
Preparation of Digital Maps for Traffic Simulation;
Part 1: Approach and Algorithms

Daniel Krajzewicz, Georg Hertkorn, Julia Ringel, Peter Wagner
German Aerospace Centre, Institute of Transportation Research

Rutherfordstr. 2
12489 Berlin

Germany
E-mail: Daniel.Krajzewicz@dlr.de, Georg.Hertkorn@dlr.de, Julia.Ringel@dlr.de, Peter.Wagner@dlr.de

KEYWORDS
Microscopic traffic simulation, digital road maps,
open source, traffic research

ABSTRACT
Traffic simulations are an accepted tool for
investigations on road traffic and used widely
within the traffic science community. Modern
computer systems are fast enough to model and
simulate traffic within large areas at a
microscopic scale regarding each vehicle,
replacing macroscopic simulations in most cases.
Although microscopic traffic simulations offer
better quality than macroscopic ones, they also
need additional data to describe the modelled road
networks. A street’s lanes are modelled explicitly
within microscopic simulations and in most cases
also the connections between their lanes over
junctions.
If one wants to model large areas, the best source
to get the description about their road network is
the usage of digital maps. Unfortunately, most of
these are used for routing purposes and do not
contain the fine-grained information mentioned
above that is needed by microscopic simulations.
This document describes an algorithm for the
computation of the needed information from
simple road networks.

INTRODUCTION
“SUMO” – an acronym for “Simulation of Urban
MObility” – is an open source traffic simulation
package developed at the Institute of
Transportation Research at the German Aerospace
Centre. This application is used within some of
our institute’s projects for simulating impacts of
new optical sensors (see [1]) or traffic
management strategies (see [2]). Descriptions of
the SUMO package may be found in [3] or at the
project’s webpage [4].
The microscopic view on road networks contains
information about the connections between
consecutive lanes. When a junction has to be
crossed, vehicles have to choose a proper lane in
order to get to the desired one. Beside these lane-
to-lane connections, one also has to model which

of these connections are foes to which other
connections in order to make vehicles coming
from directions with a smaller priority wait.

Picture 1: Two rather uncomplicated junctions

We deal with large areas – cities or larger parts of
these or highway networks – and we wanted to
reduce the amount of work a user has to perform
before a simulation can be started. Often, one has
to edit all information mentioned above by hand.
Our approach is an automatic generation of such
data. For this purpose, beside the simulation
program itself, the SUMO package also includes a
program which allows the conversion of networks
from other formats. These formats have their
origin in other simulations, both macro- and
microscopic ones, or in routing systems. While
both microscopic simulations SUMO can import,
Vissim by ptv (see [5]) and ARTEMIS by Prof.
Dr. Peter Hidas ([6]) contain information about
the described lane-to-lane connections, this
information are not stored within the inputs to
macroscopic simulations or routing systems.
Macroscopic simulations do not use them as the
flow is not modelled using vehicles but in an
abstract way (see [7]) and so no lanes, but the
streets’ capacities are used (see. [8]). Routing
systems do not consider the information about
lane connections, too.
The needed automatic computation of lane-to-lane
connections and of the information about foes was
not as trivial as it sounds first. Road networks do
hold many special cases to regard. Due to this, we
decided to publish the algorithm as it may be
interesting to other and also allow other to take a
look at it in order to improve it.
Within this publication, we will describe the main
paradigm used for modelling road networks and
the information made available by the formats we
regard. Then, we will describe which information
is needed by SUMO and then, how we compute

this information from the available data. Some
comparisons to the reality will follow, together
with a conclusion and some thoughts about
further work.
This publication does not contain the description
about how the geometry of junctions or streets is
computed, but only how to compute the logical
connections.

Picture 2: Two sets of rather complicated
junctions as computed by the algorithm

ROAD NETWORK DESCRIPTIONS
Road networks are normally stored as a directed
graph. Junctions are represented as nodes and
streets as edges. Leaving out Vissim which has a
different view on road networks, this paradigm is
found throughout the formats we import, namely
in Visum, ArcView, FastLane, ARTEMIS, or
Navteq - networks.
The description of a junction is normally quite
minimalist. Beside the position it is located at and
an identifier, sometimes the information about its
type is found which in most cases distincts
between simple priority junctions and junctions
controlled by a traffic light. The descriptions of
the traffic light plans themselves are not that
uniform and we will not discuss them herein.
Still, one has to keep in mind that the information
whether a link is controlled by a traffic light is
necessary during the computation whether a link
is foe to another.
An edge’s description contains more parameter.
At first, the number of lanes the edge consists of
should be given. In the case of macroscopic
simulation networks, this is sometimes not the
case and the edge’s capacity has to be used to
compute the edges’ lane number. Assuming the
maximum capacity of a lane as 20000veh/h, the
formula below computes the number of lanes if
this information is not given. The only problem is
that in some cases, edges used in macroscopic
traffic simulation networks are using unreal
values for the flow in order to fit the simulation to
reality or to guarantee a high inflow. The second
case can be caught and managed because it
mostly occurs on feeding edges only which are
mostly marked as such (at least in Visum).
Furthermore, a maximum number of lanes can be
applied. The first case can only be changed by
hand.

lanesedge=capacityedge/max_capacitylane (1)

Further information optionally stored within an
edge’s description is the edge’s type. It is not
found in all inputs and also no standard value sets
exist. This is quite unfortunate as we will see
later. Other road attributes are either stored
directly within the edge or within the type and in
the second case they must be retrieved indirectly.
These attributes are: the maximum velocity
allowed on the edge, possibly the length,
information whether overtaking is allowed or not
and geometrical information as a single edge may
be not a straight connection between two
junctions but may possess a curvature (see picture
3).

Picture 3: Two views at the city of Magdeburg;
the left network uses straight connections for

streets, the right one includes the streets’
geometries

NEEDED INFORMATION
When looking at a junction in detail, one will see
that some further information is needed. The
vehicles using a street which has more than a
single lane, have to choose the lane they use
properly in order to get to the next street (see
picture 2). The wish to model this fact is not only
a try to make the simulation appear more realistic,
but is also important for realistic results.
A further needed information is also mostly not
available: whether a vehicle has to stop before
entering a junction when another vehicle
approaches from another direction. Of course, this
behaviour depends on the junction‘s type. In the
case of traffic light controlled junctions, the
behaviour changes with the traffic lights‘ state. In
the case of uncontrolled junctions, it depends on
whether the roads participating in the junction
have different priorities or the vehicles have to
interrogate which of them may pass the junction
first. In Germany, for example, many junctions
use the right-before-left – rule. In all cases of
uncontrolled junctions, vehicles have to wait only
if their trajectories cross. Stop signs by now
remain unregarded.

INFORMATION COMPUTATION
Some Remarks to the Import
Procedure
To avoid duplicate methods, the import is divided
into two parts. At first, the input is read using a
reader capable to parse the format of the imported
file and converted into the net converter’s internal
structures. Within the second step, the network
converter uses the information stored within these
internal structures to compute all values the
simulation needs. If any of the needed
information was already available within the input
file, the computation is skipped and the read
values are used. This method allows an easy
implementation of import modules and guarantees
the same results independent of the import format
itself.
We will not go into depth about parsing of input
files. Most of it is straightforward because the
available information is the same for most cases
and the algorithm described herein is executed
within the second step.

Lane-to-Lane Relationship
Computation
After loading, all loaded junctions (called ‘nodes’
from now on) and streets (‘edges’) are stored in
two containers – one for the junctions and one for
the edges. The order of those objects within these
containers is not defined. All operations are
executed on every junction and on every edge
within the according container. The following
operations are done in the given order:
1. for each edge: compute turnaround edges
2. for each node: sort each node’s edges
3. for each node: compute each node’s type
4. for each node: set edge priorities
5. for each edge: compute edge-to-edge

connections
6. for each edge: compute lanes-to-edge

connections
7. for each node: compute lane-to-lane

connections
8. for each edge: recheck lanes
9. for each edge: append turnarounds
We will now describe what those functions do
exactly do and why they are needed.

1. Compute Turnaround Edges
Among a street’s successors, the turnaround
direction is a special case as the number of lanes
used to reach it is always one and because this
direction is not regarded as an explicit direction: it
is uncommon to have a lane which is only used to
turn around as the wish to do so only seldom
occurs. A further reason for computing the
turnarounds is due to needing this information for
the computation of the edges’ clockwise order
within step 2. Due to his peculiarities the

backward edge is computed for each edge first
and this information is stored to allow neglecting
the backward direction on further processing
(steps 2-8).
To compute the turning directions, we assume
that an edge is the backward edge if the absolute
value of the difference between the current edge’s
direction and the edge considered to be the
backward direction is larger than 160°. The angle
is measured at the current junction as each edge is
a list of straights, and due to this a street’s angle
may differ along it.
This computation holds a trap: there may be more
than a single edge that fits to the 160°-rule. In this
case, the edge with the largest absolute direction
difference is used. Still, to check for 160° is
necessary as the usage of the edge with the
highest rotation difference only would be false in
cases where an edge has no backward direction at
all.

2. Sort each Node’s Edges
Within the second step, each of a junction’s
streets – both incoming and outgoing – are sorted
clockwise by their direction. “Direction” means
here the angle at the currently regarded junction.
After this, the edges are sorted by their logical
direction – whether they are incoming or
outgoing. This is done by going through the
sorted list of edges and checking whether the next
edge (the one at the current position + 1) is the
backward direction of the current one and is an
incoming edge. In this case, the outgoing edge
was sorted to lie left to the incoming one, but
should be on the right side. In this case, the edges
are swapped within the list.
The result of this operation is a clockwise sorted
list of edges that participate in the junction and
the incoming lanes lay before the outgoing ones
as shown in picture 4.

Picture 4: The resulting order of edges after

sorting

3. Compute Nodes’ Types
We regard three different types of junctions: “no
junction”, “priority junction”, and “right before
left junction”. The first case, “no junction” is a
special case where no right of way rules are
applied. A normal network should not contain
such junctions, but if for example two highways
cross, this type may be used. Within “priority
junction” an incoming street and its consecution

has a higher priority than other incoming streets.
Within “right before left junctions”, all directions
have the same priority and as common in
Germany, vehicles which come from the right
road may pass, the others will have to wait.
The resulting junction type is computed for each
pair of edges which income to the junction. If one
of the combinations yields in the type “priority
junction”, this type is used. Otherwise, the type
“right before left” is used.
To determine the junction type for a single
combination of two incoming edges, a two
dimensional matrix is used. As indices, the
velocities of the regarded edges are used; the
values are the junction types. Table 1 shows the
used matrix.

 -10 10-30 30-50 50-70 70-100 100-
-10 r p p p p x
10-30 r p p p x
30-50 r p p x
50-70 t p p
70-100 t p
100- x

Table 1: Junction types in dependence to two
crossing streets; r: right-before-left, p: priority, x:

no junction

4. Set Edge Priorities
Now for each edge, we set his priority within a
junction. This information will be needed later to
determine how many lanes shall approach this
edge – in the case of an outgoing edge – from an
incoming edge. The priority of an edge within a
junction may differ from the edge’s overall
priority because edges of different types may
cross within the junction. The edge’s overall
priority is also not always available within the
network description. If not, the edge’s speed may
be used.
The edge’s priorities for a certain junction they
participate within are computed as following:
- highest_incoming_edge2 = undefined
- highest_incoming_edge1 = get the incoming edge

with the highest priority
- if further incoming edges exist:

- highest_incoming_edge2 = get the incoming
edge with the second highest priority

- if at least one outgoing edge exist:
- highest_outgoing_edge1 = get the outgoing

edge which is almost in the same direction as
highest_incoming_edge1

- if further outgoing edges exist and
highest_incoming_edge2 is not undefined:
- highest_outgoing_edge2 = get the outgoing

edge which is almost in the same direction as
highest_incoming_edge2

5. Compute Edge-to-Edge Connections
Herein, the list of the edges that may be reached
from the currently seen edge is computed. This is
simply done by connecting all outgoing edges to

the currently regarded incoming edge. The
connected edges retrieved from the junction are
already sorted as described in step 2. Picture 6
shows the generated edge-to-edge connections for
our example.

Picture 6: The resulting connections between
edges (grey: turnaround computed in step 1)

6. Compute Lane-to-Edge Connections
What we have to do herein is to fan out the lanes
onto the outgoing edges, in order to compute
which edges can be reached from a certain
incoming lane of the currently regarded edge.
This computation is quite tricky and requires
some heuristics. The problem is that the number
of lanes used to reach a certain following edge is
depending on the available number of edges and
on the amount of traffic flow that will use this
connection. For most cases, the flows can be
determined using the number of lanes the
following edge has. As the comparison at the end
of this report show, this is not always true. The
flows themselves are not available within the
process of network conversion.
The following computation is done for each edge:
- get the list of connected edges beside the

turnaround
- sort them by their angle
- for each edge in this list, compute its priority for the

current edge:
� priority = (connected edge’s junction_priority +

1) * 2
- if one of the lower priorised outgoing roads goes to

the right:
- divide his importance by 2 as vehicles using it

can leave the junction faster
- if there are no major roads at this junctions:

- multiply the outgoing road that goes straight by
2, making it more important then the others

- compute the number of lanes that shall approach
each of the connected edges:
- sum up all priorities
- for each outgoing (connected) edge:

- number of lanes to use to reach this edge =
this edge’s priority for the current edge /
priority sum

- if number > number of current edge’s lanes:
- number = number of current edge’s

lanes

We now know how many lanes shall approach
each of the connected edges. We still have to
compute which lanes are used for which edge or

better to say from which lane the next edge may
be approached.
This is done using the Bresenham algorithm for
line computation assuming the list of lanes of the
current edge to be one dimension and the (sorted)
list of edges to approach the other one

Picture 7: Connections from lanes to edges;

Shown are only connections from edges which
have more than one lane – in the other case the
single lane is connected to all connected edges

7. Compute Lane-to-Lane Connections
For each of a junction’s outgoing edges, we now
have to determine, which approaching lanes will
yield on which of this outgoing edge’s lanes. This
is done using the Bresenham algorithm, too. The
dimensions the algorithm goes by are the number
of edges connected to the currently regarded
outgoing edge and the number of lanes the
currently regarded outgoing edge has.

Picture 8: After step7, the junctions are

completely built for the most cases

8. Recheck Lanes
In step 6, we have computed from which lane
which edge may be reached. In some cases,
mainly if the connected edges have more lanes
than the current edge, not all lanes were filled,
yet. Within step 8, such mistakes are being
searched and corrected. The algorithm simply
checks whether a lane has no connected edge and
if a neighbour lane has more than one connected.
In this case the neighbour lane’s connections to a
directionally matching edge are moved to the
side.

9. Append Turnarounds
Now, after all normal connections between all
edge’s lanes are set, the turnarounds may be
added to the leftmost lane.

Foe Computation
The computation of which streams are foes to
which requires only two steps. The wished output
is the information about which connections from
one incoming lane to an outgoing lane have to
wait while other may drive. The problem is that
not only one has to take into account right-before-
left relationships, but also compute whether two
streams are crossing at all.
Within the first step, for each connection the
information is set whether it is controlled by a
traffic light or not.
The second step is done for each junction. It
assumes that the edges are sorted clockwise as
described in “2. Sort each Node’s Edges”. The
algorithm is as following:
- for each incoming edge i:

- for each outgoing edge o:
- compute right-hand link crossings(i, o)
- compute left-hand link crossings(i, o)

where:
compute right-hand link crossings(i, o):
- ip = position of i in the sorted list of edges
- while ip!=position of o in the sorted list of edges:

- move ip counter clockwise (decrement,
wrapping)

- i2 = edge at position ip
- if i2 is an incoming edge:

- op = position of o in the sorted list of edges
- while op!=position of i in the sorted list of

edges:
- o2 = edge at position op
- if o2 is an outgoing edge:

- connection i to o crosses the
connection i2 to o2

- check priority(i, o, i2, o2)
- move op counter clockwise (decrement,

wrapping)

compute left-hand link crossings(i, o):

same as “compute right-hand link crossings(i,
o)”, but the pointers are moved clockwise
(increment, wrapping).

check priority(i, o, i2, o2):
- if already checked:

� return
- mark as checked
- if connection i to o is a turnaround:

� i to o is lesser priorised than i2 to o2
- same for i2 and o2
- if i has a higher junction priority than i2:

� i2 to o2 is lesser priorised than i to o
- if i has a lesser junction priority than i2:

� i to o is lesser priorised than i2 to o2
- if i and i2 have a high junction priority:

� if o has a higher junction priority than o2:
- i2 to o2 is lesser priorised than i to o

� if o has a lesser junction priority than o2:
- i to o is lesser priorised than i2 to o2

- if counter clockwise distance between i and i2 is
smaller than between i2 and i:
� i to o is lesser priorised than i2 to o2

- if counter clockwise distance between i and i2 is
larger than between i2 and i:
� i2 to o2 is lesser priorised than i to o

- if counter clockwise distance between i and o is
larger than between i2 and o2:
� i to o is lesser priorised than i2 to o2

- else:
� i2 to o2 is lesser priorised than i to o

This algorithm has the benefit to compute all
needed information without the need to know a
junction’s geometry. Only logical information is
used.

COMPARISONS TO THE REALITY
Most of the evaluations we have made so far is
based on evaluating the generated networks by
hand and determining whether the generated
junctions look like they should or not. The
algorithm described in here is about 3 years old
and worked well during such tests so far.
The only methodological analysis was done for a
small area which real-life counterpart is located
around our institute’s site. For this case, the
algorithm returns the correct result for all (177)
but four junctions, being to almost 98% correct.
One of the junctions which do not match is shown
in picture 9. The reason for the mismatch is due to
the fact, that in real life, most of the traffic is
turning left – something the algorithm is not able
to forecast. A further reason for false computation
was the lack of information about additional left-
turn lanes within the original network description.

Picture 9: False (left) and corrected (right)

junction within the evaluated scenario

CONCLUSIONS
The comparisons to reality show that the error one
should expect is quite small. When taking into
account that if not using these methods one would
have to edit every junction by hand, this approach
seems to be very useful: generating the network
for a city with about 10.000 junctions takes less
than a minute using the SUMO net converting
tool. Assuming you would do this by hand, you
would have to touch every junction several times
– if each of such actions would cost you only 1
second, you still would have to spend about three
weeks working on it.

FUTURE WORK
The heuristics used within step 7 of lane-2-lane
computation are something that should be
revalidated. Although the results are fine for the
networks we have used so far, such methods seem
quite error-pruned and may cause problems in the
future. As reported, only one methodological
analysis was done so far. This disallows to predict
the algorithm’s performance for a broader set of
situations than inner-city areas in Germany. Some
tests should be done using comparisons of
SUMO-generated networks and networks having
the complete topology.
A special case for such world-covering
evaluations would be networks with left-handed
traffic, which so far are not capable to be
generated at all.
There are also at least two further important
topics which should be covered by additional
heuristics. The first is the need to guess for each
junction whether a traffic light is positioned on it
or not. The second is determining whether a
junction is located on a highway, because in some
cases some of the connections must not be
inserted.

REFERENCES
[1] IVF/DLR. OIS project pages at:

http://www.dlr.de/vf/forschung/projekte/ois
[2] INVENT. Invent-Homepage at http://www.invent-

online.de
[3] D. Krajzewicz, G. Hertkorn, C. Rössel, P.

Wagner. 2002. "SUMO (Simulation of Urban
MObility); An open-Source Traffic Simulation"
Proceedings of the 4th Middle East Symposium
on Simulation and Modelling (MESM2002),
Edited by: A.~Al-Akaidi, pp. 183 - 187, SCS
European Publishing House, ISBN 90-77039-
09-0

[4] D. Krajzewicz, G. Hertkorn, C. Rössel, P. Wagner.
2002-2005. SUMO Homepage.
http://sumo.sourceforge.net

[5] ptv. ptv Internet pages at: http://www.ptv.de/
[6] P. Hidas. 2004. “Modelling Vehicle

Interactions in Microscopic Simulation of
Merging and Weaving”. In: Transportation
Research Part C: Emerging Technologies,
Elsevier Science Ltd. ISSN: 0968-090X

[7] D. Chowdhury, L. Santen, A. Schadschneider.
2000. "Statistical Physics of Vehicular Traffic
and Some Related Systems"; Physics Reports
329, (4-6), S. 199-329, Elsevier, 2000, ISSN:
0370-1573; also available at: http://www.arxiv.org
(cond-mat/0007053)

[8] C. Gawron. 1998. “Simulation-Based Traffic
Assignment: Computing User Equilibria in Large
Street Networks“, Dissertation, Köln 1998

