 Initialize veh_Id[k][j]

 4111: for i  1 to Len (veh_Id[k][j])
 Initialize pos_Veh_Id[k][j]

 41111: If pos_Veh_Id[k][j] >=: eff_Len_Lanes_Id[k][j]

 Initialize speed_Veh_Id
 Step 411111: If speed_Veh_Id < th_Speed

 counter_Lanes_Id[k][j] ++

5: Initialize nof_Veh_Lanes_Id for each lane
6: getDelay (nof_Veh_Lanes_Id, counter_Lanes_Id)

Fig.3 Delay intersection algorithm in intersection delay calculation

4.3.3 Procedure: GET DELAY

Third and last part of the algorithm is responsible to generate the weighted some of the lanes

delay and find out the intersection delay. The variables used in this procedure are given

below.

 Fig.4 Get delay algorithm in intersection delay calculation

1. d_Lanes_Id – having value of delay for each lane.

2. td_Junction_Id – temporary variable using for weighted sum.

3. tnof_Veh_Lanes_Id – temporary variable containing value of total no of vehicle

passed from a junction.

PROCEDURE: GET DELAY (nof_Veh_Lanes_Id, counter_Lanes_Id)

1: for k  1 to Len (user_Junction_Id)

 11: for j  1 to Len (lanes_Id[k])
 d_Lanes_Id [k][j] =: counter_Lanes_Id [k][j] / nof_Veh_Lanes_Id[k][j]

 12: for j  1 to Len (lanes_Id[k])

 td_Junction_Id[k] =: td_Junction_Id + d_Lanes_Id [k][j] * nof_Veh_Lanes_Id[k][j]
 tnof_Veh_Lanes_Id[k] =: tnof_Veh_Lanes_Id + nof_Veh_Lanes_Id[k][j]

 13: d_Junction_Id[k] =: td_Junction_Id[k] / tnof_Veh_Lanes_Id[k]

2: return d_Junction_Id

CTRG 2011

7

4. d_Junction_Id – having value of delay for each junction.

This procedure gets called from the DELAY_INTERSECTION and computes the weighted

sum of the lanes delay in order to compute intersection delay. Pseudo code for this procedure

is given in Fig 4.

5. Implementation of the Interface

Proposed interface is implemented for SUMO traffic simulators. SUMO is an open source

traffic simulator [9] and Python/C API is used to develop the interface. The implementation

framework is shown in Fig 5. Python/C API provides an efficient way to integrate two

different grammars [10]. The API is used to design the interface because it can handle both

procedural and non-procedural client.

Other implementation issues are: software optimization, fault tolerance, and credibility.

Optimization is achieved by modular design at the macro as well as unit level. Exception

handling is done for each procedure of the interface so that at the event of any instruction

failure user will get complete information on error. Although the system does not have

automated fault tolerance capability, static fault tolerance is well achieved by exception

handling. Credibility of the system is ensured by the use of only open source Python/C API

and not using any third party software. Whole implementation is divided into modules which

facilitate further amendments.

This interface is one of the good examples of abstraction where the only essential information

is passed to the end user. Most of the end users of the interface are traffic professionals and

hence interface is abstracted. This interface provides the abstracted members or procedures to

send or retrieve data from client application. On the other hand, the implementation also

ensures reusability and can be used by both client language C and C++ [11] and can be used

with java with some further modification. The approach of using procedural members has

been an efficient technique in software development over the years.

 Fig5. Interface Architecture for coupling Signal Controller and SUMO

The architecture of the proposed interface is independent of the traffic simulator. Signal

control code file is the root file which transfers the control to the interface file depending on

which simulator is used for the evaluation. There is separate interface file to handle all the

control for traffic simulator. File hierarchy is very easy to use and designed in order to be

simpler for the end user. For instance, SC.CPP is the main file containing signal control

algorithm. SUMOinterface.h is the implementation file for SUMO traffic simulator which

uses the Python/C API. TraCI is the default interface in python provided by SUMO (Fig 5).

 Signal Controller

 SUMO

 TraCI

 INTERFACE

 Delay

CTRG 2011

8

Stopped delay algorithm is written in separate module using python in sense to achieve

modularity and by some procedures of interface access is allowed.

5.1 Implementation of interface on SUMO traffic simulator

In order to implement the interface for coupling adaptive traffic control strategy and traffic

simulator an open source, efficient traffic simulator SUMO [12] is used as the one platform.

TraCI [13] is the short form for "Traffic Control Interface" in SUMO. The basic idea behind

is to give access to a running traffic simulation. TraCI uses a TCP based client/server

architecture to provide access to SUMO. Thereby, SUMO acts as server that is started with

additional command-line options. After starting SUMO, a client connects to SUMO by

setting up a TCP connection to the appointed SUMO port. The client application sends

commands to SUMO to control the simulation run, to influence single vehicle's behaviour or

to ask for environmental details. SUMO answers with a status-response to each command and

additional results depend on the given command. A TCP message acts as container for a list

of commands or results. Each TCP message consists of a small header that gives the overall

message size and a set of commands that are put behind it. The length and identifier of each

command is placed in front of the command. TraCI provides the front-end designed on

python commands. In the proposed interface, responses from server are python based, but

client code for this implementation of interface can be object oriented (C++) or procedural

(C) (Fig. 3). This communication between two different grammars is achieved by inter

process communication designed by Python/C API. This interface is also a good example of

application of python/C API, provided by python community and it is open source.

File hierarchy

While coupling the adaptive control strategy and traffic simulator, one of the important issues

is management of files. SUMO contains number of files to run the traffic simulation. Some of

the important files required for GUI interface and TraCI are discussed here. Later some

description of interface files and how to use those files is presented. The complete file

hierarchy is divided in to three modules (Fig. 6). First, to run the traffic simulator SUMO the

four basic steps related to file structure are Build your network, Build the demand, Dynamic

user assignment and perform the simulation.

Fig6. File hierarchy for coupling Signal Controller and SUMO

Second hierarchy defines the file structure of TraCI for making online interaction with

simulation. Two important files associated with it are TraCI control and TraCI constants.

These are front end files for TraCI software.

The third and last hierarchy defines the file structure of interface. SC.CPP is the main file

containing the core signal control. From this file, a user can call the various procedures of

 TraCI

Traci CONSTANT TraCI CONTROL

 SUMO

 SUMO ROUTE SUMO NET

 SUMO CFG

 SC

SUMOINTERFACE.H

 INTERFACE.PY

Delay.Py

CTRG 2011

9

interface to link with traffic simulator. The core files associated with interface

implementation are header file SUMOINTERFACE.H, python script Delay.py and python

file INTERFACE.py. The later is used to define SUMO related traffic parameters setting and

facilitates user to modify according to their requirements. Delay.py is the implementation of

Stopped delay algorithm which is written in a separate module. SUMOINTERFACE.H is the

main file which implements the python/C interfacing using python/C API. This file can be

directly associated with any control file written in C or C++. Transferring the control from

one file to other file in the given file hierarchy by invoking a single procedure is shown in the

pseudo code below.

 //pseudo Code for single procedure

1. SUMO("init",0)
2. If Def SUMOinterface.h else goto 6
3. If Def ATCS.py else goto 5
4. def initialize_SUMO()
5. ATCS.py not found goto 7
6. SUMOinterface.h not found
7. exit

5.2 Members of Interface

An interface is the pool of carriers which proceeds to send or retrieve data from one process

to the other. In the current development, there are a number of procedures implemented to

set or get traffic parameters value and the most important aspect of the interface is the

member‟s prototype is user friendly. Here we are discussing only few members and their

prototype.

Procedure Simulation_Init:

This member of the interface is a must as it initiates the SUMO object of GUI. If SUMO is

already in OS environment, then it links the path to that SUMO object. Otherwise it creates a

new SUMO object. Description of the path of SUMO configuration related files can be

modified in INTERFACE.py file.

 //Procedure Prototype

//Procedure Prototype

SUMO("init",0);

Procedure Single_Step:

The member Single_Step executes the SUMO for a single step. In SUMO the minimum step

size (state updating interval) is 1 second. So this procedure must be called for a number of

times when user wants to run SUMO.

//Procedure Prototype

SUMO("run_step1",0);

Procedure Assign_Green:

This member of the interface is responsible to set data on traffic lights. It assigns the green

signal to the phase plan define by the user in INTERFACE.py for SUMO.

//Procedure Prototype

SUMO("a_green",Variable);

CTRG 2011

10

6. Evaluation of a Control Strategy by the Developed Interface

The quality and the reliability of the proposed interface are assessed by an evaluation of a

signal controller algorithm by several test cases. In order to investigate the effect and

validation of information transfer on the simulation run times, these tests go through a

comparison based testing. This control strategy is evaluated on two different simulation

models. The first one is performed on SUMO traffic simulator by the proposed interface and

compared with the other test case performed on other traffic simulator VISSIM [8]. The

evaluation of control strategy is based on the intersection delay generated by the traffic

simulator, an average waiting time of a vehicle at an intersection due to signal control. Steps

adopted to test this interface are listed below:

(a) Traffic composition and characteristics

In this evaluation traffic composition and characteristics is used from a previous study [14].

Composition of mixed vehicle and the characteristics of different vehicles are shown in the

Table 1:
 Table 1 Traffic Characteristics and composition

 (b) Network preparation for traffic simulator

 Table 2 Network Characteristics

 Fig.7 Isolated junction

For the evaluation of the control strategy for a traffic junction requires a network file, which

is the input for the traffic simulator. The syntax of the network file is specific to the simulator

and usually tools provided by these simulators can convert external formats to their native

ones. The network configuration is as shown in the Table 2. Geometry of network is shown in

Fig 7.

Vehicle type Length

(m)

Width

(m)

Desired

Speed

(km/h)

Acceleration

(m/s
2
)

Deceleration

(m/s
2
)

Composition

(%)

Truck 10.21 2.50 20 0.80 0.60 1.60

Bus 11.54 2.50 20 0.80 0.60 3.80

LCV 06.10 2.20 25 0.70 0.60 0.90

Car/jeep 04.40 1.50 30 1.20 1.00 20.6

Three-wheeler 03.20 1.40 25 0.90 0.80 22.0

Two-wheeler 01.80 0.50 40 1.70 1.20 43.0

Rickshaw 02.70 0.95 15 0.20 0.20 5.00

Bicycle 01.90 0.45 05 0.30 0.30 3.00

No of intersection 1

No of incoming edges 4

No of outgoing edges 4

No of lanes in incoming edge 3

No of lanes in outgoing edge 1

Length of lane 500 m

Maximum speed on lane 13.9 m/sec

CTRG 2011

11

(c) Performing the simulation

Simulation is performed for 3600 seconds with different vehicular flows. At the start of

simulation, an instance of SUMO/VISSIM is invoked by the control strategy through the

procedural member “simulation_init” of the interface. Then, based on certain conditions

specified by the control strategy the simulation is performed. Other members of the interface

will be called from signal controller to execute the control strategy in simulator.

(d) Comparison of delay produced by SUMO and VISSIM

The traffic simulator is calibrated before using which ensure the simulator give the field

values. The performance parameter used for the evaluation is the average stopped delay per

cycle per vehicle. Delay values obtained from the SUMO is comparable to delay obtained

from VISSIM. The comparison results are tabulated in Table 3 and are also shown in Fig 8.

Both simulators gave comparable results for all the flow conditions tested. However, lower

flow values gave relatively higher error.
 Table 3 Comparison of Delay

Fig 8: Comparison of delay obtained by SUMO and VISSIM

7. Conclusion

This paper proposes an efficient interface to couple traffic simulator and signal controller

which facilitates real-time communication through pure procedural routines written in C and

Python/C API. This interface is tested using SUMO (an open source simulator) and compared

with other traffic simulator VISSIM (a proprietary simulator). The proposed interface enables

signal control algorithm developers to evaluate their strategies by SUMO traffic simulator

easily and effectively. The prototypes of different members for a traffic simulator are same

which shows a efficient user friendly environment. The traffic control algorithm is analogous

to a simple vehicle actuated traffic control except for a queue prediction model to compute

maximum green time for each signal phase. To evaluate the proposed interface, an isolated

four arm junction having four phases is tested for various flow conditions. Average stopped

delay per vehicle is used as the parameter to evaluate the signal control algorithm. Testing

results for various traffic flow conditions yielded analogous delay values indicating

robustness of the interface. Evaluation of signal control strategy by two different traffic

simulators also demonstrates reliability, modularity and accuracy of interface. The proposed

interface also established the feasibility of integration of various traffic simulators on a

common platform in future. The proposed interface needs to be generalized by testing several

other commercially available simulators to provide a common platform. Further, the library

provides by this interface can be enhanced by adding modules for new members. Finally, this

interface can be evolved as a standard protocol for traffic simulators and signal controllers.

0

20

40

60

80

0 500 1000 1500

A
ve

ra
g

e
d

el
a

y
(s

ec
o

n
d

s/
ve

h
ic

le
)

Flow (vehicles/hour)

SUMO

VISSIM

Flow

(vehicle/hr)

Average delay (sec/vehicle)

SUMO VISSIM

200 20 26

400 30 38

600 50 49

800 59 53

1000 58 56

1200 69 72

CTRG 2011

12

Reference

1. J. N. Darroch, G.F. Newell and R.W.J. Morris. Queues for a Vehicle-actuated Traffic

Light. Operations Research, 1964, 12(6) 882-895.

2. Muralidharan, V. Ravikumar, P. Bonala, S. Tagore, M. R. A composite signal control

strategy for Indian roads, Indian Highways, 2006, 34(8), 21-34.

3. Rio, G., Laurent, H. & Bles, G. Asynchronous interface between a finite element

commercial software ABAQUS and an academic research code HEREZH. Advances in

Engineering Software, 2008, 39, 1010-1022.

4. G. Linden and A. I. Verkamo. 1995. An interface between different software development

environments. In Proceedings of The 10th Knowledge-Based Software Engineering

Conference (KBSE '95). IEEE Computer Society, Washington, DC, USA, 79-..

5. Nalge, M. Nair, R. Kancharla, C. Mathew, T. V. Rangaraj, N. Real-Time Adaptive Control

Policy for Intersection with Downstream Detection, 18th World congress on Intelligent

Transport Systems, Orlando, USA. 2011.

6. Ravikumar, P., Mathew. T. V, Vehicle Actuated Signal Controller for Heterogeneous

Traffic Having Limited Lane Discipline, ITE Journal, 81(5), 44-53, 2011

7. Shiraishi, T., Hanabusa, H., Kuwahara, M., Chung, E., Tanaka, S., Ueno, H., Ohba Y.,

Furukawa M., Honda, K., Maruoak, K., Yamamoto T. . Development of a Microscopic

Traffic Simulation Model for Interactive Traffic Environment, In Proceedings 12th ITS

World Congress. 2004

8. VISSIM User manual. User Manual, PTV AG 2008. http://www.ptvamerica.com/support

/library.

9. Krajzewicz, D., Hertkorn, G., Rössel, C. and Wagner, P.. Sumo (simulation of urban

mobility); an open-source traffic simulation. In Proceedings of the 4th Middle East

Symposium on Simulation and Modelling (MESM2002), 2002, pages 183–187.

10. Python/C API Reference Manual. Python v2.7.2 documentation. http://docs.python.org

/c-api.

11. Strousstrup, B. The C++ Programming Language. Mass: Addison-wisely; 1986.

12. Krajzewicz, Daniel, Elmar Brockfeld, Jürgen Mikat, Julia Ringel, Christian Rössel,

Wolfram Tuchscheerer, Peter Wagner and Richard Wösler. Simulation of modern Traffic

Lights Control Systems using the open source Traffic Simulation SUMO. Proc. 3rd Industrial

Simulation Conf. 2005; Berlin, Germany.

13. Wegener, A. et al. TraCI: An Interface for Coupling Road Traffic and Network

Simulators. In Proc. of the 11th Communications and Networking Simulation Symposium

2008, CNS‟08.

14. Mathew, T. V., Radhakrishnan, P. Calibration of Microsimulation Models for Non-lane-

Based Heterogeneous Traffic at Signalized Intersections, Journal of Urban Planning and

Development, ASCE, 2010, 136, 59

http://www.ptvamerica.com/
http://docs.python.org/

CTRG 2011

13

Biographies

Ashutosh Bajpai: Mr. Ashutosh Bajpai is working as a Research Assistant at Dean R&D,

IIT Bombay. He has achieved his bachelor‟s in computer science and engineering with

honours from Rajeev Gandhi Technical University, MP (India) by 2010. He is currently

involved in ITS project entitled „Second Generation Area Traffic Control System (CoSiCoSt-

2G)‟ funded by DIT, under the supervision of Prof. Tom V Mathew. He is also one of the

open source contributors for German based traffic simulator named SUMO. His research

interests include traffic simulation, adaptive signal controllers, quantum computing and

algorithm designing.

Tom V Mathew: Dr. Tom V. Mathew is working as an Associate Professor of the

Department of Civil engineering, IIT Mumbai (India), and specialized in Transpiration

Systems Engineering. Dr. Mathew completed the master of technology in transportation

engineering from Indian Institute of Technology Madras, Chennai in 1993. In 1999 he

finished the doctorate in Civil Engineering, from the same institute. His doctoral research was

on 'bus transit route network design using genetic algorithm'. His research interests include

transportation network design, traffic flow modelling, evaluation of the impacts of

transportation systems, and applications of genetic algorithm, artificial neural networks, and

cellular automaton in transportation.

