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Abstract

Research on autonomous vehicles has come a long way since first findings, and its software tools
are increasingly acclaimed by the research community. Particularly with robotics simulators, au-
tonomous vehicles were provided with a suitable test-bed for experimentation of new methodolo-
gies such as long-term navigation algorithms, map building and intelligent reasoning. However,
when it concerns the deployment and validation of such vehicles in a larger urban traffic scenario,
robotics simulators do not seem to provide the required functionality for road traffic analysis, or
inter-vehicular communication infrastructure as they seem present in today’s traffic simulators.
The improvement of such features is the key for the successful practical deployment of such a
critical system.

The main objective of this dissertation is the integration of two types of simulators, namely a
robotics and a traffic simulator. This integration will enable autonomous vehicles to be deployed
in a rather realistic traffic flow as an agent entity (on the traffic simulator), at the same time it
simulates all its sensors and actuators (on the robotics counterpart). Also, the statistical tools
available in the traffic simulator will allow practitioners to infer what kind of advantages such a
novel technology will bring to our everyday’s lives. Furthermore, the current features and issues on
current robotics and traffic simulators are presented and a taxonomy for selecting these simulators
is proposed. An architecture for the integration of the aforementioned simulators is proposed and
implemented in the light of the most desired features of such software environments.

To assess the usefulness of the platform architecture towards the expected realistic simulation
facility, a comprehensive system evaluation is also performed and critically reviewed, leveraging
the feasibility of the integration. Further developments and future perspectives are pinpointed up
in the end.
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Resumo

A investigação e o desenvolvimento na área de veículos autónomos têm vindo a dar cartas desde
as primeiras descobertas, e as suas ferramentas de software são cada vez mais aclamadas pela
comunidade científica. Fazendo uso de simuladores robóticos, os veículos autónomos foram dota-
dos de ferramentas adequadas para a experimentação de novas metodologias, tal como algorit-
mos de navegação, contrução de mapas ou inteligência artificial. No entanto, no que concerne
ao desenvolvimento e à validação destes veículos em cenários de redes de tráfego em maior es-
cala, estes simuladores não fornecem as ferramentas de análise ou simulação de redes que são
comummente utilizadas nos simuladores de tráfego. A introdução destas ferramentas na área de
veículos autónomos representa a verdadeira chave para o desenvolvimento de um sistema desta
envergadura.

O principal objectivo desta dissertação é a integração de dois tipos de simuladores: um da área
dos transportes e outro da área da robótica. Esta integração permitirá o desenvolvimento de novas
metodologias para o controlo de veículos autónomos, que se vão inserir na rede de tráfego simu-
lada de uma forma transparente ao mesmo tempo que simula todos os seus sensores e actuadores
no simulador robótico. Sendo assim, as ferramentas de estatística disponíveis nos simuladores de
tráfego permitirão que os utilizadores da plataforma infiram dados sobre as vantagens ou conse-
quências que esta nova abordagem poderá trazer para as nossas sociedades.

Inicialmente, o estado da arte é apresentado tendo em conta os tópicos base do projecto, e é
explicitada uma taxonomia para avaliar a efectividade que um simulator de tráfego ou robótico tem
nesta integração. Seguidamente, é proposta e implementada uma arquitectura para a integração dos
simuladores supracitados tendo em conta os requisitos mais importantes.

Para se avaliar a utilidade da plataforma proposta, alguns testes de desempenho e validação
são efectuados e criticamente discutidos, tendo-se em conta os requisitos inicialmente regulados.
Trabalhos e perspectivas futuras são apontadas no final do documento.
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Chapter 1

Introduction

This chapter consists of a motivation section, where a brief overview and a contextualization

of the problems facing current traffic systems is discussed. An objectives section, containing a

description of the goals that guide the project associated with this document, a planning section,

containing all major milestones in the project’s scope, and a document structure section consisting

of an exposition of how this document is arranged.

1.1 Problem Statement

Urban traffic represents one of the most problematic products of our contemporary society. Traffic

accidents caused by drivers’ mistakes are commonly associated with alcohol and drugs consump-

tion, stress and, more recently, distraction due to cell phone use. Traffic congestions are found very

often on road networks, causing high levels of pollution as well as increased delays and money

spent in a journey. Ultimately, society’s quality of life is substantially degraded with these effects.

A typical traffic congestion in a highly populated city is depicted in Figure 1.1.

With the introduction of Intelligent Transportation Systems (ITS) and accounting for Future

Urban Transport Systems (FUT) requirements, traffic flow in overpopulated areas was vastly im-

proved along with overall road safety and security. This effort has been gaining a wider focus

with research of autonomous urban vehicles, as recent advances in technology processes supply

the needed software and hardware requirements for such critical and complex systems.

There are already present in the literature various approaches to this concept since the 70s,

albeit only recently the industry market started investing on the appropriate technology. Also,

some autonomous vehicles competitions were held in the past millennium, such as the DARPA

(Defense Advanced Research Projects Agency) Grand Challenge, to encourage researchers onto

developing driverless cars [2].

Some authors [3, 4, 5] present the autonomous vehicle paradigm as a software problem. Not

surprisingly, the most difficult challenges about autonomous systems are on the algorithmic side.

Particularly on autonomous vehicles research, the highly non-linear behavior of traffic networks’

heterogeneous interacting entities is a rather complex task to handle.

1



2 Introduction

Figure 1.1: Urban traffic is becoming more and more saturated. New ITS solutions are emerging
to optimize traffic without changing the network topology1.

Robotics simulators have been the standard test-bed to experiment with new vehicles method-

ologies of autonomous navigation, obstacle avoidance and human-machine interaction. However,

when developing some novel approaches such as cooperative driving behavior in realistic multi-

modal traffic scenarios, these simulators are still very unfeasible.

Facing this emerging interest regarding the application of robotics on regular-sized vehicles,

both traffic and robotics simulators must be integrated with each other to allow engineers and

researchers to evaluate and deploy new methodologies towards FUT, accounting for the futuristic

perspective of driverless cars populating our cities as well.

1.2 Aim and Goals

This thesis aims to bridge the gap between traffic network analysis and testing autonomous vehi-

cles in urban scenarios. This must be accomplished using a distributed environment. The ultimate

goal of the project is the successful simulation of a population of vehicles together, as autonomous

agent entities, following a seamless interaction. The selected approach envisions the integration

of two simulators, one from the robotics field and another from the transportation field. Moreover,

a communication layer between them will be built on top of a compatible metadata.

The application should be distributed, as one computer will be simulating a large traffic en-

vironment whereas other computers simulate single autonomous vehicles to be integrated in the

1Courtesy from http://streetwise.kittelson.com/

http://streetwise.kittelson.com/


1.3 The Methodological Approach 3

former simulation. The latter will not only simulate its robotic sensor information, but also the

surroundings of the autonomous vehicle, which would be handled by a control agent managing its

navigation.

Ultimately, the software bundle will have a simple and clear configuration, maintaining the

integrity of the simulators, so their documentation is still valid.

1.3 The Methodological Approach

To accomplish all aforementioned goals, several robotic and traffic platforms are initially re-

viewed. The problem statement is going to be addressed by analyzing both selected simulators,

fixing each issue that inhibit their integration. Furthermore, a high-level architecture of the system

is modeled. On the implementation phase, good software practices should be applied, such as unit

testing, code style definition or design patterns, along with a comprehensive documentation.

A sample agent will be devised to validate and produce consistent results of the platform,

which controls a autonomous vehicle following a predefined route using sensor data. Finally the

encountered issues towards the initial goals are critically analyzed.

As a form of synthesis, the tasks expected to be carried out throughout this dissertation are the

following:

• Review and assess most of the well-known traffic and robotics simulators in the light of the

project’s requirements;

• Devise a flexible integration architecture to couple both simulators;

• Pinpoint each simulator issue which does not comprehend to the project goals and suggest

a fix;

• Implement the possible suggested fixes and network layer for the proposed integration;

• Establish coherent performance evaluation metrics to measure the platform efficiency.

1.4 Document Outline

This report is structured as follows:

• In this chapter, an introduction to the subject of work and most important goals to achieve

are presented. Also, a methodological approach is established;

• In Chapter 2, a literature review introducing the main concepts and current state of the art is

presented;

• In Chapter 3, the design solution is proposed along with its fundamental issues to be ad-

dressed;



4 Introduction

• Chapter 4 introduces the SUMO microscopic traffic simulator and depicts its implemented

fixes to allow proper application of the design solution;

• USARSim robotics simulator is presented in Chapter 5 and its implemented fixes are also

described;

• Chapter 6 proposes a solution for the encountered problems on the aforementioned simula-

tors integration.

• In Chapter 7, some functionality and performance tests to the integration implementation

are performed, and its results are discussed.

• Chapter 8 concludes the document depicting the main contributions, final remarks and future

work.



Chapter 2

Literature Review

In order to frame the thesis’ subject of study, this section provides a brief historical description, ex-

plains the main concepts, and describes and contextualizes all related topics. The first approached

topic is Game and Simulation Engines and their application in the research arena. Afterwards, a

detailed history of Autonomous Vehicles and its generic high level architecture is presented. This

section is followed by a brief clarification of the Robotics field, ending with an overview on Traffic

Simulation.

2.1 Game and Simulation Engines

A game engine is a software framework suitable for video games development. When first com-

mercial video consoles appeared, games were developed from scratch since their relative code

extension and algorithm complexity was low [6] . However, with the increasing competition in the

game industry and constant evolution of technology, game makers needed more time to develop a

product making use of such a high computing power.

To mitigate such issues, several software frameworks have been introduced as game engines.

These software packages have in account video games’ requirements thus implementing efficient

and high-level modules, for instance rendering, physics, audio, logic, networking, Artificial In-

telligence and input abstractions. This methodology would allow game developers to be more

focused in the game plot itself also benefiting from state-of-the-art graphics and multimedia to

compete with the more than ever demanding industry. On the other hand, a single game engine

can be used within several game titles, making it a rentable business. In fact, there are companies

nowadays devoted to game engine development only, as a commercial license can float from ten

thousand dollars to one million dollars. Some of the most known game engines in the history are

Doom [7] and Unreal Engine [8]. Figure 2.1 illustrates a state-of-the-art driving simulator game.

2.1.1 Game Engines in Research

Nowadays, there is a major interest from the research community in using game engines as sim-

ulator frameworks [9]. Similarly to game development, in that regarding simulation of realistic

5
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Figure 2.1: General aspect of a driving simulator video game from 2010, Grand Turismo 5. Its
graphical aspect resembles an highly realistic environment1.

world-sized environments, the use of such technology would produce cost-effective immersive

serious games, or in another way, simulation deployment, such as a robotics simulator, or in ed-

ucation purposes, a driving simulator [10]. As one of the subjects of this project is supported on

the robotics field, a brief analysis on the adequacy of this technology in robotics simulation is

performed below.

Some of the key features game engines provide, which are favorable to robotics researchers,

are listed below:

• Distributed architecture:

– Support for multiple processor cores is included in earlier frameworks for maximum

computational resources exploitation;

– It is possible to simulate multiple entities in multiple networked computers, distribut-

ing the processing power over all nodes.

• Cutting-edge graphics:

– Albeit the use of game engines will increase significantly the level of detail and realism

of the environment, relating to camera sensor simulation, higher resemblance from

virtual to real world can be achieved.

• Realistic Simulation:

– Suitable for virtual-reality environments, such as a driving simulator;

– Most recent game engines feature both rigid and soft body dynamics, some of them

even use a new dedicated hardware named Physics Processing Unit (PPU). Also cutting-

edge lightning effects, polygon rendering and realistic destructible environments are

present/considered.
1Courtesy from http://games.gearlive.com/playfeed/article/gran-turismo-5-realism-q111

http://games.gearlive.com/playfeed/article/gran-turismo-5-realism-q111
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Figure 2.2: Real Sedan above, USARSim simulated sedan below.

• Scriptable environment:

– Featuring simple but powerful scripting languages, game engines can be rapidly ex-

tended to support a new type of sensor, or an optimized statistics module.

As a matter of fact, there are already some robotics simulators following this approach, such

as the Urban Search and Rescue Simulation (USARSim, for short) [11] which uses the Unreal En-

gine (UE), and Player/Stage/Gazebo [12], using the open-source rendering engine Ogre3D. Figure

2.2 illustrates the visual resemblance of a real vehicle and a simulated vehicle in the USARSim

robotics simulator.

2.1.2 Current Issues

When researching robotics simulation as game engines, only behaviour-based dynamics should

be tested. Hence, when high-fidelity simulation is required, dedicated software containing mathe-

matical representation of the subsystems should be used in order to achieve realistic calculations.

These software is often validated with hardware-in-the-loop techniques, largely used in the evalu-

ation of computer-based testing equipments. High-level algorithms for trajectory planning, vision-

based processing, and multi-agent systems interactions are examples of suitable fields to use with

robotics simulators based on game engines [10].
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2.2 Autonomous Urban Vehicles

From the Ancient Greek, autonomous means auto-"self" and nomos-"law". The word autonomy

represents the one who gives oneself their own law, that means, an entity capable of making an

informed, un-coerced decision. On the other hand, a vehicle (from the Latin vehiculum) is a device

qualified to transport people or cargo, over land or in space.

One should not confuse being autonomous with being intelligent. However, when it comes

to vehicles, regarding the complex interactions of such systems and their environment, an au-

tonomous vehicle is commonly considered an intelligent vehicle.

Looking from a today’s perspective, there are already some autonomy features present in pro-

duction vehicles, such as ABS or ESC (Anti-lock breaking system & Electronic Stability Control),

and there are some other in development as Automated Parking or Vehicle Platooning. However,

despite these methods are considered to be driver-assistance components as well, the ultimate ef-

fort is the deployment of such a vehicle as actually being capable to perform a full point-to-point

journey without human intervention, maintaining rather complex aspects in consideration such as

security, efficiency and scalability, and respecting the time and space constraints human travelers

are used to. Arguably, autonomous vehicles research is a sub-field of robotics, thus a brief history

and contextualization of it is presented in Section 2.3. The former description of an autonomous

vehicle is not in the scope of this thesis, furthermore, the content of the following sections are

referred only to the latter definition.

2.2.1 Brief History

The vision for cars that drive themselves while their drivers relax is not new, as it was presented

in 1939 at the World Fair in New York, in the General Motors Pavilion [13]. However, further

Research and Development (R&D) began from early 70’s, when the space race competition be-

tween Soviet Union and United States towards the supremacy of outer space exploration was in

run. There were already plans for space missions on Mars, and giving the distance from it to

Earth, it was simply not feasible to control a robot by an earth-based operator viewing a live TV

picture. Moreover, the vehicle needed to be controlled by an on-board computer [14]. Arguably,

one of the most obvious reasons this unmanned autonomous roving vehicles emerged was from

massive funding from these governments. From then on, many attempts to build a fully automated

consumer vehicle were then made.

In the 80’s, DARPA funded a project for an Autonomous Land Vehicle (ALV) which success-

fully completed the first road demonstration using laser technology [15] (Figure 2.3).

The first activities in Germany were held in 1980, at the Universität der Bundeswehr München,

and autonomous driving pioneer Ernst Dickmanns, implemented a vision-guided Mercedes van

achieving a maximum speed of 25m/s on a separated highway. The vehicle named VaMoR (Ver-

suchsfahrzeug zur autonomen Mobilität und Rechnersehen, Vehicle for Autonomous Mobility and

Computer Vision) was a success and an inspiration to the forthcoming projects [16].
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Figure 2.3: Autonomous Land Vehicle from DARPA (1980)1

The Eureka PROMETHEUS Project (Program for European Traffic of Highest Efficiency

and Unprecedented Safety) was launched in 1987, by Daimler-Benz AG, being the biggest R&D

project ever in driverless cars, with a today’s equivalent of one billion dollars in funding from the

European Commission [17]. From 1987 to 1994, the PROMETHEUS Project has developed an

autonomous road vehicle named "Vision Technology Application" (VITA) which featured lane ori-

entation, obstacle and intersection detection and lane changing initiated by the supervisor [18, 5].

Another vehicle resulting from it was the "VaMoRs PKW", VaMoR’s automobile (VaMP). This

vehicle drove more than 1000km on a Paris three-lane highway with an average speed of 36m/s

[3].

Paralelly, "Rapidly Adapting Lateral Position Handler" (RALPH) vehicle by Carnegie Mellon

University, drove from Pittsburgh, PA through eight states to San Diego, CA. Using a vision-based

approach, its lateral control operated autonomously whereas the speed was controlled by human

supervision. It reached an average speed of about 25m/s [19, 20, 21].

In 1994, Daimler-Benz demonstrated the “Optically Steered Car” (OSCAR) using a vision-

based adaptive intelligent cruise control approach [22]. It was further enhanced within a vehicle

called "Urban Traffic Assistant" (UTA), combining the autonomy of following a lead vehicle in

urban environments and providing assistance in inner-city areas [23]. A curious introduction was

the pedestrian detection, traffic sign and traffic light recognition [24, 25, 26].

Much effort has been made on the R&D of autonomous vehicles, more recently from Italy in

1996-2001 with the ARGO project [27], and from Germany in 1998 with the KLAUS project by

Volkswagen [28].

In 2004, DARPA began to fund a multi-million dollar international competition for R&D in

driverless vehicles. This alternative approach had a great adherence and contributed for many

1Image retrieved from http://www.fastcompany.com/pics/here-come-autonomous-cars?slide=
2.

http://www.fastcompany.com/pics/here-come-autonomous-cars?slide=2.
http://www.fastcompany.com/pics/here-come-autonomous-cars?slide=2.
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Figure 2.4: Knight Rider from TeamUCF in Darpa Challenge 2007.1

advances of correlated areas. The first competition called “Barstow to Primm” consisted of a

course with a 142 miles length. From the 15 final competitors, none actually made it to the end

and the farthest distance traveled for the winning team (from Carnegie Mellon University’s team)

was 7.4 miles [29]. Later in 2005, DARPA repeated the challenged and named it “Desert Classic”

with a modification on the qualification process. From the 23 teams which made it to the final

event, only four made it to the finish line in the ten-hour limit. “Stanley” from Stanford University

won the first place $2 million prize [30]. In 2007, the last competition to date took place, aiming

to study the behavior of autonomous vehicles in populated urban traffic networks, accomplishing

a number of missions within a given time period [31]. The Team Tartan Racing from the Carnegie

Mellon University won the challenge and the $2 million prize [32]. Figure 2.4 illustrates a typical

sensor-equipped vehicle on the DARPA Challenges.

There was a similar program in 2006, held by German Federal Armed Forces. However, it was

not a competition but a demonstration of capabilities for current robotic research. It is denominated

European Land Robot Trial (ELROB). The following trials where held in 2009 and 2011 [33].

An international challenge on cooperative driving took place in the Netherlands. The goal

consisted of interacting with other traffic participants to optimize the overall traffic flow [34].

Another curious company to enter silently in autonomous vehicles technology is Google, which

gathered some of the best engineers from winning teams who won the DARPA challenges. Their

modified Toyota Prius already logged over 140.000 miles, and uses Google’s data centers and

previous manually data gathered to map its position from the car sensors [35].

Commercially autonomous vehicles are increasingly appearing, however these still rely on a

pre-built infrastructure making it unsuitable for personal use. There are already many achieve-

ments to the autonomous vehicles area. However, we still have many years ahead for this technol-

ogy to be a part of our automobiles. The expectations are to replace 90% of today’s vehicles in

2030 by fully autonomous vehicles. But what are the true advantages of this kind of technology

1Image retrieved from http://knightrider.eecs.ucf.edu/node/306

http://knightrider.eecs.ucf.edu/node/306


2.2 Autonomous Urban Vehicles 11

Figure 2.5: The classic driver model [36]

facing today’s traffic situation? Actually, there are a few. Giving the coldness of non-rational

responses of robots, these can be very effective on avoiding many of the accidents caused by

human-behavior, such as stress, drinking, high-speed and others. Also, the optimal energy effi-

ciency for traveling and raise of its user’s productivity can be the major reasons for this technology

to become part of our lives. Apart from the technical issues, user acceptance, privacy and equity

are some of the social aspects which still need to be tackled meanwhile.

2.2.2 System Architecture

Towards the simulation requirements over an autonomous vehicle system, a general architecture

overview of the vehicle is briefly presented. This is crucial as the simulator should fulfill all timing

and space requirements of the several control layers.

The architecture of an autonomous vehicle is based on the general driver behavior, depicted

in Figure 2.5. This classic approach (namely human, automatic, electronic or mechanical) models

the tasks to successfully guide its vehicle to accomplish a global goal, such as going from a point

A to a point B or delivering a mail in a office [36].

The control level is the lowest level, i.e. the physical control of the vehicle, i.e. the sensors and

actuators of the driver’s model. It must have the highest sampling rate of all three levels (in

the milliseconds order).

The guidance level comprehends the middle level supervision from simple tasks such as follow a

line or a path and speed control to more complex tasks such as adjusting speed anticipating

a curve or collision avoidance. It performs input processing such as object or lane detection

based on sensor availability. Its time frame may vary from one second to a few seconds.

The navigation level performs higher level tasks related to driving such as controlling the global

objectives, trajectory planning, efficiency and commodity, taking into account the driving

conditions. The time frame is from a few seconds to several hours.

The classic driver model represents the overall concept of a vehicle driver in its general sense.

However, being a sensor-actuator based robot, an autonomous vehicle also follows a sensor- and
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Figure 2.6: A generic sensor- and actuator-based autonomous system architecture [37]

actuator-based autonomous system architecture, consisting on a Perception Layer, a Decision

Layer, and an Action Layer [37] (Figure 2.6). These layers represent the data flow between the

data acquisition through the system for an action to be carried out. The Support Layer is attached

below for supporting the three major parts.

The Perception Layer is responsible for the acquisition of all data, such as from a vision-based

sensor, or radar-based sensor. Prior to the acquisition the data is merged into an unique map,

having in account the confidence on the sensors’ data. This is called sensor data fusion [38].

Perhaps the most complex layer is the Decision Layer. It is fed by the Perception Layer providing

feedback data to further optimize the data acquisition and interprets all incoming data from

it to generate a reasonable output to the Action Layer. The Situational Assessment provides

the input evaluation for short and long term planners; they should influence each other to

avoid short term decisions which do not accomplish the overall goal. Artificial Intelligence

algorithms are commonly used in the Decision Layer mainly due to the highly non-linear

behavior of real environment such as Neural Networks, Machine Learning, Fuzzy Logic or

Genetic Algorithms [39].

The last layer, known as Action Layer, receives commands through the Decision Layer into

the action supervisor, which sets up the abstract decision into set points to be fed by the

actuators’ controllers. The action generator denotes the system controllers and performs the

low-level actions in the actuators, also monitoring the feedback variables to further process

the new actuating variables.
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The use of such an architecture for sensor/actuator based autonomous vehicles is common in

many AGV applications. Furthermore, regarding the simulation of such robotic systems, one must

take into account all the aspects of physical implementation to further simplify the transition from

virtual- to real-world scenarios.

The Agent paradigm has been introduced as well, as a way to address some of the current issues

in autonomous-based driver behavior regarding its distribution capabilities, computing efficiency

and scalability [36, 40].

2.2.3 Autonomous Vehicles Simulation

Robotics simulation is already in use for several years now, and have reached a fairly stable state.

Moreover, and regarding the autonomous vehicle as a robot, robotics simulators are typically

used in autonomous vehicles simulation as well. In 2.3.5 a simulator comparison pointing out

some important aspects is presented, with focus on the autonomous vehicles field. In the next

section, a brief contextualization in the robotics history, current applications, issues and simulation

is introduced.

2.3 Robotics

The word robot comes from the Czech “robota”, which means “hard work” and was introduced in

the science-fiction play R.U.R (Rossum’s Universal Robots) in 1920 by Czech writer Karel Capek.

In this section we present a brief history of robotics, from its concept to nowadays’ current

development’. Current uses of robots, major issues regarding the research field, most used sensor

types and a study on robotics simulators are briefly discussed.

2.3.1 A Brief History

Research on the robotics field has began some decades ago, but the underlying concepts are much

older. In the Greek mythology, Pygmalion was a sculptor who fell in love with a statue he had

carved which came into life. Around 1495, Leonardo Da Vinci sketched plans for a humanoid

robot probably based on anatomical research recorded in his Vitruvian Man. In 1738, Jacques de

Vaucanson designed and created a mechanical flute player, a pipe player and a duck. Later on,

in 1818, the book Frankenstein written by Mary Shelley resembles the theme of robots replacing

their human creators. Similar conceptions are found in recent sci-fi movies such as Blade Runner

(1982) and The Terminator (1984). However more positive images of robots were also seen in A.I.

(2001), I,Robot (2004) and Wall-E (2008). Science fiction writer Isaac Asimov, created the Three

Laws of Robotics which were written in the 1942’s’ short story Runaround [41]. The laws can be

summarized as below:

1. A robot may not harm a human being, or, through inaction, allow a human being to come to

harm;
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2. A robot must obey the orders given to it by the human beings, except where such orders

would conflict with the First Law;

3. A robot must protect its own existence, as long as such protection does not conflict the First

or Second Law.

In early days, robots of all kinds of shapes are being inserted on our society’s way of life. In the

description below, some achieved milestones which approximated the robotics field from industry

to consumer electronics is presented (partially adapted from [42]), as chronologically listed below:

1956 The first robot company called Unimate was created by Joseph Engelberger together with

George Deroe;

1961 The first commercial robot is shipped by Unimate;

1968 Shakey was developed by Stanford Research Institute, being the first robot able to reason

about his own actions [43];

1970 ASEA company formed an industrial robotics division (ABB Robotics nowadays) with first

production robot in 1974;

1977 Using a stereo vision in order to percept the environment, The Stanford Cart moved about

four meters per hour;

1984 The Waseda University presented the Waseda biped robot that walked many kilometres, and

the Wasebot piano playing humanoid;

1986 Honda develops E0, a humanoid robot prototype that inspired a series of twelve following

models;

1990 Carnegie Mellon demonstrated autonomous highway driving at high speed with vehicle

Navlab 5;

1994 In Germany, Dickmann’s group from Munich demonstrated autonomous driving in Paris on

heavy traffic;

1996 Huskvarna presented a robotic lawn mower;

1997 The Sojourner rover operated on the Mars surface;

1998 HONDA annonces the ASIMO robot series, acronym for "Advanced Step in Innovative

MObility" [44] (Figure 2.7);

1999 AIBO pet was introduced, a well-known and popular robot from Sony;

2000 The first vacuum cleaner robot was shipped by Electrolux, named Trilobite.
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Figure 2.7: ASIMO robot from Honda. In the future, robots will be involved in common social
scenarios.

Nowadays, robots are present on a variety of contexts, namely Industrial Manufacturing, Min-

ing, Unmanned aerial vehicles (UAV), Autonomous Underwater Vehicles (AUV), Autonomous

Ground Vehicles, Service Robots and more. The focus of this thesis is regarded on autonomous

vehicles simulation which is a subfield for autonomous robots. Therefore, the following sections

are referred to devices which should not require human intervention.

2.3.2 Characteristics of Robotics

The use of autonomous robot technology is highly acclaimed due to its peculiar characteristics.

Here are some of research areas that have challenged the scientific community as well as the

industry:

Mobility Robots always have moving parts. Moreover, they can be stationary (e.g. manipula-

tor) or movable, notably an autonomous vehicle. New locomotion approaches are being

developed as well, many of them inspired on animal behavior, for instance;

Sensing To perceive the surrounding environment, the robot uses sensors, e.g. GPS, camera, laser

devices. This characteristic is explored in detail in Section 2.3.4;

Energy To power itself, the robot needs energy. Commonly it relies on battery packs, optionally

with solar panels. The excessive price of a reliable energy source for mobile robots is one

primary issue for robot investigation;

Versatility There are a lot of specialized robots nowadays, particularly in industry, e.g. painter

robots and welding robots, or in consumer electronics, e.g. robotic pets or vacuum cleaners.

Nevertheless, specialists have higher goals regarding to systems capable of carrying out

wider range of tasks. One example of it is the construction of anthropomorphic robots
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(robots with human resemblance) which should in practice be able to carry out random

human-like activities;

Artificial Intelligence Apart from roboticists not agreeing they are working within the field of

artificial intelligence, as the fields are decoupled nowadays, several techniques from AI are

fairly used such as artificial neural networks (ANN), fuzzy logic or methods for learning and

navigation planning. The use of such practices is a key ingredient to obtain a more robust

response from the robot albeit its use is not imperative.

2.3.3 Current Trends and Issues

Regarding the characteristics described above, there are yet many limitations on robotic devel-

opment, not only software but also hardware related. Robotics is considered a multi-disciplinary

field, as it can involve electronics, mechanics and mechatronics in a hardware level, and control-

theory, computer science, programming and mathematics at the software level.

Some years ago, R&D on robotics was very expensive, as researchers had to build their own

hardware. Today robots can be purchased on-package, i.e. with a hardware and software bundle,

which minimizes building costs, arguably giving more time to tackle software paradigms. Also,

the increasing computational power and data storage at low costs give opportunity to anyone will-

ing to enter in the area. Sensing has improved a lot as well, with e.g. optical cameras, laser

range-finders becoming smaller and cheaper. One must note however that state-of-the-art sensors

are obviously very expensive, and some of them are being introduced, e.g. in autonomous vehi-

cles. Further discussion in sensor types is presented in the following section. As referred already,

battery hardware and device consumption is also one of the major problems. Electrical batteries

are still very heavy and have low energy density when compared to petrol.

In order to have a full autonomous robotic system, commonly regarded as a complex system, a

whole software architecture must be carefully modeled. Some of the key modules which must be

present on such device are locomotion, navigation, data fusion, localization and planning, interac-

tion with moving objects (e.g. humans) and obstacle avoidance [45]. Each of these competences

requires a specific domain knowledge, meaning that in the process of developing a full-featured

robot, many field experts are needed. Also, a well-defined methodology and software framework

is mandatory, to provide scalability and cost-effective production. To mitigate these problems,

using methods such as software engineering, software re-use [46] or simulation is critical to mini-

mize development times maintaining code uniformization. In the today’s reality’, besides the use

of a common software bases for easy exchange of algorithms across laboratories and technology

transfer, researchers use their own tools to develop the entire robotic system, sometimes using

their own simulation tools as well [47].

2.3.4 Robotic Sensors

One of the objectives of this thesis is the simulation of autonomous vehicles in a urban traffic

environment. Thus, some important aspects to take into consideration while selecting a robotics
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simulation framework should be the types of sensors supported and their resemblance to reality,

e.g. the virtual and real sensor model (range laser), or camera output when compared to reality.

The following list contains the most used sensor types in autonomous robots, with a particular

focus on ground vehicles. A comprehensive review was also made on technical papers from the

DARPA’s Urban Challenge 2007 teams.

GPS Provides absolute location and velocity using orbiting satellites. However, it only works on

open spaces. High quality GPS systems can have a precision on the centimeter scale when

in optimal conditions; [48].

Optical Camera Gives vision to the robot. On controlled conditions, vision-based algorithms

recognize anything in the surroundings;

Infra-red Camera Similarly to the former optical camera, it gives vision to robots in the infra-red

spectrum. It is widely used along with an infra-red light to provide night vision;

Laser scanner Also known as Light Detection And Ranging (LIDAR) sensor (Figure 2.8). Laser

scanners are one of the most popular and expensive sensors used on autonomous vehicles.

It returns information of surroundings as a 2D or 3D point cloud, typically at a 12.5Hz

sampling rate, i.e. more than a million points per second (on a 3D model);

Ultrasound Measures short distances using the sound spectrum;

Radar Similarly to ultrasound, but in the electromagnetic spectrum. It can achieve even more

precise results at a long distance;

Odometry Estimates changes in velocity, acceleration and position from moving sensors, e.g.

legged joints or wheels;

Inertial Measurement This sensor type returns a measure from the relative movement of the

robot, in a linear or angular context, using an accelerometer or a gyroscope;

Compass Determines the robot direction relative to the Earth’s magnetic poles.

Actuator types are not going to be thoroughly evaluated as the sensors were, as the only ac-

tuators present in autonomous vehicles are the locomotion and steering systems which are widely

supported in any up-to-date simulator. These elements should as well be extensively tested with

hardware-in-the-loop techniques as commented in Section 2.1.2.

2.3.5 Robotics Simulators

Nowadays, robotics simulators are indispensable for reliable intelligent robot development, con-

cerning overall system complexity and expenses. Moreover, as autonomous vehicles research is

a branch of robotics, typical solutions seem to adopt these as a basis for autonomous vehicles
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Figure 2.8: The aspect of a point cloud data retrieved from a LIDAR sensor. The visualization
uses a distance-color encoding.

simulation. Also, when using a Hardware Abstraction Layer (HAL) between the hardware level

(actuators/sensors) and the vehicle control algorithms, more flexibility would be achieved in the

two parts as if they were virtually decoupled.

Bearing this in mind, a taxonomy for comparing autonomous vehicles simulators is proposed.

We assume that these simulators perform both reliable 3D simulation and visualization of the sce-

nario, and also are widely used by the research community. At least one robotics HAL framework

must be supported.

The following criteria depict the most important aspects to take into account while selecting a

robotics platform in an autonomous vehicles approach:

3D rendering The visual robustness of the simulation;

License Whether the simulator is open-source, free of charge, or commercially licensed;

External Agent Support In order to control a vehicle using an agent-based methodology the

simulator should feature a distributed architecture at the control level;

Parallelism/Distribution In order to distribute processing power over processor cores or net-

works;

Level of Maturity If the simulator is already widely used and validated;

Fault-tolerance When a hardware module fails, higher level modules should rapidly make deci-

sions whether to stop or adapt the control system. When developing a final product such

behavior should be strictly tested;

Realistic Scenario Simulation The level of realism to simulate difficult context scenarios e.g.

snow, day and night, and wind, not only interactively but also physically, i.e. affecting the

sensorial input.



2.3 Robotics 19

Figure 2.9: A Mars rover simulation in MRDS1.

2.3.6 Simulators Analysis

After careful research on the related papers, this analysis was limited to the review of two open-

source and two closed-source simulators: MRDS (Microsoft Robotics Developer Studio) [49],

Player/Stage/Gazebo [12], USARSim [11] and Webots [50].

MRDS is a robotics platform from Microsoft Company using .NET-based technology. It fea-

tures visual programming, web- and windows-based interfaces, 3D simulation with advanced

physics, as well as easy access to robot’s sensors and actuators from a number of languages.

Figure 2.9 illustrates a typical simulation on MRDS.

The Player/Stage project is an open-source distributed robotics platform. It features a dis-

tributed POSIX-compatible HAL on a minimal design. Stage and Gazebo are its 2D and 3D sim-

ulators, respectively. Gazebo is build on top of the Ogre3D rendering engine (also open-source)

to provide more realistic environments.

USARSim is a high-fidelity open-source simulator based on the Unreal game engine. It is the

official simulator platform of the Robocup virtual robot competition [51] supporting a wide range

of sensors with noise input. The USARSim simulator is fully compatible with the Mobility Open

Architecture Simulation and Tools (MOAST) [52] and Player frameworks. One curious charac-

teristic of MOAST is that it implements the Real-time Control System (RCS) reference model

architecture [53]. This model was developed by National Institute of Standards and Technology

(NIST), and is suitable for many software-intensive, real-time control problem domains. It is

commonly applied in several types of robot control such as autonomous vehicles control.

Webots is a commercial robot simulator developed by Cyberbotics and it is being used by

more than 800 universities and research centers worldwide. It has reached a fairly stable state and

supports a wide range of hardware. It is also supported by the Universal Robot Body Interface

(URBI) [54], a client/server based framework targeted for humanoid devices.

Using [47] and [55] as a reference for this study, the following table summarizes these simu-

lators” capabilities on the basis of the earlier proposed criteria.

1Courtesy from http://www.wikipedia.org

http://www.wikipedia.org
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Table 2.1: Features comparison of robotics simulators for agent-based autonomous vehicle simu-
lation.
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Gazebo GPL1 Yes Yes3 Medium No Medium

USARSim GPL Yes Yes2 Medium No High
Webots Commercial Yes Yes1 High No Medium

Support for autonomous vehicles in robotics simulators lacks some key characteristics in order

to realistically simulate from the sensor to environment level. However, its state already allows

practitioners to perform fairly complex testing within its development life-cycle.

2.4 Traffic Simulation

The use of simulation methodologies in the field of Transport Systems is widely acclaimed for

decades. If we look for current transportation state in urban scenarios, high traffic saturation

levels due to the increasing demand and unoptimized transportation planning is evident [56].

Traffic simulation tools intend not only to cope with undesired events as mentioned above, but

also to generate scenarios, optimize control, and predict network behavior at the operational level.

This allows a specialist to virtually modify the network topology or the traffic control strategies in

order to validate the reliability of new models without any disruption to traffic in a real network.

With the emergence of ITS and FUT [57], traffic simulators are as well being constantly upgraded

to support new features such as inter-vehicular communications (IVC), multi-modal simulation, or

environment and emissions reporting [58]. Figure 2.10 depicts Paramics, a state-of-the-art Traffic

Simulator from a British Company.

Traffic models are generally classified according to the following criteria[59]:

• Scale of the independent variables (continuous, discrete, semi-discrete);

• Representation of the processes (deterministic, stochastic);

1A license for Unreal Engine must be purchased. Future versions will use Unreal Development Kit, which is free of
charge.

2Supported on robot domain. Latest development version also features distributed simulation processing, i.e. sensors
can be simulated on different machines.

3Only supported on robot domain.
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Figure 2.10: Paramics Traffic Simulator offers a high degree of realism1

• Scale of application (networks, links, and intersections);

• Level of detail (submicroscopic, microscopic, mesoscopic, macroscopic).

Since a simulation model usually describes a dynamical system, its time-scale should be con-

sidered. A discrete model represents state changes discontinuously after some regular time inter-

val or event has passed. Contrarily, a continuous model describes the traffic changes continuously

over time. Albeit the time-scale is characterized by these models, other variables can also be either

discrete or continuous (e.g. position, velocity) [60].

Regarding the representation of the processes, these can be deterministic or stochastic. The

deterministic models are predictable, i.e. if two simulations are run with the same input parame-

ters, the output of each other would be the same. However, as stochastic models are derived from

probabilistic theory the results of the two simulations should differ, as random and unpredictable

behavior is present. One example would be the estimation of a lane flow, by a constant value or a

random variable for deterministic and stochastic models, respectively [60].

With respect to the scale of application, a model should represent the dynamics of single

entities (e.g. a lane, a corridor, a whole network), according to the area of application of it.

As for traffic simulation models, there are four distinct types depending on their different

granularity scales, i.e. in terms of their level of detail classification. These are the macro-, meso-,

micro- and submicroscopic modeling approaches.

The macroscopic simulators are based on mathematical models describing the vehicles’ flow

through the network, an approach similar to the fluid dynamics. More robust models have various

types of vehicles, but they all follow as well the above principle [61].

1Courtesy from http://www.paramics-online.com/paramics-media.php

http://www.paramics-online.com/paramics-media.php
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Figure 2.11: A microscopic traffic modeler (of the left) and simulator (on the right) developed on
LIACC/FEUP.

The microscopic traffic simulation consists of a set of models representing the individual ve-

hicle behavior in a traffic road that should be calibrated to follow the macroscopic traffic flow

patterns. Despite its complex configuration, once a good calibration is set up, the model follows

the macroscopic traffic flow patterns allowing for a wider analysis on the vehicle behavior, proving

itself suitable for individual intersection optimization, e.g. traffic light planning. A microscopic

traffic modeler and simulator are illustrated in Figure 2.11.

The mesoscopic simulation manages to get the advantages of both macro- and microscopic

simulators, combining the high level detail of entities, but describing their interactions and be-

haviors in a lower level, for instance in probabilistic terms. These descriptions can take different

approaches, such as with vehicle grouping as a single entity with its speed calculated for each link

using a speed-density based function or with individual vehicles grouped into cells that manage

their behaviors being the cell responsible for determining the speed of individual vehicles [62].

In addition to describing the time-space behavior of the individual entities in the traffic network

system, submicroscopic simulation also known as nanoscopic simulation describes the functioning

of specific parts and processes of vehicles and driving tasks, i.e. apart from a detailed description of

the driving behavior, the vehicle control behavior (e.g. tire deformations, changing gears, inertia)

is also modeled in detail in correspondence to prevailing surrounding conditions [59].

If one takes into account all described level of detail models as described above and the re-

quirements needed to the reliable development of autonomous vehicles simulator in an urban en-

vironment, the use of microscopic or even submicroscopic levels should be considered, given the

fact that individual driving behavior algorithms and sensing/actuating features are to be tested.

2.4.1 Microscopic Traffic Simulation

The general approach when simulating traffic in a microscopic level of detail is to treat the driver

and vehicle as one single unit. Hence, there are several dynamic rules also called behavioral mod-

els, each one supporting a specific interaction. The most important behavioral model is one that
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permits handling the longitudinal interaction between two preceding vehicles, and is commonly

known by the car-following model. However, there are other sub-models used depending on the

simulators’ capabilities and type of road to be simulated (e.g. lane-changing, gap-acceptance,

overtaking, ramp metering, speed adaptation) [63].

The aforementioned rules should be reliable to simulate a realistic traffic environment. How-

ever, they still suffer from the following drawbacks:

• They are usually decoupled from each other (i.e. on a lane changing, no longitudinal accel-

eration is affected);

• The vehicles lateral position is discrete (per-lane);

• There is no cooperation capabilities among the various entities of the road.

Other recent improvements on microscopic traffic simulation are the integration of the agent

computing paradigm into many aspects of transportation systems, such as in modeling and simu-

lation, dynamic routing and congestion management and intelligent traffic control [64]. Also, the

use of game engines technology in simulators is proposed in [65] with promising potential.

2.4.2 Evaluating Traffic Simulators for Autonomous Vehicles Simulation

Bearing this thesis project’s perspective in mind, some microscopic traffic simulators are briefly

analyzed in order to choose the most suitable one to meet its requirements. One must note that only

fully validated and widely used simulators are described. We assume these simulators perform the

minimal aspects of a reliable microscopic traffic simulation to simplify the study. In [66], a com-

parison taxonomy for microscopic simulators applied to FUT is proposed, thereby offering a good

starting point into the criteria selection for the integration with autonomous vehicle simulators.

Furthermore, the selected criteria are described below:

Extensibility When using a closed-source software, its extensibility should be analyzed in order

to study if it suits the integration of other tools, i.e. the level of accessibility of the simulation

core;

Software License Open-source simulators are generally inferior in features as compared to com-

mercial ones. Nonetheless, when well documented they tend to be more flexible and rapidly

extended due to community support;

External Agent Support The ability to use the agent technology, not only in driver behavior

modeling, but in simulation initiation, control or deployment;

Parallelism/Distribution To support a large traffic scenario, simulators must feature distributed

processing over several cores or a computer network;
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Inter-vehicular communications (IVC) Virtual communication infrastructure support for V2V

or V2I and physical restrictions simulation must be present as well;

Interactivity What features are controllable from simulation in run-time, and general graphical

aspect;

Level of Maturity Whether the simulator is widely used and validated by the scientific commu-

nity.

A taxonomy to compare microscopic traffic simulators and their applications to multi-agent

autonomous vehicles simulation was proposed. Finally, some results are described in the following

section.

2.4.3 Traffic Simulators Analysis

Following the comprehensive analysis in [66], a general overview of the referred simulators against

the selected criteria is presented, namely VISSIM [67], PARAMICS [68], AIMSUN [69], MIT-

SIM [70], SUMO [71] and MAS-T2er Lab [72].

Table 2.2: Feature comparison of microscopic traffic simulators for agent-based autonomous ve-
hicle simulation.
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SUMO GPL Yes2 No2 Yes3 No5 Medium High
MAS-T2erLab Free Yes1 Yes1 Yes3 No Medium Low

Regarding the extensibility of these simulators, all of them offer some type of modularization.

MAS-T2er Lab simulator only provides an UDP connection to control semaphoric intersections

and statistical data. SUMO simulator provides an extension named TraCi, which provides sta-

tistical data and direct access to some core elements, however it is in a very embrionary level.

Nonetheless, it has been extended by the TrasMAPI project to support the implementation of

agents in Java [73]. All commercial simulators seem to fulfill this requirement, but a tougher

analysis should be needed to evaluate the possibility of integrating external vehicles (e.g. from an

autonomous vehicle simulator) in real-time into the simulations.
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VISSIM, PARAMICS and AIMSUN are full closed-source packages, MITSIM have both the

close- and the open-source variants and SUMO and MAS-T2er Lab are open-source, being SUMO

the most featured and referenced open-source project with over hundred papers. The importance

of simulators license is high, as in the case of modification needed on the core, only open-source

ones can fully allow it.

Only MAS-T2er Lab seems to support agent-based driver behavior simulations, with multi-

connection and local information.

PARAMICS is the only off-the-shelf simulator supporting distributed computing over a net-

work. The remaining simulators support parallel processing over all CPUs.

Inter-vehicular communications are not supported by any of the commercial variants, as they

do not seem to be targeted at research purposes. Only SUMO was already modified to support this

kind of simulation [74].

Regarding the interactivity criterion, the most 3D realistic simulators are the commercial

ones, followed by MAS-T2er Lab. Only SUMO and MITSIM do not have 3D visualization.

In-simulation parameter modification is only widely supported by commercial applications and

SUMO. With regard to the last criterion, commercial simulators have an expected high maturity,

and on the open-source side, only SUMO is being actively developed.

There is an obvious disparity when looking at microscopic traffic simulators. Although com-

mercial packages are very expensive, they provide the most feasible results. However, their source-

code is not accessible, meaning that if an important core modification was needed, a dead end

would be reached.

On the other hand, open-source simulators are in an inferior maturity level, albeit they provide

full custom control of the application which seems to be most suitable when in a research context.

A brief summary of the aforementioned observations is presented in table 2.2.

2.5 Summary

This chapter demonstrates a brief overview of the current state of the art on game engine technol-

ogy, autonomous urban vehicles, microscopic traffic simulation and robotics simulation domains.

The importance of game engines in today’s game industry was described, as well as its in-

creasing potential as a simulation framework support for scientific purposes. Furthermore, the

autonomous urban vehicle history was briefly presented, as well as its generic system architecture

along with its relation to the robotics simulation field. With it, some simulation tools were ana-

lyzed having in mind the requirements for a successful simulation of autonomous urban vehicles.

Finally, the traffic simulation topic was approached regarding its models classification, and some

1Only for external traffic light control.
2Being an open-source software, it can be extended through source code modification.
3Supports Parallel simulation processing.
4Supports Distributed simulation processing.
5Successful implementation reported in [74].
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simulators were analyzed having in mind the same requirements as mentioned already. In the next

chapter, the overall solution for simulators integration is introduced, along with the key issues to

be addressed while developing the framework.



Chapter 3

Solution Design

In the former chapter, a comprehensive review on current state-of-the-art topics for this thesis

document were presented, with a particular focus on the analysis of the most well-known traffic

and robotics simulation frameworks to date.

This chapter describes a proposed high level architecture towards integration of both a traffic

and a robotics simulator.

First, current issues for integration of the aforementioned simulators are delineated along with

practical solutions aiming to address them. Finally, the selected simulators are comprehensively

introduced and justified, and the integration framework is represented throughout a high level

system architecture.

3.1 Integrating Traffic and Autonomous Vehicle Simulations

One of the key criterion for simulator selection is its distributivity. In other words, each simulator

must allow a networked access to its core level, in order to provide high-speed data interconnection

between them.

To integrate the two simulators in time and space, a bidirectional communication should take

place, with the autonomous vehicles providing kinematic variables to the traffic simulator. The

traffic simulator then calculates its surroundings and return its data back to the autonomous vehicle

simulator. All of this transactions should occur in the same time step.

The proposed architecture for integration must allow the simulation to be performed in real-

time, i.e. we will consider 30 Hz as the minimum frame rate for this real-time simulation.

To implement such an infrastructure between the two simulators, a set of parameters should

be properly handled on the data exchange methodology. Furthermore, some critical issues must

be properly tackled to achieve the desired goal:

Network topology consistency between simulators Both the traffic and the robotics simulator

require specific scenario information. While the traffic simulator may need consistent data

about road characteristics and positions, such as number of lanes, road segments or traffic

lights status, the autonomous vehicle simulator demands for a highly realistic and calibrated

27
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3D scenario with accurate road geometry, usually not present in most traffic simulators. In

order to frame this issue, each file format for the two simulators should inherit from the

same network topology description file (e.g. a shape file) towards internal consistency.

Synchronization of Simulators Although traffic simulators are not implemented with hard real-

time constraints, the processing power of today’s computers allow us to consider this is quite

acceptable. As most traffic simulators support more than a thousand individual vehicles in

real-time, a 30 Hz frame rate may be achievable on an optimized data exchanging between

simulators. If we take into account this simulation approach should support more than

one autonomous vehicle, a large data flow should be expected between the two simulators.

Moreover, all step calculations need to be inferior to the overall frame rate of the simulation

for a correct user experience.

From the former synchronization critical issue, an obvious choice for solving such problem is

the minimization of data flow between traffic and autonomous vehicle simulators. Below, three

methods are presented aiming to minimize them:

Simulation of the surrounding elements only in the autonomous vehicle simulator When sim-

ulating an autonomous vehicle entity, only its surrounding elements (vehicles, traffic lights,

etc.) information is needed to process the next sensors’ state. Moreover, to save network re-

sources between simulators, a 2D envelop is defined around the autonomous vehicle which

will be synchronized with the traffic simulator. Using this approach, the internal congruence

can be maintained between the simulators without having a large amount of redundant data

among them.

Serialized binary data Former distributed approaches make use of the XML file format for data

exchange. However, newer formats such as protocol buffers [75] reports 20 to 100 times

more efficiency in data transactions. This technology approach is well acclaimed in today’s

large-scale distributed systems (e.g. Google data centers).

Asynchronous data exchange To minimize data flow and to account for its content, instead of

a specific number of transactions between simulators be exchanged in each time step, it

should be reduced to when a change in the variable state happens. For instance, considering

an autonomous vehicle X is in a state Sτ in step τ , only when Sτ 6= Sτ+1 the simulator will

report the traffic simulator about its changes.

One must note that, although the cited issues are the most obvious problems for integration

of a traffic simulator with an autonomous vehicle simulator, implementation issues may also arise

depending on the chosen software and the architecture of the whole system. Furthermore, an

architecture towards the integration of the simulators is proposed in the following section.
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Figure 3.1: The proposed architecture for autonomous vehicle simulation in a traffic environment

3.2 The Proposed Architecture

This section aims to provide a technical design and solution to the integration of a traffic and

an autonomous vehicle simulation. All issues referred earlier on were taken into consideration,

and a practical solution is proposed below. First, the two simulators are chosen according to the

requirements discussed already, followed by the high level architecture of the system, depicted in

Figure 3.1.

3.2.1 Simulator Selection

As pointed out earlier, the use of two types of simulators may be a feasible approach when simu-

lating autonomous vehicles on an urban environment. Such an idea was already introduced in [47],

although the selected software architecture and frameworks did not provide satisfactory results. In

the former paper, the traffic and robotics simulation softwares chosen did not have the sufficient

maturity level, which led to various implementation difficulties and, consequently, to an inefficient

platform. However, its findings have provided some lights on the usefulness of the integration and

difficulties to be overcome.

The software frameworks selected to be used on the implementation of this project are the

SUMO and USARSim simulators. Although their maturity level is inferior to their commercial

counterparts, they have a strong support from the open-source community and will allow for full

core access which should be favorable for low level optimizations.

SUMO is a highly portable, microscopic road traffic simulation package designed to handle

large road networks and has a strong commitment with the academia and research community. It
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is mainly developed at Institute of Transportation Systems at the German Aerospace Center and it

is written is C++.

USARSim is a high-fidelity robotics simulator based on the Unreal Tournament game engine.

Due to Unreal license restrictions, USARSim is written in Unreal Script, the official scripting lan-

guage which offers interface with the engine core. This particular issue can be crucial as there

is no direct access to all the features of the engine. However, USARSim’s current state and high

quality sensor simulation and physics rendering make it the best choice to the project. One cur-

rent major drawback of USARSim is its dependence on Windows Platform, as Unreal Engine 3

only supports it. However, as there are no other dependencies to the remaining softwares, all the

produced software will be multi-platform.

3.2.2 The Integrated Simulator Architecture

A software architecture for the autonomous vehicle simulation in a traffic environment is proposed,

as depicted in Figure 3.1. It consists of four major modules, briefly described below:

Microscopic Traffic Simulator Simulates almost all vehicles with a resemblance to the macro-

scopic simulation of real traffic streams. It also maintains all infrastructure systems, such as

induction loops or traffic light plans. Given the extensibility of the simulator, a higher level

statistical framework may be coupled in order to study traffic behavior patterns of individual

and cooperative strategies for autonomous vehicles;

Robotics Simulator Performs the simulation of all autonomous vehicles in the environment,

along with all its sensors and actuators, and mirrors every surrounding object. It also features

a game engine for immersive 3D animation through both powerfull physics and visualiza-

tion modules;

Coherent Network Data Represents the traffic network topology model, as well as its realistic

3D environment data;

Autonomous vehicle interface and control Manages the brain of the vehicle. Typically an ex-

ternal software driver can be deployed to perform the autonomous vehicle high-level tasks

using an agent-based methodology. A Hardware Abstraction Layer (HAL) is underneath for

transparent real/virtual world development, and sensor/actuator permutation.

3.3 The Prototype Development

A prototype describing the proposed framework was developed and comprehensively documented

in the next chapters. Its methodological approach is many-fold:

Modify SUMO simulator SUMO is a vehicle- and edge-based microscopic simulator. There-

fore, it is not prepared to allow lane-independent vehicles to circulate. Also, a spawning
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(a) Aliados in Open-
StreetMaps

(b) Aliados in netEditor (c) Aliados in a 3D model

Figure 3.2: Aliados in several representations.

mechanism must be implemented to carefully place and identify an autonomous vehicle

in the network. Finally, a communication class must be implemented for it to efficiently

communicate with USARSim. These modifications can be consulted in Chapter 4;

Modify USARSim simulator USARSim is also not fully prepared to accommodate a urban au-

tonomous vehicle. The latest version (UE3 based) does not provide LIDAR range scanner,

and there are no 3D models of a four wheeled conventional vehicle and realistic terrain.

Similarly to the previous step, a communication class needs to be implemented. The reader

is referred to Chapter 5 for further informations on selected modifications;

Integrate simulators Apply the required modifications to integrate both simulators (detailed in

Chapter 6);

Implement a control agent To successfully validate the proposed architecture and prototype in

its essence, a simple agent needs to be coded, with a simple dashboard showing real-time

sensor data from the autonomous vehicle. The control algorithm will make the vehicle move

through a white line, obeying the car-following rule, and possibly deviating from random

objects. In Chapter 7 all implementation details are discussed.

3.3.1 Reference Network

The reference network to which the autonomous vehicles are going to be simulated on is the

the zone of Aliados, Porto, Portugal. Its model has to be represented in two forms, in order to

be applied in the project. Each one will fit the requirements of the two SUMO and USARSim

simulators, namely a topology model and a 3D model.

In the SUMO case, the netEditor [76], a traffic network editor developed in FEUP/LIACC, is

going to be used to import the required network from OpenStreetMaps (OSM), implement an O-D
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Figure 3.3: The autonomous vehicle by Google Inc. This vehicle is the reference for the prototype
development1.

Matrix for starting nodes, and select all allowed directions on each road (refer to Section 4.5 for

more details). Figure 3.2a represents the OSM Aliados topology, and Figure 3.2b the imported

network from OSM.

Regarding the USARSim simulator, the 3D model from Aliados was also gathered from FEUP,

using a software designed and developed in [77]. This software uses Procedural Modeling and

geographically referenced information to render a realistic scenario to be used on computer games.

This is crucial as this work intends to make the simulation framework as realistic as possible, and

a rapid prototyping of 3D scenarios is imperative. Figure 3.2c depicts Aliados 3D model rendered

in the Autodesk 3ds Max modeling tool (refer to Section 5.2.1 for more details) [78].

3.3.2 Reference Vehicle

In this section, the reference vehicle which this prototype is going to use is the Google Au-

tonomous Vehicle (not an official name). This modified Toyota Prius vehicle uses the most com-

mon sensors for automatic environment recognition and position estimation. Its brief presentation

and aspect is depicted in Figure 3.3.

1Courtesy from www.nytimes.com

www.nytimes.com
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A brief description of sensor types was already presented in Section 2.3.4, as they are very

common in robotics applications.

The 3D model to be rendered with USARSim is not going to be the same as in Figure 3.3,

as its 3D model is not freely available in public repositories. Refer to Section 5.2.3 for a more

detailed description of the vehicle implementation.

3.4 Summary

A practical solution for the integration of a microscopic traffic simulator with a robotics simulator

was presented. Although there are still many gaps in the aforementioned simulators to be bridged

for a quasi-realistic framework, this proposed point of view would allow specialized practitioners

to handle each simulator as if they were virtually decoupled from each other, and therefore, their

original documentation can still be used. This is a key feature of the architecture, as there is almost

no documentation needed to setup the integration. In the following chapters a more technical

overview of the prototype model will be detailed.
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Chapter 4

The SUMO Microscopic Traffic
Simulator

Simulation of Urban MObility (SUMO) is a well-known 2D microscopic traffic simulator project

almost in its 1.0 version. Although it serves its purpose effectively, SUMO does not provide proper

mechanisms to integrate an autonomous vehicle in its own network model.

In this chapter, a brief contextualization to the SUMO software architecture is described, fol-

lowed by all changes to the simulator required for the integration of autonomous vehicles in a

traffic network. Also, a communication framework model to provide connection facilities to the

robotics simulator is specified. Afterwards, a more comprehensive discussion on how the reference

network from Aliados was imported into SUMO is pinpointed, summing up with the implemen-

tation of a simple client to test the aforementioned changes. A comprehensive description on the

SUMO network file descriptors can be found in appendix A.

4.1 Simulation of Urban MObility - a brief description

SUMO simulator is perhaps the most scrutinized microscopic traffic simulator in the research

community, with hundreds of scientific papers referring to it. This project started in the year

2000 with a need of an open-source tool into which several algorithms can be implemented and

evaluated, such as road networks, demand and traffic controls. Figure 4.1 illustrates a typical

simulation scenario on SUMO. Its main announced features (adapted from [79]) are:

1. Implemented in standard C++;

2. Cross-platform;

3. Includes all applications needed to prepare and perform a traffic simulation (network and

routes import, dynamic user assignment (DUA), simulation);

4. Simulation:

• Space-continuous and time-discrete vehicle movement;

• Manages different vehicle types;

35
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Figure 4.1: A screenshot of the open-source Simulation of Urban Mobility (SUMO) traffic simu-
lator

• Multi-lane streets with lane changing;

• Different right-of-way rules, traffic lights;

• Fast openGL graphical user interface;

• Manages networks with several 10.000 edges (streets);

• Fast execution speed (e.g. up to 100.000 vehicle updates/s on a 1GHz machine);

• Interoperability with other application at run-time (using TraCI interface 1);

• Network-wide, edge-based, vehicle-based, and detector-based outputs;

• GUI and command-line based simulation;

5. Network Import:

• Imports VISUM, Vissim, Shapefiles, OpenStreetMaps, RoboCup, and XML-Descriptions;

• Missing values are determined via heuristics;

6. Routing:

• Microscopic routes - each vehicle has its own;

• Different DUA algorithms;

7. High portability

• Only standard C++ and portable libraries are used;

• Availiable packages for Windows and Linux distributions;

8. High interoperability through usage of XML-data only;

9. Open source (GPL);

SUMO is a complex project with several contributors, and consists of more than 200.000

lines of code, distributed in around 450 classes. Given the limited scope of the project, a brief

1TraCI is an acronym for "Traffic Control Interface". It consists on a network protocol which gives external appli-
cations access to a traffic simulation running on SUMO
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Figure 4.2: A general overview of SUMO’s microscopic simulation module implementation1

description on SUMO simulation files and microsimulation architecture is presented in the two

following sections respectively, to familiarize the reader with the platform.

4.2 SUMO Microsimulation Architecture

SUMO comprehends an efficient and flexible microsimulation core, described by gray modules

on the simplified diagram in Figure 4.2. As observed, the microsimulation architecture is formed

by the following classes:

GUI Consists of several classes comprehending all the Graphical User Interface model, which

controls the microsimulation parameters and deployment;

MSNet The simulated network and simulation performer. MSNet also contains all microsimula-

tion related objects;

MSEdgeControl Stores and manages edges and lanes, and performs movement of vehicles;

MSVehicleControl The class responsible for building and deleting vehicles from simulation;

1Note: This is a simplified overview of SUMO’s microsimulation classes, and therefore, not all classes are depicted
in the diagram.
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Figure 4.3: SUMO dynamic step spin-box

MSEdge A road/street connecting two junctions, consisting in one or more lanes;

MSLane Representation of a lane in the micro simulation;

MSLaneChanger Performs lane changing of vehicles (it is an abstract class);

MSVehicle Representation of a vehicle in the micro simulation, such as vehicle type, current

speed, angle, lane, and so on;

MSVehicleType Comprehends vehicle parameters that can be generally associated with a real

vehicle type (e.g. buses, trucks, cars), containing several parameters such as vehicle shape,

emission class, car-following model, maximum speed, etc;

MSCFModel An abstract class to be implemented by a car-following model;

MSRoute A vehicle route description.

Having gained acquaintance with SUMO’s general ideas, how it is implemented and its mi-

crosimulation structure, we are now ready to foster the required patches to accommodate a free

vehicle within the traffic scene. The following section will introduce the problems and demonstrate

its implemented solutions.

4.3 Selected Modifications

Some of the requirements SUMO platform lacks were issues already mentioned in Section 2.4.1.

The most difficult step was to unbound the lane dependency of the vehicle, as SUMO represents

each vehicle position relative to its current lane. In the next sections, a comprehensive description

of such added features is presented.

4.3.1 Simulation Step

SUMO implements a space-continuous time-discrete simulation on its traffic flow models. Fur-

thermore, two global variables in the simulation loop are implemented to provide flexibility in

time step calculations:
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Figure 4.4: SUMO vehicle lane-changing behavior before and after patching

DELTA_T Represents the delay between simulated time steps (formerly known as ∆);

mySimDelay Contains the delay DELTA_T should take in real time.

By default, SUMO only allows to change mySimDelay dynamically with a spin-box on the

main window, and DELTA_T is hard-coded to 1000ms. This brings up an issue on the autonomous

vehicle framework, as it does not respect the established minimum of 30Hz updating frame-rate.

In order to perform a real-time simulation on sumo, both DELTA_T and mySimDelay must have

the same value which cannot exceed a certain value. This means that DELTA_T must respect a

maximum value of 1000/30≈ 33ms time step.

To overcome this drawback a new spin-box was added to the main interface, to allow a dy-

namic control over the value of DELTA_T . This way, user can select whether he wants a real-time

simulation (DELTA_T = mySimDelay), accelerated (DELTA_T > mySimDelay) or slowed down

(DELTA_T < mySimDelay) simulation on whichever frame-rate. Figure 4.3 depicts the main

window modification to control DELTA_T value.

4.3.2 Continuous Lane Changing

SUMO implements a discrete lane-changing model as illustrated in Figure 4.4a. When a driver/ve-

hicle intends to change its lane, e.g. to overtake another car or when approaching an intersection,

it instantaneously disappears from the former lane to appear on the desired lane. However, this

brings an undesired effect with same consequences of Section 4.3.1, visually perceived as a lack

of smoothness.

A continuous lane-changing approach was implemented on SUMO to overcome this unde-

sirable effect. Furthermore, a class named laneChangeAnimation was implemented as a nested

class1 over MSVehicle (which manages vehicle microsimulation parameters in SUMO), to "ani-

mate" the translation between lane changes. This translation movement is linear and performed

1A nested class is a class declared inside the scope of another class.
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in one second (simulation time). Although not entirely realistic, the implementation is very effi-

cient thus not adding any overhead onto SUMO simulator. Figure 4.4a depicts the former discrete

vehicle movement whereas 4.4b illustrates the new vehicle movement aspect after the patch was

implemented.

4.3.3 Vehicle-Edge Decoupling

Microscopic Traffic Simulation presupposes a correspondence between each vehicle and its lane

containing it. SUMO Vehicles also follows this rule, and therefore, in order to correctly simulate an

autonomous vehicle, it must be detached from any lane, and be able to freely select its movements,

i.e. should be able to navigate through traffic’s scene cartesian space.

To address this issue, a new variable named outsideRoadPosition was created in MSVehicle

representing the vehicle’s absolute position in the scene. Also, the vehicle angle was completely

decoupled from its current lane angle. Using this lane-independent values, we can now render the

autonomous vehicle on the screen.

To maintain the remaining SUMO vehicles aware of this new vehicle type, in each time step,

the autonomous vehicle entity verifies if it entered or exited a lane using its lane-vehicle shapes

intersection. Despite its complexity, this operation is fairly efficient, as the OpenGL graphics

rendering framework underneath SUMO maintains an indexed list of objects on the scene to be

picked up. Meanwhile, the queue containing all vehicles in the lane is updated and sorted, so that

all vehicles in it are aware of the autonomous vehicle.

The following Algorithm 1 states the autonomous vehicle-lane detection mechanism:

Algorithm 1 The autonomous vehicle-lane detection mechanism

detectedLane← detectLaneOnPos(vehicle.myPos)
if (vehicle.myLane 6= detectedLane) then

if (vehicle.myLane 6= null) then
{vehicle exited lane}
vehicle.myLane.removeVehicle(vehicle)
vehicle.myLane← null

else
{vehicle not in a lane}

end if
if (detectedLane 6= null) then

{vehicle entered a lane}
vehicle.myLane← detectedLane
detectedLane.insertVehicle(vehicle)
detectedLane.sortVehicleList()

else
{vehicle outside lanes}

end if
end if
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Figure 4.5: SUMO coupling/decoupling variable states before (a) and after (b,c) patching



42 The SUMO Microscopic Traffic Simulator

Figure 4.5 depicts hypothetical situations of SUMO vehicle states before (a) and after (b,c) the

patch has been applied.

4.3.4 Calculate Surrounding Vehicles

To determine the surrounding vehicles over a studied area (around the autonomous vehicle position

in our case), an efficient method was critical as it had to respect the simulation timing requirements.

Moreover, as SUMO uses OpenGL to render its traffic scene, the OpenGL picking1 feature allows

to render the scene (thus not displaying it), to further pick the objects that were drawn in the

rendered area. This method is already used in SUMO to allow the user to select an item in the

scene with the right-click of a mouse. Furthermore, a new method to pick all vehicles in a certain

area was implemented, and 50x50m was determined to be satisfactory to our results, accounting

for the field of view of sensors in the autonomous vehicle.

4.3.5 Vehicle Parameterization, Spawning and Simulation

After meeting all requirements to simulate an autonomous vehicle within a classic microscopic

traffic simulator, SUMO in this case, a mechanism to parameterize and spawn these vehicles must

be created for a practitioner to have flexibility in selecting and positioning a certain number of the

aforementioned entities into the traffic scene. Afterwards, these vehicles must be simulated within

cartesian space, despite former vehicles move on a lane-to-lane basis.

SUMO simulator uses a XML file descriptor with extension *.rou.xml (detailed in Appendix

A), which manages the traffic demand from one source node to end node with two major traffic

demand models, namely the distribution-based demand, and individual vehicle based.

It is evident the individual demand is essential to customly spawn an autonomous vehicle into

the traffic scene, as we need to know explicitly every autonomous vehicle instance created. A

sample line from example.rou.xml that spawns a vehicle is defined in Listing 4.1 below.

Listing 4.1: A sample description for a vehicle instance on example.rou.xml.

<vehicle id="veh1" route="route01" type="CarA" color="1,0,0" depart="0010"/>

To account for the autonomous vehicle integration with an external client, some new attributes

are needed to complement this new vehicle type:
type Associate "autonomous" to this new vehicle type.

listenport Port which the autonomous vehicle is listening to.

externalid External client vehicle ID.

Furthermore, the following line would represent a definition of an autonomous vehicle for

SUMO in example.rou.xml. This vehicle is listening to port 7890 at depart time 0010, with color

red, using "autonomous1_usar" id in its external client (in our case, USARSim simulator client).

Listing 4.2 illustrated the aforementioned modification.

1Picking is the task of determining which screen-rendered object a user has clicked on.
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Figure 4.6: The implemented AutonomousVehicleConnector has networklib and protocol buffers
as its dependencies.

Listing 4.2: A vehicle instance accounting for an external client.

<vehicle id="av1" listenport="7890" externalid="autonomous1_usar"
type="autonomous" color="1,0,0" depart="0010"/>

On every autonomous vehicle spawned by SUMO a warning message with its listening port is

displayed in the main window. One must note that once the vehicle is spawned it becomes part of

SUMO’s lane infrastructure, therefore its surrounding cars movements are determined by it.

We have our vehicle ready to be rendered on SUMO traffic scene. The final step is to write the

equations of motion (4.1 and 4.2), accounting for the vehicles” dependencies on its current angle

and speed. This equation is processed once in each simulation step.

myPos.x = myPos.x+mySpeed× 1
DELTA_T

× cos(myAngle) (4.1)

myPos.y = myPos.y+mySpeed× 1
DELTA_T

× sin(myAngle) (4.2)

One must note that vehicle dynamics is strictly dependent on the external client behavior, and

an abrupt modification of vehicles speed or angle would result on undesired behavior.

4.4 Communication Infrastructure

Bearing in mind the discussion in section above, when an autonomous vehicle is placed in the

SUMO simulation environment, a communication channel must be opened with an external client,

that will control it. Thus, a communication class named AutonomousVehicleConnector was im-

plemented on SUMO to provide such feature (illustrated in Figure 4.6).

When an autonomous vehicle is created, AutonomousVehicleConnector is also instantiated,

binding a socket and starting to warn the user referring the port the connection is listening to.
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Figure 4.7: netEditor after importing the Aliados network with the OpenStreetMaps plug-in.

AutonomousVehicleConnector is a child of FXThread to inherit the threaded ability, integrating

itself parallelly to SUMO without disrupting any existing functionality.

Initially, this class was using Protocol Buffers as its serialized transport protocol towards a

more efficient and low-latency channel. However, further research on the USARSim platform

demonstrated the impossibility to implement such feature (refer to Section 5.3.2 for further de-

tails). Furthermore, a communication protocol was devised to couple both SUMO and USARSim

simulators, using ASCII characters. In Section 5.3.2, this protocol is analyzed more in more detail.

Besides the unavailability of using Protocol Buffers in the USARSim platform, in the follow-

ing section a simple SUMO external client is presented, using protocol buffers as its serialization

layer in order to account for the simplicity and the potential of such a tool. Diagram 4.6 depicts

the AutonomousVehicleConnector class and its dependencies.

4.5 Importing the Reference Network

To import our Aliados reference network (already presented in Section 3.3.1) into SUMO, the

netEditor [76] traffic editor was used to model it.

netEditor is an open-source traffic network modeling tool devised on the concept of plug-ins

to support the addition of import/export interfaces in a collaborative environment. It was modeled

and implemented by the author, when on an FCT BII Undergraduate Scholarship. Moreover, it

comprehends import plug-ins from other Geographical Information System (GIS) sources, such

as from OpenStreetMaps, or shape files, and features exporting to the SUMO simulator as well.

Therefore, some steps are needed to successfully import Aliados into SUMO:

Import Aliados topology to netEditor To import Aliados, the OpenStreetMaps plugin is opened

and the network is selected by panning into the intended region. Figure 4.7 depicts the
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Figure 4.8: netEditor traffic demand modeling.

Figure 4.9: Aliados simulation close-up on SUMO being modeled in netEditor.
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Figure 4.10: SUMO autonomous vehicle (in Purple color) connected to a simple client.

network on netEditor after importing;

Fix bad topology OpenStreetMaps does not have coherent network information about the num-

ber and direction of some lanes in the Aliados area. netEditor provides the appropriate

tools to manually change the lane information, and using the real information from satellite

photos (e.g. from Google Maps) this changes can be easily applied;

Setup vehicle demand on start nodes The netEditor modeler automatically generates traffic de-

mand flows from each start node1, although its information is useless when a real topology

is applied. However, as no information about traffic flows was available, demand was gen-

erated empirically, on the basis of practitioners’ experience and previous studies. Moreover,

a higher flow was given to the two main Aliados roads (the two-way vertical roads). The

netEditor comprehends a widget allowing to select routing-based information, such as the

probability a vehicle will follow a specific route. Figure 4.8 depicts the demand modeling

phase of the Aliados network.

Export the network topology and demand Having the network prepared as well as its trip de-

mand, we are ready to start a simulation on SUMO. The netEditor will generate the ap-

propriate files to perform it successfully (refer to Appendix A for information on SUMO

network files).

Figure 4.9 depicts the simulation appearance of our exported network.
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Figure 4.11: The implemented SUMO <−> Simple Client test software architecture.

4.6 A Simple Client

When researching and adapting SUMO to support autonomous vehicles in its traffic scene, a sim-

ple client to connect the vehicle was mandatory. This simple application provides control over a

connected vehicle through arrow keys from the computer keyboard. It has a simple push button,

and a label stating the key pressed at the moment. The application was coded in C++ along with

the Nokia Qt4 framework [80] to design its GUI and Networking, and Google Protocol Buffers as

the basis for data serialization. Figure 4.10 illustrates the simple client aspect whereas Figure 4.11

pinpoints its high-level architecture.

Protocol buffers uses a simple *.proto file extension with the specification of the serializable

data (in the form of messages), using an object-oriented approach. After defining the messages,

protoc command-line application provides both .h and .cpp files that manage the serialization

process, which are included on our application. Figure 4.12 depicts the needed steps to integrate a

protocol buffer specification in our project. Listing 4.3 presents an example proto file, illustrating

the simple configuration of the protocol.

Listing 4.3: Example test.proto file descriptor

message Vehicle {
required string id=1;
optional float speed=2;
optional float angle=3;
optional float x=4;
optional float y=5;

1A start node is a node where vehicles are spawned whereas an end node removes them from the simulation.

compile .proto
using protoc

input produced 
.h and .cc

in the project
Write .proto file

Figure 4.12: Simple steps to produce a protocol buffer specification in the project.
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Figure 4.13: The protocol buffers straight-forward serialization process.

}

message RobotToTraffic {
optional int32 timeStep = 1;
optional Vehicle autonomous = 2;

}

message TrafficToRobot {
optional int32 timeStep = 1;
repeated Vehicle neighbourCars = 2;

}

The optional and required parameters states whether a variable is mandatory to be assigned

to a value. If not, the transport protocol will decrease the packet size for each parameter omitted.

The required parameter states that variable as an array.

After SUMO and the simple client connect to each other, SUMO gathers information about the

vehicles’ surroundings including other vehicles, inserts each one in a Vehicle message within the

array neighbourCars, serializes the global message, and finally sends it through the networklib1.

The simple client receives SUMO’s values and represent them on the console (as no vehicle

rendering is implemented in the prototype). After that, the angle and speed gathered from the

arrow keys is inserted in a message, serialized and sent back to SUMO. This transactions should

occur in a single simulated time step.

Note that to minimize bandwidth throughout the network, the (xv,yv) values are only sent at

a 100 time steps rate (as a calibration measure), whereas the speed and angle values are only

transmitted if its value has changed.

Given the processing power of today’s computers, the major bottleneck to connect several

clients to SUMO is the connection bandwidth. However, as we take into account the threading

and Protocol Buffers mechanism, hundreds to thousands of autonomous vehicles might be able to

be controlled externally in SUMO.

Figure 4.13 depicts the serialization process from the simple client to SUMO.

1networklib is a designation to SUMO’s bundled network library
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The simple client and SUMO modifications were presented to SUMO developers,who have

kindly blog posted the project1. Another video of a created network from netEditor to SUMO can

be watched on Youtube2 as well.

4.7 Summary

This chapter proposed a modification of SUMO to support it with a general purpose robotics

simulator.

The potential concerning the integration of a SUMO vehicle to an external control client is

evident. Although SUMO is already in an high matury level regarding its feature-set and code

organization and documentation, a lot of changes were made to allow it to support an autonomous

vehicle.

In the next chapter, a brief introduction to the USARSim robotics simulator is presented, as

well as its modifications prior to its integration with a traffic simulation, the SUMO simulator, in

the case of this project.

1http://www.youtube.com/watch?v=KgPSREMmA_0
2http://sourceforge.net/apps/wordpress/sumo/2011/05/19/autonomous-vehicle-by-jose-pereira/

http://www.youtube.com/watch?v=KgPSREMmA_0
http://sourceforge.net/apps/wordpress/sumo/2011/05/19/autonomous-vehicle-by-jose-pereira/
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Chapter 5

The USARSim Robotics Simulator

Following the proposed selection presented in Chapter 3, this chapter introduces the USARSim

robotics simulator and exposes the intended modifications which should fulfill the requirements

towards its coupling with a microscopic traffic simulator, SUMO in this project’s context. US-

ARSim was the robotics simulator selected earlier on Section 3.2.1, which seams the best suitable

platform to be used in the integration platform. Moreover, a initial description of the USARSim

software architecture and technical aspects are initially reviewed, followed by a discussions on the

implemented extensions.

5.1 The USARSim Platform - a brief description

USARSim, an acronym for Unified System for Automation and Robot Simulation, is a 3D simu-

lation environment research tool developed by the National Institute of Standards and Technology

to be a test bed for a standard Test Course for Urban Search and Rescue Robots [81]. USARSim

is used by the research community all over the world, and it has been extended to support a va-

riety of robots, such as humanoids, submarines, helicopters, ackermann-based, and so forth. It is

considered a low cost high fidelity simulator as it is built on top of a commercial platform, which

provides high quality visual rendering and physics modeling. USARSim simulates a handful of

sensor types such as Range Scanners, IR, Camera, Inertial Measurements, with noise generation,

making it flexible for many robot applications.

USARSim uses the Unreal Engine 3 (UE3) as its underlying game engine in its current version,

although its stable version is based on Unreal Engine 2. These two software engines are not com-

patible with each other, meaning that a careful step must be taken when selecting the USARSim

version, having into account the requirements of this project.

From now on, lets consider two versions of the USARSim simulator, namely the UE2 and UE3

versions for this document, i.e. the stable and the unstable releases. USARSim source consists

of a set of script files (written in Unreal Script), configuration files and provides various sample

configuration robots, such as ackermann-based, humanoid-based, underwater-based and others.

51



52 The USARSim Robotics Simulator

Figure 5.1: Unreal Development Kit scenario represents a state-of-the-art rendering environment,
with advanced shadow and lighting techniques

In the following sections, a brief introduction of USARSim and Unreal is described, with

a particular focus on Ackermann1 steered vehicles. The reader is also encouraged to read the

USARSim reference documentation for a comprehensive and detailed on the USARSim system

architecture [82].

5.1.1 The Unreal EngineTM

The Unreal Engine is a game engine developed by Epic Games, already in its third edition. It is

written in C++, although to use it with a free non-business license, developers are restricted to the

proprietary Unreal Script programming language. The Unreal Engine is a state-of-the-art game

engine using a client-server based networking model, featuring all kinds of modules to facilitate

game development, such as Rendering, Physics, Audio, Logic, Networking, Artificial Intelligence

and Input Abstraction (as mentioned in section 2.1).

Bundled within several games, Unreal Engine had its first version in 1998, being one of today’s

most successful game engines of the industry. More recently, the Unreal Development Kit was

launched as a gaming SDK allowing all kinds of business to use it without paying surreal amounts

of money. Instead, Epic charges its product using game-consumer based fee rates, i.e. for non-

consumer products the Unreal Engine can be used free of charge, whereas its price will vary

according to the effective number of game purchases.

In order to use USARSim UE2 and UE3 editions, one must purchase an Unreal Tournament

2004 and Unreal Tournament 3 licenses, respectively. However, a development version of USAR-

Sim on top of UDK is currently being developed, which will allow researchers to use it free of

charge.

1An Ackermann-steered vehicle is a four-wheeled vehicle which solves the difference of angles between the two
front steering wheels during vehicle turning.
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Figure 5.1 depicts the UDK editor, a full-featured Unreal game editor to create and modify

scenes, characters and model their interactions.

5.1.2 The Unreal Script

Unreal Script is an object-oriented scripting language used in Unreal Engine game code. It follows

the principals of Java, having a garbage collector, automatic support for meta-data and profiling,

and compiles to byte-code to be run in Unreal Virtual Machine.

The Unreal Script supports backwards-compatibility with its older versions, although as each

Unreal Engine uses a different physics engine (Karma engine in UE2, Physx in UE3), some mod-

ifications are crucial when porting an older script.

The Unreal Script was created as a way for game developers to modify their games easier and

faster, which was a crucial aspect of the Unreal Engine longevity.

5.1.3 The Unreal Editor

Unreal Editor is a tool bundled with the Unreal Engine , which is used for managing Players and

World configurations, such as import models from other 3D modeling tools, and place items (such

as objects, walls, crates, sky domes) or scene options (lighting, player starts, etc). In this project,

we need to deal with environment and vehicle modeling, thus Unreal Editor will be a crucial tool

to its accomplishment. The Unreal Editor appearance can be visualized in Figure 5.1.

5.1.4 USARSim *.ini files

There are several configuration files for Unreal Engine, with the extension *.ini. This files allow

to input default values for the Unreal Scripts without having to recompile them, being useful to

retain specific sensor parameters, such as the input noise of an inertial sensor or which sensors

has a robot. The most important file to have in consideration in this project is the USARBot.ini,

as it manages the robots configuration, and allows to instantiate the implemented sensors (and its

parameters) for each robot.

5.1.5 3D Models in Unreal Engine

Unreal manages different types of models according to its purpose, which will be rendered in

the simulation environment. These models can be static (e.g. walls, buildings, crates), dynamic

(humans, vehicles) or with multiple definitions, such as a weapon, with a first-person view, world

view and opponent view. As for this project, we need to establish a model for a world map (see

Section 3.3.1, our reference network is in Aliados zone, in Porto, Portugal), and a vehicle to model

the autonomous vehicle (also defined in Section 3.3.2).
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Figure 5.2: Aliados zone rendered in USARSim UE2

5.2 Selected Modifications

This section is focused on the implementation of the Aliados Zone and an autonomous vehicle

robot in the USARSim simulator. The Aliados model consists in modifying the COLLADA file

description to be imported by the Unreal Editor. The autonomous vehicle was based on a pre-

existing model, and was modified to meet the requirements of this project. Finally, the communi-

cation infrastructure developed to be connected by an external traffic simulator is documented.

5.2.1 Environment Modeling

One of the most important questions while brainstorming this project and conceiving its aim and

goals, was to assess the practicalness of building a realistic traffic network to perform a simula-

tion of this kind. Moreover, having met an in-house software developed by PhD student Pedro

Silva [77], which uses procedural modeling1 techniques for creating virtual urban environments,

it seemed feasible to experiment it to model our Aliados Zone. This project uses a GIS database

containing topology information of Porto city, and models a realistic 3D scene to be used, e.g. on

video games technology. The file format used to export the model is the COLLADA2 [83] open

format.

After exporting the Aliados 3D model from the aforementioned application, it needed to be

converted into a supported file format of the Unreal Editor 2 as COLLADA was not supported.

Therefore, the 3ds Max modeler application from Autodesk [78] provided the appropriate tools

to export this model to the ASCII Scene Exporter (ASE) file format, supported by Unreal Editor.

Along with the 3D model, six textures were used to enhance the walls, roads and roofs, of the 3D

1Procedural Modeling is the designation for a set of techniques applied in computer graphics to generate rule-based
3D models and textures.

2COLLADA (acronym for COLLAborative Design Activity) is an open standard XML file format for interactive
3D applications.
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Figure 5.3: A test robot scenario in USARSim UE3

model and properly assigned to each mesh. They were also resized to a power of 2 (e.g. 256x256)

and converted to the bitmap image format (*.bmp) to be compatible with the Unreal Editor.

In game engine technology, object models are also common to be provided with a collision

model, i.e. a simplified mesh for handling collisions between objects therefore simplifying the

global amount of calculations. Nevertheless, the COLLADA file did not contain this mesh, which

was properly created in the 3ds Max. In this way, the autonomous vehicles’ sensors would be

properly aware of the surroundings.

Having the Aliados model in Unreal Editor, the environmental lightings were set up to keep

a daily aspect in the environment, and a skybox was also placed around the model. Figure 5.2

depicts the final model of Aliados, rendered in USARSim UE2.

5.2.2 Vehicle Modeling

To maintain a realistic aspect of the simulation, a 3D model of a ground vehicle was essential.

However, as of 2011 the USARSim UE3 version did not contain a modeled example of a consumer

vehicle and the workload to create one from scratch was far beyond this thesis scope. Nevertheless,

this was one of the main reasons to adopt the USARSim UE2 version on this project. However,

the USARSim UE3 was also an object of study, as the Unreal Engine 3 features novel rendering

techniques such as high dynamic range rendering, per-pixel lighting, dynamic shadows and more.

Figure 5.3 depicts the aspect of a custom scenario built to test the implemented control agent on

USARSim UE3.

As already stated in Section 3.3.2, the reference vehicle to be simulated on the framework

resembles the Google Autonomous Vehicle, a modified Toyota Prius with a set of commonly used

1In videogame technology, a skybox is a method of creating textured backgrounds to make the environment look
larger than it really is.
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Figure 5.4: Sedan Vehicle rendered in USARSim UE2

sensors. Bearing in mind there was already an Ackermann-based ground vehicle implemented on

USARSim UE2, it was a good starting point to add its sensors to the vehicle. The result aspect of

the vehicle is illustrated in Figure 5.4. In this section, a comprehensive and detailed discussion on

the vehicle setup is presented.

5.2.3 Vehicle Sensoring

One of the most important aspects to reflect about is vehicle sensoring. Similar to the five senses

of the human kind, robots also need a set of receptors to be able to know where they are, and what

is its surrounding environment. To be able to accomplish this rather complex task, Simultaneous

Localization and Mapping (SLAM)[84] techniques are applied to the sensing data in order to

probabilistically locate and situate the robot in its environment.

To devise our Ackermann-steered robot in USARSim, the USARBot.ini file was modified so

as to account for the vehicles sensor topology (refer to Section 2.3.4 for each sensor description).

As a form of example, Listing 5.1 presents a Lidar Range Scanner instantiation.

Listing 5.1: Example sensor instantiation in USARSim.ini

[USARBot.Sedan]
(...)
Sensors=(ItemClass=class’USARModels.Lidar’,ItemName="Scanner2",

Position=(Y=0.0,X=0.06,Z=−1.3),Direction=(x=0,y=0,z=0))
(...)

From the above frame we can conclude it is rather simple to insert a robotic sensor, by con-

figuring the sensor type, name, position and direction vector. A brief description of the applied

sensors and their implementation details are listed below:
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LIDAR Comprehends full 360o horizontal field of view, and≈ 20o vertical field of view retrieving

a 3D point cloud range data. A 3D model based on Velodyne LIDAR was designed in 3ds

Max, and consequently exported to the Unreal Editor (it can be seen in vehicles rooftop);

Odometer The simulated odometer uses the vehicles’s front left and right wheel encoders to esti-

mate the robot’s position. It returns the estimated position in the Unreal scene coordinates;

Inertial Motion Sensor Measures the current vehicle linear acceleration and angular velocity to

estimate the current vehicle position and orientation;

GPS receiver As only a limited part of terrain can be simulated, a reference GPS position must

be set on the scene. It can be set up either in USARBot.ini configuration file or placing a

ReferenceGPSCoordinate item in the scene through the Unreal Editor. The GPS receiver

will return a simulated Latitude and Longitude (converted from meters in the scene), a fixed

value, whether it acquired or not its position, and current tracked satellites;

Video Camera Given the limited access to the core of Unreal Engine, the camera framebuffer

cannot be accessed from its scripting language. Furthermore, a Dynamic-link Library (DLL)

denominated Hook.dll is provided with USARSim which hooks itself to the Unreal exe-

cutable and transmits camera frames using a client/server architecture. The DLL starts to

grab the OpenGL/DirectX framebuffer pixels and sends them to its clients, either in raw or

jpeg compressed formats.

A more comprehensive detail on the sensor information protocol used to communicate with

the control agent is presented in the following section. The interested reader is also encouraged to

read the USARSim documentation for more details [82].

5.3 Communication Infrastructure

Bearing in mind the Unreal Engine limited core access, there is no default protocol that allow

characters in the game to be controlled via network sockets connected to other programs. There-

fore, the Gamebots project [85] started at the University of Southern California’s Information

Sciences Institute aims to address this issue providing a custom protocol allowing modification of

the robots, sensors, as well as world characterization states.

As represented on the projects integration architecture (Section 3.2.2), the USARSim commu-

nication infrastructure is two-fold: one connection is made with the control agents and the other

with the SUMO traffic simulator, which are approached in the following sections.

5.3.1 Control Agent Communication

The connection to the agent controller is held using the common network infrastructure for robot

control provided with USARSim, which can be consulted in its reference documentation [82]. It
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consists in sending high level messages to USARSim to spawn and control the robot, and receiving

consistent data from its implemented sensors through Gamebots.

5.3.2 Traffic Simulator Communication

According to the projects design overview (as presented in Chapter 3), USARSim simulates all

the autonomous vehicles in the scene whilst SUMO manages and simulates the remaining traffic

vehicles. Moreover, SUMO needs to know the autonomous vehicle position and rotation in each

step to replicate it on the traffic scene.

To connect USARSim to the traffic simulator, a custom modification of Gamebots was neces-

sary to allow SUMO ask for a vehicle position in USARSim. The following message depicts an

example command from SUMO to USARSim:

GETLOCATION {Name Autonomous1}

With Name meaning the autonomous vehicle id in USARSim, the same as external_id in

SUMO network file description. USARSim should answer as follows:

{Location x,y,z} {Rotation α}

With Location meaning the vehicles absolute position and Rotation its α angle related to the

Z-axis of USARSim’s coordinate system. Note that this transaction is always referred to as the

current step. No network delay is assumed, i.e. it is considered that the network connection is fast

enough to deliver the information in time.

We must bear in mind that to increment the efficiency of the operation, the network proto-

col should be serialized and asynchronous as stated for the initial solution design. However, the

limited access to the Unreal core has constrained the possibilities of such implementation in this

project.

On the other hand, USARSim needs to mirror SUMO’s surrounding vehicles. The USAR-

Sim implementation provides a class named WordController [86] aiming to create,move, animate

and delete objects dynamically in the simulation, which proves feasible to tackle the aforemen-

tioned problem. Initially, this object must be instantiated issuing the following command using

the Gamebots protocol:

INIT {ClassName USARBot.WorldController} {Name WC} {Location x,y,z}

Where x,y,z is any location in the map, typically near the ceiling. The WorldController does

not interfere with the simulation, although it must be put on the scene and it is typically identified

by a little cube mesh. Three methods are then used to control and position a surrounding vehicle:
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CONTROL {Type Create} {ClassName USARModels.ComVeh} {Name VehX}

This creates a vehicle VehX with the mesh USARModels.ComVeh. Note that as we have flexi-

bility to select any mesh from the Unreal database, a more realistic simulation would be achieved

with a large vehicle list.

CONTROL {Type AbsMove} {Name VehX} {Location x,y,z} {Rotation 0,0,α}

The command above sets the VehX vehicle in the absolute position x,y,z with an angle α .

CONTROL {Type Kill} {Name VehX}

This removes the VehX vehicle from the simulation scene.

5.4 Summary

A practical solution to adapt USARSim for autonomous vehicles was presented, albeit some in-

tended modifications were not as expected on the initial proposed design. Using serialized data to

establish a communication between the two simulators would decrease the required bandwidth by

a notorious amount. However, that was proven to be unfeasible giving the semi-closed nature of

the Unreal Engine working as a basis for USARSim. However, the modeling of both the Aliados

network and the autonomous vehicle was accomplished. In the following chapter, the integration

of the SUMO and USARSim simulators will be discussed in detail.
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Chapter 6

SUMO & USARSim Integration

This chapter comprehends the final road towards the coupling of both a traffic simulator and a

robotics simulator, SUMO and USARSim respectively. Having addressed all particular issues

in each simulator, a comprehensive analysis to their integration is performed, with focus on the

practical usability of the platform and encountered difficulties.

A simple reactive agent was also modeled and implemented to validate the platform. It consists

of a simple GUI showing information relative to vehicle sensors, and an automatic control. The

simple agent is described later on in this chapter.

6.1 Surrounding Vehicles Integration

We are ready to manage all surrounding vehicle information from SUMO to USARSim. SUMO

already calculates the surrounding vehicles (see Section 4.3.4) around an autonomous vehicle.

Therefore, a control code to handle creation, moving and deletion of the former is presented above.

It uses an hash-table comprehending vehicles already created on the scene, an calculates their

next movements. Its pseudo-code is represented in Algorithm 2. AbsMove(veh), Create(veh) and

Kill(veh) correspond to the WorldController USARSim command definitions already discussed in

Section 5.3.2.

6.2 Network Coherence Between Simulators

Having successfully imported the Aliados road network into SUMO using the netEditor (see Sec-

tion 4.5) and to USARSim using the procedural modeling application (see Section 5.2.1), we are

ready to implement the traffic network coherence and calibration method between simulators.

As both networks for the two simulators rely on different sources, albeit they both resemble

the same physical zone of Aliados, in Porto city, their coordinate references are not the same.

Moreover, to solve this issue a coordinate transformation method is used and presented in the

following section, which should be feasible to transform each point on SUMO system coordinate

to USARSim and vice-versa.
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Algorithm 2 Surrounding vehicles control algorithm

surroundingVehicles = myVehicle.getSurroundingVehicles()
for curVeh = surroundingVehicles. f irst()→ surroundingVehicles.last() do

if vehHashMap.exists(curVeh) then
AbsMove(curVeh)

else
Create(curVeh)
AbsMove(curVeh)
vehHashMap.insert(curVeh)

end if
curVeh← curVeh+1

end for
for curVeh = lastSurroundingVehicles. f irst()→ lastSurroundingVehicles.last() do

if !vehHashMap.exists(curVeh) then
Kill(curVeh)

end if
curVeh← curVeh+1

end for
lastSurroundingVehicles← surroundingVehicles

6.2.1 Coordinate System Transformation

Giving the fact that SUMO and USARSim use rather different coordinate systems, a coordinate

system transformation method is used to map a point from one coordinate system to the other.

Also, to calculate the transformation parameters (A matrix and b1,b2), the practitioner only will

need to know the location of two points in both simulators coordinate system.

We must note that despite the 3D nature of the USARSim simulator, as the 3D model contains

plain roads, the z value will always remain constant, therefore this transformation is T : R2→ R2.

The result of applying a Euclidean transformation to a point p(x,y) to obtain p′(x′,y′) is given

by the formula:

(x′,y′) = (x,y)A+b (6.1)

where A is a 2X2 matrix and b is a pair of numbers that depend on the transformation, that is,

x′ = xA11 + yA21 +b1

y′ = xA12 + yA22 +b2 (6.2)

If we modularize A and b1,b2 to scale, rotation and translation movements, we can infer that

A = S×R (6.3)
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where S is the scaling matrix (diagonal), R a rotation matrix and (b1,b2) are the translation

offsets in (x,y). Therefore we have:

S =

[
s 0

0 s

]

R =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
(6.4)

The scaling factor from p to p′ coordinate system (s) will be given by:

s =
||p′2− p′1||
||p2− p1||

=

√
(x′2− x′1)2 +(y′2− y′1)2√
(x2− x1)2 +(y2− y1)2

(6.5)

and θ is the difference between the points’ angles:

θ = α−α
′

θ = arctan
(

x2− x1

y2− y1

)
− arctan

(
x′2− x′1
y′2− y′1

)
(6.6)

To calculate (b1,b2), we grab a point p and its mapped p′, calculate the A matrix and evaluate

the following equations:

(x̄, ȳ) = A(x,y) (6.7)

b1 = x̄− x′

b2 = ȳ− y′ (6.8)

We can apply this method to both USARSim to SUMO coordinate transformation and vice-

versa. We consider pU
1 and pU

2 reference points in the USARSim coordinate system, and pS
1 and

pS
2 the same points in the SUMO coordinate system, and apply the aforementioned transformation

to map from one simulator to another.

This coordinate transformations were implemented on SUMO simulator given its C++ native

implementation and a standard library containing the trigonometric functions.



64 SUMO & USARSim Integration

Reactive Agent

Rule: Condition -> 
-> Action

Internal State
of the World

Filter of
Actions

Sensors

Action

E
n
v
iro

n
m

e
n
t

Figure 6.1: Simple reactive agent diagram (adapted from [1]).

6.3 Network Similarity

Having the coordinate mapping between the two simulators ready, the vehicles from SUMO were

correctly translated to USARSim and the autonomous vehicle was also shown on SUMO. How-

ever, this improvements have shown a network disparity between the two models, as the road

lengths and positions from each other were not exactly the same thus mirroring the vehicles in a

slight different position from where they should have been drawn. To address this issue, the Alia-

dos SUMO network description was edited in netEditor to approximate the two network positions,

however the lack of a proper tool that could render both networks at the same time prevented us to

carry out this task on the most approximate way.

6.4 Multi-agent communication

The USARSim platform implements a Wireless Communications Server to act as a middle man

between robots, simulating message and connection dropping when its distance is not realistically

feasible which can be used for Multi-Agent Systems based coordination methodologies. In the

following section an example implementation of a reactive agent to control an autonomous vehicle

in USARSim is detailed, as a mean to introduce a practitioner to the development of agent-based

vehicle control in the proposed platform. However, for the sake of time this agent do not feature

any type of communication abilities with other vehicles. Refer to the USARSim documentation

for further elucidation on the Wireless Communications Server protocol [82].

6.5 Simple Reactive Agent

To validate the proposed framework and its implementation as already discussed in the last chap-

ters, a simple autonomous agent was developed to spawn a vehicle in the simulation, receive its

sensors information and calculate a trajectory based on it. It follows a reactive agent methodology,

with the model as depicted in Figure 6.1.

This application was coded in C++ with the Qt4 framework from Nokia, which provides cross-

platform Graphical User Interface (GUI) and networking capabilities.
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Figure 6.2: Simple reactive agent architecture.

6.5.1 Agent Architecture

The simple reactive agent software architecture is depicted in Figure 6.2. It consists of a central

class controller which sets up the communication QTcpSocket with USARSim and instantiates an

usarsim_sensor for each sensor in the vehicle. It uses an hash-table that maps each sensor id to

its correspondent object, while redirecting the received sensor message for parsing. Each sensor

also inherits a QWidget class, so a widget containing sensor information in a visual format can be

specific to the sensor type. For example, a LIDAR (rangeScanner3D) sensor provides a 3D point

cloud visualization in OpenGL as illustrated in Figure 6.4.

The reactive agent rules set is represented by the rule_set class, to which the controller feeds

with received sensor data, and retrieves the proper driving speed an steer angle to apply onto the

robot vehicle. In this reactive agent example, the camera is used to process the lane position and

tries to maintain its aim at it, whereas the LIDAR sensor prevents the vehicle to collide with close

objects. Figure 6.3 depicts a sequence diagram with the most important transactions between the

simulators and the reactive agent.

6.5.2 Navigation

This section provides more detailed description on the Drive and Steer commands sent to US-

ARSim, using LIDAR and camera sensors respectively, as an example of a simple autonomous

control for an urban vehicle. The reader must note that these methods are not validated to be used

on robust autonomous vehicle control, but only to model a very simple navigation algorithm for

the sake of demonstration.

To drive the vehicle, only the front side point data from the LIDAR sensor is considered to

make it aware of its front vehicles. Furthermore, we select a square window with horizontal and
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Figure 6.3: Sequence diagram stating the interaction between simulators and the reactive agent.

Figure 6.4: Optical Camera and LIDAR sensor visualization interface on a preliminary simulation
in USARSim.
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Figure 6.5: The binarization process of the vehicle front camera image.

vertical angles (typically 5 to 10 degrees), and apply the mean to it. Afterwards, the Drive speed

is calculated using the following formula (Equation 6.9):

drive_speed = max_speed · (1− e−m/10) · (1− e−α/8) (6.9)

The expressions in parenthesis attenuate the speed depending on the measured mean m to

make the vehicle slow down in other vehicles’ presence, and on the steering angle α , to prevent it

to steer in high speeds.

The vision-based method to support vehicle steer decisions is processed in the following steps:

Image binarization with a predefined threshold to filter lanes only (in white);

Calculate white pixel density of both left (ρle f t) and right (ρright) side of the image;

Implement a proportional control with the density difference, given by Equation 6.10.

α = K · (ρright −ρle f t) (6.10)

Therefore if the left pixel density is higher, the steering angle α will be negative and the

vehicle will move towards left. If the right pixel density is higher, α will be positive and the

vehicle will move towards right, as illustrated in Figure 6.5. Figure 6.6 illustrates the aspect of the

implemented reactive agent GUI.

6.6 Summary

This chapter has provided an integrated evaluation of the most important features aiming to pin-

point the required improvements to be implemented in both simulators. A simple reactive agent

was devised to push forward the simplicity of an implementation control for autonomous vehicles.

In the next chapter, a coherent performance evaluation metrics is established to assess the

framework’s practicability regarding its implemented features and the main goals of this disserta-

tion.
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Figure 6.6: A screenshot of the simple reactive agent GUI.



Chapter 7

Preliminary Results and Discussion

To properly validate the integration architecture and implementation devised on this project, sev-

eral metrics should be analyzed to assess its effectiveness and therefore give a more consistent

critic about each part of the system. This way, we can assess the selected choices of the traffic and

the robotics simulators, SUMO and USARSim respectively, which seemed the most appropriate

to be used in this project. Moreover, this chapter will discuss on the metrics used to evaluate the

system, followed by the obtained results and their interpretation.

7.1 Selected Metrics

As the most important piece of work was done on the optimization of the networking and vehicle

managing in the two simulators, the following metrics will apply:

• Functionality tests:

– Move an autonomous vehicle towards a SUMO lane to assess its visibility by SUMO

vehicles;

– Detect a SUMO vehicle in USARSim though the reactive agent application.

• Performance tests:

– Central Processing Unit (CPU) usage;

– Network bandwidth.

This evaluation tests were performed on two relatively recent desktop computers available

in LIACC/FEUP denominated Shon and Wag. Table 7.1 illustrates the computers specifications,

which should be considered in the critical assessment of the result values. Also, Figure 7.1 shows

which application will be run on which computer.

The following sections will describe the tests performed, whereby it started by functionality

tests, followed by performance tests. The last section summarizes the obtained results.
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Table 7.1: Two computer set-ups used to evaluate the integrated platform.

PC Shon Wag
CPU Intel Core 2 Duo E8500 Intel Core 2 Duo E6550

Clock speed 3.16GHz 2.33GHz
RAM size 3.71GB 3.00GB

Graphics Card Intel Q45 Xpress Nvidia GeForce 8600GT
Operating System Windows 7 Ubuntu Linux 11.04

7.2 Functionality Tests

To evaluate the first functionality test, the SUMO client example implemented in Section 4.6 is

the best candidate to serve it as the user can control the autonomous vehicle simply by using the

keyboard arrows to control it. Furthermore, the following steps were taken to validate the first test:

1. Start SUMO loaded with a sample network (see Appendix A);

2. Start the client example, and connect to SUMO;

3. Move the autonomous vehicle to a vacant lane, using keyboard arrows;

4. Verify if the approaching vehicles decrease velocity as they reach the autonomous one.

This test was performed on Wag only, and as already illustrated in Figure 4.10, it was success-

fully completed. As the remaining vehicles approached the autonomous vehicle, they have stopped

right behind it. When the autonomous vehicle accelerated, the surrounding vehicles would as well

accelerate, as they respected the car-following model (see 4.2). One must note that when the

autonomous vehicle approaches an intersection in SUMO, the former validation test can also be

applied, as each intersection is comprehended by a set of internal lanes working in a similar way

than the former. Figure 7.2 depicts the internal lanes as they are shaped in SUMO.

The next validation test is intended to detect a SUMO vehicle in USARSim through the reac-

tive agent application. Furthermore, all the integration platform applications must be loaded, i.e.

SUMO, USARSim and the reactive agent. The sensors to be used in this validation test are the

front vehicle camera and the LIDAR. The following enumeration identifies the steps to validate it:

Shon

USARSim

Wag
SUMO

reflective
agent

1

Network flow

1

1 *

Figure 7.1: Computer-application arrangement to perform evaluation testing.
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Figure 7.2: SUMO close-up of intersection implementation using internal lanes.

1. Start SUMO loaded with Aliados network in Wag,

2. Start USARSim with Aliados network in Shon,

3. Start the reactive agent application in Wag,

4. Manually move the autonomous vehicle to a lane,

5. Capture a scene when a surrounding vehicle is within range of the autonomous vehicles’

sensors.

From Figure 7.3 depicted below with the captured scene, we can state the successfulness of

the test. On the first row we can visualize the autonomous vehicle as the yellow car, which is

surrounded by three other cars; one at front, one at the back and another on the left side. From

the USARSim view we can see the same environment in a 3D model which confirms the syn-

chronization of the two simulators. A careful look at the network topology yields a slight offset

amongst the vehicles position in each simulator, as a consequence of the calibration issues already

discussed in Section 6.3. The last row on the figure depicts the camera image, which is seeing the

front vehicle on the top, whereas a LIDAR point cloud data clearly detecting the road is depicted

below. Given the limited resolution of the range sensor it is not evident the presence of a car just

using its data.

7.3 Performance Tests

To evaluate the platform performance to be eventually scrutinized against other frameworks the

CPU usage of both simulators will be assessed, as well as the network bandwidth, with several test

runs.

These test runs use the bundled operating system profiling tools to measure the aforemen-

tioned metrics. Thus, on Windows 7 (the Shon machine) the metrics are accessed using the

"Performance" tool on Administrative Tools > Performance. In Ubuntu Linux, the top and iftop

commands provide the CPU and network usage respectively.

The first approach is to simulate a SUMO network connecting several autonomous vehicle

entities and evaluating the CPU usage and network bandwidth used by them. As one of the main
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Figure 7.3: Validation of second functionality test. On the first row, SUMO view is presented
followed by USARSim. The camera and LIDAR sensor from the reflective agent is depicted in
last.

goals of the framework is to retain a real-time refresh-rate, i.e. a minimum 30Hz, when the network

latency is superior to 33ms the test-run is stopped. The steps to be taken into account in this SUMO

performance test are:

1. Start SUMO loaded with Aliados network in Wag;

2. Start the number of instances of the client sample as required in Wag;

3. Wait until the simulation reaches 10s simulation time;

4. Record both CPU usage and network bandwidth on Wag.

Figure 7.4 depicts the achieved results from the test run. It really looks promising as we can

simulate over 1000 autonomous vehicles without significant loss. However, we have to note that

when the simulation grows with more vehicles, the consequent number of vehicles surrounding

the autonomous vehicles will increase, and so will the network flow and CPU usage.

The next test run depicts the CPU usage and network bandwidth of USARSim connected from

one to several autonomous vehicle agents, with all the sensors from the reference vehicle presented

in Section 3.3.2. Therefore, the steps to reproduce the test run are:

1. Start USARSim loaded with Aliados network in Shon;

2. Start the number of instances of the reflective agent as required in Wag;

3. Wait until the simulation reaches 10s simulation time;

4. Record both CPU usage and network bandwidth on Shon.

Figure 7.5 plots the results acquired during this second test run. Despite being run on Shon,

the fastest machine, USARSim consumes a lot of CPU power given its realistical simulation com-

plexity. Furthermore, the lack of a dedicated Physics Processing Unit (PPU) leaves all physics
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Figure 7.4: Performance Test Run 1 - SUMO simulator performance with several connected
clients.

calculations to the CPU. The required network bandwidth is also significantly higher than in its

SUMO counterpart, as sensor data is quite large (5 sensors) and the network protocol is not serial-

ized thus wasting higher bandwidth (typically it needs 50 to 100 bytes per each message whereas

serialized buffer only require 5 to 20 or even less).

From the practical results we can infer that the required network bandwidth for the framework

application can represent a bottleneck if certain conditions are met. Therefore, researchers who

intend to adapt this architecture are encouraged to comprehensively study the message passing

efficacy when selecting the simulation tools.

7.4 Summary

This chapter discussed some simple functionality test-runs aiming to evaluate the practicability and

usefulness of the implemented integration platform. On the SUMO side and from the first func-

tionality test, we can acknowledge the successful implementation of all patches, which allowed

it to connect a vehicle with an external controller, thus providing some distributed capabilities to

the SUMO platform. On the other hand, the USARSim simulator was not as heavily modified as

Figure 7.5: Performance Test Run 2 - USARSim simulator performance with several reactive
agents.



74 Preliminary Results and Discussion

SUMO, and giving its semi-closed license presented before, the serialized protocol-based trans-

port network was impossible to implement, which provided a network performance below what

we had expected. Also, the performance tests demonstrated that the high amount of sensors in the

vehicles can be a major drawback in the processing requirements for the autonomous vehicles to

be simulated in USARSim, particularly the LIDAR sensor, as its simulation requires an algorithm

to search for hundreds to thousands of points in each time step, and since it is implemented in a

scripted language, it is not strictly optimized as should be.

The next chapter will conclude this work with a general overview of every chapters discussed,

the main achieved results and a future perspective onto further developments of the platform.



Chapter 8

Conclusions

Research in autonomous vehicles has been proving that it is quite possible to integrate fully

operator-independent robotic systems within an urban traffic environment. Indeed, in June 2011

Nevada state have announced they will be the first in the world to allow self-driving cars in its

urban roads [87].

Facing the current traffic situation in most developed countries it is now imperative to foster

new transportation methods using state-of-the-art technologies towards Future Urban Transport

(FUT). With the attention on sustainability, autonomous vehicles will also regain a particular focus

as its paradigm envisions an equal and sustainable ground transport which should ensure its users

productivity and mobility.

Traffic simulation already comprises modern tools for advanced data retrieval from several

sources such as emissions reporting, traffic flow, and much more. However, these classic ap-

proaches are centered on microsimulation models thus preventing the deployment of an arbitrarily

positioned vehicle externally controlled.

The following sections will foster a critical analysis of the designed and implemented solution

against the initial goals of of this dissertation, along with its main results. Finally, some short and

long term developments to improve the platform and its usability are suggested as well.

8.1 Final Remarks

The main objective of this project was to devise a solution for the coupling of two simulators,

a traffic simulator and a robotics simulator to increase the reliability of simulation with several

self-driving vehicles, seamlessly integrated within a common traffic environment.

In the literature review chapter, an introduction to the most important topics and current re-

search is overviewed, as well as a taxonomy to evaluate both traffic and robotics simulators for au-

tonomous vehicles development is presented. Furthermore, an integration architecture was devised

pinpointing the main aspects towards an efficient communication among simulators, which have

been addressed to some extend. This flexible approach was not bound to any specific simulation

software architecture thus opening up new opportunities to the development of other platforms.
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A prototype to demonstrate the integration was also devised and effectively implemented with

both SUMO and USARSim, which were accordingly patched to meet the integration requirements.

To couple these two simulators, a method for the management of seamless vehicle mirroring was

implemented using efficient data types and networking. The robotics simulator provided its posi-

tion to the traffic one, whereas the latter calculates all microsimulation vehicles, feeding back their

position to the robotics simulator in the same time step.

The effectiveness of the framework has culminated in the need for modeling and developing

the reflexive agent, which comprehends a simple navigation and control algorithm as a means to

exemplify and measure the framework’s promising potentiality and efficiency .

8.2 Main Contributions

Considering the framework implementation outcome and its reported performance measures, we

can acknowledge the project was concluded quite successfully.

The proposed architecture envisioned for a flexible approach to the integration of two simu-

lators, one from the transportation area, and the other from robotics area. The initially selected

SUMO and USARSim simulators were extensively studied to be modified accordingly to the inte-

gration requirements.

On the SUMO side, some modifications were made to decouple the microsimulation vehicle

from a bounded lane, and to open up a communication channel so it could be externally controlled.

Also, a network file description was built using netEditor, importing the Aliados topology and

modeling the routing demand with some resemblance to the actual traffic flow in the area.

USARSim already comprised most of the required parts to be integrated on our simulation

framework, albeit its strict bound to the proprietary Unreal Engine retained a major bottleneck

as our initial proposed serialized data communication was impossible to implement. To model

Aliados, the network was imported from a procedural modeling tool, which has provided a fairly

realistic environment to be rendered on USARSim. The autonomous vehicle was based on an

already modeled USARSim robot named Sedan whereby it was modified to resemble the Google

Autonomous Vehicle sensor architecture.

The integration phase of the project consisted on adapting the simulators to be seamlessly

connected. To do so, some efficient approaches were analyzed, such as the network communica-

tion, which uses modern distributed computing techniques, or optimized algorithms to calculate

the surrounding vehicles and manage its visualization in both simulators in real-time. Finally, the

implemented reactive agent demonstrated the ease of use of the platform, as it still respects the

documentation provided by both simulators. Therefore, a practitioner already familiar with such

tools will not notice any disparity among them.
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8.3 Further Developments

Giving the complexity of the simulation frameworks used in this project, the next step towards its

solidification would be to fix some occasional bugs that might still persist, particularly on SUMO

as it was subjected to several modifications.

Also in SUMO, the collisions between vehicles could be carefully thought of as currently one

in which the collided vehicle is teleported (usually removed from the scene) to prevent further

simulation discrepancies. To increase the realism throughout the 3D model some objects could

be added as well, such as trees, garden seats, or even pedestrians. Also, the integration commu-

nication could exchange more variables such as traffic light states, surrounding vehicles presence

lights (brakes, turn). The latter would involve a modification on the vehicle replication manage-

ment mechanism WorldController, as at the moment it just supports static meshes.

The protocol buffers should be throughly compared to the former used ASCII method which is

demanded by Unreal Engine, to assess its major issues when a larger scale network is simulated.

Ultimately, some coordinate mapping techniques could be assessed to study the possibility

of using three dimensional topologies of traffic roads in the robotic simulator side, while using

the same plain roads in the traffic simulator. The network model calibration method should be

evaluated as the result of importing from two different data sources.

In summary, the developed platform should be allowed to grow along with its simulators new

releases, for it to become more mature and implement newer features. The possibilities are vast

and uncountable.

8.4 Future Perspectives

As for future perspectives, the platform should be tested in a real case study, which will thereby

dictate the real practicalness of this project. One suggested work is to study new coordination

methods for autonomous vehicles within common urban traffic scenarios.

Another long-term goal would be to foster the integration of this platform with even one more

simulator, namely a pedestrian simulator, whereby it can push further the real implementation of

an even more realistic Artificial Transportation System.
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Appendix A

SUMO Network Files Structure

In this section, a basic understanding of the essential descriptor files to perform a traffic simulation

in SUMO is presented.

SUMO requires a set of four XML file descriptors to describe a traffic network, namely a

*.edg.xml, *.nod.xml, *.typ.xml and *.con.xml file (in some situations *.typ.xml can be omitted).

Below an example network is comprehensively described:

example.nod.xml Nodes are points in the network for edges to connect to. An intersection will

be defined if more than two edges are connected to a node. Each node comprehends an idn

and its (xn,yn) position. Also an optional type parameter defines the node type. This file

descriptor can be analyzed in Listing A.1.

Listing A.1: example.nod.xml file descriptor.

<nodes> <!−− The opening tag −−>
<node id="0" x="0.0" y="0.0" type="traffic_light"/> <!−− def. of node "0" −−>
<node id="1" x="−250.0" y="0.0"/> <!−− def. of node "1" −−>
<node id="2" x="+250.0" y="0.0"/> <!−− def. of node "2" −−>
<node id="3" x="0.0" y="−250.0"/> <!−− def. of node "3" −−>
<node id="4" x="0.0" y="+250.0"/> <!−− def. of node "4" −−>
<node id="m1" x="−125.0" y="0.0"/> <!−− def. of node "m1" −−>
<node id="m2" x="+125.0" y="0.0"/> <!−− def. of node "m2" −−>
<node id="m3" x="0.0" y="−125.0"/> <!−− def. of node "m3" −−>
<node id="m4" x="0.0" y="+125.0"/> <!−− def. of node "m4" −−>

</nodes> <!−− The closing tag −−>

example.typ.xml Defines an edge type (e.g. a common road, ranch road, highway, etc), contain-

ing all parameters associated with it. In the example bellow priority states the edge priority,

nolanes the number of lanes on it, and speed the maximum speed allowed (in m/s). Other

optional parameters are available such as edge length, shape, etc.
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Figure A.1: SUMO example network from presented file descriptors. Arrows in the intersections
represent connections.

This descriptor can be omitted if each edge is individually parameterized in *.edg.xml file.

An example of the descriptor can be seen in Listing A.2.

Listing A.2: example.typ.xml file descriptor.

<types>
<type id="a" priority="3" nolanes="3" speed="13.889"/>
<type id="b" priority="2" nolanes="2" speed="11.111"/>
<type id="c" priority="1" nolanes="1" speed="11.111"/>

</types>

example.edg.xml Contains information about the network edges. Its characteristics inherit from

a specified edge type or individually. f rom and to variables represent both the start and end

nodes id whose vehicles direction will follow. Listing A.3 illustrates an example description.

Listing A.3: example.edg.xml file descriptor.

<edges>
<edge id="1fi" fromnode="1" tonode="m1" type="b"/>
<edge id="1si" fromnode="m1" tonode="0" type="a"/>
<edge id="1o" fromnode="0" tonode="1" type="c"/>
<edge id="2fi" fromnode="2" tonode="m2" type="b"/>
<edge id="2si" fromnode="m2" tonode="0" type="a"/>
<edge id="2o" fromnode="0" tonode="2" type="c"/>
<edge id="3fi" fromnode="3" tonode="m3" type="b"/>
<edge id="3si" fromnode="m3" tonode="0" type="a"/>
<edge id="3o" fromnode="0" tonode="3" type="c"/>
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<edge id="4fi" fromnode="4" tonode="m4" type="b"/>
<edge id="4si" fromnode="m4" tonode="0" type="a"/>
<edge id="4o" fromnode="0" tonode="4" type="c"/>

</edges>

example.con.xml Represent the allowed movements from a source to a destination edge. f rom

and to items represent the edge ids. SUMO also provides a mechanism to automatically

predefine such connections.

Figure A.1 illustrates the assigned connections of the descriptor below, which automati-

cally generated connections to edges not refered in it. Listing A.4 presents an example file

descrition.

Listing A.4: example.con.xml file descriptor.

<connections>
<connection from="1si" to="3o"/>
<connection from="1si" to="2o"/>
<connection from="2si" to="4o"/>
<connection from="2si" to="1o"/>

</connections>

After describing the traffic network to be simulated, a traffic demand descriptor with extension

*.rou.xml must be created to place vehicles in the lanes. Finally, a *.sumo.cfg file containing the

global configurations for the simulation should be created containing all aforementioned XML

descriptors.

example.rou.xml Two types of vehicle routing methods are demonstrated on the example de-

scriptor. The first one represents distribution based modeling, whereas the user can define

a vehicle type vtype and its characteristics and defining its probability to be spawned. The

same procedure can be done as for vehicles’ routes, using route definition.

Let V be the event "vehicle type1 was spawned" and R the event "vehicle followed route1".

Using the discrete conditional probability, we obtain:

P(R|V ) =
P(V ∩R)

P(V )
⇔ 0.4 =

P(V ∩R)
0.5

⇔ P(V ∩R) = 0.2

Arround 20% of spawned cars will be of type1 following route1.

Finally a flow element joins this parameters, along with the vehicles per hour information.

SUMO allows also individual modeling of vehicles. In the example of Figure A.1 two red

vehicles are individually spawned at depart time 0001 and 0010 as specified in the example

descriptor on Listing A.5. The remaining yellow cars represent the former distribution-based

approach.
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Listing A.5: example.rou.xml file descriptor.

<?xml version="1.0" encoding="UTF−8"?>
<routes>
<!−− Traffic flow based demand modeling −−>
<vtypeDistribution id="typedist0">
<vtype id="type1" accel="0.8" lenght="7.5" maxspeed="34" probability="0.5"

color="0,1,0" guiShape="passenger"/> <!−− color="r,g,b" −−>
<vtype id="type2" accel="1.8" lenght="18.75" maxspeed="25" probability="0.5"

vclass="transport" guiWidth="2.6" guiShape="bus" color="0.5,0,0"/>
</vtypeDistribution>
<routeDistribution id="routedist0">

<route id="route1" edges="1fi 1si 2o" probability="0.4"/>
<route id="route2" edges="1fi 1si 3o" probability="0.6"/>

</routeDistribution>
<flow id="0" type="typedist0" route="routedist0" vehsPerHour="500" />

<!−− Individual demand modeling −−>
<vtype id="CarA" accel="3.0" decel="6.0" length="5.0" maxspeed="50.0" sigma="0.5" />
<route id="route01" edges="2fi 2si 4o"/>
<vehicle depart="0001" id="veh0" route="route01" type="CarA" color="1,0,0" />
<vehicle depart="0010" id="veh1" route="route01" type="CarA" color="1,0,0" />

</routes>

Despite SUMO only provides two vehicle demand methods, some bundled applications

manage to extend it with higher levels of decision [88]:

Using flow definitions and turning ratios Uses turning ration at junctions intead of the

destination edges for flows.

Using OD-matrices Have to be converted to trips first, then from trips to routes;

Using random routes This is a fast way to fill the simulation with life, but nothing that has

something to do with reality;

Describing the population in the network This method is called activity-based demand

modeling.

example.sumo.cfg Defines SUMO configuration files location for a simulation. It can contain

other parameters such as the start and end times, or TraCi listening ports. An example

description is presented in Listing A.6.

Listing A.6: example.sumo.cfg file descriptor.

<?xml version="1.0" encoding="UTF−8"?>
<configuration>
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<input>
<net−file value="example.net.xml"/>
<route−files value="example.rou.xml"/>

</input>
</configuration>

After having all the descriptors defined, a command-line tool named "netconvert" must be

executed to convert the first four files in a network file with an *.net.xml extension:

netconvert -n example.nod.xml -e example.edg.xml -c example.con.xml -t exam-

ple.typ.xml -o example.net.xml

Finally we can simulate the generated network and demand issuing the following command:

sumo-gui -c example.sumo.cfg
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