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It 1s a well known fact that metastable states of very high throughput and hysteresis effects exist
in traffic flow, which the simple cellular automaton (CA) model of traffic flow and its continuous

generalization fail to reproduce.

It is shown that the model can be generalized to give a one—

parametric family of models, a part of which reproduces the metastable states and the hysteresis.
The models having that property and those not having it are separated by a transition that can be

clearly identified.

I. INTRODUCTION

When describing freeway traffic, one is hardly ever in-
terested in the way individual cars move, but rather in
the macroscopic properties of the system, meaning the
properties that are expressed as probability distributions
or averages taken over many cars. Therefore it is obvi-
ously inefficient to use very detailed models of individual
driver behavior if only the flow—density relation or gap
distributions, for example, are to be calculated.

This 1s the starting point for the cellular automaton
model (CA) of traffic flow, first proposed by Nagel and
Schreckenberg [1-3]. The model tries to reproduce the
macroscopic properties of traffic with the simplest possi-
ble microscopic dynamics. Although the motion of indi-
vidual cars has some unphysical peculiarities, these can-
cel out, when an average over a sufficient number of cars
is performed, and typical phenomena like jamming can be
reproduced qualitatively. However, it is not clear whether
or not the model is in fact able to assume all the relevant
macroscopic states that are found in real traffic flow.

In this work we want to refer to the highly ordered
metastable state that can be found at densities shortly
below the point where traffic breaks down and jams oc-
cur.

The existence of such metastable states manifests itself
for example in a discontinuity and the existence of two
branches in the fundamental diagram. Unfortunately, the
simple CA model does not come up with either one of
these properties, so there is definitely a discrepancy be-
tween the model and reality even on a macroscopic scale.
We will see in this work, how this discrepany can be fixed
by generalizing the model in a very natural way. When
using the term CA in the sequel, we will no longer dis-
tinguish between the original model and its continuous
generalization described in [4]. However it should be kept
in mind that this work only investigates models discrete
in time, but continuous in space whereas the original CA
is discrete in both time and space.

II. FINITE SIZE EFFECTS

Before turning to the generalization of the model it
should be mentioned that also the simple CA model re-
veals a discontinuity in the fundamental diagram, if the
system is sufficiently small.
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FIG. 1. Discontinuity due to finite—size—effects.

Fig. 1 shows the fundamental diagram for the CA
model of a one-lane-ring of approximately 750m length.
The fundamental diagram clearly reveals a capacity drop
at the density of maximum throughput. A qualitative ex-
planation for this can easily be given. As reported in [4]
the appearance of traffic jams in partly constrained flow
can be viewed as the coexistence of two phases of traffic
flow in a dynamic equilibrium. The phases have different
densities p; and pr in the jammed and the free phase re-
spectively, which are uniquely determined by equilibrium
conditions. The picture of coexisting phases, however, is
only valid if both phases contain a “macroscopic” amount
of cars.

This is exactly the reason for the finite size effect seen
above. If the overall density in the system is only slightly
above the equilibrium density of the free phase and the
system 1s sufficiently small, any macroscopic traffic jam
would absorb so many cars that the density in the free
phase would drop below the equilibrium density pr. So
the coexistence of two phases 1s impossible in this case
and the homogeneous state remains stable.



The capacity drop in the CA model is a finite size ef-
fect of limited interest. However, we will show that this
effect can also appear in infinite systems if the model is
only modified slightly. The stable homogeneous state of
high throughput in the finite system then corresponds to
a metastable state of the infinite system.

III. DRIVING WITH LIMITED DECELERATION

It 1s very plausible that the states of very high through-
put that we try to model must be highly organized in
some way. In the simple CA-model and its continuous
generalization highly organized states of this kind cannot
appear. The reason is that, loosely speaking, individual
cars can destroy an ordered state easily by braking very
hard (note that there is no limit to the maximum decel-
eration of the cars in the model).

Of course the unlimited braking capabilities are highly
unrealistic, not only because they do not agree with the
laws of physics, but rather, because everyday experience
tells us that we obviously use a driving strategy that gen-
erally allows us to travel hundreds of miles without ever
having to brake very hard. So allowing only small values
for the deceleration in the model may appear as a sen-
sible thing to do. Note however, that the CA-model of
traffic flow is not designed to reproduce individual driver
behavior correctly anyway, it rather represents a “mini-
mal” model capable of explaining macroscopic properties
of traffic flow. So refining the model can only be jus-
tified within this modeling philosophy by showing that
the refinements do result in macrosopic effects and that
the model can still be considered “minimal” in a proper
sense.

Consider now a single lane road, on which vehicles
move at speeds between 0 and vpax. The velocity is not
restricted to integer values. Assume that the system ex-
periences a parallel update for a discrete succession of
timesteps. One timestep can be identified with the reac-
tion time of the individual drivers, because the velocity
that a driver chooses at timestep t is determined by the
velocity his predecessor has chosen at timestep ¢ — 1.

Now look at two cars following each other: If the sec-
ond driver chooses the velocity vy during the update,
he thus determines the minimum distance ds he has to
travel before he can come to a complete stop. His choice
will be based on the velocity v, and the corresponding
minimum braking distance d, that his predecessor has
before the update. If the gap between the cars is g, the
condition for a safe velocity choice reads

ds <dp+g. (1)

Any safe driving strategy has to satisfy this condition.
If no restrictions are put on the way cars can brake,
the cars can stop immediately, so d, = 0 and ds = vs.

Note that dgs is nonzero, because the successor travels
the distance vs before the next update. In this case the
safety condition reduces to

vy < ¢, (2)

which is the well known safety condition of the Nagel-
Schreckenberg model. Note that the model is minimal in
the sense that nothing but the absence of collisions has
been assumed to establish the model.

Now consider the case that the maximum decelera-
tion 1s limited to a value of b. Calculating the minimum
braking distances for the two cars it can be derived in a
straightforward way that the maximum safe velocity is
given by

Vg S Vgafe = b(asafe + 6safe) s (3)

where qgape and Gsare are given by

_ do+g 1 1
gafe = I_ 2 b + 4 - 2J 3 (4)
d, + Usafe
6safe = = J - & . (5)

(asafe + 1)b 2

Here |x] denotes the integer part of the real number x.
The braking distance d, of the car ahead is given by

ozp(ozg—l)) | ©

where o, and 3}, are defined as the integer and the frac-
tional part of v,/b. The somewhat strange appearance
of these formulas is a consequence of the fact that the
system is updated in discrete timesteps. For a derivation
the reader is referred to the Appendix.

Condition (3) does not try to model a certain driving
strategy, it only states a condition that any strategy has
to satisfy if collisions are to be avoided with limited brak-
ing capabilities.

Still we will, following a minimalistic modeling
philosphy, adopt the above conditions as driving strate-
gies and model deviations from optimal driving in this
context as noise. The model corresponding to (3) is a
simplified version of the well known Gipps model [5].

We thus acquire a family of models, each model char-
acterized by the ratio r = b/vpax. For r = 1 the brak-
ing rules of the Nagel-Schreckenberg model are resumed.
The model is defined as follows:

To reduce the number of free parameters, the maxi-
mum acceleration and maximum deceleration were both
set equal to b. For clarity the auxiliary variables vg and

do=1b (apﬁp +



vy are introduced.The variable v; denotes the optimal
velocity for the next update, v1 — vy the maximum de-
viation from vy due to imperfections in driving. vpax
denotes the maximum velocity of the cars and vgage the
maximum safe velocity according to eq. (3).

The update rules are then given by

vy = min[v(t) + b, Vmax, Vsate]

vo =v1 —€(v1 — (v(t) = b)) ,
v(t + 1) = Vran,vo vy » (7)
et +1)=2(t)+o(t+1).

The parameter ¢ was always chosen to be 0.4 for the
calculations presented here, vran v,,v, denotes a random
number between vy and v;. The unit length corresponds
to 7.5m, one timestep corresponds to 1s.

Note that the amount by which the velocity of a car
is perturbed randomly depends on how much the driver
is forced to decelerate. On the one hand this is neces-
sary to guarantee that the maximum deleration & is not
exceeded due to random perturbations. On the other
hand this feature crudely models the fact, that strong in-
teractions between cars reduce the freedom of individual
drivers to choose their velocity.

IV. THE HYSTERESIS

We now study the properties of the model for small val-
ues of r. As mentioned before, we expect the existence
of highly ordered states, if r 1s sufficiently small.
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FIG. 2. The branched fundamental diagram

Fig. 2 depicts the fundamental diagram for » = 1/30
in the interesting range of densities. The value r = 1/30
means that it takes cars at least 30 timesteps to come to a
complete stop from maximum velocity. The flow 1s mea-
sured in units of cars per timestep, where one timestep
corresponds to roughly one second. The maximum flow
therefore corresponds to about 2200 cars/h. The result
shown corresponds to the case of an infinite system and
was obtained analyzing the scaling of the fundamental

diagram with system size, so finite size effects have been
eliminated. The model reveals a discontinuous change in
throughput at the density of maximum flow po, just like
the CA model did for very small systems.

Also it can be seen that two branches of the funda-
mental diagram exist between the densities p; and ps.
The upper branch was calculated by adding cars to a
homogeneous state, while the lower one was calculated
by removing cars from a jammed state and allowing the
system to relax after the intervention. In this way a
hysteresis loop can be traced (arrows in Fig. 2). A hys-
teresis effect that appears similar at first glance has been
found in the so called cruise control limit of the Nagel-
Schreckenberg model [9]. Note however that in the cruise
control limit random perturbations are simply switched
off for cars traveling at maximum speed. In this way
the system can be locked in a deterministic state of high
throughput if it is started in an initially homogeneous
configuration. Such states are essentially different from
the metastable states found here, as will be shown in the
chapter on the state of maximum flow.

Note that no hysteresis can exist if the discontinuity in
the fundamental diagram is a mere finite size effect. So
trying to perform the same procedure as described above
for the CA of small system size does not reveal any new
branch of the fundamental diagram.

V. OUTFLOW FROM JAMS

In the CA model the outflow from traffic jams is equal
to the maximum flow (the capacity). This contrasts
with empirical observations [6] as well as hydrodynami-
cal models [7]. In the model proposed here the outflow
Jout from a jam is lower than the maximum flow, namely

Jout = Q(Pl) . (8)

Fig. 3 shows a jam that is just developing. We see
that the outflow region already influenced by the jam
has a significantly lower throughput due to a reduced
density. Clearly the partial reduction of the flow in the
early stages of the evolution of the jam can be distin-
guished from the final flow reduction.
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This fact has important consequences for the dynam-
ics of cluster formation. Assume that the system is in
a state of oversaturation (i.e. p > p1). The creation of
microscopic jams can then be described in an analogous
way to an unbiased random walk, just like in the CA
[8,9]. This however is no longer true when a microscopic
jam is large enough to reduce the outflow significantly.
Once this is the case, the jam will grow inevitably, until
inflow and outflow become equal again.

When the system is in an equilibrium state again,
where inflow and outflow of all jams are equal, the ran-
dom walk argument holds again, so small jams may even-
tually dissolve again. However, if this actually happens
the cars of a dissolved jam will be swallowed by the next
one, increasing its lifetime. So the stable equilibrium
state will be a state with very few large jams with corre-
spondingly large lifetimes.

VI. THE STATE OF MAXIMUM FLOW

We will now investigate the states close to the point of
maximum flow.

It has been reported [10-12] that a rise in velocity vari-
ance is encountered within the free flow shortly before it
collapses into a jammed state. Contrasting to this obser-
vation, in the CA a rise of the velocity variance is only
found due to jamming phenomena.
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FIG. 4. The rise of the velocity variance near the

jamming point (dashed line) in the CA.

In Fig. 4 the ratio of the actual velocity variance and
the variance in the free flow due to the randomization
step 1s displayed as a function of the density for the CA
model with continuous space coordinates [4]. Tt can be
seen that it rises only by a few percent in the homoge-
neous flow, before actual jamming occurs (dashed line).
At that point the variance remains a continuous func-
tion of the density. We observe the same behavior in the
model proposed here if r is set to 1. Note however that
the case r = 1 is not completely equivalent to the CA
model due to differences in the way cars accelerate.
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FIG. 5. The rise of the velocity variance near the

jamming point (dashed line) for r = 1/30.

Now the same property is displayed for the model pro-
posed here with » = 1/30 in Fig. 5. We see that the
velocity variance rises considerably before any jamming
is encountered. At the jamming point the velocity under-
goes a discontinuous change and rises due to jamming.
However, if the variance is calculated separately for the
jammed and the free parts of the system, it drops ap-
proximately to the free flow value (see also Fig. 3). The
fact that the point of maximum flow is also the point
of maximum velocity variance clearly distinguishes our
model from the state of maximum flow in the cruise con-
trol limit of the Nagel-Schreckenberg model.

The degree of self organization near ps can be esti-
mated best by measuring the correlation length in the
system. Therefore a correlation function G for the veloc-
ity fluctuations is defined, that depends on the distance of
two cars with respect to their numbering. Note that this



distance cannot be identified with any metric distance.
So we define

N

G(j) = = D (v = (o)) (vigj —{v)) jEN, (9)
N

i=1

where (v) denotes the average velocity in the system and
v; 18 the velocity of the i-th car. The simulation results
show that the correlation function can be represented in
the form

wwakon(d).

where the parameter of interest here is the correlation

length &.
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Fig. 6 shows the correlation length as a function of
the density p. We see that far from pa the correlation
length practically vanishes whereas it increases signifi-
cantly near the point where the cars start jamming.

VII. PROPERTIES OF THE MODEL FAMILY

So far we looked at a single model (r = 1/30) and
investigated the properties of that model near py. The
next natural step to be taken is the investigation of the
way the properties at p» change when the parameter r,
which characterizes the model, runs from zero to one.

As we already know from the properties of the CA—
model the discontinuity in the fundamental diagram and
along with it the ordered states of high flow have to dis-
appear for some r. between zero and one. A suitable
parameter for characterizing the existence of the ordered
states is the height of the jump Ag at ps:

A= Tim glp)— lm ap). (1)
p—p2(r)— p—p2(r)+

From the definition of r. we have Ag(r) = 0 for r > r..

When getting close to r., preparing homogeneous

states becomes difficult and it is a laborious task to cal-

culate lifetimes of such states with sufficient accuracy.

Therefore we will limit ourselves to the following proce-
dure:

For each r perfectly homogenous initial configurations
are prepared at different densities. The highest density
for which a homogenous state can evolve for more than
10° timesteps without developing any inhomogeneities, is
then considered to be an approximation for ps(r). The
flow of that homogeneous state 1s then compared to the
flow of the jammed state that we get if we start the sys-
tem with the same density and an initially slightly inho-
mogeneous state.
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FIG. 7. The discontinuous change in throughput Ag
as a function of 7 = b/vmax.

Fig. 7 shows the function Ag(r). It can be seen that
the ordered states disappear for » = 0.41. Note however,
that this value 1s not universal, but depends on details
of the parameters used in the model, like the values of
Umax and the noise parameter ¢ . Above this threshold
the system assumes qualitatively the same properties as
the CA-model. The important point about this obser-
vation is that the CA model and the models for small
presented here are separated by a transition that changes
the macroscopic properties for states of high flow. The
quantitative results concerning the way Agq goes to zero
have to be considered with caution however, because the
very details of the behavior depend on how accurately
p2 can be calculated. The algorithm used here certainly
allows improvements in that respect.

VIII. CONCLUSIONS

A generalization of the Nagel-Schreckenberg model
of traffic flow has been proposed that leads to a one—
parametric family of models characterized by a parame-
ter r that determines the braking capabilites of the cars.

It has been found that the macroscopic physical prop-
erties of the models within this family are not uniform.
When scanning the properties of the models by varying
the characteristic parameter r between 0 and 1 a tran-
sition is observed at r = r., where the model behavior
for states of very high flow changes qualitatively. Be-
low r. the outflow from traffic jams is lower than the
maximum flow and ordered states with very high flow



and large correlation lengths can exist. The fundamental
diagram displays a discontinuous change in throughput
at the point of maximum flow. Above r. the discontinu-
ity in the fundamental diagram and the ordered states no
longer exist. The outflow from the jams is approximately
equal to the maximum flow again.

The changes concerning the outflow from jams have
significant impact on the clustering dynamics. Above
r. the system displays small, comparatively short—lived,
continuously branching jams, whereas below r. the sys-
tem assumes an equilibrium state with only few, but large
and stable jams.

Note that we need to introduce considerable noise into
the simple CA model using a randomization step to ac-
quire phenomena of cluster formation. The noise, how-
ever, reduces the maximum flow considerably, so difficul-
ties in attaining realistic capacities are encountered. In
the model proposed here cluster formation also exists for
very small artificial noise. In fact we found that the qual-
itative appearance of the state space pattern is relatively
insensitive towards changes of the noise parameter. The
value of this parameter mainly determines the relaxation
time of the system (details on this topic will be published
elsewhere). As a consequence we can easily simulate real-
istic road capacities of 2200 cars per hour, without losing
jamming phenomena.
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APPENDIX: THE SAFETY CONDITION

In a discrete time-step model, braking is modeled by
subtracting in each time step one unit of the decelaration
b from the velocity. With the above notation the braking
distance of the first car is then given by

dp =b((ap+ 08— 1)+ (ap+ 5 —2)+ ...+ 5p)

—b (apﬁp + W) . (12)

Similarly, if the second driver chooses the velocity
Usate = b(gafe + Osate ), his braking distance becomes

ds =b ((asafe + 6safe) + (asafe + 6safe - 1) + ...+ 6safe)

Qsafe (safe + 1
=b ((asafe + 1) ﬁsafe + %) . (13)

If the expression is inserted into the safety condition, the
resulting equation can be solved formally for agage to give

Qgafe = f(ﬁsafe) s (14)

where the function f(73) is given by

o= ot (53 - (4

We know that agage 18 @ nonnegative integer and Fgare a
nonnegative real number smaller than 1. So the fact that
f(5) is a decreasing function of 8 and f(0) — f(1) =1

immediately yields

asare = [ (0)] - (16)

Bsate can then be found from eq. (14).



