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It is a well known fact that metastable states of very high throughput and hysteresis e�ects exist
in tra�c 
ow� which the simple cellular automaton �CA� model of tra�c 
ow and its continuous
generalization fail to reproduce� It is shown that the model can be generalized to give a one�
parametric family of models� a part of which reproduces the metastable states and the hysteresis�
The models having that property and those not having it are separated by a transition that can be
clearly identi�ed�

I� INTRODUCTION

When describing freeway tra�c� one is hardly ever in�
terested in the way individual cars move� but rather in
the macroscopic properties of the system� meaning the
properties that are expressed as probability distributions
or averages taken over many cars� Therefore it is obvi�
ously ine�cient to use very detailed models of individual
driver behavior if only the �ow�density relation or gap
distributions� for example� are to be calculated�

This is the starting point for the cellular automaton
model �CA� of tra�c �ow� �rst proposed by Nagel and
Schreckenberg ������ The model tries to reproduce the
macroscopic properties of tra�c with the simplest possi�
ble microscopic dynamics� Although the motion of indi�
vidual cars has some unphysical peculiarities� these can�
cel out� when an average over a su�cient number of cars
is performed� and typical phenomena like jamming can be
reproduced qualitatively� However� it is not clear whether
or not the model is in fact able to assume all the relevant
macroscopic states that are found in real tra�c �ow�

In this work we want to refer to the highly ordered
metastable state that can be found at densities shortly
below the point where tra�c breaks down and jams oc�
cur�

The existence of such metastable states manifests itself
for example in a discontinuity and the existence of two
branches in the fundamental diagram� Unfortunately� the
simple CA model does not come up with either one of
these properties� so there is de�nitely a discrepancy be�
tween the model and reality even on a macroscopic scale�
We will see in this work� how this discrepany can be �xed
by generalizing the model in a very natural way� When
using the term CA in the sequel� we will no longer dis�
tinguish between the original model and its continuous
generalization described in ���� However it should be kept
in mind that this work only investigates models discrete
in time� but continuous in space whereas the original CA
is discrete in both time and space�

II� FINITE SIZE EFFECTS

Before turning to the generalization of the model it
should be mentioned that also the simple CA model re�
veals a discontinuity in the fundamental diagram� if the
system is su�ciently small�
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FIG� �� Discontinuity due to �nite�size�e�ects�

Fig� � shows the fundamental diagram for the CA
model of a one�lane�ring of approximately ��	m length�
The fundamental diagram clearly reveals a capacity drop
at the density of maximumthroughput� A qualitative ex�
planation for this can easily be given� As reported in ���
the appearance of tra�c jams in partly constrained �ow
can be viewed as the coexistence of two phases of tra�c
�ow in a dynamic equilibrium� The phases have di�erent
densities �j and �f in the jammed and the free phase re�
spectively� which are uniquely determined by equilibrium
conditions� The picture of coexisting phases� however� is
only valid if both phases contain a �macroscopic� amount
of cars�
This is exactly the reason for the �nite size e�ect seen

above� If the overall density in the system is only slightly
above the equilibrium density of the free phase and the
system is su�ciently small� any macroscopic tra�c jam
would absorb so many cars that the density in the free
phase would drop below the equilibrium density �f � So
the coexistence of two phases is impossible in this case
and the homogeneous state remains stable�
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The capacity drop in the CA model is a �nite size ef�
fect of limited interest� However� we will show that this
e�ect can also appear in in�nite systems if the model is
only modi�ed slightly� The stable homogeneous state of
high throughput in the �nite system then corresponds to
a metastable state of the in�nite system�

III� DRIVING WITH LIMITED DECELERATION

It is very plausible that the states of very high through�
put that we try to model must be highly organized in
some way� In the simple CA�model and its continuous
generalization highly organized states of this kind cannot
appear� The reason is that� loosely speaking� individual
cars can destroy an ordered state easily by braking very
hard �note that there is no limit to the maximum decel�
eration of the cars in the model��
Of course the unlimited braking capabilities are highly

unrealistic� not only because they do not agree with the
laws of physics� but rather� because everyday experience
tells us that we obviously use a driving strategy that gen�
erally allows us to travel hundreds of miles without ever
having to brake very hard� So allowing only small values
for the deceleration in the model may appear as a sen�
sible thing to do� Note however� that the CA�model of
tra�c �ow is not designed to reproduce individual driver
behavior correctly anyway� it rather represents a �mini�
mal� model capable of explaining macroscopic properties
of tra�c �ow� So re�ning the model can only be jus�
ti�ed within this modeling philosophy by showing that
the re�nements do result in macrosopic e�ects and that
the model can still be considered �minimal� in a proper
sense�
Consider now a single lane road� on which vehicles

move at speeds between 	 and vmax� The velocity is not
restricted to integer values� Assume that the system ex�
periences a parallel update for a discrete succession of
timesteps� One timestep can be identi�ed with the reac�
tion time of the individual drivers� because the velocity
that a driver chooses at timestep t is determined by the
velocity his predecessor has chosen at timestep t� ��
Now look at two cars following each other� If the sec�

ond driver chooses the velocity vs during the update�
he thus determines the minimum distance ds he has to
travel before he can come to a complete stop� His choice
will be based on the velocity vp and the corresponding
minimum braking distance dp that his predecessor has
before the update� If the gap between the cars is g� the
condition for a safe velocity choice reads

ds � dp � g � ���

Any safe driving strategy has to satisfy this condition�
If no restrictions are put on the way cars can brake�

the cars can stop immediately� so dp � 	 and ds � vs�

Note that ds is nonzero� because the successor travels
the distance vs before the next update� In this case the
safety condition reduces to

vs � g � ���

which is the well known safety condition of the Nagel�
Schreckenberg model� Note that the model is minimal in
the sense that nothing but the absence of collisions has
been assumed to establish the model�
Now consider the case that the maximum decelera�

tion is limited to a value of b� Calculating the minimum
braking distances for the two cars it can be derived in a
straightforward way that the maximum safe velocity is
given by

vs � vsafe � b��safe � �safe� � ���

where �safe and �safe are given by

�safe � b

r
�
dp � g

b
�

�

�
�

�

�
c � ���

�safe �
dp � g

��safe � ��b
�

�safe

�
� ���

Here bxc denotes the integer part of the real number x�
The braking distance dp of the car ahead is given by

dp � b

�
�p�p �

�p ��p � ��

�

�
� �
�

where �p and �p are de�ned as the integer and the frac�
tional part of vp�b� The somewhat strange appearance
of these formulas is a consequence of the fact that the
system is updated in discrete timesteps� For a derivation
the reader is referred to the Appendix�
Condition ��� does not try to model a certain driving

strategy� it only states a condition that any strategy has
to satisfy if collisions are to be avoided with limited brak�
ing capabilities�
Still we will� following a minimalistic modeling

philosphy� adopt the above conditions as driving strate�
gies and model deviations from optimal driving in this
context as noise� The model corresponding to ��� is a
simpli�ed version of the well known Gipps model ����
We thus acquire a family of models� each model char�

acterized by the ratio r � b�vmax� For r � � the brak�
ing rules of the Nagel�Schreckenberg model are resumed�
The model is de�ned as follows�
To reduce the number of free parameters� the maxi�

mum acceleration and maximum deceleration were both
set equal to b� For clarity the auxiliary variables v� and
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v� are introduced�The variable v� denotes the optimal
velocity for the next update� v� � v� the maximum de�
viation from v� due to imperfections in driving� vmax

denotes the maximum velocity of the cars and vsafe the
maximum safe velocity according to eq� ����
The update rules are then given by

v� � min�v�t� � b� vmax� vsafe� �

v� � v� � � �v� � �v�t� � b�� �

v�t � �� � vran�v��v� � ���

x�t � �� � x�t� � v�t � �� �

The parameter � was always chosen to be 	�� for the
calculations presented here� vran�v��v� denotes a random
number between v� and v�� The unit length corresponds
to ���m� one timestep corresponds to �s�
Note that the amount by which the velocity of a car

is perturbed randomly depends on how much the driver
is forced to decelerate� On the one hand this is neces�
sary to guarantee that the maximum deleration b is not
exceeded due to random perturbations� On the other
hand this feature crudely models the fact� that strong in�
teractions between cars reduce the freedom of individual
drivers to choose their velocity�

IV� THE HYSTERESIS

We now study the properties of the model for small val�
ues of r� As mentioned before� we expect the existence
of highly ordered states� if r is su�ciently small�
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FIG� �� The branched fundamental diagram

Fig� � depicts the fundamental diagram for r � ���	
in the interesting range of densities� The value r � ���	
means that it takes cars at least �	 timesteps to come to a
complete stop from maximum velocity� The �ow is mea�
sured in units of cars per timestep� where one timestep
corresponds to roughly one second� The maximum �ow
therefore corresponds to about ��		 cars�h� The result
shown corresponds to the case of an in�nite system and
was obtained analyzing the scaling of the fundamental

diagram with system size� so �nite size e�ects have been
eliminated� The model reveals a discontinuous change in
throughput at the density of maximum �ow ��� just like
the CA model did for very small systems�

Also it can be seen that two branches of the funda�
mental diagram exist between the densities �� and ���
The upper branch was calculated by adding cars to a
homogeneous state� while the lower one was calculated
by removing cars from a jammed state and allowing the
system to relax after the intervention� In this way a
hysteresis loop can be traced �arrows in Fig� ��� A hys�
teresis e�ect that appears similar at �rst glance has been
found in the so called cruise control limit of the Nagel�
Schreckenberg model �
�� Note however that in the cruise
control limit random perturbations are simply switched
o� for cars traveling at maximum speed� In this way
the system can be locked in a deterministic state of high
throughput if it is started in an initially homogeneous
con�guration� Such states are essentially di�erent from
the metastable states found here� as will be shown in the
chapter on the state of maximum �ow�

Note that no hysteresis can exist if the discontinuity in
the fundamental diagram is a mere �nite size e�ect� So
trying to perform the same procedure as described above
for the CA of small system size does not reveal any new
branch of the fundamental diagram�

V� OUTFLOW FROM JAMS

In the CA model the out�ow from tra�c jams is equal
to the maximum �ow �the capacity�� This contrasts
with empirical observations �
� as well as hydrodynami�
cal models ���� In the model proposed here the out�ow
qout from a jam is lower than the maximum�ow� namely

qout � q���� � ���

Fig� � shows a jam that is just developing� We see
that the out�ow region already in�uenced by the jam
has a signi�cantly lower throughput due to a reduced
density� Clearly the partial reduction of the �ow in the
early stages of the evolution of the jam can be distin�
guished from the �nal �ow reduction�
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FIG� �� A developing jam� The upper �gure shows
the velocity v� the lower one the 
ow q as a function of
the space coordinate x�

This fact has important consequences for the dynam�
ics of cluster formation� Assume that the system is in
a state of oversaturation �i�e� � � ���� The creation of
microscopic jams can then be described in an analogous
way to an unbiased random walk� just like in the CA
���
�� This however is no longer true when a microscopic
jam is large enough to reduce the out�ow signi�cantly�
Once this is the case� the jam will grow inevitably� until
in�ow and out�ow become equal again�

When the system is in an equilibrium state again�
where in�ow and out�ow of all jams are equal� the ran�
dom walk argument holds again� so small jams may even�
tually dissolve again� However� if this actually happens
the cars of a dissolved jam will be swallowed by the next
one� increasing its lifetime� So the stable equilibrium
state will be a state with very few large jams with corre�
spondingly large lifetimes�

VI� THE STATE OF MAXIMUM FLOW

We will now investigate the states close to the point of
maximum �ow�

It has been reported ��	���� that a rise in velocity vari�
ance is encountered within the free �ow shortly before it
collapses into a jammed state� Contrasting to this obser�
vation� in the CA a rise of the velocity variance is only
found due to jamming phenomena�
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FIG� �� The rise of the velocity variance near the
jamming point �dashed line� in the CA�

In Fig� � the ratio of the actual velocity variance and
the variance in the free �ow due to the randomization
step is displayed as a function of the density for the CA
model with continuous space coordinates ���� It can be
seen that it rises only by a few percent in the homoge�
neous �ow� before actual jamming occurs �dashed line��
At that point the variance remains a continuous func�
tion of the density� We observe the same behavior in the
model proposed here if r is set to �� Note however that
the case r � � is not completely equivalent to the CA
model due to di�erences in the way cars accelerate�
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FIG� 
� The rise of the velocity variance near the
jamming point �dashed line� for r � �����

Now the same property is displayed for the model pro�
posed here with r � ���	 in Fig� �� We see that the
velocity variance rises considerably before any jamming
is encountered� At the jamming point the velocity under�
goes a discontinuous change and rises due to jamming�
However� if the variance is calculated separately for the
jammed and the free parts of the system� it drops ap�
proximately to the free �ow value �see also Fig� ��� The
fact that the point of maximum �ow is also the point
of maximum velocity variance clearly distinguishes our
model from the state of maximum�ow in the cruise con�
trol limit of the Nagel�Schreckenberg model�

The degree of self organization near �� can be esti�
mated best by measuring the correlation length in the
system� Therefore a correlation function G for the veloc�
ity �uctuations is de�ned� that depends on the distance of
two cars with respect to their numbering� Note that this
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distance cannot be identi�ed with any metric distance�
So we de�ne

G�j� �
�

N

NX
i��

�vi � hvi� �vi�j � hvi� j � N � �
�

where hvi denotes the average velocity in the system and
vi is the velocity of the i�th car� The simulation results
show that the correlation function can be represented in
the form

G�j� �
�

j�
exp

�
�
j

	

�
� ��	�

where the parameter of interest here is the correlation
length 	�
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FIG� �� The correlation length near the
jamming point �dashed line�

Fig� 
 shows the correlation length as a function of
the density �� We see that far from �� the correlation
length practically vanishes whereas it increases signi��
cantly near the point where the cars start jamming�

VII� PROPERTIES OF THE MODEL FAMILY

So far we looked at a single model �r � ���	� and
investigated the properties of that model near ��� The
next natural step to be taken is the investigation of the
way the properties at �� change when the parameter r�
which characterizes the model� runs from zero to one�
As we already know from the properties of the CA�

model the discontinuity in the fundamental diagram and
along with it the ordered states of high �ow have to dis�
appear for some rc between zero and one� A suitable
parameter for characterizing the existence of the ordered
states is the height of the jump �q at ���

�q�r� � lim
�����r��

q��� � lim
�����r��

q��� � ����

From the de�nition of rc we have �q�r� � 	 for r � rc�
When getting close to rc� preparing homogeneous

states becomes di�cult and it is a laborious task to cal�
culate lifetimes of such states with su�cient accuracy�

Therefore we will limit ourselves to the following proce�
dure�
For each r perfectly homogenous initial con�gurations

are prepared at di�erent densities� The highest density
for which a homogenous state can evolve for more than
�	� timesteps without developing any inhomogeneities� is
then considered to be an approximation for ���r�� The
�ow of that homogeneous state is then compared to the
�ow of the jammed state that we get if we start the sys�
tem with the same density and an initially slightly inho�
mogeneous state�
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FIG� 	� The discontinuous change in throughput �q
as a function of r � b�vmax�

Fig� � shows the function �q�r�� It can be seen that
the ordered states disappear for r � 	���� Note however�
that this value is not universal� but depends on details
of the parameters used in the model� like the values of
vmax and the noise parameter � � Above this threshold
the system assumes qualitatively the same properties as
the CA�model� The important point about this obser�
vation is that the CA model and the models for small r
presented here are separated by a transition that changes
the macroscopic properties for states of high �ow� The
quantitative results concerning the way �q goes to zero
have to be considered with caution however� because the
very details of the behavior depend on how accurately
�� can be calculated� The algorithm used here certainly
allows improvements in that respect�

VIII� CONCLUSIONS

A generalization of the Nagel�Schreckenberg model
of tra�c �ow has been proposed that leads to a one�
parametric family of models characterized by a parame�
ter r that determines the braking capabilites of the cars�
It has been found that the macroscopic physical prop�

erties of the models within this family are not uniform�
When scanning the properties of the models by varying
the characteristic parameter r between 	 and � a tran�
sition is observed at r � rc� where the model behavior
for states of very high �ow changes qualitatively� Be�
low rc the out�ow from tra�c jams is lower than the
maximum �ow and ordered states with very high �ow
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and large correlation lengths can exist� The fundamental
diagram displays a discontinuous change in throughput
at the point of maximum �ow� Above rc the discontinu�
ity in the fundamental diagram and the ordered states no
longer exist� The out�ow from the jams is approximately
equal to the maximum �ow again�
The changes concerning the out�ow from jams have

signi�cant impact on the clustering dynamics� Above
rc the system displays small� comparatively short�lived�
continuously branching jams� whereas below rc the sys�
tem assumes an equilibrium state with only few� but large
and stable jams�
Note that we need to introduce considerable noise into

the simple CA model using a randomization step to ac�
quire phenomena of cluster formation� The noise� how�
ever� reduces the maximum�ow considerably� so di�cul�
ties in attaining realistic capacities are encountered� In
the model proposed here cluster formation also exists for
very small arti�cial noise� In fact we found that the qual�
itative appearance of the state space pattern is relatively
insensitive towards changes of the noise parameter� The
value of this parameter mainly determines the relaxation
time of the system �details on this topic will be published
elsewhere�� As a consequence we can easily simulate real�
istic road capacities of ��		 cars per hour� without losing
jamming phenomena�
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APPENDIX� THE SAFETY CONDITION

In a discrete time�step model� braking is modeled by
subtracting in each time step one unit of the decelaration
b from the velocity� With the above notation the braking
distance of the �rst car is then given by

dp � b ���p � �p � �� � ��p � �p � �� � � � �� �p�

� b

�
�p�p �

�p ��p � ��

�

�
� ����

Similarly� if the second driver chooses the velocity
vsafe � b��safe � �safe�� his braking distance becomes

ds � b ���safe � �safe� � ��safe � �safe � �� � � � �� �safe�

� b

�
��safe � �� �safe �

�safe ��safe � ��

�

�
� ����

If the expression is inserted into the safety condition� the
resulting equation can be solved formally for �safe to give

�safe � f��safe� � ����

where the function f��� is given by

f��� �

s
�
dp � gap

b
�

�
� �

�

�

��
�

�
� �

�

�

�
�
����

We know that �safe is a nonnegative integer and �safe a
nonnegative real number smaller than �� So the fact that
f��� is a decreasing function of � and f�	� � f��� � �
immediately yields

�safe � bf�	�c � ��
�

�safe can then be found from eq� �����





