74 typedef std::map<std::string, SUMOVehicle*>::const_iterator
constVehIt;
111 bool addRouteStops =
true);
296 int getQuota(
double frac = -1,
int loaded = -1)
const;
421 bool hasVType(
const std::string&
id)
const;
520 void setState(
int runningVehNo,
int loadedVehNo,
int endedVehNo,
double totalDepartureDelay,
double totalTravelTime);
std::shared_ptr< const MSRoute > ConstMSRoutePtr
const std::string DEFAULT_VTYPE_ID
Base (microsim) event class.
The base class for microscopic and mesoscopic vehicles.
A road/street connecting two junctions.
DeleteKeptVehicle & operator=(const DeleteKeptVehicle &)=delete
Invalidated assignment operator.
SUMOTime execute(SUMOTime currentTime)
Executes the command.
DeleteKeptVehicle(SUMOVehicle *veh)
The class responsible for building and deletion of vehicles.
void adaptIntermodalRouter(MSTransportableRouter &router) const
int myTeleportsCollision
The number of teleports due to collision.
double myScale
The scaling factor (especially for inc-dua)
bool hasVType(const std::string &id) const
Asks for existence of a vehicle type.
const std::vector< MSVehicleType * > getPedestrianTypes(void) const
Return all pedestrian vehicle types.
std::map< std::string, SUMOVehicle * > VehicleDictType
Vehicle dictionary type.
bool addVType(MSVehicleType *vehType)
Adds a vehicle type.
void setState(int runningVehNo, int loadedVehNo, int endedVehNo, double totalDepartureDelay, double totalTravelTime)
Sets the current state variables as loaded from the stream.
int getRunningVehicleNo() const
Returns the number of build and inserted, but not yet deleted vehicles.
VehicleDefinitionSource
possible origins of a vehicle definition
double getScale() const
sets the demand scaling factor
void registerEmergencyStop()
register emergency stop
void removePending()
Removes a vehicle after it has ended.
void initVehicle(MSBaseVehicle *built, const bool ignoreStopErrors, bool addRouteStops, const VehicleDefinitionSource source)
std::set< std::string > myReplaceableDefaultVTypes
the default vehicle types which may still be replaced
double getTotalTravelTime() const
Returns the total travel time.
void setScale(double scale)
sets the demand scaling factor
std::vector< SUMOVehicle * > myPendingRemovals
List of vehicles which are going to be removed.
int getTriggeredVehicleCount() const
return the number of vehicles that are waiting for a transportable or a join
int myLoadedVehNo
The number of build vehicles.
void registerTeleportYield()
register one non-collision-related teleport
void discountStateRemoved(int n)
discount vehicles that were removed during state loading
bool hasVTypeDistribution(const std::string &id) const
Asks for a vehicle type distribution.
void vehicleDeparted(const SUMOVehicle &v)
Informs this control about a vehicle's departure.
int getLoadedVehicleNo() const
Returns the number of build vehicles.
double getMinDeceleration() const
return the minimum deceleration capability for all road vehicles that ever entered the network
virtual bool addVehicle(const std::string &id, SUMOVehicle *v)
Tries to insert the vehicle into the internal vehicle container.
void initDefaultTypes()
create default types
int getCollisionCount() const
return the number of collisions
int getTeleportsWrongLane() const
return the number of teleports due to vehicles stuck on the wrong lane
int myTeleportsYield
The number of teleports due to vehicles stuck on a minor road.
int myTeleportsWrongLane
The number of teleports due to vehicles stuck on the wrong lane.
int getStoppedVehiclesCount() const
return the number of vehicles that are currently stopped
double getVehicleMeanSpeed() const
SUMOVehicle * getVehicle(const std::string &id) const
Returns the vehicle with the given id.
int getTeleportsYield() const
return the number of teleports due to vehicles stuck on a minor road
void clearState(const bool reinit)
Remove all vehicles before quick-loading state.
int getEmergencyBrakingCount() const
return the number of emergency stops
std::map< std::string, std::set< std::string > > myVTypeToDist
Inverse lookup from vehicle type to distributions it is a member of.
int getEmergencyStops() const
return the number of emergency stops
double myMinDeceleration
The minimum deceleration capability for all road vehicles in the network.
void registerTeleportJam()
register one non-collision-related teleport
void registerStopEnded()
register emergency stop
double getTotalDepartureDelay() const
Returns the total departure delay.
void registerEmergencyBraking()
register emergency stop
bool isPendingRemoval(SUMOVehicle *veh)
whether the given vehicle is scheduled for removal
double myMinDecelerationRail
The minimum deceleration capability for all rail vehicles in the network.
virtual ~MSVehicleControl()
Destructor.
void removeVType(const MSVehicleType *vehType)
int myEmergencyBrakingCount
The number of emergency stops.
int myStoppedVehicles
The number of stopped vehicles.
void deleteKeptVehicle(SUMOVehicle *veh)
when a vehicle is kept after arrival, schedule later deletion
void registerOneWaiting()
increases the count of vehicles waiting for a transport to allow recognition of person / container re...
void unregisterOneWaiting()
decreases the count of vehicles waiting for a transport to allow recognition of person / container re...
int myWaitingForTransportable
the number of vehicles waiting for persons or containers contained in myWaiting which can only contin...
std::map< std::string, MSVehicleType * > VTypeDictType
Vehicle type dictionary type.
virtual std::pair< double, double > getVehicleMeanSpeeds() const
get current absolute and relative mean vehicle speed in the network
bool checkVType(const std::string &id)
Checks whether the vehicle type (distribution) may be added.
int myCollisions
The number of collisions.
int myEmergencyStops
The number of emergency stops.
int getQuota(double frac=-1, int loaded=-1) const
Returns the number of instances of the current vehicle that shall be emitted considering that "frac" ...
MSVehicleControl()
Constructor.
double myMaxSpeedFactor
The maximum speed factor for all vehicles in the network.
int myDiscarded
The number of vehicles which were discarded while loading.
int getDepartedVehicleNo() const
Returns the number of inserted vehicles.
int getArrivedVehicleNo() const
Returns the number of arrived vehicles.
int myEndedVehNo
The number of removed vehicles.
MSVehicleType * getVType(const std::string &id=DEFAULT_VTYPE_ID, SumoRNG *rng=nullptr, bool readOnly=false)
Returns the named vehicle type or a sample from the named distribution.
MSVehicleControl(const MSVehicleControl &s)=delete
invalidated copy constructor
bool addVTypeDistribution(const std::string &id, RandomDistributor< MSVehicleType * > *vehTypeDistribution)
Adds a vehicle type distribution.
int myTeleportsJam
The number of teleports due to jam.
int getActiveVehicleCount() const
Returns the number of build vehicles that have not been removed or need to wait for a passenger or a ...
std::map< std::string, SUMOVehicle * >::const_iterator constVehIt
Definition of the internal vehicles map iterator.
MSVehicleControl & operator=(const MSVehicleControl &s)=delete
invalidated assignment operator
void insertVTypeIDs(std::vector< std::string > &into) const
Inserts ids of all known vehicle types and vehicle type distributions to the given vector.
int getTeleportsJam() const
return the number of teleports due to jamming
virtual SUMOVehicle * buildVehicle(SUMOVehicleParameter *defs, ConstMSRoutePtr route, MSVehicleType *type, const bool ignoreStopErrors, const VehicleDefinitionSource source=ROUTEFILE, bool addRouteStops=true)
Builds a vehicle, increases the number of built vehicles.
double myTotalDepartureDelay
The aggregated time vehicles had to wait for departure (in seconds)
int getEndedVehicleNo() const
Returns the number of removed vehicles.
VTypeDictType myVTypeDict
Dictionary of vehicle types.
double getMaxSpeedFactor() const
return the maximum speed factor for all vehicles that ever entered the network
double getMinDecelerationRail() const
return the minimum deceleration capability for all ral vehicles that ever entered the network
const RandomDistributor< MSVehicleType * > * getVTypeDistribution(const std::string &typeDistID) const
return the vehicle type distribution with the given id
virtual int getHaltingVehicleNo() const
Returns the number of halting vehicles.
int getTeleportsCollisions() const
return the number of collisions
void scheduleVehicleRemoval(SUMOVehicle *veh, bool checkDuplicate=false)
Removes a vehicle after it has ended.
virtual void deleteVehicle(SUMOVehicle *v, bool discard=false, bool wasKept=false)
Deletes the vehicle.
constVehIt loadedVehBegin() const
Returns the begin of the internal vehicle map.
double myTotalTravelTime
The aggregated time vehicles needed to aacomplish their route (in seconds)
std::vector< SUMOVehicle * > myPTVehicles
List of vehicles which belong to public transport.
int getTeleportCount() const
return the number of teleports (including collisions)
VTypeDistDictType myVTypeDistDict
A distribution of vehicle types (probability->vehicle type)
std::map< std::string, RandomDistributor< MSVehicleType * > * > VTypeDistDictType
Vehicle type distribution dictionary type.
void handleTriggeredDepart(SUMOVehicle *v, bool add)
register / unregister depart-triggered vehicles with edges
void abortWaiting()
informes about all waiting vehicles (deletion in destructor)
void saveState(OutputDevice &out)
Saves the current state into the given stream.
double getVehicleMeanSpeedRelative() const
void registerTeleportWrongLane()
register one non-collision-related teleport
constVehIt loadedVehEnd() const
Returns the end of the internal vehicle map.
const std::set< std::string > getVTypeDistributionMembership(const std::string &id) const
Return the distribution IDs the vehicle type is a member of.
int myRunningVehNo
The number of vehicles within the network (build and inserted but not removed)
void registerCollision(bool teleport)
registers one collision-related teleport
int getDiscardedVehicleNo() const
Returns the number of discarded vehicles.
void registerStopStarted()
register emergency stop
VehicleDictType myVehicleDict
Dictionary of vehicles.
Representation of a vehicle in the micro simulation.
The car-following model and parameter.
Static storage of an output device and its base (abstract) implementation.
Represents a generic random distribution.
Representation of a vehicle.
Structure representing possible vehicle parameter.