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Chapter
One

Introduction

Of all federal states of Germany, Nordrhein-Westfalen (NRW) has the highest popula-
tion and harbors one of Germany’s major conurbations, the Ruhrgebiet. Both the high
population density and the high concentration of heavy industry result in a high demand
for transportation of goods and people. Further, with Europe getting a single market, the
amount of transit traffic through NRW has increased a lot due to NRW’s situation at the
western border of Germany.

For these reasons, it is not surprising that NRW has a lot of problems related to traffic.
From 1980 to 1992, the amount of goods carried on the roads of NRW has increased
by 50% (c.f. [63]). During the same time, the passenger kilometers traveled on NRW’s
roads increased by about 15%. Already today the growing demand for transportation
often exceeds the capacity of the transportation networks, and the prognoses ([63], [13])
indicate that the demand for transportation of both goods and people will rise further in
the next years.

Due to a growing environmental awareness and the large density of population in
NRW, the increased demand for transportation cannot be handled by simply building new
infrastructure. Further, people have become less willing to accept the negative impacts of
traffic, like noise, pollution, and accidents. Therefore, the political decision makers are
looking for new strategies to manage the increased demand for transportation.

Traffic networks are complex, and Braess’s paradox (see sections 2.2.6 and 5.1) is
only one example of how the results of a simple measure — like building a new road —
might be counter-intuitive and, still worse, counter-productive. In the last years, faster
computers and improved traffic simulation models have made real-time simulations of
large networks, like the whole German freeway network, feasible. Such simulations might
help decision makers to assess the effects of different available options. However, until
now such fast traffic simulation models running on high performance computers are not
used in ‘real world’ applications.

To support the development of new traffic simulation models and to promote the ap-
plication of these models, in 1995 the Ministerium für Wissenschaft und Forschung1

of NRW founded the ‘Forschungsverbund Verkehrssimulation und Umweltwirkungen’
(FVU)2, consisting of twelve institutes working on different aspects of the simulation of

1Ministry of Science and Research
2Research Cooperative for the Simulation of Traffic and Environmental Impacts
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Figure 1.1 ‘Flowchart’ of the FVU. Figure taken from [2] by courtesy of P.
Wagner. Tasks to be performed by the traffic simulation group at the ZPR are
shaded in grey.

transportation systems, ranging from macro-economical demand models to models of the
environmental impacts of traffic. A schematic overview of the FVU is given in Figure
1.1.

Our group at the Center for Parallel Computing (ZPR) of the University of Cologne
— and later also at the German Aerospace Center — participated in the FVU from the
beginning, contributing the traffic simulation models which were the result of the work
of K. Nagel [65, 69], M. Rickert [78], and S. Krauß [51]. Using these models, the task
of the ZPR was to perform microscopic, i.e. vehicle oriented, simulations of traffic in
large street networks and to compute traffic flows, travel times and emissions with a high
time-resolution.

To do these microscopic simulations, detailed input data are needed: the trips through
the network, i.e. a set of drivers together with their departure times and their routes. To
provide these input data, a model for the demand for transportation and a model for the
route choice behavior is needed. Modeling the demand for transportation with a high
time-resolution is a complex task, and a major part of the FVU (see figure 1.1) was con-
cerned with providing these data.

The modeling of route choice, however, cannot be done independently from the sim-
ulation since route choice depends on the travel times, which are a result of the simu-
lation. Therefore, our group not only had to do the simulation, but also had to model
route choice. The accepted model for route choice is Wardrop’s first principle [89]: Every
driver chooses a route for which the cost (usually the travel time) is minimal. The state in
which every route choice satisfies this condition is called the user equilibrium.

The demand for transportation is usually provided by means of an origin-destination
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matrix (ODM) which contains the demand, i.e. the number of trips per time unit, for each
pair of origins and destinations. The problem of calculating the user equilibrium route
choices is called the traffic assignment problem, which we will discuss in chapter 2. It
is still common practice to simplify this problem by neglecting the time-dependence of
the ODM and solve a static traffic assignment problem assuming some time-independent
relationship between traffic flow and travel time. We will see in chapter 2 that this simpli-
fication drastically reduces the complexity of the traffic assignment problem.

In reality, however, the ODM is time dependent. During the rush hours the demand
often exceeds the capacity of a road network leading to the buildup of traffic jams. Thus,
the travel time depends on the history of the system, i.e. the current lengths of the traffic
jams. Since the aim of the FVU is to provide a simulation model with a high time-
resolution, this time-dependence cannot be neglected when calculating the route choices.

Several authors have proposed models for the dynamic user equilibrium problem
based on mathematical programming methods (see section 2.3). The task of solving these
models is referred to as dynamic traffic assignment. However, as we will see later, even
using state-of-the-art computers these models cannot be solved for large networks with
several thousand nodes and OD-pairs like the network of Wuppertal (see appendix C.3),
which was the main object of study by the FVU.

A pragmatic way to find the time-dependent user equilibrium is by an iterative simu-
lation: Choose some initial routes assuming zero traffic. Now calculate the network load
and the travel times by simulation and update the route choices of the drivers. Iterate this
process until the travel times are stationary, i.e. a fixed point of the iteration is found.
As we will discuss in chapter 4, this approach has several problems. For example, it is
easy to construct situations where this simple approach does not converge and the equi-
librium is unstable. One major objective of this thesis is to develop a modification of this
approach which can be shown to be stable empirically and — in simple cases — theoreti-
cally. Since the approach is still based on iterative simulations, we call it simulation-based
traffic assignment.

Another problem of such an iterative algorithm is performance. Even with a fast traffic
simulation model like the Nagel-Schreckenberg model, doing multiple simulations of the
traffic of one day in Wuppertal is still computationally expensive. In chapter 3.4 we will
describe a queuing model which neglects the interactions between individual vehicles.
Instead, each link is only described by its capacity, its length, and the number of vehicles
which fit into the link. The travel time of vehicles is described as a sum of the free-flow
travel time and the time spent waiting in the queue which will build up if the number
of cars entering the link exceeds the capacity of the link. Despite its simplicity, this
queuing model is capable of giving good estimates of the travel times in both the Nagel-
Schreckenberg model and the Krauß model while needing much less computing time.
Therefore, it is ideally suited for the simulation-based traffic assignment algorithm.

Using this simulation model, we were able to calculate the dynamic user equilibrium
route choices for the Wuppertal network, providing the input data for the microscopic
simulation of Wuppertal and enabling us to provide the data needed by the groups eval-
uating the environmental effects of traffic. Using the queuing model mentioned above,
this task — 40 iterations of the simulation-based assignment model — took 300 hours of
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CPU time on a UltraSPARC-II processor with a clock rate of 366MHz. While this is a
large amount of computing time, we will see that a single iteration of the Frank-Wolfe
algorithm to solve a dynamic user equilibrium model for Wuppertal would have taken
more than 5 years of CPU time on the same machine, i.e. we would simply not have been
able to perform a dynamic user equilibrium assignment using such a model to provide the
data needed for our task within the FVU.



Chapter
Two

Traffic Assignment

The problem of calculating route choices for a set of drivers is closely related to the traffic
assignment problem which is described in this chapter. The focus of traffic assignment
is more on the mathematical description of route choice than on a realistic description
of traffic flow, and it provides fundamental concepts like Wardrop’s principles of route
choice.

Unfortunately, we will see that the more realistic dynamic assignment models are too
complex to be solved for large urban networks, and thus not suitable for our purpose.

2.1 Introduction
To calculate the route choices in a traffic simulation model, we do not only need an origin-
destination (O-D) matrix but also need information on the travel times in the network. On
the other hand, these travel times will depend on the route choices. Therefore, we have to
determine a set of route choices which is self-consistent, i.e. consistent with the resulting
travel times. In fact, even the O-D matrix has to be chosen in a self-consistent way since
in a certain sense it is a function of the travel times: If a commuter cannot get to his job
in reasonable time, he might move closer to his job.

Let us formulate the problem of finding self-consistent route choices by viewing a
traffic simulation model as a function

S : R→ T
r �→ τ

describing the dependence of the travel times τ ∈ T on a set r of route choices chosen
from the set R of all possible route choices. For most types of simulation models, R
would be the set of all maps from the set of drivers to the set of pathsP in the network, and
T would be the set of all maps from the set of all pairs consisting of a path in the network
and a departure time to the corresponding travel time in the simulation, i.e. T = RP×[0,T]

≥0 ,
where [0, T] is the time interval which is simulated.

On the other hand, a route choice model can be viewed as a function

C : T → R
τ �→ r
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describing the dependency of the route choices r on the the travel times τ .
A set of route choices r ∈ R is self-consistent if

r = C (S(r)) . (2.1)

If S is not given by a simulation model but by a link cost function, i.e. an analytical
dependence of the link travel time on the link flow, the problem of determining self-
consistent route choices is usually called traffic assignment problem since it can be viewed
as assigning the OD matrix onto the network.

This section discusses basic definitions related to traffic assignment. An overview of
the recent development in traffic assignment can be found in [91, 77, 71].

2.1.1 Route Choice Models and Equilibria

There are two fundamentally different classes of route choice models. In one class, some
global authority can choose the route of every driver. In this case, the usual assumption
is that this authority tries to optimize some global cost function, e.g. the sum of all travel
times. Traffic assignment with such a route choice model is called system optimal traffic
assignment.

In the other class, all drivers choose their route individually, and the assumption is that
each individual tries to optimize his own travel time. The resulting route choices satisfy a
condition which is known as Wardrop’s first principle [89]:

All used routes [for a fixed origin-destination pair] have equal costs and no
unused route has a lower cost.

This case is referred to as user equilibrium traffic assignment because the resulting net-
work state can be viewed as an equilibrium since nobody can improve his travel time by
unilaterally changing his route1.

Of course, in this case one silently assumes that each individual has a perfect knowl-
edge of the network state. In the case of commuter traffic, where the traffic demand and
hence the network state is more or less the same every day, this assumption is more or
less satisfied. Further, a perfect rational and uniform behavior is assumed.

The latter assumptions can be relaxed by making a distinction between the actual
travel time and the travel time perceived by the individual. The perceived travel times are
described as random variables distributed across the travelers. The equilibrium where no
traveler believes he can improve his travel time by unilaterally changing routes is called
the stochastic user equilibrium.

2.1.2 Static and Dynamic Assignment

If the origin destination matrix and the link flows are assumed to be time independent, the
problem is known as static assignment. If, on the other hand, the time dependence is taken

1Strictly speaking, this is only true for separable cost functions. See chapter 3 of [71] for a discussion
of the mathematical subtleties.
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into account, one speaks of dynamic assignment. We will see that dynamic assignment is
much more complex – both computationally and conceptually – than static assignment.

Of course, the link flows are never time independent, but for the discussion of, for
example, a peak period, static assignment may be a good approximation, describing a
‘stationary limit’ of the traffic flow pattern which would evolve if the duration of the peak
period would be infinite.

It should be noted, however, that for congested networks this ‘stationary limit’ is not
realistic. Since the outflow from a link cannot exceed the capacity of the link, an inflow
greater than the capacity of a link results in a queue building up on the link. This queue
will grow as long as the inflow on the link exceeds the capacity. If we assume that the
flow is stationary, the length of the queue must be infinite, which is not only unrealistic,
but also gives an infinite travel time. Therefore, in the stationary limit the route choice
model would not exceed the capacity of a link.

However, in reality the inflow on a link might exceed the capacity of the link during
the rush hour, because the travel time on the shortest but jammed route might be still less
than the travel time on the second shortest route. This is one of the reasons why civil
engineers usually use a link cost function which remains finite above the capacity for
static assignment applications. Nevertheless, the situation in a congested network cannot
be described in a satisfactory way by a static approach.

Another major shortcoming of static network models is the fact that a travel demand
results in a flow which allocates capacity on the whole route. Therefore, flows on routes
sharing a common arc of the network always interact, while in reality drivers on different
routes might use a link at different times, especially in large networks like the German
highway network.

2.2 Static Assignment

Despite its shortcomings, static assignment is still widely used by civil engineers for
planning purposes. It is therefore worthwhile to discuss the basics of static assignment
before we introduce the dynamic assignment models. It is also easier to understand some
of the concepts of dynamic assignment if one is familiar with their static counterparts.

2.2.1 Network Representation and Notation

We represent a traffic network by a directed graph2 G = (N ,A) with nodes N and arcs
A. Let O ⊂ N and D ⊂ N denote origin and destination nodes, respectively. Let xa

denote the flow of vehicles on link a. We assume that the costs of traveling on link a
can be expressed by a function τa(xa). As mentioned before, this assumption of static
traffic assignment may not hold in real traffic networks due to effects like queuing and
spill-back.

2In some cases it is more convenient to use a line-graph representation of the traffic network, since in
this representation turning restrictions can be included easily.



8 Chapter 2 Traffic Assignment

For each pair (r, s) ∈ O×D the set of paths from r to s is denoted as Prs and the travel
demand from r to s as drs. Further, the flow on path p ∈ Prs is denoted as f rs

p , the costs of
traveling on p as τ rs

p . For each link a ∈ A and each path p ∈ Prs let

δrs
a,p =

{
1 if a ∈ p
0 if a �∈ p

.

Using δrs
a,p, we can express the link based variables by the path based and vice versa:

τ rs
p =
∑
a∈A
τa(xa)δrs

a,p ∀p ∈ Prs ∀(r, s) ∈ O ×D (2.2)

xa =
∑

(r,s)∈O×D
p∈Prs

f rs
p δ

rs
a,p ∀a ∈ A. (2.3)

In what follows, we will often use a simplified notation, for example we will refrain
from stating the sets in sums and quantors explicitly whenever these sets can be inferred
from the context.

2.2.2 Problem Formulation: User Equilibrium

With the notation introduced in the preceding section, the user equilibrium traffic assign-
ment problem can be stated as follows:
For all (r, s) ∈ O ×D, find f rs

p satisfying∑
p∈Prs

f rs
p = drs ∀r, s (2.4a)

f rs
p ≥ 0 ∀p, r, s (2.4b)

f rs
p ·
(
τ rs

p − min
q∈Prs

τ rs
q

)
= 0 ∀p, r, s. (2.4c)

Note that equation (2.4c) is just a concise formulation of Wardrop’s first principle
stating that only paths with minimal costs have a nonzero flow assigned to them.

To get a solution algorithm, a formulation of (2.4) as an optimization problem would
be more convenient. Since the set of feasible assignments f rs

p is a convex polyhedron
and the link cost functions τa are usually assumed to be convex (see section 2.2.5), a
formulation as an optimization problem should be helpful as convex optimization is a
well-studied problem.

In fact, Beckmann[4] has given an equivalent formulation of (2.4) as a minimization
program:

min z(x) =
∑
a∈A

∫ xa

0
τa(x)dx (2.5a)
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subject to ∑
r,s

∑
p∈Prs

f rs
p δ

rs
a,p = xa ∀a (2.5b)∑

p∈Prs

f rs
p = drs ∀r, s (2.5c)

f rs
p ≥ 0 ∀p, r, s (2.5d)

This program is called the user equilibrium (UE) program.
To demonstrate that the UE program is equivalent to (2.4), we consider the Lagrangian

of (2.5) with respect to the equality constraints (2.5c)

L(f, u) = z(x(f)) +
∑

r,s

urs

(
drs −

∑
p∈Prs

f rs
p

)
, (2.6a)

where we have used equation (2.5b) to express the link flows in terms of the path flows.
Program (2.5) is equivalent to the minimization of L(f, u) with respect to nonnegative path
flows

f rs
p ≥ 0 ∀p, r, s. (2.6b)

At the stationary point of the Lagrangian, the following first-order optimality condi-
tions (see corollary A.1.4) hold:

f rs
p ·
∂L(f, u)
∂f rs

p

= 0 ∀p, r, s (2.7a)

∂L(f, u)
∂f rs

p

≥ 0 ∀p, r, s (2.7b)

∂L(f, u)
∂urs

= 0 ∀r, s. (2.7c)

Using

∂z(x)
∂xa

=
∂

∂xa

∑
b∈A

∫ xb

0
τb(x)dx = τa(xa) (2.8)

and (2.2) we have

∂z(x(f))
∂f rs

p

=
∑
a∈A

∂z(x)
∂xa

∂xa

∂f rs
p

=
∑
a∈A
τa(xa)δrs

a,p

= τ rs
p . (2.9)
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Thus

∂L(f, u)
∂f rs

p

= τ rs
p − urs, (2.10)

and the first-order optimality conditions (2.7) are

f rs
p ·
(
τ rs

p − urs

)
= 0 ∀p, r, s (2.11a)

τ rs
p − urs ≥ 0 ∀p, r, s (2.11b)∑
p∈Prs

f rs
p = drs ∀r, s (2.11c)

f rs
p ≥ 0 ∀p, r, s. (2.11d)

Condition (2.11b) states that the Lagrange multiplier urs is less or equal to the path cost
on any path connecting r and s, and condition (2.11a) states that urs is equal to the path
cost for paths with nonzero flow. This implies that

urs = min
p∈Prs

τ rs
p ∀r, s (2.12)

so (2.11) – and hence (2.5) – is equivalent to (2.4), which is what we wanted to demon-
strate.

2.2.3 Problem Formulation: System Optimum
Unlike the user equilibrium traffic assignment problem, the system optimal traffic as-
signment problem, i.e. the minimization of the total travel time of all travelers, can be
formulated as an minimization program in a straightforward way:

min z(x) =
∑
a∈A

xaτa(xa) (2.13a)

subject to ∑
r,s

∑
p∈Prs

f rs
p δ

rs
a,p = xa ∀a (2.13b)∑

p∈Prs

f rs
p = drs ∀r, s (2.13c)

f rs
p ≥ 0 ∀p, r, s. (2.13d)

Program (2.13) is called the system optimization (SO) program.
On the other hand, just as the user equilibrium problem can be formulated as an op-

timization problem with respect to a special cost function, the system optimum problem
can be formulated as a user equilibrium problem with respect to marginal costs. Since
rational behavior by the individuals leads to the user equilibrium, these marginal costs
are the costs which should be enforced by a network operator in order to ensure that the
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rational behavior of the individuals leads to the system optimal traffic flow pattern. This
is especially important in traffic management applications where the objective is to apply
some control measures to get the traffic flows to the system optimal state.

As for the UE program, the optimality conditions in terms of the Lagrangian

L(f, u) = z(x(f)) +
∑

r,s

urs

(
drs −

∑
p

f rs
p

)
(2.14)

are

f rs
p ·
∂L(f, u)
∂f rs

p

= 0 ∀p, r, s (2.15a)

∂L(f, u)
∂f rs

p

≥ 0 ∀p, r, s (2.15b)

∂L(f, u)
∂urs

= 0 ∀r, s. (2.15c)

As in the case of the UE program, (2.15c) simply restates the flow conservation restraints.
Further, we have

∂z(x(f))
∂f rs

p

=
∑
a∈A

∂z(x)
∂xa

∂xa

∂f rs
p

=
∑
a∈A
δrs

a,p

∂

∂xa

∑
xb

xbτb(xb)

=
∑
a∈A
δrs

a,p

(
τa(xa) + xa

dτa(xa)
dxa

)
. (2.16)

If we define

τ̃a(xa) = τa(xa) + xa
dτa(xa)

dxa
, (2.17)

we get

∂z(x(f))
∂f rs

p

=
∑
a∈A
δrs

a,pτ̃a(xa) = τ̃ rs
p (2.18)

where τ̃ rs
p are the path costs resulting from the link costs τ̃a(xa).

The additional link cost term xa
dτa(xa)

dxa
can be viewed as the cost which an additional

traveler on link a would inflict on the other xa ‘travelers’ which already use the link, since
dτa(xa)

dxa
is the amount by which the travel cost per flow unit increases if the flow is increased

by an infinitesimal amount, i.e. one traveler.
We can now write the conditions (2.15) in the same form as (2.11)

f rs
p ·
(
τ̃ rs

p − urs

)
= 0 ∀p, r, s (2.19a)

τ̃ rs
p − urs ≥ 0 ∀p, r, s (2.19b)∑
p∈Prs

f rs
p = drs ∀r, s (2.19c)

f rs
p ≥ 0 ∀p, r, s, (2.19d)
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so the solution of the SO program is equivalent to the user equilibrium with respect to the
link cost function τ̃a(xa).

Since under the cost function τ̃a(xa) the user equilibrium is equivalent to the system
optimum for the cost function τa(xa), a traffic manager can ‘push’ the traffic to the system
optimum state by putting a toll of amount τ̃a(xa) − τa(xa) = xa

dτa(xa)
dxa

on each link a ∈ A.

2.2.4 Uniqueness of the Solution

From the theoretical point of view it is interesting to ask under which conditions solu-
tions of the UE and SO programs exist and whether they are unique. Since the conditions∑

p∈Prs
f rs
p = drs,

∑
r,s

∑
p∈Prs

f rs
p δ

rs
a,p = xa and f rs

p ≥ 0 describe a non-empty convex poly-
hedron, the strict convexity of z(x) would suffice to ensure that z has exactly one local
minimum3. The (strict) convexity of z is equivalent to the (strict) positive definiteness of
the Hessian

∇2z(x) =
(
∂2z(x)
∂xn∂xm

)
(n,m)∈A2.

(2.20)

For the UE program, we have

∂2z(x)
∂xn∂xm

=
∂2

∂xn∂xm

∑
a

∫ xa

0
τa(x)dx

=
∂τm(xm)
∂xn

=
dτn(xn)

dxn
δn,m, (2.21)

since we always assume that the costs on link n do not depend on the flow on link m for
n �= m. Equation (2.21) implies that z is (strictly) convex if τa(xa) is (strictly) monotonic
increasing.

In the SO case, we get

∂2z(x)
∂xn∂xm

=
∂2

∂xn∂xm

∑
a

xaτa(xa)

= 2
∂τm(xm)
∂xn

+ xm
∂

∂xn

dτm(xm)
dxm

=
(

2
dτn(xn)

dxn
+ xn

d2τn(xn)
dx2

n

)
δn,m, (2.22)

so a sufficient condition for z being (strictly) convex is τa(xa) being (strictly) monotonic
increasing and (strictly) convex.

In the next section we will see that both conditions are usually assumed to be true,
which ensures that both programs have unique solutions with respect to the link flows.
However, this does not imply that the solution is unique with respect to the path flows
since there may be different path flows yielding the same link flows, as figure 2.1 demon-
strates.

3See, for example, theorem 3.4.2 in [3].
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O2

O1 D1

D2

a

b

Figure 2.1 A simple example of non-unique path flows. Suppose we have
dO1D1 = dO2D2 = d �= 0 and all other demands are zero. For both OD-pairs there are
exactly two routes, using either link a or link b. If we set f O1D1

a = f O2D2
b = f and

f O1D1
b = f O2D2

a = d − f , we have xa = xb = d regardless of f .

2.2.5 Link Cost Functions
The cost of traveling on a link depends on the traffic volume on that link. Usually, we will
assume these costs are proportional to the travel time4, and if we neglect the fact that the
conversion coefficient between time and money may vary among different travelers, we
can express these costs in terms of the travel time.

From everyday’s experience we can deduce some basic properties of the relation be-
tween travel time and traffic volume on a road:

• The travel time increases with increasing traffic volume.

• At small traffic volumes, a traveler can choose his velocity freely within the physical
constraints set by his car.

• At high traffic volumes, the velocity of a traveler is determined by the surrounding
cars.

• There is a maximum number of cars which can pass the road per time unit. This
number depends mainly on the type of the road.

We used the term ‘traffic volume’ instead of ‘traffic flow’ because the actual flow is
not a good indicator for the traffic volume. In a traffic jam, the flow in terms of vehicles
per time is actually lower than the maximum attainable flow. A better indicator for the
traffic volume is the traffic density, i.e. the number of vehicles per unit length, on a road.
Figure 2.2 and 2.3 show how traffic flow and velocity depend on the traffic density on a

Californian highway. The exact functional dependence varies from road to road and may
even vary on the same road under different environmental conditions such as visibility or
rain. Nevertheless, the basic features – linear dependence of the flow on the density for
small densities, decreasing flow for high densities – are universal. Especially noteworthy
is the fact that neither traffic density nor the mean velocity can be expressed as a function
of traffic flow. An important dynamic characteristic of traffic flow is not contained in the
fundamental diagram, namely the fact that the flow becomes unstable at a certain critical

4Recently, the case of nonlinear relations between time and money have been considered by Bernstein
and Gabriel [7]. In this case, even the problem of finding shortest paths in a network becomes NP-hard,
since sub-paths of shortest paths are not necessary shortest paths.
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Figure 2.2 So-called fundamental diagram, showing the relation between traffic
density and traffic flow which has the characteristic reverse lambda shape. For
densities less then about 25cars/km the flow grows more or less linear with the
density. This part of the fundamental diagram is called the free-flow regime. For
larger densities, the flow decreases due to traffic jams. Note that this means that the
density cannot be expressed as a function of the flow. At intermediate densities,
both states – free-flow or jam – are possible, but the free-flow state is unstable.
The data set was collected on a Californian highway.

density. In this state there is a certain non-zero probability – which increases with the
density – that a traffic jam arises and the flow breaks down. This metastable state is the
reason for the characteristic ‘reverse lambda’ shape of the fundamental diagram 2.2. The
capacity of a road is the highest flow which is stable.

For static assignment, we have to express the travel time, or equivalently the mean
velocity, as a function of the traffic flow. Figure 2.4 shows that this is problematic since
there are two different velocities – corresponding to the free-flow and the jammed regime
– for each flow. If we would insist on the fact that for static assignment the traffic state has
been assumed to be static, and therefore to be in the free-flow regime, we would have to
use the free-flow branch of the flow velocity relation to calculate the travel time. Further
we had to ensure that the flow does not exceed the value where it gets unstable, i.e. the
value where the probability of the flow breaking down gets positive.

However, this approach is unpracticable for two reasons. The first one is that the
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Figure 2.3 Relationship between traffic density and velocity for the same data
set as Figure 2.2. In the free-flow regime the velocity depends only weakly on the
density, whereas for densities greater 25cars/km the velocity drops drastically due
to jamming.
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Figure 2.4 Relationship between traffic flow and velocity for the same data set
as Figure 2.2. Although there are states where the traffic flow exceeds 2400 vehicles

h·lane
,

the flow gets unstable at about 1800 vehicles

h·lane
.
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resulting capacities of the links would be too small compared to reality, since in reality
unstable flows occur, albeit for a short time. The second one is that the velocity does
not change significantly in the free-flow regime, so the corresponding link cost function
would be more or less constant. To fix these problems, link cost functions are used which
allow flow values which are unstable, but add some cost for the probability of jamming.
Although these cost functions are not compatible with the basic assumption of a static and
stable network state, they are widely accepted by practitioners. In fact, authorities like the
U.S. Bureau of Public Roads (BPR) [86] or the German Department of Transportation
[38] proposed standard link cost functions. The BPR travel time function is

τa = τ 0
a ·
(

1 + α
(

xa

c′a

)β)
. (2.23)

In (2.23), τ 0
a is the free-flow travel time and c′a is the ‘practical capacity’ of link a. The

model parameter α and β are usually chosen as α = 0.15 and β = 4. This implies that
the practical capacity is the flow at which the travel time is 15% higher than the free-flow
travel time and that the BPR function sets no limit to the actual flow on a link.

Davidson [21] proposed a link cost function of the form

τa = τ 0
a ·
(

1 + J
xa

ca − xa

)
, (2.24)

where ca is the capacity of link a and J is a parameter which has to be estimated from field
measurements. Davidson’s cost function can be deduced if one assumes that a link can
be viewed as a queuing system with Markovian5 inter-arrival and service intervals and a
server capacity of 1 (a so-called M/M/1 queue, see [48]). For such queues it can be shown
that the average queue length is

Q =
ρ

1 − ρ
, (2.25)

where ρ is the utilization of the queue, which corresponds to xa/ca, so (2.25) has the same
type of divergence as (2.24).

The link cost functions proposed by the German Department of Transportation [38]
are defined by a piecewise linear dependence of the mean velocity on the traffic flow.

All these link cost functions are both strictly monotonic increasing and strictly convex,
implying that the solutions to the UE and SO programs are unique.

2.2.6 User Equilibrium, System Optimum and Braess’s Paradox
In economics it is usually assumed that the rational, i.e. cost optimizing, behavior of each
individual tends to optimize the whole system, as long as certain boundary conditions
are met. Therefore, one could expect the user equilibrium to be nearly optimal from the

5In this context, Markovian means uncorrelated, i.e. the time intervals between two arriving cars are
Poisson distributed. This assumption holds for low traffic densities.
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Figure 2.5 BPR and Davidson link cost functions. The parameter J of the
Davidson function is set to 0.1, the parameters of the BPR function are α = 0.15
and β = 4. The ‘practical capacity’ c′a of the BPR, which corresponds to the flow
at which the travel time is increased by a fraction of α, is chosen as 0.6 which is
the correct value with respect to the Davidson function.

system point of view. Of course, due to the nonlinearity of the link cost function there
might be cases in a congested network where many traveler might gain from the fact that
a few others choose an alternative route which is suboptimal for them.

So it is very surprising that even an ‘improvement’ of a network, i.e. the addition
of a link, might lead to a longer travel time for every driver under the user equilibrium
condition. This paradox was first discovered by Braess [9, 64].

Figure 2.6 shows the network devised by Braess. The two narrow links can be viewed
as bottlenecks since their costs increase strongly with the flow compared to the other
links. Without the dashed link, the optimal solution of both the UE and SO program is
fO→1→D = fO→2→D = 1

2 dOD.

With the additional link a, the optimal solution still satisfies fO→1→D = fO→2→D. There-
fore, all link flows can be expressed in terms of fO→1→2→D = xa by

x1 = x4 =
dOD − xa

2
(2.26a)

x2 = x3 =
dOD + xa

2
, (2.26b)
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c3(x3) = 10x3

c2(x2) = 10x2 ca(xa) = 10 + xa

c1(x1) = 50 + x1

c4(x4) = 50 + x4

O

D

21

Figure 2.6 Braess’s paradox. The picture shows the network and the link cost
functions. The cost functions are chosen such that the narrow links can be viewed
as short bottlenecks, whereas the thick links have a higher capacity but are longer.
The dashed link a is the additional link which ‘improves’ the network. Due to
symmetry, the flow on routes O → 1 → D and O → 2 → D are equal in both the
SO and UE solution. So given the demand dOD, there is only one independent link
flow variable xa, the flow on the additional link.
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Figure 2.7 User equilibrium travel times in Braess’s network. With the addi-
tional link a, for 80/31 < dOD < 80/9 the user equilibrium travel times are higher
for all travelers, i.e. the ‘rational’ behavior of the individuals leads to a state where
everybody is worse off.
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and the travel times are

τO→1→D = 50 +
dOD − xa

2
+ 10

dOD + xa

2
(2.27a)

τO→1→2→D = 10 + 20
dOD + xa

2
+ xa. (2.27b)

Some basic algebra yields the user equilibrium flow

xa =


0 if 80−9dOD

13 < 0
80−9dOD

13 if 0 < 80−9dOD
13 < dOD

dOD if dOD < 80−9dOD
13

(2.28)

It turns out that for dOD < 80/31 the travel time with the additional link is less than
without the link – the ‘shortcut’ bypassing the ‘long’ links 1 and 4 improves the network.
For dOD > 80/9 the travel time via link a would be higher than the travel time via the long
links, so the flow on link a is zero.

For 80/31 < dOD < 80/9 something interesting happens: For xa = 0, the travel time
via a is less than the travel time via the long links, so travelers will have an incentive to
change to the route via a. In the resulting user equilibrium, however, the travel time is
higher than the travel time without a. A fathomable explanation for this is the fact that
if one traveler (or an infinitesimal flow unit) changes to the route via a, their travel time
improvement is less than the additional travel time inflicted on the other travelers.

2.2.7 Solution Techniques

Both the UE and the SO programs are convex optimization problems which can be solved
numerically by various methods. The still most widely used solution algorithm is the
Frank-Wolfe algorithm described in A.2.

The linear subproblem A.14 of the nth iteration of the Frank-Wolfe algorithm is of the
form

min
x

x ·∇z(xn) (2.29a)

subject to
∑

r,s

∑
p∈Prs

f rs
p δ

rs
a,p = xa (2.29b)∑

p∈Prs

f rs
p = drs (2.29c)

f rs
p ≥ 0, (2.29d)

i.e. we have to find the minimum cost flow with respect to the link costs ∇z(xn), where
xn is fixed. Since our problem formulations contain no explicit capacity limits, this prob-
lem is equivalent to solving a shortest path problem for each OD pair. These shortest
path problems can be solved very efficiently [23, 1], and since these subproblems are
independent, the Frank-Wolfe algorithm can be parallelized very easily.
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Figure 2.8 Typical convergence of the Frank-Wolfe algorithm. The relative dif-
ference between ub and lb, the upper and lower bounds on the objective function
value, is used as the indicator for convergence. For the example network, the
relative gap decreases exponentially with the number of iterations, although the
theoretical convergence rate is only arithmetic.

The only problem with the Frank-Wolfe algorithm is its rather slow convergence (see
figure 2.8). It can be shown [71] that the theoretical convergence rate is arithmetic, i.e.
z(xn) − z(xn) = O(1/n), where z(xn) is the lower bound provided by (A.17). Figure 2.8
shows that the practical convergence rate is often better than the theoretical one. The con-
vergence rate can be improved by the simplicial decomposition method [54, 71], which
replaces the line-search step by a minimization over the convex hull of more than two
points. However, the discussion of these methods is beyond the scope of this thesis.

Since the set Prs grows exponentially with the size of the network, it is very important
that in an actual implementation Prs has not to be enumerated explicitly. This is possible
since routes p with f rs

p = 0 can simply be neglected. In the language of mathematical
programming this approach, which is also useful in other problems related to network
flows (see chapter 17 in [1] for an example), is called ‘column generation’. For stochastic
assignment models like the model of Fisk [25], which has been studied by A. Vildósola
Engelmayer in her diploma thesis [88], the set of routes Prs has either to be enumerated or
some subset P ′rs ⊂ Prs of ‘reasonable’ routes has to be given a priori, since all possible
routes have a flow f rs

p > 0 assigned to them.

The following ‘pidgin code’ algorithm for the static assignment problem can be easily
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implemented using the LEDA6 class library [60], which contains all necessary graph-
related data structures.

procedure UE_Assignment
begin

n := 0
x0 := 0
foreach a ∈ A

c[a] := ca(0) cost vector for empty net

foreach (r, s) ∈ O ×D perform all-or-nothing
assignment on empty net

begin

p := ShortestPath(r, s, c)
shortest path from r to s with
respect to c

frs[p] := drs

Prs
0 := {p}

foreach a ∈ A
x0[a] := x0[a] + δrs

a,pdrs

end

repeat
Prs

n+1 := ∅foreach a ∈ A
c[a] := ca(xn[a]) set cost vector for xn

y := 0

foreach (r, s) ∈ O ×D perform all-or-nothing
assignment with respect to c

begin
p := ShortestPath(r, s, c)
Prs

n+1 := Pn+1 ∪ {p}
foreach a ∈ A

y[a] := y[a] + δrs
a,pdrs

end
α := Minimum(z(xn + α(y − xn)), 0, 1) line search using Brent’s

method

xn+1 := (1 − α)xn + αy

foreach (r, s) ∈ O ×D
begin

foreach p ∈ Prs
n

6Library of Efficient Data types and Algorithms, developed at the Max-Planck Institut für Informatik,
Saarbrücken. LEDA is available at http://www.mpi-sb.mpg.de/LEDA/.
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frs[p] := (1 − α)frs[p]
foreach p ∈ Prs

n+1

frs[p] := αdrs + frs[p]
Prs

n+1 := Prs
n+1 ∪ Prs

n

end
ub := z(xn+1) upper bound on objective

function value

lb := z(xn) + (y − xn) · c lower bound on objective
function value

n := n + 1

until
ub − lb
ub + lb

< ε convergence check

end

2.3 Dynamic Assignment
The major shortcomings of static traffic assignment, namely the failure to describe con-
gestion correctly and the fact that for large networks the link flows are overestimated,
can only be resolved by dynamic, i.e. time dependent, models. Such models have been
proposed by several authors, among them Merchant and Nemhauser [61, 62], Carey [14],
Mahmassani [59], and Friesz et al. [29, 28]. These models, which are formulated as
either nonlinear programming problems, optimal control problems or variational inequal-
ities, differ in the way the dynamics of traffic are described. The models by Merchant and
Nemhauser and by Carey model only system optimal route choice. Furthermore, the dy-
namics of the flow variables are not consistent with the travel times, i.e. the travel times
corresponding to the link costs do not coincide with the velocity with which the flow
propagates through the network. Among the first model with a consistent description of
flow propagation are the models by Friesz et al. [28] and Ran, Boyce and LeBlanc [76].
Serwill proposed DRUM, a modeling approach using successive static assignment steps
for every time step and adding ‘unfinished trips’ to the OD-matrix for the next time step
[83]. A comprehensive overview of dynamic network models can be found in [77], so
we restrict the discussion of dynamic assignment models to a minimum, and focus on the
complexity of the problem. The notation in this section follows [84] and [77].

2.3.1 Network Model
We will consider a fixed time period [0, T] which should be long enough to allow travelers
to reach their destination. The period will typically be either a whole day or a peak period.

We will replace the flow variables xa by functions xa(t), which is not longer the flow
on link a but the number of vehicles traveling on link a at time t.



2.3. Dynamic Assignment 23

To describe the propagation of vehicles correctly, we also have to distinguish vehicles
by their destination and route. Therefore, we have to introduce xrs

ap(t), the number of
vehicles traveling on link a over route p from r to s at time t. The xa(t) are related to the
xrs

ap(t) by ∑
(r,s)∈O×D

∑
p∈P

xrs
ap(t) = xa(t). (2.30)

To describe the dynamics of xa(t), we introduce the inflow and outflow rates ua(t) and
va(t) and corresponding variables urs

ap(t) and vrs
ap(t), respectively. The latter variables are

called control variables since they ‘control’ the dynamics of the state variables xa(t).
These are related to xrs

ap(t) by the state equation

dxrs
ap(t)

dt
= urs

ap(t) − vrs
ap(t). (2.31)

Usually we will assume the initial condition

xrs
ap(0) = 0. (2.32)

Of course, all these state and control variables must be nonnegative:

xrs
ap(0) ≥ 0, urs

ap(0) ≥ 0, vrs
ap(0) ≥ 0. (2.33)

Flow Conservation Constraints

At each node v ∈ N \ (O ∪D), flow conservation implies∑
a∈A(v)

vrs
ap(t) =

∑
a∈B(v)

urs
ap(t) ∀v �∈ {r, s}, (2.34)

where A(v) = {(v,w) ∈ A} denotes the set of all links going out of node v and B(v) =
{(w, v) ∈ A} denotes the set of all incoming links at v.

Let f rs(t) denote the flow departing at origin node r to destination node s at time t, and
denote the flow arriving at destination s from origin r at time t as ers(t). Then the flow
conservation constraints at the origin and destination nodes can be written as∑

a∈A(r)

∑
p∈Prs

urs
ap(t) = f rs(t) (2.35a)∑

a∈B(s)

∑
p∈Prs

vrs
ap(t) = ers(t). (2.35b)

Further we have the nonnegativity constraints

f rs(t) ≥ 0 (2.36a)

ers(t) ≥ 0. (2.36b)
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Flow Propagation Constraints

Contrary to the static assignment models, the dynamic assignment models describe the
propagation of the flow through the network via the time-dependent inflow and outflow
variables. However, it is necessary to add constraints to ensure these flow variables are
consistent with the travel times on the links.

These flow propagation constraints can be formulated in different ways, depending
on which variables are used to express the constraints and whether or not dispersion is
included [77].

One way to formulate these constraints is by observing the fact that the vehicles using
route p which are on link a at time t are at time t + τa(t) either on some downstream link
which is part of the subroute p̃ of p starting at a, or have arrived at the destination.

Using

Ers
p (t) =

∫ t

0
ers

p (τ )dτ

this fact can be written as

xrs
ap(t) = Ers

p (t + τa(t)) − Ers
p (t) +

∑
b∈p̃

xrs
bp(t + τa(t)) − xrs

bp(t). (2.37)

The main problem with the flow propagation constraints is that they contain the travel
times τa(t) which are unknown until the problem is solved. This is no problem for the the-
oretical formulation of the equilibrium conditions, but in a solution algorithm this problem
has to be solved by the relaxation technique: The constraints (2.37) are formulated using
estimated travel times τ a(t), and the model is solved to obtain new estimates for the travel
times. This process is iterated until the travel times converge. This iteration process in-
creases the complexity of the dynamic assignment problem drastically compared to the
static assignment problem.

Travel Times

As in the static models, we assume that the travel time over a link only depends on the
state of the link, i.e.

τa(t) = ca (xa(t), ua(t), va(t)) . (2.38)

For the decision of the travelers, two concepts of route travel times may be considered.
One is the instantaneous travel time ψrs

p (t), which is the time needed to travel along route
p if the traffic conditions at time t prevailed during the whole trip. It follows that

ψrs
p (t) =

∑
a∈p

τa(t). (2.39)

It is reasonable to assume that drivers would choose their route according to the instanta-
neous travel time if they would have perfect information on the current network state but
no knowledge on the future evolution of the network state.
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Another criterion might be the actual travel time ηrs
p (t), which is the time a traveler

needs to travel along route p if he starts at time t. To express ηrs
p (t) in terms of the link

travel times, we assume that p = (r, v1, v2, . . . , vi, . . . , s) and recursively define

ηrr
p (t) = 0, (2.40)

ηrvi
p (t) = ηrvi−1

p (t) + τ(vi−1,vi)(t + ηrvi−1
p (t)). (2.41)

The actual travel time would be a reasonable decision criteria for the travelers in a day-
to-day setup, since by trying different routes a traveler learns the actual travel time of
different routes.

We define

σrs(t) = min
p∈Prs

ψrs
p (t) (2.42)

πrs(t) = min
p∈Prs

ηrs
p (t). (2.43)

2.3.2 Dynamic User Equilibrium Conditions and Variational
Inequality Formulation

The goal of this section is the variational inequality formulation of the dynamic user
equilibrium (DUE) conditions. The main reason for a variational inequality formulation
instead of a nonlinear program formulation which we have used in the static case is the
fact that the flow propagation constraint (2.37) contains the link travel times which are
not known until the problem is solved.

DUE Conditions

The extension of Wardrop’s first principle to the dynamic case using either the instanta-
neous or actual travel times is straightforward. One should, however, keep in mind that
using either of both decision criteria implies an assumption on the type and quality of
knowledge the travelers have of the network state.

Since the focus of this thesis is a day-to-day setup, i.e. we want to model the route
choice of a set of travelers in a daily recurring situation like commuting under the as-
sumption that the travelers have ‘learned’ about the dynamic network state, we will use
the actual travel time in the sequel. Using the notation of the preceding sections, we can
express the dynamic user equilibrium conditions as a nonlinear complementarity problem:

ηrs
p (t) − πrs(t) ≥ 0 (2.44a)

f rs
p (t) ·

(
ηrs

p (t) − πrs(t)
)

= 0 (2.44b)

f rs
p (t) ≥ 0. (2.44c)

The conditions (2.44) are expressed in terms of the route flows f rs
p (t). The drawback

of this formulation is that an efficient solution algorithm must not enumerate all routes.
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Therefore, the following link based formulation is preferable. To shorten the notation in
the following lemma, we define for each link a = (v,w) the reduced costs

Ωrv
a (t) = πrv(t) + τ(v,w)(t + πrv) − πrw(t). (2.45)

Lemma 2.3.1 The DUE conditions (2.44) on the route flows are equivalent to the fol-
lowing nonlinear complementarity problem on the link inflow rates urs

a (t) for each link
a = (v,w):

Ωrv
a (t) ≥ 0 (2.46a)

urs
a (t + πrv) · Ωrv

a (t) = 0 (2.46b)

urs
a (t + πrv) ≥ 0. (2.46c)

A proof of lemma 2.3.1 can be found in [77]. Readers with a background in network flow
problems may recall the fact that the reduced costs of a link are zero iff it is part of a
minimum cost route, which directly implies the lemma.

Summary of the Network Constraints

This section gives a short summary of the network constraints for further reference.

State equations:

dxrs
ap(t)

dt
= urs

ap(t) − vrs
ap(t) (2.47a)

dErs
ap(t)

dt
= ers

p (t) (2.47b)

Flow conservation:∑
a∈A(v)

vrs
ap(t) =

∑
a∈B(v)

urs
ap(t) (2.47c)

f rs(t) =
∑

a∈A(r)

∑
p∈Prs

urs
ap(t) (2.47d)

ers(t) =
∑

a∈B(s)

∑
p∈Prs

vrs
ap(t) (2.47e)

Flow propagation:

xrs
ap(t) = Ers

p (t + τa(t)) − Ers
p (t) +

∑
b∈p̃

xrs
bp(t + τa(t)) − xrs

bp(t) (2.47f)
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Definitional constraints:

xa(t) =
∑
r,s,p

xrs
ap(t), ua(t) =

∑
r,s,p

urs
ap(t), va(t) =

∑
r,s,p

vrs
ap(t) (2.47g)

Nonnegativity constraints:

xrs
ap(0) ≥ 0, urs

ap(0) ≥ 0, vrs
ap(0) ≥ 0 (2.47h)

ers
p (t) ≥ 0, Ers

p (t) ≥ 0 (2.47i)

Initial conditions:

Ers
p (0) = 0 (2.47j)

xrs
ap(0) = 0 (2.47k)

2.3.3 Formulation as Variational Inequality Problem
The following theorem gives a formulation of the DUE conditions (2.46) as a variational
inequality (VI) problem. Although this VI problem usually cannot be solved directly, this
formulation is very convenient from a theoretical standpoint, mainly because it provides a
natural framework for the incorporation of flow propagation constraints which explicitly
contain the link travel times.

Theorem 2.3.2 A dynamic traffic flow pattern urs�
a (t) satisfying the network constraints

(2.47) is a DUE state iff it satisfies the variational inequality∫ T

0

∑
r,s

∑
a=(v,w)

Ωrw�
a (t) ·

(
urs

a

(
t + πrv�(t)

)
− urs�

a

(
t + πrv�(t)

))
dt ≥ 0, (2.48)

where all starred variables are calculated with respect to urs�
a (t).

A proof of theorem 2.3.2 is given in [77].

2.3.4 Relaxation Procedure
The variational inequality (2.48) provides an elegant formulation of the DUE problem.
However, for an actual algorithmical implementation, a NLP is more convenient. To
make the problem finite-dimensional, we first discretize time in N = � T

∆t	 intervals of
length∆t and replace the interval [0, T] by the set

{tn := n∆t | n = 0 . . .N} (2.49)

All functions of time are therefore replaced by N-dimensional vectors. Of course, ∆t has
to be chosen sufficiently small to resolve the smallest link travel time, i.e. ∆t must be less
than the length of the shortest link divided by the maximum possible velocity.
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In each iteration of the relaxation procedure, we fix the link travel times τa(tn) in the
flow propagation constraints as τ a(tn). Note that these estimated link travel times must
be multiples of ∆t since xa(t) and Ea(t) are only defined for t = n∆t. Furthermore, the
optimal travel times πrv�(tn) are fixed as πrv�(tn).

Under relaxation, the variational inequality problem (2.48) is equivalent to the NLP
(see [77], chapter 6)

min
u,v,x,E

Z(u, v, x,E) =
N∑

n=0

∑
a=(v,w)

{∫ ua(tk)

0
τa(xa(tn), u, va(tn))du

+
∑

r

ur
a(tn)
(
πrv(tk(n)) − πrw(tk(n))

)} (2.50a)

subject to

xrs
ap(tn+1) = xrs

ap(tn) + urs
ap(tn) − vrs

ap(tn) (2.50b)

Ers(tn+1) = Ers(tn) +
∑

a∈B(s)

∑
p

vrs
ap(tn) (2.50c)

f rs(tn) =
∑

a∈A(r)

∑
p

urs
ap(tn) (2.50d)∑

a∈B(v)

vrs
ap(tn) =

∑
a∈A(v)

urs
ap(tn) (2.50e)

xrs
ap(tn) =

∑
b∈p̃

{
xrs

bp(tn + τ (tn)) − xrs
bp(tn)

}
+ Ers(tn + τ (tn)) − Ers(tn) (2.50f)

xrs
ap(tn+1) ≥ 0, urs

ap(tn) ≥ 0, vrs
ap(tn) ≥ 0 (2.50g)

Ers(tn+1) ≥ 0 (2.50h)

xrs
ap(t0) = 0 (2.50i)

Ers(t0) = 0 (2.50j)

where k(n) is defined by

tn = tk(n) + πrv(tk(n)), (2.51)

i.e. tk(n) is the departure time for a traveler starting from node r arriving at node v at time
tn. Since

∂Z
∂urs

a (tk(n) + πrv(tk(n)))
=
∂Z
∂urs

a (tn)

= τa(tn) + πrv(tk(n)) − πrw(tk(n))

= τa(tk(n) + πrv(tk(n))) + πrv(tk(n)) − πrw(tk(n))

= Ωrv
a (tk(n))

(2.52)

the NLP (2.50a) is equivalent to (2.48).
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2.3.5 Solution Method
The NLP (2.50a) can be solved in a similar fashion as (2.5) using the Frank-Wolfe method
(see A.2). We will see that, like in the static case, the linear subproblem can be solved as
a shortest path problem. However, the network will not be the original one as it was in
the static case, but will consist of many ‘copies’ of the original network (see below).

The Linear Subproblem

We denote the variables of the linear subproblem by ‘̂’ so that the linear subproblem
(A.14) reads7

min
û,v̂,x̂,Ê

Ẑ(û, v̂, x̂, Ê) = d(u0,v0,x0,E0)Z(û, v̂, x̂, Ê) (2.53)

subject to the constraints (2.50b)–(2.50j) for û, v̂, x̂ and Ê. The constraints (2.50b)–
(2.50d) can be viewed as flow conservation constraints for new, additional nodes in the
network Ĝ = (N̂ , Â), which is shown in figure 2.9. Therefore, (2.53) can be viewed as
a shortest path problem for every OD-pair with an additional flow propagation constraint
(2.50f). This flow propagation constraint can be included by setting the costs of ‘infeasi-
ble’ links to infinity (see [77], section 6.2). Note that the shortest path problems for each
OD-pair and departure time are independent and could be solved in parallel.

2.3.6 Complexity
In the previous section we have seen that the DUE problem (2.48) can be solved using the
relaxation technique and the Frank-Wolfe algorithm, where the linear subproblems can
be treated as a set of decoupled shortest path problems. However, the complexity of the
problem increases drastically compared to the static case.

Counting the number of nodes and links in the auxiliary network (see figure 2.9) gives

|N̂ | = (|N | + |A|)N + 1 (2.54)

|Â| = (3|A| + 1)N. (2.55)

Using Dijkstra’s algorithm, each shortest path problem takes O(|Â| + |N̂ | log |N̂ |) time
[23, 60]. Since the number of shortest path problem increases by a factor of N compared
to the static case, the time for solving one linear subproblem increases by a factor of about
4N2 compared to the static case. Since our goal is to simulate the traffic of a whole day and
the typical time needed to traverse an arc in an urban road network would require a time
step of about 1 minute, the time needed to solve the linear subproblem would increase by
a factor of 8 · 106. Even if we would only use a time step of 30 minutes, the factor would
still be 9000.

7With dpf we denote the differential of f at the point p, so that dpf (x) = x ·∇f (x).
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Figure 2.9 Auxiliary network Ĝ = (N̂ , Â) to solve the linear subproblem (2.53)
as a shortest path problem. The dashed boxes indicate the corresponding network
constraint. For each link and every time step, an additional node corresponding
to the state equation is added. Further, a ‘super destination node’ has to be added
to convert the problem into a shortest path problem for every time step. The cost
functions on the links are given by the corresponding components of∇Ẑ.



Chapter
Three

Traffic Simulation Models

This section gives an overview of traffic simulation models. Of course, a complete treat-
ment of all the available traffic simulation models is beyond the scope of thesis1. Instead
we will focus on points related to traffic assignment, i.e. the calculation of user equilibria
within these models.

3.1 Introduction

From the point of view of traffic assignment, traffic simulation models can be divided
into two major classes: vehicle-oriented (microscopic) models describing the movement
of individual vehicles through the network2 and flow-based (macroscopic) models which
do not discern individual vehicles but describe traffic as a kind of ‘fluid’. For example,
the constraints (2.47a)–(2.47f) define an — albeit primitive — traffic simulation model.

3.2 Macroscopic Models

Traffic assignment relies on the fact that route choice can be described in a model. In
this respect, macroscopic model have the drawback that for each variable in the model,
e.g. the velocity field v(x, t) and the density ρ(x, t), we have to introduce corresponding
variables for each path. This is the reason why the analytical DTA models usually use a
rather simple model of traffic flow. Nevertheless, we give a short overview of the most
important macroscopic traffic models.

The first fluid-dynamical description of traffic flow was the Lighthill-Whitham model
[56], which consists of the continuity equation

∂

∂t
ρ +
∂

∂x
ρv = 0 (3.1)

1The European Community has funded a project to review the state-of-the-art traffic simulation models.
See [39].

2From the point of view of traffic flow theory, vehicle-oriented models which do not model vehicle-
vehicle interactions but use ‘mean field’ description of vehicle dynamics (like DYNEMO [82, 81]) are
discerned as a third class called mesoscopic.
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together with a velocity density relationship v = V(ρ), giving the kinematic wave equation

∂

∂t
ρ + c(ρ)

∂

∂x
ρ = 0 (3.2a)

where the velocity c(ρ) of the kinematic waves is given by

c(ρ) =
d

dρ
ρV(ρ). (3.2b)

The major problem with the Lighthill-Whitham model is that traffic is not always in
equilibrium but drivers have to react by accommodating their acceleration. This problem
can be solved by stating an equation for the time derivative of the local velocity, i.e. the
acceleration:

d
dt

v(x, t) ≡ ∂v
∂t

+ v
∂v
∂x

=
V(ρ) − v
τ

−
c2

ρ

∂ρ

∂x
. (3.3)

On the right hand side, the first term describes a relaxation to the equilibrium velocity
while the second term, called anticipation term describes the fact that a driver slows down
if the density ahead of him increases. However, the solutions of (3.3) tend to develop
discontinuous shock waves. Therefore, Kühne [53] has proposed adding a viscous term
to prevent the formation of discontinuities:

∂v
∂t

+ v
∂v
∂x

=
V(ρ) − v
τ

−
c2

ρ

∂ρ

∂x
+

1
ρ

∂

∂x

(
µ
∂v
∂x

)
. (3.4)

Similar models have been proposed by Kerner and Konhäuser [43] and Helbing [35].
However, using one of these models as an underlying state equation for dynamic traffic

assignment seems infeasible even with state of the art computers.

3.3 Microscopic Models

Microscopic, i.e. vehicle-oriented, models have the advantage that additional information
needed by the DTA algorithm, e.g. origin, destination, route and departure time, can be
added to the data structures of the model easily.

Although the distinction between car-following models and mesoscopic models is not
directly relevant to DTA, we will adopt it for this section.

3.3.1 Car-Following Models

Despite the fact most of us know how to drive a car, there are still no generally accepted
‘first principles’ from which one can derive a unique model of car-following behavior.
Some facts we can derive from everyday experience are

1. Most of the time the dynamics are collision-free.
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2. Maximum velocity, acceleration and deceleration are bounded by physical limita-
tions of the cars and the drivers.

3. Most of the time we only look forward, and in ‘first order approximation’ we only
react to the car directly in front of us.

4. Drivers need some time to react.

However, this facts still allow many different modeling approaches. In the sequel, we
assume that there are N cars on a single-lane road which are numbered such that car i + 1
is the car in front of car i.

Delayed Differential Equations

The fact that the reaction of drivers is delayed by their reaction time∆t suggests modeling
driving behavior as a delayed differential equation

dvi

dt
= f (vi, vi+1,∆xi)|t−∆t , (3.5)

where ∆xi = xi+1 − xi. In fact, many such models have been proposed in the fifties.
Gazis, Herman and Rothery [33] proposed a model of the form

dvi

dt
= αvm

i (t)
vi+1 − vi

(xi+1 − xi)l

∣∣∣∣
t−∆t

, (3.6)

where α, l and m are parameters of the model. The advantage of these models is that the
model equations can be integrated directly to determine the speed-density relation.

However, these models lack any foundation in the study of human behavior. Wiede-
mann [90] proposed a delayed differential equation model based on perception thresholds,
i.e. physiological limitations on the perceptions of distances and velocity differences.
This approach has been developed further to sophisticated and rather detailed models of
the driver-vehicle system like PELOPS [57].

For DTA applications, however, these models are computationally too costly. For
example, the maximum number of vehicles which can be simulated in real-time on state of
the art hardware with PELOPS is about 2000 [70], which is insufficient for the simulation
of complex urban networks.

Cellular Automata and Coupled Maps

The major drawback of the delayed differential equation models is the poor computational
performance. A common approach to overcome this problem is a discretization of such
models with a fixed time step ∆t which is usually chosen as the reaction time, i.e. in the
order of one second. This yields a set of coupled maps, i.e. an update rule of the form

vi(t +∆t) = f (vi(t), xi(t), vi+i(t), xi+1(t)) (3.7)

which is applied to all cars simultaneously. However, instead of discretizing a given
differential equation, one can also design such coupled maps directly.
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While the idea behind the delayed differential equation models is to make the de-
scription of the vehicle dynamics as detailed as possible, the interesting question for the
coupled map models is how minimalistic a model can be while still maintaining the fun-
damental features of traffic flow.

Perhaps the most minimalistic approaches are cellular automata, i.e. models in which
time, space and internal state are discrete. While the first such models were proposed by
Cremer and Ludwig [18] and Schütt [80], the most prominent cellular automaton model is
the Nagel-Schreckenberg model [69], which has been thoroughly studied by many authors
[65, 68, 79, 73].

In the Nagel-Schreckenberg model, the street is discretized in cells of length ∆x.
Measurements of the car density in dense jams (about 130 cars per kilometer) imply that
∆x = 7.5m is a reasonable value. In the sequel we will omit the ‘natural’ units ∆x and
∆t. Note that also the velocity is discretized in units of ∆x/∆t. The update rules are

acceleration: vi(t +∆t) := min {vmax, vi(t) + 1}
deceleration: vi(t +∆t) := min {vi(t +∆t), xi+1(t) − xi(t)}
‘dawdling’: with probability pbrake set vi(t +∆t) := max {vi(t +∆t) − 1, 0}
translation: xi(t +∆t) := xi(t) +∆tvi(t + 1)

which are executed in parallel for each vehicle. Since this model uses integer arithmetic
and can be even implemented using single-bit coding [65], it is very efficient computa-
tionally. In fact, with modern hardware it is capable of simulating about 106 vehicles in
real-time [78].

It is very surprising that despite its very simple description of driving behavior the
model reproduces the fundamental properties of traffic flow:

• Above a certain density, traffic jams occur spontaneously,

• the density-flow relation is qualitatively correct3,

• the time interval between two cars passing a traffic light — the crucial parameter
for the capacity of signalized intersections — is modeled correctly.

This is especially surprising since one of the basic properties of cars, namely the finite
deceleration, is not modeled at all.

There are two shortcomings of the Nagel-Schreckenberg model. The first one is that
due to the discrete nature of the model one cannot model the emissions of pollutants easily.
The second one is that the Nagel-Schreckenberg model does not produce metastable states
and other types of complex behavior which have been observed in measurements [44, 45,
46].

For this reasons, Krauß [50, 51] has proposed a model which can be viewed as a min-
imal model satisfying the four conditions stated at the beginning of this section and the
assumption that imperfections in driving behavior can be modeled as stochastic fluctua-
tions of the velocity. Taking into account the maximum deceleration b, the safe velocity

3Using multi-lane rules and different types of cars, the density-flow relation of the model can even be
calibrated quantitatively (see [73]).
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can be expressed as (see [51])

vsafe = vi+1 +
xi+1 − xi − vi+1∆t

vi+1+vi
2b +∆t

. (3.8)

Using this notion of a safe velocity, Krauß extended the update rules of the Nagel-
Schreckenberg model to

speed update: vi(t +∆t) := min {vmax, vi(t) + a, vsafe}
‘dawdling’: vi(t +∆t) := max {vi(t +∆t) − aεξ, 0}
translation: xi(t +∆t) := xi(t) +∆tvi(t + 1),

where ξ ∈ [0, 1] is a uniformly distributed random variable and ε is a parameter con-
trolling the amplitude of the ‘noise’ in the acceleration. As in the Nagel-Schreckenberg
model, the time step∆t is usually set to 1.

Krauß showed that depending on the maximum acceleration and maximum deceler-
ation, the model divides into three subclasses with different types of structure formation
[51, 40]. One class shows similar behavior as the Nagel-Schreckenberg model, one class
also shows metastable states which are observed in real-world data, and one class shows
no structure formation at all. The model with realistic parameters4 belongs to the class
which shows metastable states.

Since the Krauß model uses floating point arithmetic and involves a division, it is not
as fast as the Nagel-Schreckenberg model. However, the loss in computational perfor-
mance is only about 50%, comparing two optimized single-lane implementations [51].
Since in network simulations about half of the CPU time is needed by the lane-changing
rules and IO operations, the difference between both models is only about 25% for simu-
lations of real networks with PLANSIM-T(see Appendix B.1).

Both the Nagel-Schreckenberg model and the Krauß model are fast enough for simu-
lations of large networks like the Wuppertal network, and due to their microscopic nature
they are suited for the simulation-based traffic assignment algorithm described in chapter
4. In fact, iterated simulations using the Nagel-Schreckenberg model have been used for
DTA purposes by the TRANSIMS group [67, 66]. However, for doing multiple iterations
of the traffic of a whole day these models would consume much computing time and the
use would be restricted to high performance computers. The models described in the next
section can reduce the needed computing resources significantly.

3.3.2 Mesoscopic Models
The main advantage of driver oriented models for DTA is the ability to track individual
drivers and to associate routing information with them. While the description of car-
following behavior is interesting from the theoretical point of view and for some applica-
tions like the modeling of emissions, it is not needed for DTA. The mesoscopic models
which are driver oriented but do not model car following behavior are therefore the ideal
models for use in DTA applications.

4Typical cars have a ≈ 0.8ms−2 and b ≈ 4.5ms−2, and the typical speed on German highways is
vmax ≈ 36ms−1. Like in the Nagel-Schreckenberg model, we choose∆x = 7.5m and∆t = 1s.
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Many different approaches to mesoscopic modeling of traffic flow have been pro-
posed. Schwerdtfeger has proposed DYNEMO [82, 81], a kind of ‘mean field’ model in
which the velocity of a car depends on the traffic density on a link. Daganzo [19, 20, 15]
has proposed a cell transmission model which can be viewed as a spatial discretization
of an underlying fluid-dynamical model. The simplest mesoscopic model, however, is to
model each link in a network as a queue with some capacity. Since such a model was de-
veloped and implemented for the DTA algorithm described in section 4, we will describe
the model more detailed in the next section.

3.4 FASTLANE: A Queuing Model
This section describes FASTLANE5 , a mesoscopic traffic simulation tool based on a very
simple queuing model. The basic idea of this model is that the travel time on a link is
the sum of the time needed to travel along the length of the link and the time which may
be spent waiting in a queue, and that the characteristics of a link can be described by its
length, its capacity and by the number of cars which fit into the link if the link is jammed.
In contrast to the cell transmission model mentioned in the previous section the links are
not divided into smaller parts.

We will see that despite its simplistic approach, this model provides a good approxi-
mation of the travel times in the Nagel-Schreckenberg and Krauß models.

3.4.1 Model Description

Links

In the FASTLANE model, each link in a road network each link is described by its capacity
qmax (maximum flow), the length l (to calculate the travel times) and the maximum number
of cars which fit into the link.

When a vehicle enters a link, a travel time ttravel is calculated from the length and the
current state of the link, i.e. the current number n of cars on the link, and the desired
velocity v0 of the vehicle. The vehicle is the stored until the travel time has elapsed, or —
technically speaking — the vehicle is put into a priority queue with a priority correspond-
ing to the calculated time of arrival at the end of the link.

However, if we would only use this travel time to move vehicles across a link, we
would neglect important effects like queuing and spill-back. Therefore, the number of
vehicles which may leave the link after they have arrived at the end of the link is limited
by both by the capacity of the link and the number of vehicles which fit into the next link.
The total number of cars which fit into the link is usually calculated as the maximum
traffic density ρmax times the length l. However, this could cause capacity bottlenecks if
there are short links6 since not even qmax∆t vehicles might fit on the link. For this reason,
FASTLANE by default enforces this number to be at least 2qmax∆t.

5Fast Simulator for Traffic in Large Networks
6For example, the ‘Seestrauch’ network contains ‘artificial’ links of length zero to model turning restric-

tions.
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If there is more than one outgoing link, each vehicle chooses its next link according
to its associated route plan and the capacity restrains are handled separately for each
outgoing link7. If a link has more than one in-going link and the total number of vehicles
which may enter the link exceed the capacity of the link, the available capacity is shared
proportionally according to priorities associated with the links. In this way, right of way
and green-time shares can be modeled.

queue

Travel time for each
vehicle is calculated

At the output queues,
capacity constraints
are enforcedthe corresponding output

and the vehicle is put into
according to the routeplan
An outgoing link is chosen

Priority queue
Fifo queue

Fifo queue

FASTLANE-representation

Figure 3.1 Update algorithm of FASTLANE: For each vehicle entering a link,
the free flow travel time is calculated and the vehicle is stored in a priority queue
with a priority equal to the expected time of arrival at the end of the link. At each
time step, cars which have ‘arrived’ at the end are put into the output queue cor-
responding to their destination. The output queues have a fixed capacity (vehicles
per second) and cars can only leave an output queue if there is sufficient space on
the next link.

Both in reality and in simulation models, the outflow of a link is not deterministic but
fluctuates stochastically, resulting in a fluctuating jam length and thus a fluctuating travel
time. Since these fluctuations might be important for the DTA algorithm, the capacity of
the links is not constant but modeled as a random variable, i.e. the number of vehicles
which are taken from the output queues and put into the next link is determined by a
random number generator (see 3.4.3).

An important parameter of the link model is the function to determine the expected
travel time. In principle, any relation between traffic density and velocity could be used
for this purpose. However, it turned out in the calibration process that this is not even

7This corresponds to infinitely large turn pockets. However, realistic turn pockets can be modeled by
adding an additional link for each direction.
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necessary. Just setting ttravel = l/v0, i.e. neglecting any density dependence of the expected
travel time, reproduces the travel times of the Nagel-Schreckenberg model with an error
of less than five per cent.

Nodes

The nodes of a network can be used to implement signalized and unsignalized intersec-
tions. However, the current version of FASTLANE completely ignores delays at the nodes
other than the queuing delays on the links resulting from the capacity constraints. The
only way to model right of way in the current version is to specify the portion of the avail-
able capacity which is assigned to a link if the number of vehicles which want to enter a
link exceeds the capacity of the link.

Temporal Resolution

The performance of a simulation model is usually related to the size of the time step of the
model. Therefore, one would like to choose the time step as large as possible. However,
this might result in systematic errors in the travel time due to the fact that the time to
traverse an edge is always a multiple of the time step. Especially, we have to ensure that
the rule used to round the travel times is not biased. This is achieved by using a stochastic
rounding rule

[x]stoch =

{
�x with probability x − �x	
�x	 with probability �x − x,

(3.9)

which does not change the expectation value of x, to round ttravel
∆t .

3.4.2 Implementation
FASTLANE was implemented in C++ using the LEDA library (c.f. [60]), a C++ class
library providing all common data structures and very useful data structures to represent
graphs and to associate data with links and edges.

FASTLANE is much less complex than PLANSIM-T. While PLANSIM-T has grown
to more than 20000 lines of code, FASTLANE consists of less than 3000 lines of code.
Details on the format of the input files and a short introduction on how FASTLANE is
used for DTA can be found in appendix B.2.

3.4.3 Calibration and Validation of the link model
Since the main objective is to calculate the user-optimal routes for a given time-depend-
ent ODM as an input for a car-following model, the travel times in the queuing model
should be a good estimate for the travel times for the respective car-following model.
In the sequel it is shown that the parameters of the queuing model can be chosen such
that it reproduces the travel times of the Nagel-Schreckenberg and Krauß models even in
situations with a non-trivial time-dependence of the queue lengths.
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Calibration of a Single Bottleneck

Since the capacity of a single link can be measured in a straightforward way, the simplest
nontrivial network for the calibration process is a network with a single bottleneck.

In the car following models (Krauß and Nagel-Schreckenberg) the bottleneck was
represented by a merging of two lanes into one lane. In the Nagel-Schreckenberg model,
we used the standard time and length scales of τ = 1s resp. λ = 7.5m, a maximum velocity
of vmax = 5λ/τ and a deceleration probability of pbrake = 0.2. For the Krauß model, the
same time and length scales were used and the parameters were chosen as a = b = 0.4
and ε = 0.5.

The input flow q to the bottleneck was changed periodically according to

q(t) = A − 0.5

(
cos

2πt
day

− cos
4πt
day

)
which shows the typical structure of two ‘rush-hours’ per day. The parameter A was
chosen in a way that the queue does not fully dissolve between the rush hours. This was
achieved by setting A = 0.5 for the Nagel-Schreckenberg model and A = 0.35 for the
queuing model. For all models the results were averaged over 400 simulation runs.

For the queuing model, the time step was set to 30s and the capacity of the link was
modeled by a normal distribution8 whose parameters were set to the values measured in
the Nagel-Schreckenberg model.

Figure 3.2 compares the travel time and the number of vehicles as a function of time
between the queuing model and the Nagel-Schreckenberg model. Both mean values and
standard deviation of flow and travel time are reproduced very well. Even the decrease of
the queue length at noon and the increase in the afternoon is reproduced by the queuing
model very well, although the car following behavior is neglected completely.

Figure 3.3 shows the same comparison for the Krauß model and FASTLANE. In this
case, during the rush hour the travel times measured in both models differ by up to 12%.
This is due to the fact that the Krauß model exhibits metastable states with a flow exceed-
ing the capacity. Due to this metastability, the flow in the Krauß model is greater than the
flow in the queuing model for a certain time period (see figure 3.4), resulting in a shorter
queue length and shorter travel time compared to the queuing model.

Network Calibration

Even if the parameters for the links are calibrated, the travel times of vehicles in large
networks might differ between the queuing model and the car following models since
interactions at nodes are neglected in the queuing model. Further, turning restrictions in
urban networks are modeled by auxiliary nodes and links of length zero in PLANSIM-T.
While vehicles can travel through these links without loss of time in PLANSIM-T, the
time to travel trough a link in the queuing model is at least one time step.

Figures 3.5 and 3.6 compare the travel time distribution9 of both models for the
‘Seestrauch’ network (c.f. C.1), which includes both highways and urban roads. For a

8Negative capacity values were cut off.
9More precisely: The distribution of mean travel times, sampled over 120 seconds.
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Figure 3.2 Comparison of queuing model and the Nagel-Schreckenberg model:
The curves show the travel time and the number of vehicles in the system, i.e. the
queue length, as a function of time for both models. The ‘errorbars’ indicate the
standard deviation measured in 400 simulation runs. The correspondence of the
curves of both models is so good that the curves are nearly indiscernible. Even the
standard deviations of the travel time and the queue length are reproduced very
well.

0

1000

2000

3000

5000

6000

7000

8000

0 6 12 18 24
0

2000

4000

6000

travel time T[s] N

N(t) (FASTLANE)
N(t) (Krauß model)
T(t) (FASTLANE)
T(t) (Krauß model)

Figure 3.3 The same comparison between FASTLANE and the Krauß model. In
this case, the deviations of the travel times are much larger (up to 12%). These
deviations are due the metastable states with a flow greater than the capacity (see
figure 3.4).
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Figure 3.4 Comparison of the flows in the queuing model and the Krauß model.
At the beginning of the ‘rush hour’, the flow in the Krauß model temporarily ex-
ceeds the capacity (defined as the long-term sustainable flow). This metastability
results in shorter travel times of the Krauß model compared to the queuing model.

single origin destination pair (figure 3.5), the travel times differ only slightly by about
2%. Looking at all origin destination pairs, the travel time difference is still less than 4%,
but the distribution of the travel times is much narrower in FASTLANE. Presumably, this
is due to the fact that FASTLANE neglects interactions at intersections.

3.4.4 Computational Performance

The major advantage of the queuing model is that each vehicle has to be ‘touched’ only
three times during its travel through a link — first it has to be stored in the priority queue,
then it has to be removed from the priority queue and put in an output queue, and finally
it has to be removed from the output queue and handed over to the next link. This is quite
different from car following models, where the computational burden imposed by a single
car is usually proportional to the travel time and hence the length of the link.

Since the output queues are simply stacks, a car can be added and removed from the
output queue in O(1) time. The only part of the update with a complexity depending on
the characteristics of the link is the storage of the car in the priority queue, which takes
O(logn) time, where n is the number of cars already stored in the priority queue10. Since
the number of cars traveling on a link can be bounded by the maximum density ρmax of a
link times the length of the link, the complexity for putting a car on a link grows at most

10FASTLANE uses the priority queues of the LEDA library which are implemented using Fibonacci heaps
[60].
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Figure 3.5 Distribution of travel times (sampled over 120 seconds) for a single
origin destination pair of the ‘Seestrauch’ network for PLANSIM-T (using the
Nagel-Schreckenberg model) and FASTLANE (with a time step of 10 seconds).
The mean travel time differs by about 60 seconds or 2%.
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Figure 3.6 Distribution of mean travel times for all origin destination pairs in
the ‘Seestrauch’ network (sampled over 120 seconds) for PLANSIM-T and FAST-
LANE. The mean travel times in both models differ less than 4%. However, the
variance is much smaller in FASTLANE, presumably due to the fact that interac-
tions at intersections are neglected.
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logarithmically with the length of the link. Figure 3.7 shows that the computing time
indeed increases approximately logarithmically with the length of a link.
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Figure 3.7 Influence of the link length on the computing time needed to simu-
late the travel of a fixed number of cars through a single link. Since the number of
vehicles on a link in a steady-state situation increases linear with the length of the
link, we expect the computing time to grow logarithmically with the link length.
The fitted curve of the form a log(x) + b shows that this is indeed approximately
true. The deviations for small link lengths may be due to the fact that the ‘effec-
tive’ length nmax/ρmax of a link is at least 2qmax∆t/ρmax, which is about 250m in
this example.

If we neglect the overhead to execute a time step regardless of whether cars are up-
dated or not, the complexity should not depend on the size of the time step of the model
at all. Therefore we expect the computing time to decrease as O(1/∆t) since the over-
head is proportional to the number of time steps. However, this is not entirely true since
the number of cars which are put into the priority queue per time step — and therefore
the mean cost of storing a vehicle in the priority queue — increases with the size of the
time step. Figure 3.8 shows how the computing time depends on the size of the time step
empirically.

Table 3.1 compares the computational performance of the queuing model and the
Nagel-Schreckenberg model. Depending on the implementation, the computation time
for a single link in the Nagel-Schreckenberg model grows linear either with the length l
of the link or the number n = ρl of cars on the link, where ρ is the average density of cars.
The computation time in the queuing model consists of a part which does not depend on
the link length but only the flow through the link (i.e. calculation of arrival times) and
the time to insert the vehicles in the priority queue, which grows logarithmically with the
number of vehicles in the queue.
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Figure 3.8 Influence of the time step size on the computing time. Each time
steps adds a constant overhead, summing up to a total overhead proportional to
1
∆t . Since the mean time for a vehicle update consists of the time to put a vehicle
in the priority queue (growing logarithmically with the expected number of cars
already in the queue, which is proportional to ∆t) and some constant time, we
would expect the total CPU time to be of the form a + b

∆t + c log∆t, which fits the
data quite well.

av. link CPU time [s]
Network links nodes trips length [km] NaSc Queue factor
Bottleneck 2 3 43000 0.4 430 3 143
Wuppertal 16769 9098 1.6 · 106 0.3 32000 3700 8.6
NRW 990 487 4.3 · 106 2.4 47780 559 85

Table 3.1 Comparison of the computational performance of the Nagel-
Schreckenberg model and the queuing model for different networks. Network
‘Wuppertal’ refers to an urban network, ‘NRW’ to a highway network. ‘Bottle-
neck’ is the calibration network with only a single bottleneck. All simulations
were run on a 166MHz UltraSPARC processor.



Chapter
Four

Simulation-based Traffic Assignment

As we have seen in chapter 2, the analytical assignment models are either not capable
of modeling congested networks or too complex to be solved for large networks. When
calculating the route choices for use in a traffic simulation model, these analytical models
have also the disadvantage that the cost function used in the assignment model may not
be consistent with the travel times in the simulation model. Further, a realistic modeling
of the propagation of flow and of the interactions at intersections is difficult within the
analytical models.

Therefore, it is not surprising that traffic assignment models based on traffic simula-
tion models have been proposed by several authors. Prominent models are CONTRAM
[55], a model at the Transportation Research Laboratory, INTEGRATION [87, 75] devel-
oped by van Aerde et al. at Queen’s University, Canada, DYNASMART [58] developed
by Mahmassani et al. at the University of Texas at Austin, and DynaMIT [6, 5, 16] de-
veloped by Ben-Akiva et al. at the MIT. However, these models have not been applied to
networks with more than a few hundred links due to performance reasons.

In this chapter we present an approach to the assignment model which is based on iter-
ated simulation. Although on first sight this approach seems to be even more computation-
ally complex than the analytical models, it has successfully been applied to determine the
dynamic user equilibrium for a whole day in a large network with more than 15000 links
(the urban network of Wuppertal1) using the queuing model described in section 3.4. In
fact, using a similar queuing model, the TRANSIMS group has solved the dynamic traffic
assignment problem for the morning peak period in an even larger network.

One of the major drawbacks of the simulation based assignment models is that study-
ing the convergence and the stability of these models is difficult. Although the existence
and uniqueness of fixed points of iterative dynamic routing/assignment methods have
been studied in a general context [41], these results are not applicable to travel time func-
tions which result from a simulation model. For example, one of the key assumption,
namely that the travel time is a continuous function of the departure time, does not hold
in a microscopic simulation model which includes signalized intersections. Therefore, the
discussion of the stability of the algorithm in section 4.2 is limited to rather simple types
of instabilities.

1Wuppertal, a city with about 400,000 inhabitants in Nordrhein-Westfalen, was the study area of the
FVU project.
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In the sequel we will always assume that the departure time of each traveler is fixed.
Including departure time choice would be straightforward, but would slow down the con-
vergence of the algorithm since the space of possible choices would become much larger.
Further we will focus on automobile traffic, and will often use the terms ‘traveler’ and
‘driver’ synonymously.

4.1 Probabilistic Modeling of Route Choice

4.1.1 Introduction

A pragmatic way to find the time-dependent user equilibrium would be an iterative simu-
lation:

1. Initialize the route of each driver by the optimal route in the empty network.

2. Calculate the time dependent costs of the links by simulation.

3. Recalculate the optimal routes of a certain portion p of the drivers using the time
dependent costs from step 2.

4. If routes have changed in step 3, go to step 2.

In fact, a modified version of this approach is being used by the TRANSIMS group [85]
to calculate the route choices in large networks [66, 42, 67].

However, in many cases this process tends to produce oscillations in the route choices
or is unstable [17]. Even in the case of a network with only two identical parallel links
the obvious equilibrium, namely 50% of the drivers using either route, will not be stable
since even small fluctuations in travel time will lead to a state where in every iteration the
portion p of drivers will change to the route which was used by less drivers in the previous
iteration.

For this reason, we use a slightly different approach where each driver d knows a
set Pd of routes. The route choice behavior is modeled by a probability distribution on
this set of routes which is used to pick a random route from Pd in each iteration. In the
example network with only two parallel routes, the user equilibrium would correspond to
the state in which for each of the two possible routes the probability of being chosen is
0.5. We will see in section 4.2 that if the parameters of the update rules for the probability
distribution are properly chosen, this state will be a stable fixed point of the algorithm.

4.1.2 Traveler Model

The first step in our approach is to disaggregate the time-dependent OD-matrix into a
set of drivers with a fixed departure time. Each driver d is described by the following
variables:

• an origin Od, a destination Dd and a departure time td,

• a set Pd of routes from Od to Dd,

• a probability distribution pd : Pd → R+ with
∑

r∈Pd

pd(r) = 1,
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• ‘learned travel times’ τd : Pd → R+.

Of course, no efficient algorithm can enumerate all routes in a network, so Pd can only
contain a small subset of all possible routes. This problem can be handled in different
ways:

1. Precalculate a ‘feasible’ set of routes, for example the k shortest paths which do not
use any node more than once [65, 72, 26].

2. Start with only a single route, i.e. the shortest path, for each driver. After each
iteration of the algorithm below, check if the portion of each drivers travel time
spent in queues exceeds some limit. If so, calculate the shortest path according to
the time dependent link cost functions generated by the last simulation run and add
this route to Pd.

4.1.3 Update Rules
This section describes the update rules of our model.

Update of Travel Times

In each simulation, a driver d chooses a route r from Pd according to the probability
distribution pd. After the simulation, the travel times τd(r) are updated according to

τ ′d(r) = τs(r) (4.1a)

τ ′d(s) = βτg(s) + (1 − β)τd(s) ∀s ∈ R \ {r} (4.1b)

where τs(r) is the travel time of route r measured in the simulation and τg(s) is the travel
time of route s calculated from the time dependent link costs generated by the simulation.
Rule 4.1b prevents drivers from ‘remembering’ the travel times of routes they have not
used for a long time. In the simulations done for this thesis, β was set to 0.05.

Update of pd

The update rule for pd has to increase the probability of choosing a route which has a low
travel time and has to decrease the probability of choosing a route which has a high travel
time.

More specific, for each pair (r, s) ∈ Pd the relative cost difference

δrs =
τd(s) − τd(r)
τd(s) + τd(r)

∈ [−1, 1] (4.2)

is calculated, which is a good measure to compare two routes and has the advantage of
being bounded to a fixed interval.

The update rules for the probabilities pd(r) are formulated as

p′d(r) = f (δrs), (4.3a)

p′d(s) = pd(r) + pd(s) − p′d(r) (4.3b)
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where f : [−1, 1] → [0, pd(r) + pd(s)] is a monotonic differentiable function with the
properties

f (−1) ≥ 0, (4.4a)

f (1) ≤ pd(r) + pd(s), (4.4b)

f (0) = pd(r), (4.4c)

which ensure that p′d is a probability distribution.
Furthermore, we want to ensure that symmetric fluctuations of δrs around zero are

mapped to symmetric fluctuations around pd(r). Otherwise, stochastic fluctuations of the
travel times at the equilibrium would result in a systematic drift away from the equilib-
rium. It is easy to see that this implies that f ′′(0) should be near zero, i.e. f should be
approximately linear around zero.

The function

f (x) =
pd(r) (pd(r) + pd(s)) g(x)

pd(r)g(x) + pd(s)
, (4.5)

with

g(x) = exp
( ax

1 − x2

)
(4.6)

satisfies the conditions above. Figure 4.1 shows f for a = 1, pd(r) = 0.8 and pd(s) = 0.2.

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0

a = 0.5
a = 1.0
a = 2.0

Figure 4.1 Graph of function f (see eq. (4.5)) for pd(r) = 0.8 and pd(s) = 0.2
and different values of a.
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4.2 Stability Analysis

The simplest network to analyze the stability of the algorithm is a net with only two
nodes O and D and two routes r1 and r2 of equal length from O to D which have only one
bottleneck at the end of each route. For simplicity, a time continuous formulation is used
in the sequel although the simulation model uses discrete time steps.

Let d(t) denote the demand, v the velocity of the cars, Ci and li the capacity respec-
tively the length of route ri, Qi(t) the number of cars in the queue of ri at time t and
Ti(t) = li

v + Qi(t+li/v)
Ci

the travel time for vehicles which use route ri and start at time t.

Wardrop’s first principle T1(t) = T2(t) in this case is simply

l1

v
+

Q1(t + l1/v)
C1

=
l2

v
+

Q2(t + l2/v)
C2

. (4.7)

The number of vehicles entering route i per unit time at time t is d(t)pi(t) and these
vehicles enter the bottleneck queue at time t + li/v. During an infinitesimal interval dt, the
number of vehicles leaving the queue is Cidt provided there are vehicles in the queue. So
the dynamics of the queues are given by

Q̇i(t + li/v) = pi(t)d(t) −

{
Ci if Qi(t + li/v) > 0

0 if Qi(t + li/v) = 0.
(4.8)

For the ‘jammed case’ with pid > Ci, the equilibrium condition Ṫ1(t) = Ṫ2(t) yields

pi(t) =
Ci

C1 + C2
(4.9)

as expected.

Let us assume there is a congestion period starting at t0 and ending at t1 = t0 +∆t and
at some time tpert during this period a perturbation of the user equilibrium leads to a travel
time difference ∆T(tpert) = T2(tpert) − T1(tpert) = ε. Since the pi fulfill the equilibrium con-
dition Ṫ1(t) = Ṫ2(t), this travel time difference remains constant until the queue dissolves.
According to the update rules, all drivers starting during the congestion period after tpert

will change p1 by the amount

∆p(t) = p1(t) − p′1(t) = −
(
p2(t) − p′2(t)

)
= p1(t) − f

(
ε

T1(t) + T2(t)

)
(4.10)

where p′i denotes the updated probability of choosing route ri.

During the next iteration, this perturbation of p1 leads to different travel times for
the drivers which start after tpert during the congestion period, resulting in a travel time
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Figure 4.2 Consequences of a perturbation of the travel times in a congested
network with only two parallel links, assuming that the route choice probabilities
satisfy the equilibrium conditions (4.9). If a perturbation at some time tpert leads
to a difference of size ε in the travel times, this difference will — due to the equi-
librium condition Ṫ1(t) = Ṫ2(t) — remain constant until the end of the congestion
period when the queues on both links dissolve. The update rule will shift the pi

away from their equilibrium values. In the next iteration, this leads to more traffic
on one link, so the queue on that link will grow faster, giving the travel time dif-
ference ∆T ′(t). The stability of the DTA algorithm is ensured if the maximum ε′

of |∆T ′(t)| is smaller than ε.
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difference ∆T(t). We have

d
dt

(∆T(t)) =
Q̇2(t + l2/v)

C2
−

Q̇1(t + l1/v)
C1

=
p′2(t)d(t) − C2

C2
−

p′1(t)d(t) − C1

C1

=
(p2(t) +∆p(t)) d(t) − C2

C2
−

(p1(t) −∆p(t)) d(t) − C1

C1

= d(t)

(
1

C1
+

1
C2

)
∆p(t)

(4.11)

and therefore

∆T(t) =
∫ t

tpert

d(τ )

(
1

C1
+

1
C2

)
∆p(τ )dτ

≤ max
t∈[t0 ,t1]

d(t)∆t

(
1

C1
+

1
C2

)
∆p(t).

(4.12)

The stability of algorithm is ensured if

max
t∈[t0,t1]

|∆T(t)| < ε. (4.13)

Taylor expansion using (4.10) yields

max
t∈[t0,t1]

|∆T(t)| ≤ max
t∈[t0,t1]

d(t)∆t

(
1

C1
+

1
C2

)
|∆p(t)|

≤ max
d(t)∆t

T1(t) + T2(t)

(
1

C1
+

1
C2

)(
εf ′(0) +

ε2

2
|f ′′(θε)|

)
.

(4.14)

Combining this with (4.13) yields the stability condition

f ′(0) <
C1C2

C1 + C2

1
∆t

min
t∈[t0,t1]

T1(t) + T2(t)
d(t)

(4.15)

on f ′(0) and an expression for the domain of stability

ε < min
θ∈]0,1[

1
|f ′′(θε)|

(
C1C2

C1 + C2

1
∆t

min
t∈[t0,t1]

T1(t) + T2(t)
d(t)

− f ′(0)

)
. (4.16)

For the special update rule (4.5) condition (4.15) is equivalent to

a <
C1 + C2

∆t
min

t∈[t0,t1]

T1(t) + T2(t)
d(t)

. (4.17)

From the point of view of performance, a larger value of a is desirable. Equation (4.17)
gives a theoretical limit on the value of a above which we cannot expect the algorithm to
converge. This condition has a plausible explanation: The higher the capacity compared
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to the demand and the longer the travel times compared to the duration of the rush hour,
i.e. the less jammed the network is and the less important the queuing delays are compared
to the travel times, the less susceptible to perturbations is the algorithm.

Of course, the above discussion covers only a simple type of instability. However,
it turns out that a larger number of available routes and a larger number of origin des-
tination pairs tend to improve the stability of the algorithm. This is not surprising since
the variance of a sum of random variables decreases with the number of summands. An-
other indication of the type of instability discussed in this section being indeed the most
important one is the fact that the iteration process produces oscillating route choice proba-
bilities. Figure 4.3 shows a typical example. These oscillations are produced by the same
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0.8

1

0 6 12 18 24

p

t[h]

p1
p2
p3

Figure 4.3 Typical route choice probabilities before the iteration has converged.
This example is taken from the dynamic version of Braess’s paradox discussed in
section 5.1. During the period where p1 is zero, the equilibrium is p2 = p3 = 0.5
due to the symmetry of the network. The iteration process produces route choice
probabilities which are oscillating over the day. These oscillations are caused by
the fact that the algorithm adjusts the route choice probabilities for every driver
independently, but in fact each drivers travel time is affected by all the drivers with
an earlier starting time. Due to this coupling, an ‘over-reaction’ at some time t0

leads to an over-compensation at later times.

mechanism as discussed in the stability analysis. Longer travel times on route ri at some
instant t0 lead to a decrease in the route choice probability pi at this time. This affect all
drivers starting later, and these drivers will in turn increase pi. This coupling over time,
together with the restoring force generated by the update rule for the pi, cause the pi to
behave like a string.
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4.2.1 Convergence

Unfortunately, it is difficult to study the convergence of the algorithm. Strictly speaking,
the algorithm will usually not converge at all, since the underlying simulation model will
be stochastic. The stochastic fluctuations of the simulation model will always cause a shift
of the probabilities, and the only thing we can hope for is that the averages of the route
choice probabilities taken over several iterations will converge, or that the distribution of
the route choice probabilities will become stationary for each driver.

The discussion in the previous section has shown that once the algorithm has reached
a state sufficiently close to an equilibrium, it will stay there and stochastic fluctuations of
the travel times in the underlying simulation model will only cause stochastic fluctuations
of the route choice probabilities. However, in general we cannot tell how many equilibria
exist, since for the underlying ‘cost function’, i.e. the simulation model, the conditions
for the uniqueness of the equilibrium — separability and convexity — will usually not
hold2.

Nevertheless, the simulations done for this thesis showed no example where the algo-
rithm did not converge. Further, the convergence was actually slowest for small networks
with few OD pairs. For example, in the case of the Braess networks (c.f. section 5.1)
the DTA algorithm took several thousand iterations until the route choice probabilities
became stationary, while for the Wuppertal network about 40 iterations were sufficient.

4.2.2 Numerical example

In this section the stability condition is numerically tested for an example network with
only two nodes O and D and two routes r1 and r2 joining them. The duration of one
simulation period T is 3 hours, and the capacities and the demand (both in units of vehicles
per second) are given by

C1 = 1, C2 = 2 (4.18)

d(t) = 2 − 2 cos
2πt
T
. (4.19)

The equilibrium pi are

p1 =
1
3
, p2 =

2
3
. (4.20)

The time step ∆t of the simualtion was set to 30s. The lengths of the routes are chosen
such that the travel time in the uncongested network is about 460s while the maximum
travel time is around 1200s. The duration of the jammed period is about 6000s and the
minimum value of (T1 + T2)/d is approximately 300s2. According to condition (4.17), the
algorithm should be stable for a < 0.15.

2The cost function is said to be separable if the cost on link a only depends on link xa, i.e. if the
Jacobian is diagonal. For example, the cost function will not be separable if the simulation models includes
prioritized intersections.
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To test the stability of the algorithm, we define

δ2
12 =

1
T

T/∆t∑
i=0

(T1(ti) − T2(ti))2

(T1(ti) + T2(ti))2
(4.21)

where we have used the abbreviation ti = i∆t. δ2
12 is a measure of how far the system is

off the equilibrium. The average value
〈
δ2

12

〉
of δ2

12 over several iterations starting at the
equilibrium indicates whether the systems stays at the equilibrium or is drifted away by
the algorithm.

Figure 4.4 shows
〈
δ2

12

〉
and the average travel time as a function of a. Averages were

taken over 1000 iterations of the algorithm. The value a = 0 is included to measure the
fluctuations due to the stochastic behavior of the individual drivers.

To test the convergence of the algorithm, the iteration was run with a = 0.1 and ran-
domly distributed pi. Figure 4.5 shows that after about 160 iterations

〈
δ2

12

〉
has reached

the equilibrium value showing that the algorithm has converged. By using a higher start-
ing value (a = 0.4 in this example) and decreasing it during the iteration to a value for
which the algorithm is stable, the convergence of the algorithm can be drastically speeded
up.
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Figure 4.4 Average values of δ2
12 and average travel times for different values of

a sampled over 5000 iterations of the algorithm starting at the equilibrium point.
The value for a = 0 (i.e. the algorithm doesn’t change the route choice proba-
bilities at all) is not zero because of the fluctuations of the queue lengths due to
the stochastic route choice of the individual drivers. The stability condition (4.17)
for this example is a < 0.15, but in this numerical example the algorithm is even
stable stable for a < 0.3.
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〈
δ2
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〉
as a function of the number of iterations for a = 0.1, starting

with random values of pi. With a = 0.1 the equilibrium value of
〈
δ2

12

〉
is reached

after 160 iterations. Similar to the simulated annealing approach, the convergence
can be speeded up by starting with a higher value of a and decreasing it during the
iteration process. Using a starting value of a = 0.4 which is linearly decreased to
a = 0.1 in the first 60 iterations, the equilibrium value of

〈
δ2

12

〉
is reached after 80

iterations.
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Chapter
Five

Applications

5.1 A Dynamic Version of Braess’s Paradox
In section 2.2.6 we have discussed Braess’s paradox of static traffic assignment, which
demonstrates the counter-intuitive consequences Wardrop’s first principle can have.

We also saw that the effect of increasing the travel time by adding a link to the network
strongly depends on the demand, i.e. the traffic volume (see figure 2.7 on page 18). The
interesting question is what will happen if the demand is time-dependent and has a strong
peak period like the typical demand patterns observed in real-world data.

A simple minded, quasi-static approach would be to calculate the travel times as a
function of the time-dependent traffic volumes using the static relation shown in figure
2.7. This would mean that

• before the peak period, the travelers would be better off with the additional link,

• during a transition phase the link would increase the travel time,

• and during the peak period the additional link would not matter at all.

Depending on the parameters, it might well be that in this model the network with the
additional link has a better overall performance.

We will see in this section that this approach is indeed too simple minded and that the
additional link increases the travel time during the whole peak period. This dynamic ver-
sion of Braess’s paradox is therefore also a good example to show that static assignment
fails to describe dynamic situations correctly.

Figure 5.1 shows the four networks considered in the sequel. The lengths of the indi-
vidual segments are chosen such that the length of routes A and B (see figure 5.1) is 120km
and the length of route C is 80km. Networks one and two have an optimal throughput of
16 (flow on routes qA = qB = 8s−1), while the capacity of the third and fourth network is
18 (qA = qB = 8s−1, qC = 2s−1). For demands d < 8s−1, the optimal route in the networks
two and three is C because this route is shorter than A and B. The same holds for network
four when the demand is less than 2s−1.

Braess’s Paradox occurs in the dynamic case when the demand rises above the capac-
ity of route C. In the sequel, we will assume a demand of the form

d(t) = 10s−1 − 7s−1 cosωt, ω =
2π
T
, (5.1)
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Figure 5.1 Dynamic version of Braess’s paradox. We consider four differ-
ent networks. The first two networks are the ‘usual’ Braess networks. The
third and fourth network are examples where the additional link improves the
network capacity. The system optimal capacity of networks 1 and 2 is 16s−1

(qA = qB = 8s−1), whereas the system optimal capacity of networks 3 and 4 is
18s−1 (qA = qB = 8s−1, qC = 2s−1). The reader is invited to guess which network
has the lowest average travel time and in which network the highest travel times
occur.
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Figure 5.2 Flows in the different versions of Braess’s network. In networks 3
and 4, small oscillations of the flow remain.

where we chose T = 36000s. The reader may wonder why the demand and capacity are
chosen rather high compared to flows observed on real roads. The reason for this lies in
the way the simulation based traffic assignment algorithm works. In each iteration, the
drivers have to choose their route according to their probability distribution pd. Since
this is done independently for each driver, the stochastic fluctuations in the number n of
drivers choosing a given route are of order

√
n. In networks with many OD-relations,

these fluctuations would average out, but in our case these fluctuations generate noise
disturbing the iteration process, especially since these networks have very sensitive user
equilibria. By using large flows, and thereby increasing the number of drivers, these
fluctuations are damped.

In network 1, the optimal solution is always f (A) = f (B) due to the symmetry of the
network.

For network 2, the situation is more complicated and the optimal route choice depends
on the demand. While d is less than 8s−1, C is of course optimal. This corresponds to the
case dOD ≤ 80/31 in the static version of Braess’s paradox (see figure 2.7 on page 18). C
remains optimal until the queue length in C compensates for the different lengths of the
routes, which corresponds to 80/31 < dOD < 40/11 in the static case.

The important point is that during this intermediate period, where the demand has
exceeded the capacity of route C but C is still optimal, the flow through the network is
bounded by the capacity of C, and therefore suboptimal. This is the reason for the plateaus
in figure 5.2.

After the queue on route C has grown to a length such that the travel time on route C
is equal to the travel time on routes A and B, the route choice probabilities will change
and A and B will be used again. The effect of this in the different networks is different.
In network 2, nobody will use route C after a short time, which corresponds to the case
dOD > 80/9 in the static version of Braess’s paradox. This also implies that the total flow
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Figure 5.3 Travel times in the different versions of Braess’s network.
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Figure 5.4 Travel time differences between network 1 and the other networks.

through the network reaches the optimal value of 16s−1, i.e. the drivers behave like in
network 1. However, this does not imply that the travel times in both networks are equal.
Due to the fact that in the intermediate period the flow through the network was only 8s−1,
the queues in network 2 have grown longer and until the ‘rush-hour’ is over, i.e. when
the queues have dissolved, the travel time in network 2 is larger by a constant amount of
about 1000 seconds (see figure 5.4).

In network 3, the situation is a bit different. The optimal capacity of this network is
18s−1, which is more than the maximum of the demand. Nevertheless, the same effect as
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in network 2 occurs. As long as the travel time on route C is less than the travel time on
the other routes, everybody will use route C, with the effect that the total flow through
network 3 is less than the flow through network 1. Only after the travel time on route C is
equal to the travel time on the other routes, the route choices will change and the capacity
will increase. During the hour with the highest demand, the total flow through network 3
is finally higher than the flow in network 1, but nevertheless, the travel time in network 3
is higher than in network 1.

On the average, the travel times in networks 2 and 3 are higher than in network 1 since
the flow, i.e. the number of travelers, during the peak period in which network 1 performs
better is higher than during the time when networks 2 and 3 perform better.

The network with the best performance is actually network 4, which also has a capac-
ity of 18s−1. In network 4, the capacity of the ‘shortcut’ is chosen such that the use of
route C can never adversely effect the other routes, since the capacity of the link 3 → 4 is
equal to the sum of the capacities of links 1 → 3 and 2 → 3. Therefore, it can never per-
form worse than network 1, but during the peak-period it performs better due to its higher
capacity. Comparing networks 4 and 3, we see that sometimes reducing the capacity of a
link can improve the performance of a network, which is an effect slightly different from
the one in the original version of Braess’s paradox.

5.2 The Highway Network of Nordrhein-Westfalen
The highway network of Nordrhein-Westfalen was the first network studied by our group
for which a time-dependent OD-matrix was available. This matrix was provided by the
Institut für Stadtbauwesen (ISB) of the Technische Universität Aachen, and was gener-
ated by taking a static ODM for NRW, computing a heuristic solution of the static assign-
ment problem for a network including secondary roads, tracing all trips using the highway
network, and finally ‘dynamicalizing’ the resulting matrix for the highway network using
typical time-of-day dependencies of the flows, which were extracted from induction-loop
data provided by the Landschaftsverband Rheinland. Taking into account the complexity
of this process, it is quite surprising that the daily averages of the flows resulting from this
matrix (see figure 5.5) coincide rather well with measurement data (see figure 5.6).

Since differences between static and dynamic assignment can hardly be seen in figure
5.5, the distribution of the relative differences (qstatic − qdynamic)/(qstatic + qdynamic) is shown
in figure 5.7. If these differences were caused by some purely random fluctuations, one
would expect these differences to be normal-distributed. Figure 5.7 indicates that this is
not the case, instead the data fit very well to a distribution of the form a exp(−bxc) with
c = 0.7 and b = 19.6.

network 1 network 2 network 3 network 4
capacity 16s−1 16s−1 18s−1 18s−1

average travel time 3034s 3545s 3285s 2951s

Table 5.1 Summary of Braess’s paradox
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Figure 5.5 Comparison between static and dynamic assignment for the highway
network of NRW. The plot shows the average daily traffic flows, calculated by
summing up the results of 24 individual static assignments for each hour (left)
and by the dynamic assignment algorithm (right). A more detailed comparison is
shown in figure 5.7.

Still, it is surprising how small the difference between the flows resulting from static
and dynamic assignment are. Figure 5.10 shows the reason for this: For most OD-
relations, only one route is used (see figures 5.8 and 5.10), effecting the flow for this
OD-relation to be assigned to the same route in both the static and dynamic assignment.

The reason for this is shown in figure 5.9: The average length of the trips in the OD-
matrix is only 13km. Since the highway network is rather sparse, in most case there is
only one reasonable route for trips of this short length, even if the network is congested.
Given the structure of the OD-matrix, it is therefore not surprising that the differences
between the static and dynamic assignment are so small. Whether this short average trip
length is realistic or an artificial effect caused by the algorithm used to generate the matrix
is hard to say. An indication for the latter possibility might be that the average duration
of a trip in the highway network of NRW is only about 440 seconds, while the average
duration of a trip in the network of Wuppertal — which is mostly an urban network — is
about 2100 seconds (see figure 5.12).
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Figure 5.6 Average daily traffic flows for the NRW highway network. This
figure was taken from [63].
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Figure 5.7 Comparison between static and dynamic assignment. The figure
shows the distribution of the relative error (qstatic − qdynamic)/(qstatic + qdynamic). If the
deviations would be purely stochastic, one would expect this quantity to be normal
distributed. The plot shows that the data set fits only very badly to a normal
distribution with the same mean (7.8 · 10−4) and standard deviation (4.9 · 10−2),
but is fitted very well by a distribution of the form a exp(−bxc) with c = 0.7 and
b = 19.6.
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Figure 5.8 Average number of routes per OD-relations generated by the static
assignment for the NRW highway network. Even during the morning and after-
noon peaks, the number of generated routes exceeds the number of OD-relations
only by 10 percent.
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Figure 5.9 Distribution of the trip lengths, calculated using the OD-matrix pro-
vided by the ISB. Surprisingly, the distribution of the trip lengths is sharply peaked
at short distances, and the average trip length is only 13km.
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Figure 5.10 The plot shows both the number of cases where the algorithm has
generated a given number of routes, and the average length of the corresponding
trips. As one would expect, there are only few OD-pairs for which many routes
are generated, and that these routes are generated for rather long trips. Since the
OD-matrix includes only very few long trips (see figure 5.9), it is not surprising
that for most OD-pairs there is no alternative route. This also explains why the
results of the static and the dynamic assignment agree so well.
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5.3 Wuppertal

To demonstrate that the different parts of the FVU (see figure 1.1 on page 2) are inter-
operable and can be used together to simulate fairly large networks, a study area within
NRW had to be chosen which should be interesting for all groups participating in the FVU,
for which all necessary data should be available, and the simulation of which should be a
challenge and should demonstrate the performance of the methods employed by the FVU.

The city of Wuppertal fulfilled all these conditions. Due to its situation in the v-
shaped valley of the river Wupper at the border of the Ruhrgebiet, this city of about
400,000 inhabitants is an interesting object of study for both transportation researchers
and meteorologists. The city proved to be very cooperative and provided the necessary
data for the groups modeling the demand for transportation and evaluating the impacts of
traffic on the population.

Consisting of 16769 links and 9098 nodes, the street network of Wuppertal is a chal-
lenging object of study for traffic simulation. Even doing a static assignment on this
network is time-consuming: On a 336MHz-clocked UltraSPARC-II processor, 70 itera-
tions of the Frank-Wolfe algorithm1 took 93 hours of CPU-time. Figure 5.11 shows the
convergence-rate of the Frank-Wolfe algorithm for the Wuppertal network, using the BPR
cost function (see section 2.2.5) and the OD-matrix for 11am. After 29 iterations, the rel-
ative accuracy, i.e. ub−lb

ub+lb where ub is the upper bound on the objective function value and
lb the lower bound, is better than 10−6.

To provide the input data for a microscopic simulation with PLANSIM-T, a dynamic
traffic assignment had to be done to calculate the route choices. How much CPU time
would be needed to do this using the dynamical traffic assignment models discussed in
section 2.3? In section 2.3.6 we have shown that taking into account only the linear
subproblems, the time to solve such a dynamic assignment model would be greater by a
factor of about 4N2, where N is the number of time steps. Due to the requirements of the
meteorological groups, a time resolution of at least 15 minutes had to be provided. The
time needed per iteration of the Frank-Wolfe algorithm would therefore be about 37000
times higher than in the static case. Given the fact that a single iteration in the static
case needs about 1.3 hours, this would result in 2048 days per iteration in the dynamic
case. Therefore, the dynamical assignment models based on mathematical programming
methods could not be applied for our purpose.

Compared to the dynamic assignment models, one iteration of the simulation-based
DTA algorithm is quite fast: The simulation of Wuppertal network using FASTLANE takes
less than one hour of CPU time on a UltraSPARC-II processor clocked with 336MHz2,
and the update of the route choice probabilities takes about 6.5 hours of CPU time on the
same hardware. Figure 5.12 indicates that about 40 iterations are needed until the travel
times converge.

The total CPU time needed by the simulation-based DTA algorithm to compute the

1implemented using the LEDA-library, see section 2.2.7
2See also table 3.1 on page 44 for measurements made on a 166MHz UltraSPARC processor. The

fact that the speedup is less than expected from comparing the clock-rates indicates that the simulation is
memory or I/O-bound.
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Figure 5.11 Convergence rate of the Frank-Wolfe algorithm for the solution of
the static assignment problem for Wuppertal. An accuracy of 10−6 is reached after
29 iterations.
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Figure 5.12 Convergence of the simulation-based DTA algorithm for the Wup-
pertal network. The plot shows both the mean travel time and the mean of the
squared relative travel-time difference
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(c.f. equation (4.21)). After 70 itera-
tions with a = 0.1, additional iterations with a = 0.01 were performed to check if
a was chosen small enough to ensure the stability of the algorithm.
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Figure 5.13 Average daily traffic in Wuppertal, calculated using the simulation-
based DTA algorithm and the dynamic OD-matrix provided by the ISB.
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Figure 5.14 Time-dependence of NOx emissions in Wuppertal computed with
PLANSIM-T, using the routes calculated with the simulation-based DTA algo-
rithm. The highways bypassing Wuppertal in the north (A46) and east (A1) are
clearly visible. Since the simulation starts with an empty network, the emissions
calculated for the first hour are probably too low.

dynamic user equilibrium for the Wuppertal network is therefore about 300 hours or 12.5
days. This is still a lot, but by using parallel computers — the time-consuming update
of the route choice probabilities can be parallelized in a straightforward way — the time
needed to do these computations could be reduced.

Figure 5.13 shows the resulting average daily traffic flows after the algorithm has
converged. The time-dependent traffic flows were used by the Lehrstuhl für umweltver-
trägliche Infrastrukturplanung (LUIS) as input data for their GIS-based evaluation tool
‘LUISE’ [37], which checks if the environmental impacts of traffic (noise, pollution) are
in accordance with German regulations, which specify valuation criteria depending on
both the type of the area (residential, industrial) and the time of day (especially in the
case of noise).

When comparing figures 5.13 and 5.6, it becomes obvious that the OD-matrix does
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not contain all of the traffic bypassing Wuppertal on the highways A46 and A1. While
for the data needed by LUISE, which concentrates on the urban area, this is not a serious
problem, this fact would make the calculated emissions unusable for the meteorological
groups. Therefore, in the ensuing calculation of pollutant-emissions using PLANSIM-T,
this effect was corrected by adding additional traffic on these higways. Figure 5.14 shows
the resulting NOx emissions as a function of time, which were used by the meteorological
groups as input data for the simulation of ozon-immissions [11, 47].



Chapter
Six

Summary and Outlook

In this work we have presented a simulation-based approach to the dynamic traffic assign-
ment problem. Using the simulation model FASTLANE, which uses a queuing dynamic
to describe the traveling of vehicles on a link in a street network and neglects completely
car-following behavior, we have been able to perform a dynamic user equilibrium traffic
assignment for the street network of Wuppertal, consisting of 16769 links and 9098 nodes.
This assignment was needed to calculate realistic route choice for an ensuing microscopic
simulation of the traffic in Wuppertal, which was performed in the context of the FVU to
provide data on both traffic flow and emissions of pollutants with a high time resolution.

On a Sun Enterprise 10000, this computation took about two weeks of CPU time. Us-
ing an analytical dynamic assignment model, the computation of such an user equilibrium
would not have finished yet even if it were started at the beginning of the FVU in 1995.

In the meanwhile, other groups have started to apply similar simulation models on
even larger networks, like the network of Portland, Oregon. Although the requirements
on computing resources do not yet allow this dynamic assignment method to be routinely
employed in transportation planning applications, this may change in the near future as
the costs of computing resources decrease.

In chapter 2 we have introduced the subject with a short review of the static traffic
assignment problem, which is well understood both from the mathematical and from the
algorithmical point of view. We have discussed analytical models for the dynamic traffic
assignment problem and have compared their complexity with the complexity of the static
traffic assignment problem, assuming the use of the Frank-Wolfe algorithm, which can be
used to solve both the static and dynamic problem.

In chapter 3 we have reviewed different classes of traffic simulation models, focusing
on their usability for traffic assignment based on iterated simulations. We saw that models
describing individual vehicles are suited best for this purpose. We have also described
FASTLANE, a queuing model developed by the author, and demonstrated that it can be
used to approximate the travel times of more detailed car-following models like the Nagel-
Schreckenberg model and its continuous extension by Krauß.

In chapter 4 we have presented an algorithm to solve the dynamic user equilibrium
problem using iterated simulations. This approach is based on describing route choice of
driver d by means of a probability distribution pd on the set of available routes. After each
simulation, this probability distribution is updated according to the travel times measured
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in the simulation. The advantage of using a probability distribution instead of assigning a
single route to each driver is the ability to study the stability of the algorithm analytically
— albeit only in simple cases. Note, however, that in these cases the equilibrium is
unstable with respect to the algorithms using only one route per driver and re-routing
some fraction of the drivers after each simulation.

Finally, we have presented three example applications in chapter 5. The first is a
dynamic version Braess’s paradox, which also demonstrates that static and dynamic treat-
ment of the same situation may yield different results. Especially, static descriptions of
situations with time varying demand showing a pronounced peak are flawed. The other
applications are the study cases of the FVU, the simulation of the highway network of
NRW and the simulation of Wuppertal mentioned above, which would not have been
possibly using the analytical models of the traffic assignment problem.



Appendix
A

Mathematical Prerequisites

A.1 First-order Optimality Conditions with Inequality
Constraints

In this section, we give a short overview of the first-order optimality conditions for opti-
mization problems with inequality constraints, since these conditions are less well-known
than their counterpart for equality constraints. Although the proof of these optimality
conditions is beyond the scope of this thesis, we give a simple geometrical explanation
of the additional positivity constraint on the Lagrange multipliers which is useful as a
mnemonic. Despite the fact that constrained optimization problems have already been
studied very early in the history of real analysis by J.-L. Lagrange in the context of the-
oretical mechanics, the case of inequality constraints was first studied systematically by
Kuhn and Tucker in the sixties[52].

A.1.1 Kuhn-Tucker Conditions
Consider an optimization problem of the form

minimize f (x) (A.1a)

subject to h(x) = 0 (A.1b)

g(x) ≤ 0, (A.1c)

with f ∈ C1(Rn,R), h ∈ C1(Rn,Rm) and g ∈ C1(Rn,Rp).

Definition A.1.1 A point x ∈ Rn satisfying the constraints

h(x) = 0, g(x) ≤ 0 (A.2)

is said to be a regular point of the constraints (A.2) if the set⋃
1≤i≤m

{∇hi(x)} ∪
⋃

i∈{j|gj(x)=0}
{∇gi(x)} (A.3)

is linear independent.
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The following theorem extends the well-known Lagrange multiplier theorem of con-
strained optimization to the case of inequality constraints1.

Theorem A.1.1 (Kuhn-Tucker Conditions) Let x∗ be a relative minimum of problem (A.1)
and suppose x∗ is a regular point of the constraints. Then there are λi ∈ R, 1 ≤ i ≤ m and
µj ∈ R≥0, 1 ≤ j ≤ p such that

∇f (x∗) +
p∑

j=1

µj∇gj(x∗) +
m∑

i=1

λi∇hi(x∗) = 0 (A.4a)

µjgj(x∗) = 0 ∀1 ≤ j ≤ p. (A.4b)

A proof of theorem A.1.1 can be found in [3] or [22] (example 26.4), where the latter
states a result which extends to Banach spaces.

Remark A.1.1 The condition of x∗ being a regular point of the constraints cannot be
dropped. Consider the problem

minimize f (x) = x subject to g(x) = x2 ≤ 0.

Since x∗ = 0 is the only feasible point, it is optimal, but

f ′(0) + µg′(0) = 1 �= 0 ∀µ ∈ R≥0.

For readers familiar with the case of equality constraints, we give a short explanation
of the additional conditions for the Lagrange multipliers µj for the inequality constraints.

First of all, we should notice that condition (A.4b) just states that µj is only playing
a role in condition (A.4a) if gj(x∗) = 0, i.e. if the constraint is ‘active’. Figure A.1
shows this situation where all inequality constraints are ‘active’ and there are no equality
constraints. In this case, the main difference to the case of an equality constraint is that it is
not sufficient for∇f (x∗) to be perpendicular to the tangent space of the manifold defined
by the constraints. Instead, we must also ensure that we cannot improve the objective
function by moving into the feasible region. In the case of (A.1) this means that∇f (x∗)
has to point into the feasible region, i.e. −∇f (x∗) has to be a linear combination of the
∇gj(x∗) with positive coefficients, which is exactly the statement of (A.4a).

Remark A.1.2 If we replace (A.1c) by

g(x) ≥ 0, (A.1c’)

(A.4a) has to be replaced by

∇f (x∗) −
p∑

j=1

µj∇gj(x∗) +
m∑

i=1

λi∇hi(x∗) = 0. (A.4a’)

1The conditions on the differentiability of the constraints can actually be weakened, however at the cost
of complicating the notation. For a stronger version of theorem A.1.1 see [3]
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∇g3(x′)

∇g2(x′)

∇g2(x∗)

∇g1(x∗)

f (x) = const

−∇f (x′)

−∇f (x∗)

g(x) < 0

Figure A.1 Optimality condition under inequality constraints. For x∗ with some
gi(x∗) = 0 to be a local minimum of f under the constraint g(x) ≤ 0, the gradient
∇f (x∗) has not only to be perpendicular to the tangent plane of the manifold
defined by gi(x) = 0 at x∗ (this would be sufficient in the case of the condition
g(x) = 0), but also has to be a linear combination of the ∇gi(x∗) with positive
coefficients, i.e. lie in the positive cone generated by the∇gi(x∗). At the point x′,
which is not a minimum, this condition is violated.

Lagrangian Formulation

Just as in the case of equality constraints, the optimality conditions (A.4) and the con-
straints of (A.1) can be expressed in terms of the Lagrangian

L(x,µ,λ) = f (x) − µg(x) − λh(x) (A.6)

by taking the partial derivatives with respect to all variables.

Corollary A.1.2 Let x∗ be a relative minimum for problem (A.1) and suppose x∗ is a
regular point of the constraints. Then there are λ∗ ∈ Rm and µ∗ ∈ Rp

≥0 such that

∂L(x∗,µ∗,λ∗)
∂xi

= 0 ∀1 ≤ i ≤ n (A.7a)

∂L(x∗,µ∗,λ∗)
∂λi

= 0 ∀1 ≤ i ≤ m (A.7b)

µi
∂L(x∗,µ∗,λ∗)

∂µi
= 0 ∀1 ≤ i ≤ p (A.7c)

∂L(x∗,µ∗,λ∗)
∂µi

≥ 0 ∀1 ≤ i ≤ p. (A.7d)
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A.1.2 Non-negativity and Affine Constraints
In traffic assignment applications, problems of the form

min z(x) (A.8a)

subject to ∑
i

hijxi = bj ∀1 ≤ j ≤ m (A.8b)

xi ≥ 0 ∀1 ≤ i ≤ n (A.8c)

often arise.
Unfortunately, theorem A.1.1 seems not to be applicable to problem (A.8) on first

sight since the m + n gradients of the constraints cannot be linear independent. However,
at a closer look we see that each xi can only be ‘active’ in one of both constraints: If xi

is zero, it can be omitted from the affine constraints, and if xi is greater than zero, the
corresponding Lagrange multiplier is zero anyway. So if the matrix H = (hij) has rank
m ≤ n, we can in fact apply theorem A.1.1. Furthermore, we can eliminate the Lagrange
multipliers related to constraint (A.8c).

Theorem A.1.3 Let x∗ be a local minimum of (A.8) with H having full rank m ≤ n. Then
there are λj, 1 ≤ j ≤ m with

x∗i ·
(
∂z(x∗)
∂xi

+
∑

j

λjhij

)
= 0 ∀1 ≤ i ≤ n (A.9a)

∂z(x∗)
∂xi

+
∑

j

λjhij ≥ 0 ∀1 ≤ i ≤ n. (A.9b)

Proof. As we stated above, we can apply theorem A.1.1 despite the fact that the m+n gra-
dients of all constraints are linear dependent since the gradients of the active constraints
are linear independent. Therefore there are Lagrange multipliers λj, 1 ≤ j ≤ m and µi,
1 ≤ i ≤ n with µi ≥ 0 and

∂z(x∗)
∂xi

+
∑

j

λjhij − µi = 0 ∀1 ≤ i ≤ n (A.10a)

µix
∗
i = 0 ∀1 ≤ i ≤ n. (A.10b)

Condition (A.9a) follows from the fact that if xi is greater than zero, µi has to be zero
due to (A.10b) and in this case (A.10a) implies that the second factor in (A.9a) vanishes.
Since µi ≥ 0, (A.10b) implies also (A.9a). �

As a corollary, we can express the optimality conditions (A.9) and the constraints of
(A.8) in terms of the Lagrangian

L(x,λ) = z(x) +
∑

j

λj

(∑
i

hijxi − bj

)
. (A.11)
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Corollary A.1.4 Let x∗ be a local minimum of (A.8) with H having full rank m ≤ n. Then
there exist a λ∗ ∈ Rm with

x∗i
∂L(x∗,λ∗)
∂xi

= 0 ∀1 ≤ i ≤ n (A.12a)

∂L(x∗,λ∗)
∂xi

≥ 0 ∀1 ≤ i ≤ n (A.12b)

∂L(x∗,λ∗)
∂λj

= 0 ∀1 ≤ j ≤ m. (A.12c)

A.2 The Frank-Wolfe Algorithm
In 1956, Frank and Wolfe proposed an algorithm for solving quadratic optimization prob-
lems with linear constraints [27]. This algorithm is also well-suited for the convex opti-
mization problems which arise in traffic assignment.

Consider the convex optimization problem2

min z(x) (A.13a)

subject to
∑

i

hijxi ≥ bj. (A.13b)

Contrary to most descent methods which chose a descent direction based on the projection
of the negative gradient of z on the set of feasible directions, the Frank Wolfe method
considers also how far it is possible to move along a direction, as shown in figure A.2.
This is done by solving the linear program

min x ·∇z(xn) (A.14a)

subject to
∑

i

hijxi ≥ bj, (A.14b)

i.e. the linearization of (A.13). This method of finding the descent direction has the
additional advantage that we know how far we can proceed in this search direction without
leaving the feasible set, since the optimal solution of a linear program is always situated
at the boundary of the feasible set.

Let x� be the solution of (A.14). We know that all convex combinations λxn + (1 −
λ)x�, λ ∈ [0, 1] of xn and x� are feasible. To find the optimal step size, we only have to
solve the one-dimensional optimization problem

min z
(
λxn + (1 − λ)x�

)
(A.15a)

subject to 0 ≤ λ ≤ 1. (A.15b)

For our implementation we have used Brent’s parabolic interpolation method as described
in [74].

2Note that the restriction to inequality constraints in this section is only for shortness of notation. Equal-
ity constraints can still be included as two inequality constraints.
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optimal search direction

−∇z(xn) · x′

−∇z(xn) · x′′

x′

x′′xn
∑

i hijxi ≥ bj

−∇z(xn)

Figure A.2 The search direction of the Frank-Wolfe algorithm is chosen as the
direction which gives the maximum improvement of the objective function z(x)
when taking into account not only the gradient of z at the current point xn but also
the constraints. The figure shows an example where, due to the constraints, the
negative gradient is not the optimal descent direction of the linearized problem.
Instead, x′′ is the optimum solution of the linearized problem.

A further advantage of the Frank-Wolfe method is that it gives also a lower bound on
the value of the objective function: Since z is convex, we know

z(x) ≥ z(xn) + (x − xn) ·∇z(xn), (A.16)

so we also have

min
hijxi≥bj

z(x) ≥ z(xn) + min
hijxi≥bj

(x − xn) ·∇z(xn)

= z(xn) + (x� − xn) ·∇z(xn)

=: z(xn),

(A.17)

where x� is again the solution of (A.14). Having a lower bound z(xn) on the objective
function value is especially valuable in multidimensional optimization, since the position
of the minimum cannot be bracketed like in the one-dimensional case.

The linear approximation step and the one-dimensional are iterated until the relative
difference between upper and lower bound falls below some given limit. The whole algo-
rithm reads as follows:

procedure Frank-Wolfe
begin

n := 0
x0 := some feasible point
repeat

y := Simplex(∇z(xn), h, b)
α := arg min

β∈[0,1]
z((1 − β)xn + βy)

xn+1 := (1 − α)xn + αy
ub := z(xn+1)
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lb := z(xn) + (y − xn)∇z(xn)
n := n + 1

until
ub − lb
|ub + lb| < ε

end
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Appendix
B

Details on PLANSIM-T and FASTLANE

B.1 The PLANSIM-Traffic Simulator

In the past years, different microscopic traffic simulation models have been studied at the
ZPR, namely the models by Nagel and Schreckenberg, Krauß, Wiedemann [90] and the
TOCA-model by Wu [10]. Although the car following behavior of all these models can
be implemented rather easily, building a simulator for complex networks based on these
models is a lot of programming work.

Except for the Wiedemann model, these models are all coupled map models (c.f.
chapter 3), i.e. the velocity of each car is updated based on the current velocity of that car,
the velocity of the car in front and the distance to the car in front. The lane change rules
of these models furthermore take into account the velocities and distances of the cars on
the neighboring lanes.

Since all these models need the same data to update a car, the obvious idea is to
build a network simulation tool which can simulate arbitrary road networks based on
either of these models. This idea resulted in the simulation tool PLANSIM-T. The basic
idea of PLANSIM-T is that every complicated road network can be built up from basic
components like

• links,

• crossings,

• traffic lights,

• yield- and stop-signs,

• on- and off-ramps.

All of these components were implemented in an object-oriented framework using
C++. For example, the class EDGE provides all methods to determine the distance to
the car in front and the velocity of the car in front. EDGES are connected by means
of CONNECTIONS, which take care of the route choice and the priorities of crossing
roads. Different models with different car following behavior and lane changing rules
are implemented as subclasses of EDGES (e.g. CAEDGE for the Nagel-Schreckenberg
model) which overload the methods describing the behavior of vehicles, like MOVE for
the car-following and LANECHANGE for the lane-changing rules.
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PLANSIM-T was developed jointly by Bartosz Borowik, Stefan Krauß, Peter Oertel,
Felix Pütsch, Christian Rössel, Peter Wagner, and the author of this thesis. Figure B.1
shows an example of how more complicated structures can be built up using the build-
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Figure B.1 An example of a network in PLANSIM-T

ing blocks provided by PLANSIM-T. A detailed documentation can be found in [8]. Of
course, for networks of the size of the Wuppertal network building and maintaining the
input files for PLANSIM-T is infeasible. Therefore, tools have been built to generate
PLANSIM-T input files from various graph formats.

B.2 FASTLANE

FASTLANE is a software package for simulation-based dynamic traffic assignment devel-
oped by the author of this thesis. It consists of

• a traffic simulator based on the queuing model described in section 3.4,

• a program implementing the update rules described in section 4,

• a program to generate a set of individual drivers from a time-dependent OD matrix,

• a driver script to do the iterations of the simulation/update process and some addi-
tional tools described later.

All of these programs rely on a representation of the road network as a graph or a
line graph (actually, this distinction is only important for the simulator). FASTLANE was
implemented in C++ using the LEDA library (c.f. [60]), which provides all necessary
graph-related data structures. Figure B.2 shows how the data flow between the various
programs during the iterations of the DTA. The formats of the data files are described in
the next section.
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network.rinfo

network.edg
network.nod

network.eout

network.odm

makeRoutes cell update

network.driver

loop

Figure B.2 Flow chart of the DTA algorithm

B.2.1 Input Formats
To allow an easy exchange of data with other programs, most of the input files of FAST-
LANE use very simple ASCII formats. Only the driver set is stored in a binary format for
performance reasons.

The Graph

The graph underlying the network is stored in the files network.nod and network.edg,
the former specifying the nodes, the latter specifying the edges.

The .nod file uses the simple format

id x-coordinate y-coordinate

The coordinates are only used for the (optional) graphics and to calculate the length of
edges if the length is not specified in the .edg file. For the latter purpose, the coordinates
should be specified in meters (like UTM or Gauß-Krüger coordinates [36]).

The format of the .edg file is a little bit more complicated since all important attributes
of the queuing model (capacity qmax, maximum number of cars nmax) are associated with
edges in the graph1:

id from-node to-node length [options]

The possible options are listed in table B.1.

The OD Matrix

The time-dependent OD matrix can be specified either by Fourier coefficients in the form

1We use the standard Backus-Naur notation [x] to specify that x can occur zero or more times
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Option Type Default Meaning
-c qmax float 3.0s−1 Capacity of the link. The default value corresponds to

a three-lane freeway.
-n nmax float 0.4m−1 · l Maximum number of vehicles on the link. The default

value corresponds to a three-lane freeway. This value
will always be increased by 2qmax∆t

-v vmax float 43.5ms−1 Corresponds to the mean velocity in the Nagel-
Schreckenberg model with vmax = 6 and pbrake = 0.2.

-s σq float 0 Sigma of the capacity. See section 3.4.3.
-l l float This option overrides the length specified in column

three.

Table B.1 Possible options to be specified in the .edg file

from-node to-node d0[ [aibi] ]

or by giving a value for each time period in the form

from-node to-node d0 [di]

In the former case, the demand between the nodes will be calculated as

d0 +
n∑

i=1

(ai sin iωt + bi cos iωt) , (B.1)

while in the latter case the demand in time period i = nt/T , where n is the number of
values specified and T is the length of the simulation period, will be di. Unless specified,
all programs assume T = 1day = 86400s.

B.2.2 The Driver File

All the variables associated with a driver (c.f. section 4), i.e.

• the origin Od, the destination Dd and the departure time td,

• the set Pd of routes from Od to Dd,

• the probability distribution pd,

• the ‘learned travel times’ τd,

are generated by the program makeRoutes and stored in the binary file net-
work.driver. This has the disadvantage of making this file machine-dependent and
unreadable, but saves a lot of space and speeds up the input of this file a lot — which is
critical for the very simple queuing model. The file is accessed by mapping it into the
address space of the program using the mmap system call of the UNIX operating system.
Since there may be many drivers sharing a single route, not the route but only the index
of a route in a route file is stored.
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DO

Figure B.3 Compression of routes. Except for the origin, the destination and
the first node of a route, only nodes which are necessary to reconstruct the route
are stored. These are nodes w with (v,w) being part of the route and with either
outdegree(v) > 2 or outdegree(v) = 2 and (w, v) �∈ A, i.e. nodes following a node
where there are at least two other possible directions other than turning around.
The black node is an example of such a node.

0 200 200
1 100 100
2 -100 100
3 100 -100
4 -100 -100
5 400 400

An example .nod file.

0>1 0 1 2000 -c 5.0
1>2 1 2 1000 -v 40 -c 0.8
1>3 1 3 8000 -v 10 -c 1.2
2>3 2 3 1000 -v 40 -c 1.2
2>4 2 4 8000 -v 10 -c 1.2
3>4 3 4 1000 -v 40 -c 0.8

An example .edg file

Figure B.4 Example graph file for the dynamic version of Braess’s paradox (see
section 5.1).

B.2.3 The Route File

The set of all routes in the simulation is stored in the network.rinfo. As for the .driver
file, a binary format would be preferable for performance reasons. But since the routes
have to be read only once at the beginning of the simulation, we decided that the advan-
tages of a human-readable format outweigh the performance disadvantages. Furthermore,
a binary format would rely on the numbering of nodes in the .node file, so adding a single
node would make the whole route file unusable.

The routes are represented as lists of nodes, therefore the input format is

origin [vi] destination

and the index of a route is just the line number in the .rinfo file. To save both disk
space and main memory, only the nodes necessary to reconstruct the path in the network
are stored (see figure B.3). The route file does not have to be generated by hand. The
makeRoutes program will generate it or will add additional routes if necessary.
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0 4 1.1 [0 -1]

Figure B.5 An example .odm file for the Braess network, specifying a demand
of the form 1.1 − cos(ωt) between the nodes 0 and 4.

0 1 2 3 4
0 1 3 4
0 1 2 4

Figure B.6 An example .rinfo file for the Braess network, specifying the three
possible routes in the network.

B.2.4 The Programs and their Output Formats

Generating Individual Drivers: makeRoutes

For the simulation based DTA algorithm, a population of individual drivers which is con-
sistent with the time-dependent OD matrix has to be generated. This is done using the
program makeRoutes.

Syntax:

makeRoutes [options] network

Table B.2 lists the options understood by makeRoutes.

Option Type Default Meaning
-t tmax int 86400s Time period for which to generate drivers. N.B: This

does not effect the period T of the OD matrix.
-T T int 86400s Period of the OD matrix, i.e. the smallest∆t > 0 with

d(t +∆t) = d(t). Affects both OD matrices defined by
Fourier series and by individual demand values.

-q ∆t int 30s Time step. Should be less than the time step of the
subsequent simulation, i.e. should be 1 if PLANSIM-
T is used. Otherwise, cars would enter the net as bulks
every ∆t seconds.

-f f float 1 Demand is multiplied by f.
-l Specifies that the graph should be interpreted as a line

graph.
-o ω float 2π/T Sets ω for the Fourier series.
-m mode int 1 If mode is 1, the demand is distributed randomly on

all available routes. If mode is 2, the demand is put
on the first available route only.

Table B.2 Options understood by makeRoutes.
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Input Files: makeRoutes uses the following input files: network.nod, network.edg,
network.odm and — optional — network.rinfo

Output Files: makeRoutes generates network.driver and writes network.rinfo
if new routes have been generated. If necessary, new routes are generated as shortest paths
between the origin and destination nodes.

The Simulator: cell

cell is the implementation of the queuing model discussed in section 3.4.

Syntax:

cell [options] network

Table B.3 lists the options understood by cell.

Option Type Default Meaning
-t tmax int infinity Specifies the simulation period.
-q ∆t int 30s Specifies the time step of the simulation.
-l Specifies that the graph is a line graph.
-g Enables a very simple visualization.
-R Read-only mode. Do not generate driver output files

(see below).
-Q Quiet mode. Disables ‘progress meter’.

Table B.3 Options are understood by cell

Input Files: cell uses the following input files: network.nod, network.edg, net-
work.rinfo and network.driver. If the latter file is missing, looks for an network.odm
and generates drivers directly from the OD matrix.

Output Files: To discern the output files from various runs, cell names all output files
in the form network_pid.xxx, where pid is the process id under which cell is running.
The following output files are important:

network_pid_i.driver The drivers in the network.driver file have to be sorted by
departure time. However, in general drivers will not arrive at their destination in
order of departure time. In the first version of the DTA algorithm, the update rules
were implemented directly in cell and the updated drivers were written back to
the network.driver file which was mapped into the address space in read/write
mode. However, the resulting non-sequential write accesses led to a large I/O over-
head since one cannot control the time when a ‘dirty’ page, i.e. a memory page
containing modifications, is written back to the file, so that each page possibly have
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to be written many times. For this reason, the drivers are now written sequentially
in order of arrival. To minimize the cost of sorting this file afterwards, the drivers
are put into buckets, i.e. different files, depending on their departure interval. By
default, 24 files are created, one for each hour.

network_pid.out Global information on the network state is written to this file. The
format is
t N qin qout 〈t〉 dtotal

where t is the time, N is the number of drivers currently in the network, qin is the
flow into the network, qout is the flow out of the network, 〈t〉 is the mean travel time
of cars which have arrived in the current time interval, and dtotal is the total distance
traveled by all drivers which have arrived so far.

network_pid.eout In this file, the costs of traveling along each edge are stored in a
binary format. This file is used by update to calculate the shortest path with
respect to the actual travel times in the simulation. The data are written in intervals
of 1800s.

Updating the Route-Choice Probabilities: update

The update rules of the DTA algorithm described in section 4 are implemented in up-
date. Additionally, update sorts the drivers which are written by cell in order of
arrival by departure time.

Syntax:

update [options] network

The following option is understood by update:
Option Type Default Meaning
-A a float 0.1 Sets the parameter a in the DTA algorithm (c.f. equa-

tion (4.5)).
-B β float 0 Sets the parameter β in the DTA algorithm (c.f. equa-

tion (4.1b)).
-C c float 0 Add random number uniformly distributed between

[−c, c] to δrs in equation (4.2).

Input Files: Except for the graph files, update reads the drivers from net-
work_i.driver and the time-dependent edge weights from network.eout.

Output Files: update writes the file network.driver and — if routes have been
added — network.rinfo.

Extracting Statistics: rStat

Since the driver file is written in a binary format, it is difficult to gather statistics about
the route choice probabilities for a single origin destination pair by means of the standard
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UNIX tools. rStat is a tool written for this purpose. Further, rStat can be used to
visualize the routes with ArcView [24].

Syntax:

rStat [options] network

rStat recognizes the following options:
Option Type Default Meaning
-o origin string Specify the origin node
-d destination string Specify the destination node
-q ∆t int 3600s Specify the time interval which is

sampled over.
-A ArcView mode. Generate a table

suitable to visualize a single Route
with ArcView.

-n route int Only for ArcView mode: Specify
route to draw.

Input Files: rStat reads the graph files, network.driver and network.rinfo.

Output Files: rStat writes to the standart output. By default, the following data are
written:

• A header consisting of two lines, each starting with a #. The first line gives the total
number of drivers. The second line gives a list of all routes between the specified
origin and destination from the network.rinfo file.

• The following lines are of the form
t n [piTi] where t is the time, n is the number of drivers with this OD relation
starting between t and t +∆t. For each route i between the origin and destination, pi

is the average probability of this route, and Ti is the mean travel time of this route
as ‘learned’ by the drivers.

In ArcView mode, a table in format suitable for ArcView is generated. In this table,
all edges of the graph belonging to the specified route are marked, so that the route can
be drawn with ArcView.

Doing Multiple Iterations: loop

Doing multiple iterations of cell and update by hand would be tedious. Furthermore,
the output files of cell have to be renamed for update (the pid part has to be removed).
To make this more comfortable, the shell script loop is provided.

Syntax:

loop [options] network
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In addition to the options understood by cell, update, and rStat, loop recognizes
the following options:

Option Type Default Meaning
-n iter int 5 Do iter iterations.
-I i int 0 Start at iteration i.
-r Resume. Checks if output files of a previous run exist

and skips corresponding iterations.

Input Files: To run properly, loop requires the graph files, network.driver and net-
work.rinfo.

Output Files: The output files of cell are renamed network.out_i, where i is the
iteration number.

Repairing Drivers: salvage

Due to rounding errors, the probability distributions of drivers may become unnormalized.
salvage checks the driver file for unnormalized or illegal route choice probabilities and
also for illegal, i.e. unknown, route numbers. If possible, these errors are corrected.

Syntax:

salvage network

Input Files: network.driver, network.rinfo

Output Files: network.driver
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Networks

This appendix summarizes the three ‘real world’ road networks which were used for the
simulations presented in this thesis.

C.1 The Network of ‘Seestrauch’

The ‘Seestrauch’ network (see figure C.1) is the road network of a small city in
Nordrhein–Westfalen and was used by courtesy of the Institut für Stadtbauwesen (ISB)
der Technischen Universität Aachen, which requested us not to reveal the real name of
‘Seestrauch’. It consist of 115 nodes and 278 links, of which 38 nodes are origin and
destination nodes and 21 links are highway links. To represent the turning restrictions in
the urban part, additional nodes and links have been inserted, resulting in a total of 432
nodes and 646 edges. The average link length is 160m, the total length is 103km.

C.2 The Highway Network of the Landschaftsverband
Rheinland

This network is the major part of the highway network of Nordrhein–Westfalen. This
network was provided by the Landschaftsverband Rheinland and the ISB, which also
provided the time-dependent origin destination matrix for this network. The network
consists of 481 nodes and 996 links, the origin destination matrix has a time resolution of
one hour. The average link length is 2.4km, the total length is 2 415km.

C.3 The Network of Wuppertal

This is by far the most complex network considered in this thesis, consisting of 9098
nodes and 16769 links with a total length of 5 760km. The data for this network was
provided by the administration of Wuppertal, by the Lehrstuhl für Umweltverträgliche
Infrastrukturplanung (LUIS) of the Bergische Universität/Gesamthochschule Wuppertal
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Urban
Highway

Figure C.1 The ‘Seestrauch’ network

and partly taken from a geographical database by Navigation Technologies. A time de-
pendent origin destination matrix with a temporal resolution of one hour between 462 OD
cells was provided by the ISB.
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Arterial
Federal
Autobahn

6 0 6 Kilometers

Figure C.2 The Wuppertal network
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Glossary of Notation

Symbol Meaning See page
G Graph representing the traffic network 8

A Set of arcs in the network 8
N Set of nodes in the network 8
O Set of origin nodes 8

D Set of destination nodes 8
xa Flow on link a 8
τa Travel time on link a 8
Prs Set of paths from r to s 8

drs Travel demand from r to s 8
f rs
p Flow from r to s on path p 8

τ rs
p Cost of traveling from r to s on path p 8

δrs
a,p Arc-path incidence indicator variable 8

xa(t) Number of vehicles traveling on link a at time t 24

xrs
ap(t) Number of vehicles traveling on link a over route p from r to s at

time t
24

ua(t) Inflow rate on link a at time t 25
urs

ap(t) Dto. with respect to route p from r to s 25

va(t) Outflow rate off link a at time t 25
vrs

ap(t) Dto. with respect to route p from r to s 25

A(v) Set of links going out of v 25

B(v) Set of links going into v 25

f rs
a (t) Rate of vehicles departing at node r to destination s at time t 25

ers
a (t) Rate of vehicles arriving at node s from origin r at time t 25

ψrs
p (t) Instantaneous travel time over route p at time t 26
ηrs

p (t) Actual travel time over route p at time t 27
σrs(t) Minimum instantaneous travel time from r to s at time t 27
πrs(t) Minimum actual travel time from r to s at time t 27
Od Origin of driver d 53



96 Appendix D Glossary of Notation

Dd Destination of driver d 53
td Departure time of driver d 53

Pd Set of Routes known by driver d 53

pd Probability distribution according to which driver d chooses her
route

53
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Deutsche Zusammenfassung

Im Rahmen des Forschungsverbundes „Verkehrssimulation und Umweltwirkungen“
(FVU) [2, 30] hatte die Arbeitsgruppe „Verkehr“ des ZPR/ZAIK die Aufgabe, den Ver-
kehr in großen Straßennetzen, wie etwa dem der Stadt Wuppertal mit knapp 17000 ein-
zelnen Straßenabschnitten, zu simulieren. Die Arbeitsgruppe brachte dabei verschiedene,
sehr leistungsfähige Verkehrssimulationsmodelle [65, 78, 51, 8] ein, mit denen es möglich
ist, etwa den Verkehrs auf dem gesamten deutschen Autobahnnetz mit ca. 106 Fahrzeugen
in Echtzeit zu simulieren.

Solche Modelle benötigen sehr detaillierte Eingangsdaten zur Verkehrsnachfrage,
nämlich eine Liste aller Fahrten mit Startzeit und Route. Dagegen standen als Ausgangs-
daten nur zeitlich und räumlich aggregierte Verkehrsnachfragedaten in Form einer soge-
nannten Start-Ziel-Matrix ohne Spezifikation der Routen zur Verfügung.

Ziel der vorliegenden Arbeit ist es, ein Verfahren zu entwickeln, das diese Lücke
schließt, d. h. das aus räumlich und zeitlich aggregierten Verkehrsnachfragedaten indivi-
duelle Routen berechnet.

Wieso ist dies problematisch? Die grundlegende Idee hinter allen Routenwahlmodel-
len ist sehr einfach und wurde schon 1952 von Wardrop [89] formuliert:

Alle benutzten Routen zu einem gegebenen Paar von Start- und Zielknoten
haben die gleichen Kosten, und die Kosten aller unbenutzten Routen sind
mindestens genauso groß.

Mit anderen Worten: Jeder Fahrer versucht, seine Reisezeit individuell zu optimieren.
Einen Zustand, in dem dies für jeden „Benutzer“ des Netzes erfüllt ist, nennt man Benut-
zergleichgewicht (englisch: user equilibrium).

Die statische Version dieses Problems, statische Routenumlegung genannt, ist mathe-
matisch und algorithmisch gut verstanden (s. Kapitel 2).

Ziel des FVU war jedoch eine zeitabhängige Beschreibung des Verkehrsgeschehens.
Da jede Simulation nur so gut sein kann wie ihre Ausgangsdaten, ist eine zeitlich hochauf-
gelöste Simulation auf der Basis von Daten, die unter Vernachlässigung der Zeitabhängig-
keit gewonnen wurden, wenig sinnvoll. Die bekannten Verfahren zur dynamischen Rou-
tenumlegung, d. h. zur Bestimmung des Benutzergleichgewichts unter Berücksichtigung
der Zeitabhängigkeit der Verkehrsnachfrage (s. Kapitel 2.3), sind jedoch konzeptionell
und algorithmisch deutlich komplexer als die statischen Verfahren.

Zwar lassen sich diese Modelle ähnlich wie im statischen Fall mit dem Frank-Wolfe-
Algorithmus lösen, aber die auftretenden linearen Teilprobleme sind deutlich komplexer
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als im statischen Fall (s. Kapitel 2.3.6). Die Laufzeit für eine Iteration des Frank-Wolfe-
Algorithmus für das statische Problem beträgt im Fall des Straßennetzes der Stadt Wup-
pertal, die als Beispielstadt für eine Demonstration der Modellkette des FVU ausgewählt
wurde, ca. 1,3 Stunden auf einem mit 336 MHz getakteten UltraSPARC-II Prozessor.
Legt man die Anforderungen der anderen am FVU beteiligten Gruppen an die Zeitauf-
lösung unserer Simulationen zugrunde, so ergäbe sich im dynamischen Fall für eine ein-
zige Iteration des Frank-Wolfe-Algorithmus eine Laufzeit von ca. 2048 Tagen. Selbst
wenn man berücksichtigt, daß die Teilprobleme unabhängig voneinander sind und daher
parallel gelöst werden können, ist dieser Aufwand für eine praktische Anwendung nicht
vertretbar.

Zur Lösung der gestellten Aufgabe konnte daher nicht auf die bekannten dynami-
schen Routenumlegungsmodelle zurückgegriffen werden. Die in dieser Arbeit verfolgte
Strategie war es deshalb, das Benutzergleichgewicht direkt im Simulationsmodell zu be-
stimmen, d. h. für eine gegebene Menge von „Fahrern“ mit festem Startzeitpunkt Routen
zu bestimmen, die das Wardrop’sche Kriterium erfüllen.

Die einfachste Idee wäre, jedem Fahrer zunächst den geometrisch kürzesten Weg zu-
zuweisen, mit Hilfe dieser Routen einen Simulationslauf durchzuführen, anschließend
aufgrund der in der Simulation bestimmten Reisezeiten für einen gewissen Teil der Fah-
rer neue Routen zu bestimmen und diesen Prozeß zu iterieren, bis die Reisezeiten konver-
gieren und kein Fahrer seine Reisezeit durch Wahl einer anderen Route verbessern kann.
Allerdings kann man sehr leicht Beispiele konstruieren kann, in denen dieser Prozeß nicht
konvergiert und in denen das Gleichgewicht instabil ist.

In Kapitel 4 wird ein Ansatz entwickelt, der darauf beruht, daß ein Fahrer mehr als
eine Route kennen kann. Ein Fahrer d wird in diesem Modell durch folgende Größen
beschrieben:

• Den Startknoten Od und den Zielknoten Dd,

• die Startzeit td,

• eine Menge Pd von Routen von Od nach Dd,

• eine Wahrscheinlichkeitsverteilung pd : Pd → R+ mit
∑

r∈Pd

pd(r) = 1, die die Rou-

tenwahl beschreibt,

• und „gelernte“ Reisezeiten τd : Pd → R+.

In jeder Simulation wählt der Fahrer gemäß pd zufällig eine Route aus Pd aus. Nach
der Simulation werden die Reisezeiten τd geändert und die Wahrscheinlichkeitsvertei-
lung pd wird so verschoben, daß günstigere Routen häufiger gewählt werden. Der Vorteil
dieses Ansatzes ist, daß zumindest in einfachen Fällen und für das unten beschriebene
Warteschlangenmodell die Stabilität des Verfahrens gezeigt werden kann.

Problematisch bei solch einem Iterationsprozeß ist die Rechenzeit des Simulations-
modells. Selbst die am ZPR/ZAIK entwickelten, sehr leistungsfähigen Fahrzeugfolge-
modelle sind nicht so schnell, daß eine solche Iteration mit ihnen in angemessener Zeit
durchgeführt werden könnte.

Eine Simulation des Verkehrs im Straßennetz von Wuppertal über eine Zeitraum von
24 Stunden würde mit dem Nagel-Schreckenberg-Modell ca. elf Stunden Rechenzeit auf
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einem 366 MHz getakteten UltraSPARC-II Prozessor benötigen. Mit Hilfe eines vom Au-
tor entwickelten Warteschlangenmodells konnte diese Zeit auf etwa eine Stunde reduziert
werden1. Damit war es möglich, die Berechnung des dynamischen Benutzergleichge-
wichts für das Straßennetz von Wuppertal in 300 CPU-Stunden durchzuführen. Damit
wurde die Simulation des Verkehrs in Wuppertal mit realistischen, dem Wardrop’schen
Kriterium entsprechenden Routen möglich. Dies war das Hauptziel der vorliegenden Ar-
beit.

Das oben erwähnte Warteschlangenmodell FASTLANE wird in Kapitel 3 vorgestellt.
In diesem Modell wird die Fahrzeugfolgedynamik auf einem Straßenabschnitt vernach-
lässigt und statt dessen jeder Straßenabschnitt als Warteschlange mit vorgegebener Länge,
Kapazität2 und vorgegebenem Fassungsvermögen beschrieben. Die Reisezeit besteht aus
der Summe der Zeit, die benötigt wird, um die Länge der Kante zu durchfahren, und der
Zeit, die in der Warteschlange verbracht wird. Obwohl dieses Modell den Verkehrsfluß
sehr stark vereinfacht, werden die Reisezeiten, die in den am ZPR/ZAIK verwendeten
Fahrzeugfolgemodellen gemessen wurden, sehr gut reproduziert3.

Neben der Berechnung des dynamischen Benutzergleichgewichts für Wuppertal sind
in Kapitel 5 zwei weitere Anwendungen beschrieben. Besonders interessant ist sicher
die Diskussion einer dynamischen Variante des Braess’schen Paradoxons [9], die funda-
mentale Unterschiede zwischen der statischen und der dynamischen Umlegung zeigt. Im
statischen Fall „verschwindet“ das Paradoxon oberhalb eines gewissen Flusses (s. Abbil-
dung 2.7 auf Seite 18). Eine quasistatische Analyse, also die Lösung einzelner, statischer
Umlegungen für jeden Zeitschritt, ließe erwarten, daß im Falle einer typischen, zeitab-
hängigen Verkehrsnachfrage mit einer ausgeprägten Spitzenstunde die Verschlechterung
des Netzes durch Hinzufügen einer Kante nur vorübergehend ist und der Effekt während
der Belastungsspitze wieder veschwindet. Die dynamische Simulation zeigt, daß dies
nicht der Fall ist, und das Hinzufügen der „Braess-Kante“ die Reisezeit solange erhöht,
bis der in der Spitzenzeit entstandene Stau sich wieder aufgelöst hat. Dies ist ein Beispiel
dafür, daß die statische Untersuchung der Leistungsfähigkeit eines Verkehrsnetzes unter
Umständen zu einer falschen Beurteilung führen kann.

Für eine routinemäßige Anwendung in der Praxis sind die benötigten 300 Stunden
Rechenzeit für eine Anwendung auf ein Verkehrsnetz wie das der Stadt Wuppertal natür-
lich nicht akzeptabel. Der zeitaufwendigere Teil, nämlich die Neuberechnung der Rou-
tenwahlwahrscheinlichkeiten, ließe sich jedoch in trivialer Weise parallelisieren, da die
Fahrer unabhängig voneinander betrachtet werden. Die Verfügbarkeit entsprechend lei-
stungsfähiger Rechner vorausgesetzt — eine Mehrprozessor-Workstation würde genügen
— ließe sich das Verfahren auch in der Praxis der Verkehrsplanung anwenden.

1Bei der Simulation von Straßennetzes mit einer größeren durchschnittlichen Kantenlänge wird der
Geschwindigkeitsvorteil sogar noch größer, beim Autobahnnetz von NRW beträgt er etwa zwei Größenord-
nungen.

2in der einschlägigen Literatur oft auch als „Servicerate“ bezeichnet
3Wobei die Übereinstimmung mit dem Nagel-Schreckeberg-Modell besser ist als mit dem Modell von

Krauß. Dies liegt wohl in erster Linie an der Existenz metastabiler Zustände im Modell von Krauß.
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