Eclipse SUMO - Simulation of Urban MObility
PolySolver.cpp
Go to the documentation of this file.
1 /****************************************************************************/
2 // Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
3 // Copyright (C) 2001-2024 German Aerospace Center (DLR) and others.
4 // This program and the accompanying materials are made available under the
5 // terms of the Eclipse Public License 2.0 which is available at
6 // https://www.eclipse.org/legal/epl-2.0/
7 // This Source Code may also be made available under the following Secondary
8 // Licenses when the conditions for such availability set forth in the Eclipse
9 // Public License 2.0 are satisfied: GNU General Public License, version 2
10 // or later which is available at
11 // https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
12 // SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
13 /****************************************************************************/
19 //
20 /****************************************************************************/
21 #include <config.h>
22 
23 #include <math.h>
24 #include <cmath>
25 #include <limits>
26 #include <utils/geom/GeomHelper.h> // defines M_PI
27 #include "PolySolver.h"
28 
29 
30 // ===========================================================================
31 // member method definitions
32 // ===========================================================================
33 std::tuple<int, double, double>
34 PolySolver::quadraticSolve(double a, double b, double c) {
35  // ax^2 + bx + c = 0
36  // return only real roots
37  if (a == 0) {
38  //WRITE_WARNING(TL("The coefficient of the quadrat of x is 0. Please use the utility for a FIRST degree linear. No further action taken."));
39  if (b == 0) {
40  if (c == 0) {
41  return std::make_tuple(2, std::numeric_limits<double>::infinity(), -std::numeric_limits<double>::infinity());
42  } else {
43  return std::make_tuple(0, NAN, NAN);
44  }
45  } else {
46  return std::make_tuple(1, -c / b, NAN);
47  }
48  }
49 
50  if (c == 0) {
51  //WRITE_WARNING(TL("One root is 0. Now divide through by x and use the utility for a FIRST degree linear to solve the resulting equation for the other one root. No further action taken."));
52  return std::make_tuple(2, 0, -b / a);
53  }
54 
55  double disc, x1_real, x2_real ;
56  disc = b * b - 4 * a * c;
57 
58  if (disc > 0) {
59  // two different real roots
60  x1_real = (-b + sqrt(disc)) / (2 * a);
61  x2_real = (-b - sqrt(disc)) / (2 * a);
62  return std::make_tuple(2, x1_real, x2_real);
63  } else if (disc == 0) {
64  // a real root with multiplicity 2
65  x1_real = (-b + sqrt(disc)) / (2 * a);
66  return std::make_tuple(1, x1_real, NAN);
67  } else {
68  // all roots are complex
69  return std::make_tuple(0, NAN, NAN);
70  }
71 }
72 
73 std::tuple<int, double, double, double>
74 PolySolver::cubicSolve(double a, double b, double c, double d) {
75  // ax^3 + bx^2 + cx + d = 0
76  // return only real roots
77  if (a == 0) {
78  //WRITE_WARNING(TL("The coefficient of the cube of x is 0. Please use the utility for a SECOND degree quadratic. No further action taken."));
79  int numX;
80  double x1, x2;
81  std::tie(numX, x1, x2) = quadraticSolve(b, c, d);
82  return std::make_tuple(numX, x1, x2, NAN);
83  }
84  if (d == 0) {
85  //WRITE_WARNING(TL("One root is 0. Now divide through by x and use the utility for a SECOND degree quadratic to solve the resulting equation for the other two roots. No further action taken."));
86  int numX;
87  double x1, x2;
88  std::tie(numX, x1, x2) = quadraticSolve(a, b, c);
89  return std::make_tuple(numX + 1, 0, x1, x2);
90  }
91 
92  b /= a;
93  c /= a;
94  d /= a;
95 
96  double disc, q, r, dum1, s, t, term1, r13;
97  q = (3.0 * c - (b * b)) / 9.0;
98  r = -(27.0 * d) + b * (9.0 * c - 2.0 * (b * b));
99  r /= 54.0;
100  disc = q * q * q + r * r;
101  term1 = (b / 3.0);
102 
103  double x1_real, x2_real, x3_real;
104  if (disc > 0) { // One root real, two are complex
105  s = r + sqrt(disc);
106  s = s < 0 ? -cbrt(-s) : cbrt(s);
107  t = r - sqrt(disc);
108  t = t < 0 ? -cbrt(-t) : cbrt(t);
109  x1_real = -term1 + s + t;
110  term1 += (s + t) / 2.0;
111  x3_real = x2_real = -term1;
112  return std::make_tuple(1, x1_real, NAN, NAN);
113  }
114  // The remaining options are all real
115  else if (disc == 0) { // All roots real, at least two are equal.
116  r13 = r < 0 ? -cbrt(-r) : cbrt(r);
117  x1_real = -term1 + 2.0 * r13;
118  x3_real = x2_real = -(r13 + term1);
119  return std::make_tuple(2, x1_real, x2_real, NAN);
120  }
121  // Only option left is that all roots are real and unequal (to get here, q < 0)
122  else {
123  q = -q;
124  dum1 = q * q * q;
125  dum1 = acos(r / sqrt(dum1));
126  r13 = 2.0 * sqrt(q);
127  x1_real = -term1 + r13 * cos(dum1 / 3.0);
128  x2_real = -term1 + r13 * cos((dum1 + 2.0 * M_PI) / 3.0);
129  x3_real = -term1 + r13 * cos((dum1 + 4.0 * M_PI) / 3.0);
130  return std::make_tuple(3, x1_real, x2_real, x3_real);
131  }
132 }
133 
134 
135 /****************************************************************************/
static std::tuple< int, double, double, double > cubicSolve(double a, double b, double c, double d)
Solver of cubic equation ax^3 + bx^2 + cx + d = 0.
Definition: PolySolver.cpp:74
static std::tuple< int, double, double > quadraticSolve(double a, double b, double c)
Solver of quadratic equation ax^2 + bx + c = 0.
Definition: PolySolver.cpp:34
#define M_PI
Definition: odrSpiral.cpp:45