Eclipse SUMO - Simulation of Urban MObility
Loading...
Searching...
No Matches
MSVehicle.cpp
Go to the documentation of this file.
1/****************************************************************************/
2// Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
3// Copyright (C) 2001-2025 German Aerospace Center (DLR) and others.
4// This program and the accompanying materials are made available under the
5// terms of the Eclipse Public License 2.0 which is available at
6// https://www.eclipse.org/legal/epl-2.0/
7// This Source Code may also be made available under the following Secondary
8// Licenses when the conditions for such availability set forth in the Eclipse
9// Public License 2.0 are satisfied: GNU General Public License, version 2
10// or later which is available at
11// https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
12// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
13/****************************************************************************/
31// Representation of a vehicle in the micro simulation
32/****************************************************************************/
33#include <config.h>
34
35#include <iostream>
36#include <cassert>
37#include <cmath>
38#include <cstdlib>
39#include <algorithm>
40#include <map>
41#include <memory>
71#include "MSEdgeControl.h"
72#include "MSVehicleControl.h"
73#include "MSInsertionControl.h"
74#include "MSVehicleTransfer.h"
75#include "MSGlobals.h"
76#include "MSJunctionLogic.h"
77#include "MSStop.h"
78#include "MSStoppingPlace.h"
79#include "MSParkingArea.h"
80#include "MSMoveReminder.h"
81#include "MSLane.h"
82#include "MSJunction.h"
83#include "MSEdge.h"
84#include "MSVehicleType.h"
85#include "MSNet.h"
86#include "MSRoute.h"
87#include "MSLeaderInfo.h"
88#include "MSDriverState.h"
89#include "MSVehicle.h"
90
91
92//#define DEBUG_PLAN_MOVE
93//#define DEBUG_PLAN_MOVE_LEADERINFO
94//#define DEBUG_CHECKREWINDLINKLANES
95//#define DEBUG_EXEC_MOVE
96//#define DEBUG_FURTHER
97//#define DEBUG_SETFURTHER
98//#define DEBUG_TARGET_LANE
99//#define DEBUG_STOPS
100//#define DEBUG_BESTLANES
101//#define DEBUG_IGNORE_RED
102//#define DEBUG_ACTIONSTEPS
103//#define DEBUG_NEXT_TURN
104//#define DEBUG_TRACI
105//#define DEBUG_REVERSE_BIDI
106//#define DEBUG_EXTRAPOLATE_DEPARTPOS
107//#define DEBUG_REMOTECONTROL
108//#define DEBUG_MOVEREMINDERS
109//#define DEBUG_COND (getID() == "ego")
110//#define DEBUG_COND (true)
111#define DEBUG_COND (isSelected())
112//#define DEBUG_COND2(obj) (obj->getID() == "ego")
113#define DEBUG_COND2(obj) (obj->isSelected())
114
115//#define PARALLEL_STOPWATCH
116
117
118#define STOPPING_PLACE_OFFSET 0.5
119
120#define CRLL_LOOK_AHEAD 5
121
122#define JUNCTION_BLOCKAGE_TIME 5 // s
123
124// @todo Calibrate with real-world values / make configurable
125#define DIST_TO_STOPLINE_EXPECT_PRIORITY 1.0
126
127#define NUMERICAL_EPS_SPEED (0.1 * NUMERICAL_EPS * TS)
128
129// ===========================================================================
130// static value definitions
131// ===========================================================================
132std::vector<MSLane*> MSVehicle::myEmptyLaneVector;
133
134
135// ===========================================================================
136// method definitions
137// ===========================================================================
138/* -------------------------------------------------------------------------
139 * methods of MSVehicle::State
140 * ----------------------------------------------------------------------- */
142 myPos = state.myPos;
143 mySpeed = state.mySpeed;
144 myPosLat = state.myPosLat;
145 myBackPos = state.myBackPos;
148}
149
150
153 myPos = state.myPos;
154 mySpeed = state.mySpeed;
155 myPosLat = state.myPosLat;
156 myBackPos = state.myBackPos;
157 myPreviousSpeed = state.myPreviousSpeed;
158 myLastCoveredDist = state.myLastCoveredDist;
159 return *this;
160}
161
162
163bool
165 return (myPos != state.myPos ||
166 mySpeed != state.mySpeed ||
167 myPosLat != state.myPosLat ||
168 myLastCoveredDist != state.myLastCoveredDist ||
169 myPreviousSpeed != state.myPreviousSpeed ||
170 myBackPos != state.myBackPos);
171}
172
173
174MSVehicle::State::State(double pos, double speed, double posLat, double backPos, double previousSpeed) :
175 myPos(pos), mySpeed(speed), myPosLat(posLat), myBackPos(backPos), myPreviousSpeed(previousSpeed), myLastCoveredDist(SPEED2DIST(speed)) {}
176
177
178
179/* -------------------------------------------------------------------------
180 * methods of MSVehicle::WaitingTimeCollector
181 * ----------------------------------------------------------------------- */
183
184
187 assert(memorySpan <= myMemorySize);
188 if (memorySpan == -1) {
189 memorySpan = myMemorySize;
190 }
191 SUMOTime totalWaitingTime = 0;
192 for (const auto& interval : myWaitingIntervals) {
193 if (interval.second >= memorySpan) {
194 if (interval.first >= memorySpan) {
195 break;
196 } else {
197 totalWaitingTime += memorySpan - interval.first;
198 }
199 } else {
200 totalWaitingTime += interval.second - interval.first;
201 }
202 }
203 return totalWaitingTime;
204}
205
206
207void
209 auto i = myWaitingIntervals.begin();
210 const auto end = myWaitingIntervals.end();
211 const bool startNewInterval = i == end || (i->first != 0);
212 while (i != end) {
213 i->first += dt;
214 if (i->first >= myMemorySize) {
215 break;
216 }
217 i->second += dt;
218 i++;
219 }
220
221 // remove intervals beyond memorySize
222 auto d = std::distance(i, end);
223 while (d > 0) {
224 myWaitingIntervals.pop_back();
225 d--;
226 }
227
228 if (!waiting) {
229 return;
230 } else if (!startNewInterval) {
231 myWaitingIntervals.begin()->first = 0;
232 } else {
233 myWaitingIntervals.push_front(std::make_pair(0, dt));
234 }
235 return;
236}
237
238
239const std::string
241 std::ostringstream state;
242 state << myMemorySize << " " << myWaitingIntervals.size();
243 for (const auto& interval : myWaitingIntervals) {
244 state << " " << interval.first << " " << interval.second;
245 }
246 return state.str();
247}
248
249
250void
252 std::istringstream is(state);
253 int numIntervals;
254 SUMOTime begin, end;
255 is >> myMemorySize >> numIntervals;
256 while (numIntervals-- > 0) {
257 is >> begin >> end;
258 myWaitingIntervals.emplace_back(begin, end);
259 }
260}
261
262
263/* -------------------------------------------------------------------------
264 * methods of MSVehicle::Influencer::GapControlState
265 * ----------------------------------------------------------------------- */
266void
268// std::cout << "GapControlVehStateListener::vehicleStateChanged() vehicle=" << vehicle->getID() << ", to=" << to << std::endl;
269 switch (to) {
273 // Vehicle left road
274// Look up reference vehicle in refVehMap and in case deactivate corresponding gap control
275 const MSVehicle* msVeh = static_cast<const MSVehicle*>(vehicle);
276// std::cout << "GapControlVehStateListener::vehicleStateChanged() vehicle=" << vehicle->getID() << " left the road." << std::endl;
277 if (GapControlState::refVehMap.find(msVeh) != end(GapControlState::refVehMap)) {
278// std::cout << "GapControlVehStateListener::deactivating ref vehicle=" << vehicle->getID() << std::endl;
279 GapControlState::refVehMap[msVeh]->deactivate();
280 }
281 }
282 break;
283 default:
284 {};
285 // do nothing, vehicle still on road
286 }
287}
288
289std::map<const MSVehicle*, MSVehicle::Influencer::GapControlState*>
291
293
295 tauOriginal(-1), tauCurrent(-1), tauTarget(-1), addGapCurrent(-1), addGapTarget(-1),
296 remainingDuration(-1), changeRate(-1), maxDecel(-1), referenceVeh(nullptr), active(false), gapAttained(false), prevLeader(nullptr),
297 lastUpdate(-1), timeHeadwayIncrement(0.0), spaceHeadwayIncrement(0.0) {}
298
299
303
304void
306 if (MSNet::hasInstance()) {
307 if (myVehStateListener == nullptr) {
308 //std::cout << "GapControlState::init()" << std::endl;
309 myVehStateListener = new GapControlVehStateListener();
310 MSNet::getInstance()->addVehicleStateListener(myVehStateListener);
311 }
312 } else {
313 WRITE_ERROR("MSVehicle::Influencer::GapControlState::init(): No MSNet instance found!")
314 }
315}
316
317void
319 if (myVehStateListener != nullptr) {
320 MSNet::getInstance()->removeVehicleStateListener(myVehStateListener);
321 delete myVehStateListener;
322 myVehStateListener = nullptr;
323 }
324}
325
326void
327MSVehicle::Influencer::GapControlState::activate(double tauOrig, double tauNew, double additionalGap, double dur, double rate, double decel, const MSVehicle* refVeh) {
329 WRITE_ERROR(TL("No gap control available for meso."))
330 } else {
331 // always deactivate control before activating (triggers clean-up of refVehMap)
332// std::cout << "activate gap control with refVeh=" << (refVeh==nullptr? "NULL" : refVeh->getID()) << std::endl;
333 tauOriginal = tauOrig;
334 tauCurrent = tauOrig;
335 tauTarget = tauNew;
336 addGapCurrent = 0.0;
337 addGapTarget = additionalGap;
338 remainingDuration = dur;
339 changeRate = rate;
340 maxDecel = decel;
341 referenceVeh = refVeh;
342 active = true;
343 gapAttained = false;
344 prevLeader = nullptr;
345 lastUpdate = SIMSTEP - DELTA_T;
346 timeHeadwayIncrement = changeRate * TS * (tauTarget - tauOriginal);
347 spaceHeadwayIncrement = changeRate * TS * addGapTarget;
348
349 if (referenceVeh != nullptr) {
350 // Add refVeh to refVehMap
351 GapControlState::refVehMap[referenceVeh] = this;
352 }
353 }
354}
355
356void
358 active = false;
359 if (referenceVeh != nullptr) {
360 // Remove corresponding refVehMapEntry if appropriate
361 GapControlState::refVehMap.erase(referenceVeh);
362 referenceVeh = nullptr;
363 }
364}
365
366
367/* -------------------------------------------------------------------------
368 * methods of MSVehicle::Influencer
369 * ----------------------------------------------------------------------- */
391
392
394
395void
397 GapControlState::init();
398}
399
400void
402 GapControlState::cleanup();
403}
404
405void
406MSVehicle::Influencer::setSpeedTimeLine(const std::vector<std::pair<SUMOTime, double> >& speedTimeLine) {
407 mySpeedAdaptationStarted = true;
408 mySpeedTimeLine = speedTimeLine;
409}
410
411void
412MSVehicle::Influencer::activateGapController(double originalTau, double newTimeHeadway, double newSpaceHeadway, double duration, double changeRate, double maxDecel, MSVehicle* refVeh) {
413 if (myGapControlState == nullptr) {
414 myGapControlState = std::make_shared<GapControlState>();
415 init(); // only does things on first call
416 }
417 myGapControlState->activate(originalTau, newTimeHeadway, newSpaceHeadway, duration, changeRate, maxDecel, refVeh);
418}
419
420void
422 if (myGapControlState != nullptr && myGapControlState->active) {
423 myGapControlState->deactivate();
424 }
425}
426
427void
428MSVehicle::Influencer::setLaneTimeLine(const std::vector<std::pair<SUMOTime, int> >& laneTimeLine) {
429 myLaneTimeLine = laneTimeLine;
430}
431
432
433void
435 for (auto& item : myLaneTimeLine) {
436 item.second += indexShift;
437 }
438}
439
440
441void
443 myLatDist = latDist;
444}
445
446int
448 return (1 * myConsiderSafeVelocity +
449 2 * myConsiderMaxAcceleration +
450 4 * myConsiderMaxDeceleration +
451 8 * myRespectJunctionPriority +
452 16 * myEmergencyBrakeRedLight +
453 32 * !myRespectJunctionLeaderPriority + // inverted!
454 64 * !myConsiderSpeedLimit // inverted!
455 );
456}
457
458
459int
461 return (1 * myStrategicLC +
462 4 * myCooperativeLC +
463 16 * mySpeedGainLC +
464 64 * myRightDriveLC +
465 256 * myTraciLaneChangePriority +
466 1024 * mySublaneLC);
467}
468
471 SUMOTime duration = -1;
472 for (std::vector<std::pair<SUMOTime, int>>::iterator i = myLaneTimeLine.begin(); i != myLaneTimeLine.end(); ++i) {
473 if (duration < 0) {
474 duration = i->first;
475 } else {
476 duration -= i->first;
477 }
478 }
479 return -duration;
480}
481
484 if (!myLaneTimeLine.empty()) {
485 return myLaneTimeLine.back().first;
486 } else {
487 return -1;
488 }
489}
490
491
492double
493MSVehicle::Influencer::influenceSpeed(SUMOTime currentTime, double speed, double vSafe, double vMin, double vMax) {
494 // remove leading commands which are no longer valid
495 while (mySpeedTimeLine.size() == 1 || (mySpeedTimeLine.size() > 1 && currentTime > mySpeedTimeLine[1].first)) {
496 mySpeedTimeLine.erase(mySpeedTimeLine.begin());
497 }
498
499 if (!(mySpeedTimeLine.size() < 2 || currentTime < mySpeedTimeLine[0].first)) {
500 // Speed advice is active -> compute new speed according to speedTimeLine
501 if (!mySpeedAdaptationStarted) {
502 mySpeedTimeLine[0].second = speed;
503 mySpeedAdaptationStarted = true;
504 }
505 currentTime += DELTA_T; // start slowing down in the step in which this command was issued (the input value of currentTime still reflects the previous step)
506 const double td = MIN2(1.0, STEPS2TIME(currentTime - mySpeedTimeLine[0].first) / MAX2(TS, STEPS2TIME(mySpeedTimeLine[1].first - mySpeedTimeLine[0].first)));
507
508 speed = mySpeedTimeLine[0].second - (mySpeedTimeLine[0].second - mySpeedTimeLine[1].second) * td;
509 if (myConsiderSafeVelocity) {
510 speed = MIN2(speed, vSafe);
511 }
512 if (myConsiderMaxAcceleration) {
513 speed = MIN2(speed, vMax);
514 }
515 if (myConsiderMaxDeceleration) {
516 speed = MAX2(speed, vMin);
517 }
518 }
519 return speed;
520}
521
522double
523MSVehicle::Influencer::gapControlSpeed(SUMOTime currentTime, const SUMOVehicle* veh, double speed, double vSafe, double vMin, double vMax) {
524#ifdef DEBUG_TRACI
525 if DEBUG_COND2(veh) {
526 std::cout << currentTime << " Influencer::gapControlSpeed(): speed=" << speed
527 << ", vSafe=" << vSafe
528 << ", vMin=" << vMin
529 << ", vMax=" << vMax
530 << std::endl;
531 }
532#endif
533 double gapControlSpeed = speed;
534 if (myGapControlState != nullptr && myGapControlState->active) {
535 // Determine leader and the speed that would be chosen by the gap controller
536 const double currentSpeed = veh->getSpeed();
537 const MSVehicle* msVeh = dynamic_cast<const MSVehicle*>(veh);
538 assert(msVeh != nullptr);
539 const double desiredTargetTimeSpacing = myGapControlState->tauTarget * currentSpeed;
540 std::pair<const MSVehicle*, double> leaderInfo;
541 if (myGapControlState->referenceVeh == nullptr) {
542 // No reference vehicle specified -> use current leader as reference
543 const double brakeGap = msVeh->getBrakeGap(true);
544 leaderInfo = msVeh->getLeader(MAX2(desiredTargetTimeSpacing, myGapControlState->addGapCurrent) + MAX2(brakeGap, 20.0));
545#ifdef DEBUG_TRACI
546 if DEBUG_COND2(veh) {
547 std::cout << " --- no refVeh; myGapControlState->addGapCurrent: " << myGapControlState->addGapCurrent << ", brakeGap: " << brakeGap << " in simstep: " << SIMSTEP << std::endl;
548 }
549#endif
550 } else {
551 // Control gap wrt reference vehicle
552 const MSVehicle* leader = myGapControlState->referenceVeh;
553 double dist = msVeh->getDistanceToPosition(leader->getPositionOnLane(), leader->getLane()) - leader->getLength();
554 if (dist > 100000) {
555 // Reference vehicle was not found downstream the ego's route
556 // Maybe, it is behind the ego vehicle
557 dist = - leader->getDistanceToPosition(msVeh->getPositionOnLane(), msVeh->getLane()) - leader->getLength();
558#ifdef DEBUG_TRACI
559 if DEBUG_COND2(veh) {
560 if (dist < -100000) {
561 // also the ego vehicle is not ahead of the reference vehicle -> no CF-relation
562 std::cout << " Ego and reference vehicle are not in CF relation..." << std::endl;
563 } else {
564 std::cout << " Reference vehicle is behind ego..." << std::endl;
565 }
566 }
567#endif
568 }
569 leaderInfo = std::make_pair(leader, dist - msVeh->getVehicleType().getMinGap());
570 }
571 const double fakeDist = MAX2(0.0, leaderInfo.second - myGapControlState->addGapCurrent);
572#ifdef DEBUG_TRACI
573 if DEBUG_COND2(veh) {
574 const double desiredCurrentSpacing = myGapControlState->tauCurrent * currentSpeed;
575 std::cout << " Gap control active:"
576 << " currentSpeed=" << currentSpeed
577 << ", desiredTargetTimeSpacing=" << desiredTargetTimeSpacing
578 << ", desiredCurrentSpacing=" << desiredCurrentSpacing
579 << ", leader=" << (leaderInfo.first == nullptr ? "NULL" : leaderInfo.first->getID())
580 << ", dist=" << leaderInfo.second
581 << ", fakeDist=" << fakeDist
582 << ",\n tauOriginal=" << myGapControlState->tauOriginal
583 << ", tauTarget=" << myGapControlState->tauTarget
584 << ", tauCurrent=" << myGapControlState->tauCurrent
585 << std::endl;
586 }
587#endif
588 if (leaderInfo.first != nullptr) {
589 if (myGapControlState->prevLeader != nullptr && myGapControlState->prevLeader != leaderInfo.first) {
590 // TODO: The leader changed. What to do?
591 }
592 // Remember leader
593 myGapControlState->prevLeader = leaderInfo.first;
594
595 // Calculate desired following speed assuming the alternative headway time
596 MSCFModel* cfm = (MSCFModel*) & (msVeh->getVehicleType().getCarFollowModel());
597 const double origTau = cfm->getHeadwayTime();
598 cfm->setHeadwayTime(myGapControlState->tauCurrent);
599 gapControlSpeed = MIN2(gapControlSpeed,
600 cfm->followSpeed(msVeh, currentSpeed, fakeDist, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first));
601 cfm->setHeadwayTime(origTau);
602#ifdef DEBUG_TRACI
603 if DEBUG_COND2(veh) {
604 std::cout << " -> gapControlSpeed=" << gapControlSpeed;
605 if (myGapControlState->maxDecel > 0) {
606 std::cout << ", with maxDecel bound: " << MAX2(gapControlSpeed, currentSpeed - TS * myGapControlState->maxDecel);
607 }
608 std::cout << std::endl;
609 }
610#endif
611 if (myGapControlState->maxDecel > 0) {
612 gapControlSpeed = MAX2(gapControlSpeed, currentSpeed - TS * myGapControlState->maxDecel);
613 }
614 }
615
616 // Update gap controller
617 // Check (1) if the gap control has established the desired gap,
618 // and (2) if it has maintained active for the given duration afterwards
619 if (myGapControlState->lastUpdate < currentTime) {
620#ifdef DEBUG_TRACI
621 if DEBUG_COND2(veh) {
622 std::cout << " Updating GapControlState." << std::endl;
623 }
624#endif
625 if (myGapControlState->tauCurrent == myGapControlState->tauTarget && myGapControlState->addGapCurrent == myGapControlState->addGapTarget) {
626 if (!myGapControlState->gapAttained) {
627 // Check if the desired gap was established (add the POSITION_EPS to avoid infinite asymptotic behavior without having established the gap)
628 myGapControlState->gapAttained = leaderInfo.first == nullptr || leaderInfo.second > MAX2(desiredTargetTimeSpacing, myGapControlState->addGapTarget) - POSITION_EPS;
629#ifdef DEBUG_TRACI
630 if DEBUG_COND2(veh) {
631 if (myGapControlState->gapAttained) {
632 std::cout << " Target gap was established." << std::endl;
633 }
634 }
635#endif
636 } else {
637 // Count down remaining time if desired gap was established
638 myGapControlState->remainingDuration -= TS;
639#ifdef DEBUG_TRACI
640 if DEBUG_COND2(veh) {
641 std::cout << " Gap control remaining duration: " << myGapControlState->remainingDuration << std::endl;
642 }
643#endif
644 if (myGapControlState->remainingDuration <= 0) {
645#ifdef DEBUG_TRACI
646 if DEBUG_COND2(veh) {
647 std::cout << " Gap control duration expired, deactivating control." << std::endl;
648 }
649#endif
650 // switch off gap control
651 myGapControlState->deactivate();
652 }
653 }
654 } else {
655 // Adjust current headway values
656 myGapControlState->tauCurrent = MIN2(myGapControlState->tauCurrent + myGapControlState->timeHeadwayIncrement, myGapControlState->tauTarget);
657 myGapControlState->addGapCurrent = MIN2(myGapControlState->addGapCurrent + myGapControlState->spaceHeadwayIncrement, myGapControlState->addGapTarget);
658 }
659 }
660 if (myConsiderSafeVelocity) {
661 gapControlSpeed = MIN2(gapControlSpeed, vSafe);
662 }
663 if (myConsiderMaxAcceleration) {
664 gapControlSpeed = MIN2(gapControlSpeed, vMax);
665 }
666 if (myConsiderMaxDeceleration) {
667 gapControlSpeed = MAX2(gapControlSpeed, vMin);
668 }
669 return MIN2(speed, gapControlSpeed);
670 } else {
671 return speed;
672 }
673}
674
675double
677 return myOriginalSpeed;
678}
679
680void
682 myOriginalSpeed = speed;
683}
684
685
686int
687MSVehicle::Influencer::influenceChangeDecision(const SUMOTime currentTime, const MSEdge& currentEdge, const int currentLaneIndex, int state) {
688 // remove leading commands which are no longer valid
689 while (myLaneTimeLine.size() == 1 || (myLaneTimeLine.size() > 1 && currentTime > myLaneTimeLine[1].first)) {
690 myLaneTimeLine.erase(myLaneTimeLine.begin());
691 }
692 ChangeRequest changeRequest = REQUEST_NONE;
693 // do nothing if the time line does not apply for the current time
694 if (myLaneTimeLine.size() >= 2 && currentTime >= myLaneTimeLine[0].first) {
695 const int destinationLaneIndex = myLaneTimeLine[1].second;
696 if (destinationLaneIndex < (int)currentEdge.getLanes().size()) {
697 if (currentLaneIndex > destinationLaneIndex) {
698 changeRequest = REQUEST_RIGHT;
699 } else if (currentLaneIndex < destinationLaneIndex) {
700 changeRequest = REQUEST_LEFT;
701 } else {
702 changeRequest = REQUEST_HOLD;
703 }
704 } else if (currentEdge.getLanes().back()->getOpposite() != nullptr) { // change to opposite direction driving
705 changeRequest = REQUEST_LEFT;
706 state = state | LCA_TRACI;
707 }
708 }
709 // check whether the current reason shall be canceled / overridden
710 if ((state & LCA_WANTS_LANECHANGE_OR_STAY) != 0) {
711 // flags for the current reason
713 if ((state & LCA_TRACI) != 0 && myLatDist != 0) {
714 // security checks
715 if ((myTraciLaneChangePriority == LCP_ALWAYS)
716 || (myTraciLaneChangePriority == LCP_NOOVERLAP && (state & LCA_OVERLAPPING) == 0)) {
717 state &= ~(LCA_BLOCKED | LCA_OVERLAPPING);
718 }
719 // continue sublane change manoeuvre
720 return state;
721 } else if ((state & LCA_STRATEGIC) != 0) {
722 mode = myStrategicLC;
723 } else if ((state & LCA_COOPERATIVE) != 0) {
724 mode = myCooperativeLC;
725 } else if ((state & LCA_SPEEDGAIN) != 0) {
726 mode = mySpeedGainLC;
727 } else if ((state & LCA_KEEPRIGHT) != 0) {
728 mode = myRightDriveLC;
729 } else if ((state & LCA_SUBLANE) != 0) {
730 mode = mySublaneLC;
731 } else if ((state & LCA_TRACI) != 0) {
732 mode = LC_NEVER;
733 } else {
734 WRITE_WARNINGF(TL("Lane change model did not provide a reason for changing (state=%, time=%\n"), toString(state), time2string(currentTime));
735 }
736 if (mode == LC_NEVER) {
737 // cancel all lcModel requests
738 state &= ~LCA_WANTS_LANECHANGE_OR_STAY;
739 state &= ~LCA_URGENT;
740 if (changeRequest == REQUEST_NONE) {
741 // also remove all reasons except TRACI
742 state &= ~LCA_CHANGE_REASONS | LCA_TRACI;
743 }
744 } else if (mode == LC_NOCONFLICT && changeRequest != REQUEST_NONE) {
745 if (
746 ((state & LCA_LEFT) != 0 && changeRequest != REQUEST_LEFT) ||
747 ((state & LCA_RIGHT) != 0 && changeRequest != REQUEST_RIGHT) ||
748 ((state & LCA_STAY) != 0 && changeRequest != REQUEST_HOLD)) {
749 // cancel conflicting lcModel request
750 state &= ~LCA_WANTS_LANECHANGE_OR_STAY;
751 state &= ~LCA_URGENT;
752 }
753 } else if (mode == LC_ALWAYS) {
754 // ignore any TraCI requests
755 return state;
756 }
757 }
758 // apply traci requests
759 if (changeRequest == REQUEST_NONE) {
760 return state;
761 } else {
762 state |= LCA_TRACI;
763 // security checks
764 if ((myTraciLaneChangePriority == LCP_ALWAYS)
765 || (myTraciLaneChangePriority == LCP_NOOVERLAP && (state & LCA_OVERLAPPING) == 0)) {
766 state &= ~(LCA_BLOCKED | LCA_OVERLAPPING);
767 }
768 if (changeRequest != REQUEST_HOLD && myTraciLaneChangePriority != LCP_OPPORTUNISTIC) {
769 state |= LCA_URGENT;
770 }
771 switch (changeRequest) {
772 case REQUEST_HOLD:
773 return state | LCA_STAY;
774 case REQUEST_LEFT:
775 return state | LCA_LEFT;
776 case REQUEST_RIGHT:
777 return state | LCA_RIGHT;
778 default:
779 throw ProcessError(TL("should not happen"));
780 }
781 }
782}
783
784
785double
787 assert(myLaneTimeLine.size() >= 2);
788 assert(currentTime >= myLaneTimeLine[0].first);
789 return STEPS2TIME(myLaneTimeLine[1].first - currentTime);
790}
791
792
793void
795 myConsiderSafeVelocity = ((speedMode & 1) != 0);
796 myConsiderMaxAcceleration = ((speedMode & 2) != 0);
797 myConsiderMaxDeceleration = ((speedMode & 4) != 0);
798 myRespectJunctionPriority = ((speedMode & 8) != 0);
799 myEmergencyBrakeRedLight = ((speedMode & 16) != 0);
800 myRespectJunctionLeaderPriority = ((speedMode & 32) == 0); // inverted!
801 myConsiderSpeedLimit = ((speedMode & 64) == 0); // inverted!
802}
803
804
805void
807 myStrategicLC = (LaneChangeMode)(value & (1 + 2));
808 myCooperativeLC = (LaneChangeMode)((value & (4 + 8)) >> 2);
809 mySpeedGainLC = (LaneChangeMode)((value & (16 + 32)) >> 4);
810 myRightDriveLC = (LaneChangeMode)((value & (64 + 128)) >> 6);
811 myTraciLaneChangePriority = (TraciLaneChangePriority)((value & (256 + 512)) >> 8);
812 mySublaneLC = (LaneChangeMode)((value & (1024 + 2048)) >> 10);
813}
814
815
816void
817MSVehicle::Influencer::setRemoteControlled(Position xyPos, MSLane* l, double pos, double posLat, double angle, int edgeOffset, const ConstMSEdgeVector& route, SUMOTime t) {
818 myRemoteXYPos = xyPos;
819 myRemoteLane = l;
820 myRemotePos = pos;
821 myRemotePosLat = posLat;
822 myRemoteAngle = angle;
823 myRemoteEdgeOffset = edgeOffset;
824 myRemoteRoute = route;
825 myLastRemoteAccess = t;
826}
827
828
829bool
831 return myLastRemoteAccess == MSNet::getInstance()->getCurrentTimeStep();
832}
833
834
835bool
837 return myLastRemoteAccess >= t - TIME2STEPS(10);
838}
839
840
841void
843 if (myRemoteRoute.size() != 0 && myRemoteRoute != v->getRoute().getEdges()) {
844 // only replace route at this time if the vehicle is moving with the flow
845 const bool isForward = v->getLane() != 0 && &v->getLane()->getEdge() == myRemoteRoute[0];
846#ifdef DEBUG_REMOTECONTROL
847 std::cout << SIMSTEP << " updateRemoteControlRoute veh=" << v->getID() << " old=" << toString(v->getRoute().getEdges()) << " new=" << toString(myRemoteRoute) << " fwd=" << isForward << "\n";
848#endif
849 if (isForward) {
850 v->replaceRouteEdges(myRemoteRoute, -1, 0, "traci:moveToXY", true);
851 v->updateBestLanes();
852 }
853 }
854}
855
856
857void
859 const bool wasOnRoad = v->isOnRoad();
860 const bool withinLane = myRemoteLane != nullptr && fabs(myRemotePosLat) < 0.5 * (myRemoteLane->getWidth() + v->getVehicleType().getWidth());
861 const bool keepLane = wasOnRoad && v->getLane() == myRemoteLane;
862 if (v->isOnRoad() && !(keepLane && withinLane)) {
863 if (myRemoteLane != nullptr && &v->getLane()->getEdge() == &myRemoteLane->getEdge()) {
864 // correct odometer which gets incremented via onRemovalFromNet->leaveLane
865 v->myOdometer -= v->getLane()->getLength();
866 }
869 }
870 if (myRemoteRoute.size() != 0 && myRemoteRoute != v->getRoute().getEdges()) {
871 // needed for the insertion step
872#ifdef DEBUG_REMOTECONTROL
873 std::cout << SIMSTEP << " postProcessRemoteControl veh=" << v->getID()
874 << "\n oldLane=" << Named::getIDSecure(v->getLane())
875 << " oldRoute=" << toString(v->getRoute().getEdges())
876 << "\n newLane=" << Named::getIDSecure(myRemoteLane)
877 << " newRoute=" << toString(myRemoteRoute)
878 << " newRouteEdge=" << myRemoteRoute[myRemoteEdgeOffset]->getID()
879 << "\n";
880#endif
881 // clear any prior stops because they cannot apply to the new route
882 const_cast<SUMOVehicleParameter&>(v->getParameter()).stops.clear();
883 v->replaceRouteEdges(myRemoteRoute, -1, 0, "traci:moveToXY", true);
884 myRemoteRoute.clear();
885 }
886 v->myCurrEdge = v->getRoute().begin() + myRemoteEdgeOffset;
887 if (myRemoteLane != nullptr && myRemotePos > myRemoteLane->getLength()) {
888 myRemotePos = myRemoteLane->getLength();
889 }
890 if (myRemoteLane != nullptr && withinLane) {
891 if (keepLane) {
892 // TODO this handles only the case when the new vehicle is completely on the edge
893 const bool needFurtherUpdate = v->myState.myPos < v->getVehicleType().getLength() && myRemotePos >= v->getVehicleType().getLength();
894 v->myState.myPos = myRemotePos;
895 v->myState.myPosLat = myRemotePosLat;
896 if (needFurtherUpdate) {
897 v->myState.myBackPos = v->updateFurtherLanes(v->myFurtherLanes, v->myFurtherLanesPosLat, std::vector<MSLane*>());
898 }
899 } else {
903 if (!v->isOnRoad()) {
904 MSVehicleTransfer::getInstance()->remove(v); // TODO may need optimization, this is linear in the number of vehicles in transfer
905 }
906 myRemoteLane->forceVehicleInsertion(v, myRemotePos, notify, myRemotePosLat);
907 v->updateBestLanes();
908 }
909 if (!wasOnRoad) {
910 v->drawOutsideNetwork(false);
911 }
912 //std::cout << "on road network p=" << myRemoteXYPos << " a=" << myRemoteAngle << " l=" << Named::getIDSecure(myRemoteLane) << " pos=" << myRemotePos << " posLat=" << myRemotePosLat << "\n";
913 myRemoteLane->requireCollisionCheck();
914 } else {
915 if (v->getDeparture() == NOT_YET_DEPARTED) {
916 v->onDepart();
917 }
918 v->drawOutsideNetwork(true);
919 // see updateState
920 double vNext = v->processTraCISpeedControl(
921 v->getMaxSpeed(), v->getSpeed());
922 v->setBrakingSignals(vNext);
924 v->myAcceleration = SPEED2ACCEL(vNext - v->getSpeed());
925 v->myState.mySpeed = vNext;
926 v->updateWaitingTime(vNext);
927 //std::cout << "outside network p=" << myRemoteXYPos << " a=" << myRemoteAngle << " l=" << Named::getIDSecure(myRemoteLane) << "\n";
928 }
929 // ensure that the position is correct (i.e. when the lanePosition is ambiguous at corners)
930 v->setRemoteState(myRemoteXYPos);
931 v->setAngle(GeomHelper::fromNaviDegree(myRemoteAngle));
932}
933
934
935double
937 if (veh->getPosition() == Position::INVALID) {
938 return oldSpeed;
939 }
940 double dist = veh->getPosition().distanceTo2D(myRemoteXYPos);
941 if (myRemoteLane != nullptr) {
942 // if the vehicles is frequently placed on a new edge, the route may
943 // consist only of a single edge. In this case the new edge may not be
944 // on the route so distAlongRoute will be double::max.
945 // In this case we still want a sensible speed value
946 const double distAlongRoute = veh->getDistanceToPosition(myRemotePos, myRemoteLane);
947 if (distAlongRoute != std::numeric_limits<double>::max()) {
948 dist = distAlongRoute;
949 }
950 }
951 //std::cout << SIMTIME << " veh=" << veh->getID() << " oldPos=" << veh->getPosition() << " traciPos=" << myRemoteXYPos << " dist=" << dist << "\n";
952 const double minSpeed = myConsiderMaxDeceleration ?
953 veh->getCarFollowModel().minNextSpeedEmergency(oldSpeed, veh) : 0;
954 const double maxSpeed = (myRemoteLane != nullptr
955 ? myRemoteLane->getVehicleMaxSpeed(veh)
956 : (veh->getLane() != nullptr
957 ? veh->getLane()->getVehicleMaxSpeed(veh)
958 : veh->getMaxSpeed()));
959 return MIN2(maxSpeed, MAX2(minSpeed, DIST2SPEED(dist)));
960}
961
962
963double
965 double dist = 0;
966 if (myRemoteLane == nullptr) {
967 dist = veh->getPosition().distanceTo2D(myRemoteXYPos);
968 } else {
969 // if the vehicles is frequently placed on a new edge, the route may
970 // consist only of a single edge. In this case the new edge may not be
971 // on the route so getDistanceToPosition will return double::max.
972 // In this case we would rather not move the vehicle in executeMove
973 // (updateState) as it would result in emergency braking
974 dist = veh->getDistanceToPosition(myRemotePos, myRemoteLane);
975 }
976 if (dist == std::numeric_limits<double>::max()) {
977 return 0;
978 } else {
979 if (DIST2SPEED(dist) > veh->getMaxSpeed() * 1.1) {
980 WRITE_WARNINGF(TL("Vehicle '%' moved by TraCI from % to % (dist %) with implied speed of % (exceeding maximum speed %). time=%."),
981 veh->getID(), veh->getPosition(), myRemoteXYPos, dist, DIST2SPEED(dist), veh->getMaxSpeed(), time2string(SIMSTEP));
982 // some sanity check here
983 dist = MIN2(dist, SPEED2DIST(veh->getMaxSpeed() * 2));
984 }
985 return dist;
986 }
987}
988
989
990/* -------------------------------------------------------------------------
991 * MSVehicle-methods
992 * ----------------------------------------------------------------------- */
994 MSVehicleType* type, const double speedFactor) :
995 MSBaseVehicle(pars, route, type, speedFactor),
996 myWaitingTime(0),
998 myTimeLoss(0),
999 myState(0, 0, 0, 0, 0),
1000 myDriverState(nullptr),
1001 myActionStep(true),
1003 myLane(nullptr),
1004 myLaneChangeModel(nullptr),
1005 myLastBestLanesEdge(nullptr),
1007 myAcceleration(0),
1008 myNextTurn(0., nullptr),
1009 mySignals(0),
1010 myAmOnNet(false),
1011 myAmIdling(false),
1013 myAngle(0),
1014 myStopDist(std::numeric_limits<double>::max()),
1020 myTimeSinceStartup(TIME2STEPS(3600 * 24)),
1021 myHaveStoppedFor(nullptr),
1022 myInfluencer(nullptr) {
1025}
1026
1027
1037
1038
1039void
1041 for (MSLane* further : myFurtherLanes) {
1042 further->resetPartialOccupation(this);
1043 if (further->getBidiLane() != nullptr
1044 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
1045 further->getBidiLane()->resetPartialOccupation(this);
1046 }
1047 }
1048 if (myLaneChangeModel != nullptr) {
1052 // still needed when calling resetPartialOccupation (getShadowLane) and when removing
1053 // approach information from parallel links
1054 }
1055 myFurtherLanes.clear();
1056 myFurtherLanesPosLat.clear();
1057}
1058
1059
1060void
1062#ifdef DEBUG_ACTIONSTEPS
1063 if (DEBUG_COND) {
1064 std::cout << SIMTIME << " Removing vehicle '" << getID() << "' (reason: " << toString(reason) << ")" << std::endl;
1065 }
1066#endif
1069 leaveLane(reason);
1072 }
1073}
1074
1075
1076void
1083
1084
1085// ------------ interaction with the route
1086bool
1088 // note: not a const method because getDepartLane may call updateBestLanes
1089 if (!(*myCurrEdge)->isTazConnector()) {
1091 if ((*myCurrEdge)->getDepartLane(*this) == nullptr) {
1092 msg = "Invalid departlane definition for vehicle '" + getID() + "'.";
1093 if (myParameter->departLane >= (int)(*myCurrEdge)->getLanes().size()) {
1095 } else {
1097 }
1098 return false;
1099 }
1100 } else {
1101 if ((*myCurrEdge)->allowedLanes(getVClass()) == nullptr) {
1102 msg = "Vehicle '" + getID() + "' is not allowed to depart on any lane of edge '" + (*myCurrEdge)->getID() + "'.";
1104 return false;
1105 }
1106 }
1108 msg = "Departure speed for vehicle '" + getID() + "' is too high for the vehicle type '" + myType->getID() + "'.";
1110 return false;
1111 }
1112 }
1114 return true;
1115}
1116
1117
1118bool
1120 return hasArrivedInternal(false);
1121}
1122
1123
1124bool
1125MSVehicle::hasArrivedInternal(bool oppositeTransformed) const {
1126 return ((myCurrEdge == myRoute->end() - 1 || (myParameter->arrivalEdge >= 0 && getRoutePosition() >= myParameter->arrivalEdge))
1127 && (myStops.empty() || myStops.front().edge != myCurrEdge || myStops.front().getSpeed() > 0)
1128 && ((myLaneChangeModel->isOpposite() && !oppositeTransformed) ? myLane->getLength() - myState.myPos : myState.myPos) > MIN2(myLane->getLength(), myArrivalPos) - POSITION_EPS
1129 && !isRemoteControlled());
1130}
1131
1132
1133bool
1134MSVehicle::replaceRoute(ConstMSRoutePtr newRoute, const std::string& info, bool onInit, int offset, bool addRouteStops, bool removeStops, std::string* msgReturn) {
1135 if (MSBaseVehicle::replaceRoute(newRoute, info, onInit, offset, addRouteStops, removeStops, msgReturn)) {
1136 // update best lanes (after stops were added)
1137 myLastBestLanesEdge = nullptr;
1139 updateBestLanes(true, onInit ? (*myCurrEdge)->getLanes().front() : 0);
1140 assert(!removeStops || haveValidStopEdges());
1141 if (myStops.size() == 0) {
1142 myStopDist = std::numeric_limits<double>::max();
1143 }
1144 return true;
1145 }
1146 return false;
1147}
1148
1149
1150// ------------ Interaction with move reminders
1151void
1152MSVehicle::workOnMoveReminders(double oldPos, double newPos, double newSpeed) {
1153 // This erasure-idiom works for all stl-sequence-containers
1154 // See Meyers: Effective STL, Item 9
1155 for (MoveReminderCont::iterator rem = myMoveReminders.begin(); rem != myMoveReminders.end();) {
1156 // XXX: calling notifyMove with newSpeed seems not the best choice. For the ballistic update, the average speed is calculated and used
1157 // although a higher order quadrature-formula might be more adequate.
1158 // For the euler case (where the speed is considered constant for each time step) it is conceivable that
1159 // the current calculations may lead to systematic errors for large time steps (compared to reality). Refs. #2579
1160 if (!rem->first->notifyMove(*this, oldPos + rem->second, newPos + rem->second, MAX2(0., newSpeed))) {
1161#ifdef _DEBUG
1162 if (myTraceMoveReminders) {
1163 traceMoveReminder("notifyMove", rem->first, rem->second, false);
1164 }
1165#endif
1166 rem = myMoveReminders.erase(rem);
1167 } else {
1168#ifdef _DEBUG
1169 if (myTraceMoveReminders) {
1170 traceMoveReminder("notifyMove", rem->first, rem->second, true);
1171 }
1172#endif
1173 ++rem;
1174 }
1175 }
1176 if (myEnergyParams != nullptr) {
1177 // TODO make the vehicle energy params a derived class which is a move reminder
1179 }
1180}
1181
1182
1183void
1185 updateWaitingTime(0.); // cf issue 2233
1186
1187 // vehicle move reminders
1188 for (const auto& rem : myMoveReminders) {
1189 rem.first->notifyIdle(*this);
1190 }
1191
1192 // lane move reminders - for aggregated values
1193 for (MSMoveReminder* rem : getLane()->getMoveReminders()) {
1194 rem->notifyIdle(*this);
1195 }
1196}
1197
1198// XXX: consider renaming...
1199void
1201 // save the old work reminders, patching the position information
1202 // add the information about the new offset to the old lane reminders
1203 const double oldLaneLength = myLane->getLength();
1204 for (auto& rem : myMoveReminders) {
1205 rem.second += oldLaneLength;
1206#ifdef _DEBUG
1207// if (rem->first==0) std::cout << "Null reminder (?!)" << std::endl;
1208// std::cout << "Adapted MoveReminder on lane " << ((rem->first->getLane()==0) ? "NULL" : rem->first->getLane()->getID()) <<" position to " << rem->second << std::endl;
1209 if (myTraceMoveReminders) {
1210 traceMoveReminder("adaptedPos", rem.first, rem.second, true);
1211 }
1212#endif
1213 }
1214 for (MSMoveReminder* const rem : enteredLane.getMoveReminders()) {
1215 addReminder(rem);
1216 }
1217}
1218
1219
1220// ------------ Other getter methods
1221double
1223 if (isParking() && getStops().begin()->parkingarea != nullptr) {
1224 return getStops().begin()->parkingarea->getVehicleSlope(*this);
1225 }
1226 if (myLane == nullptr) {
1227 return 0;
1228 }
1229 const double posLat = myState.myPosLat; // @todo get rid of the '-'
1230 Position p1 = getPosition();
1232 if (p2 == Position::INVALID) {
1233 // Handle special case of vehicle's back reaching out of the network
1234 if (myFurtherLanes.size() > 0) {
1235 p2 = myFurtherLanes.back()->geometryPositionAtOffset(0, -myFurtherLanesPosLat.back());
1236 if (p2 == Position::INVALID) {
1237 // unsuitable lane geometry
1238 p2 = myLane->geometryPositionAtOffset(0, posLat);
1239 }
1240 } else {
1241 p2 = myLane->geometryPositionAtOffset(0, posLat);
1242 }
1243 }
1245}
1246
1247
1249MSVehicle::getPosition(const double offset) const {
1250 if (myLane == nullptr) {
1251 // when called in the context of GUI-Drawing, the simulation step is already incremented
1253 return myCachedPosition;
1254 } else {
1255 return Position::INVALID;
1256 }
1257 }
1258 if (isParking()) {
1259 if (myInfluencer != nullptr && myInfluencer->getLastAccessTimeStep() > getNextStopParameter()->started) {
1260 return myCachedPosition;
1261 }
1262 if (myStops.begin()->parkingarea != nullptr) {
1263 return myStops.begin()->parkingarea->getVehiclePosition(*this);
1264 } else {
1265 // position beside the road
1266 PositionVector shp = myLane->getEdge().getLanes()[0]->getShape();
1269 }
1270 }
1271 const bool changingLanes = myLaneChangeModel->isChangingLanes();
1272 const double posLat = (MSGlobals::gLefthand ? 1 : -1) * getLateralPositionOnLane();
1273 if (offset == 0. && !changingLanes) {
1276 if (MSNet::getInstance()->hasElevation() && MSGlobals::gSublane) {
1278 }
1279 }
1280 return myCachedPosition;
1281 }
1282 Position result = validatePosition(myLane->geometryPositionAtOffset(getPositionOnLane() + offset, posLat), offset);
1283 interpolateLateralZ(result, getPositionOnLane() + offset, posLat);
1284 return result;
1285}
1286
1287
1288void
1289MSVehicle::interpolateLateralZ(Position& pos, double offset, double posLat) const {
1290 const MSLane* shadow = myLaneChangeModel->getShadowLane();
1291 if (shadow != nullptr && pos != Position::INVALID) {
1292 // ignore negative offset
1293 const Position shadowPos = shadow->geometryPositionAtOffset(MAX2(0.0, offset));
1294 if (shadowPos != Position::INVALID && pos.z() != shadowPos.z()) {
1295 const double centerDist = (myLane->getWidth() + shadow->getWidth()) * 0.5;
1296 double relOffset = fabs(posLat) / centerDist;
1297 double newZ = (1 - relOffset) * pos.z() + relOffset * shadowPos.z();
1298 pos.setz(newZ);
1299 }
1300 }
1301}
1302
1303
1304double
1306 double result = getLength() - getPositionOnLane();
1307 if (myLane->isNormal()) {
1308 return MAX2(0.0, result);
1309 }
1310 const MSLane* lane = myLane;
1311 while (lane->isInternal()) {
1312 result += lane->getLength();
1313 lane = lane->getCanonicalSuccessorLane();
1314 }
1315 return result;
1316}
1317
1318
1322 if (!isOnRoad()) {
1323 return Position::INVALID;
1324 }
1325 const std::vector<MSLane*>& bestLanes = getBestLanesContinuation();
1326 auto nextBestLane = bestLanes.begin();
1327 const bool opposite = myLaneChangeModel->isOpposite();
1328 double pos = opposite ? myLane->getLength() - myState.myPos : myState.myPos;
1329 const MSLane* lane = opposite ? myLane->getParallelOpposite() : getLane();
1330 assert(lane != 0);
1331 bool success = true;
1332
1333 while (offset > 0) {
1334 // take into account lengths along internal lanes
1335 while (lane->isInternal() && offset > 0) {
1336 if (offset > lane->getLength() - pos) {
1337 offset -= lane->getLength() - pos;
1338 lane = lane->getLinkCont()[0]->getViaLaneOrLane();
1339 pos = 0.;
1340 if (lane == nullptr) {
1341 success = false;
1342 offset = 0.;
1343 }
1344 } else {
1345 pos += offset;
1346 offset = 0;
1347 }
1348 }
1349 // set nextBestLane to next non-internal lane
1350 while (nextBestLane != bestLanes.end() && *nextBestLane == nullptr) {
1351 ++nextBestLane;
1352 }
1353 if (offset > 0) {
1354 assert(!lane->isInternal());
1355 assert(lane == *nextBestLane);
1356 if (offset > lane->getLength() - pos) {
1357 offset -= lane->getLength() - pos;
1358 ++nextBestLane;
1359 assert(nextBestLane == bestLanes.end() || *nextBestLane != 0);
1360 if (nextBestLane == bestLanes.end()) {
1361 success = false;
1362 offset = 0.;
1363 } else {
1364 const MSLink* link = lane->getLinkTo(*nextBestLane);
1365 assert(link != nullptr);
1366 lane = link->getViaLaneOrLane();
1367 pos = 0.;
1368 }
1369 } else {
1370 pos += offset;
1371 offset = 0;
1372 }
1373 }
1374
1375 }
1376
1377 if (success) {
1379 } else {
1380 return Position::INVALID;
1381 }
1382}
1383
1384
1385double
1387 if (myLane != nullptr) {
1388 return myLane->getVehicleMaxSpeed(this);
1389 }
1390 return myType->getMaxSpeed();
1391}
1392
1393
1395MSVehicle::validatePosition(Position result, double offset) const {
1396 int furtherIndex = 0;
1397 double lastLength = getPositionOnLane();
1398 while (result == Position::INVALID) {
1399 if (furtherIndex >= (int)myFurtherLanes.size()) {
1400 //WRITE_WARNINGF(TL("Could not compute position for vehicle '%', time=%."), getID(), time2string(MSNet::getInstance()->getCurrentTimeStep()));
1401 break;
1402 }
1403 //std::cout << SIMTIME << " veh=" << getID() << " lane=" << myLane->getID() << " pos=" << getPositionOnLane() << " posLat=" << getLateralPositionOnLane() << " offset=" << offset << " result=" << result << " i=" << furtherIndex << " further=" << myFurtherLanes.size() << "\n";
1404 MSLane* further = myFurtherLanes[furtherIndex];
1405 offset += lastLength;
1406 result = further->geometryPositionAtOffset(further->getLength() + offset, -getLateralPositionOnLane());
1407 lastLength = further->getLength();
1408 furtherIndex++;
1409 //std::cout << SIMTIME << " newResult=" << result << "\n";
1410 }
1411 return result;
1412}
1413
1414
1415ConstMSEdgeVector::const_iterator
1417 // too close to the next junction, so avoid an emergency brake here
1418 if (myLane != nullptr && (myCurrEdge + 1) != myRoute->end() && !isRailway(getVClass())) {
1419 if (myLane->isInternal()) {
1420 return myCurrEdge + 1;
1421 }
1422 if (myState.myPos > myLane->getLength() - getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getMaxDecel(), 0.)) {
1423 return myCurrEdge + 1;
1424 }
1426 return myCurrEdge + 1;
1427 }
1428 }
1429 return myCurrEdge;
1430}
1431
1432void
1433MSVehicle::setAngle(double angle, bool straightenFurther) {
1434#ifdef DEBUG_FURTHER
1435 if (DEBUG_COND) {
1436 std::cout << SIMTIME << " veh '" << getID() << " setAngle(" << angle << ") straightenFurther=" << straightenFurther << std::endl;
1437 }
1438#endif
1439 myAngle = angle;
1440 MSLane* next = myLane;
1441 if (straightenFurther && myFurtherLanesPosLat.size() > 0) {
1442 for (int i = 0; i < (int)myFurtherLanes.size(); i++) {
1443 MSLane* further = myFurtherLanes[i];
1444 const MSLink* link = further->getLinkTo(next);
1445 if (link != nullptr) {
1447 next = further;
1448 } else {
1449 break;
1450 }
1451 }
1452 }
1453}
1454
1455
1456void
1457MSVehicle::setActionStepLength(double actionStepLength, bool resetOffset) {
1458 SUMOTime actionStepLengthMillisecs = SUMOVehicleParserHelper::processActionStepLength(actionStepLength);
1459 SUMOTime previousActionStepLength = getActionStepLength();
1460 const bool newActionStepLength = actionStepLengthMillisecs != previousActionStepLength;
1461 if (newActionStepLength) {
1462 getSingularType().setActionStepLength(actionStepLengthMillisecs, resetOffset);
1463 if (!resetOffset) {
1464 updateActionOffset(previousActionStepLength, actionStepLengthMillisecs);
1465 }
1466 }
1467 if (resetOffset) {
1469 }
1470}
1471
1472
1473bool
1475 return myState.mySpeed < (60.0 / 3.6) || myLane->getSpeedLimit() < (60.1 / 3.6);
1476}
1477
1478
1479double
1481 Position p1;
1482 const double posLat = -myState.myPosLat; // @todo get rid of the '-'
1483 const double lefthandSign = (MSGlobals::gLefthand ? -1 : 1);
1484
1485 // if parking manoeuvre is happening then rotate vehicle on each step
1488 }
1489
1490 if (isParking()) {
1491 if (myStops.begin()->parkingarea != nullptr) {
1492 return myStops.begin()->parkingarea->getVehicleAngle(*this);
1493 } else {
1495 }
1496 }
1498 // cannot use getPosition() because it already includes the offset to the side and thus messes up the angle
1499 p1 = myLane->geometryPositionAtOffset(myState.myPos, lefthandSign * posLat);
1500 if (p1 == Position::INVALID && myLane->getShape().length2D() == 0. && myLane->isInternal()) {
1501 // workaround: extrapolate the preceding lane shape
1502 MSLane* predecessorLane = myLane->getCanonicalPredecessorLane();
1503 p1 = predecessorLane->geometryPositionAtOffset(predecessorLane->getLength() + myState.myPos, lefthandSign * posLat);
1504 }
1505 } else {
1506 p1 = getPosition();
1507 }
1508
1509 Position p2;
1510 if (getVehicleType().getParameter().locomotiveLength > 0) {
1511 // articulated vehicle should use the heading of the first part
1512 const double locoLength = MIN2(getVehicleType().getParameter().locomotiveLength, getLength());
1513 p2 = getPosition(-locoLength);
1514 } else {
1515 p2 = getBackPosition();
1516 }
1517 if (p2 == Position::INVALID) {
1518 // Handle special case of vehicle's back reaching out of the network
1519 if (myFurtherLanes.size() > 0) {
1520 p2 = myFurtherLanes.back()->geometryPositionAtOffset(0, -myFurtherLanesPosLat.back());
1521 if (p2 == Position::INVALID) {
1522 // unsuitable lane geometry
1523 p2 = myLane->geometryPositionAtOffset(0, posLat);
1524 }
1525 } else {
1526 p2 = myLane->geometryPositionAtOffset(0, posLat);
1527 }
1528 }
1529 double result = (p1 != p2 ? p2.angleTo2D(p1) :
1531
1532 result += lefthandSign * myLaneChangeModel->calcAngleOffset();
1533
1534#ifdef DEBUG_FURTHER
1535 if (DEBUG_COND) {
1536 std::cout << SIMTIME << " computeAngle veh=" << getID() << " p1=" << p1 << " p2=" << p2 << " angle=" << RAD2DEG(result) << " naviDegree=" << GeomHelper::naviDegree(result) << "\n";
1537 }
1538#endif
1539 return result;
1540}
1541
1542
1543const Position
1545 const double posLat = MSGlobals::gLefthand ? myState.myPosLat : -myState.myPosLat;
1546 Position result;
1547 if (myState.myPos >= myType->getLength()) {
1548 // vehicle is fully on the new lane
1550 } else {
1552 // special case where the target lane has no predecessor
1553#ifdef DEBUG_FURTHER
1554 if (DEBUG_COND) {
1555 std::cout << " getBackPosition veh=" << getID() << " specialCase using myLane=" << myLane->getID() << " pos=0 posLat=" << myState.myPosLat << " result=" << myLane->geometryPositionAtOffset(0, posLat) << "\n";
1556 }
1557#endif
1558 result = myLane->geometryPositionAtOffset(0, posLat);
1559 } else {
1560#ifdef DEBUG_FURTHER
1561 if (DEBUG_COND) {
1562 std::cout << " getBackPosition veh=" << getID() << " myLane=" << myLane->getID() << " further=" << toString(myFurtherLanes) << " myFurtherLanesPosLat=" << toString(myFurtherLanesPosLat) << "\n";
1563 }
1564#endif
1565 if (myFurtherLanes.size() > 0 && !myLaneChangeModel->isChangingLanes()) {
1566 // truncate to 0 if vehicle starts on an edge that is shorter than its length
1567 const double backPos = MAX2(0.0, getBackPositionOnLane(myFurtherLanes.back()));
1568 result = myFurtherLanes.back()->geometryPositionAtOffset(backPos, -myFurtherLanesPosLat.back() * (MSGlobals::gLefthand ? -1 : 1));
1569 } else {
1570 result = myLane->geometryPositionAtOffset(0, posLat);
1571 }
1572 }
1573 }
1575 interpolateLateralZ(result, myState.myPos - myType->getLength(), posLat);
1576 }
1577 return result;
1578}
1579
1580
1581bool
1583 return !isStopped() && !myStops.empty() && myLane != nullptr && &myStops.front().lane->getEdge() == &myLane->getEdge();
1584}
1585
1586bool
1588 return isStopped() && myStops.front().lane == myLane;
1589}
1590
1591bool
1592MSVehicle::keepStopping(bool afterProcessing) const {
1593 if (isStopped()) {
1594 // when coming out of vehicleTransfer we must shift the time forward
1595 return (myStops.front().duration - (afterProcessing ? DELTA_T : 0) > 0 || isStoppedTriggered() || myStops.front().pars.collision
1596 || myStops.front().pars.breakDown || (myStops.front().getSpeed() > 0
1597 && (myState.myPos < MIN2(myStops.front().pars.endPos, myStops.front().lane->getLength() - POSITION_EPS))
1598 && (myStops.front().pars.parking == ParkingType::ONROAD || getSpeed() >= SUMO_const_haltingSpeed)));
1599 } else {
1600 return false;
1601 }
1602}
1603
1604
1607 if (isStopped()) {
1608 return myStops.front().duration;
1609 }
1610 return 0;
1611}
1612
1613
1616 return (myStops.empty() || !myStops.front().pars.collision) ? myCollisionImmunity : MAX2((SUMOTime)0, myStops.front().duration);
1617}
1618
1619
1620bool
1622 return isStopped() && !myStops.empty() && myStops.front().pars.breakDown;
1623}
1624
1625
1626bool
1628 return myCollisionImmunity > 0;
1629}
1630
1631
1632double
1633MSVehicle::processNextStop(double currentVelocity) {
1634 if (myStops.empty()) {
1635 // no stops; pass
1636 return currentVelocity;
1637 }
1638
1639#ifdef DEBUG_STOPS
1640 if (DEBUG_COND) {
1641 std::cout << "\nPROCESS_NEXT_STOP\n" << SIMTIME << " vehicle '" << getID() << "'" << std::endl;
1642 }
1643#endif
1644
1645 MSStop& stop = myStops.front();
1647 if (stop.reached) {
1648 stop.duration -= getActionStepLength();
1649
1650#ifdef DEBUG_STOPS
1651 if (DEBUG_COND) {
1652 std::cout << SIMTIME << " vehicle '" << getID() << "' reached stop.\n"
1653 << "Remaining duration: " << STEPS2TIME(stop.duration) << std::endl;
1654 if (stop.getSpeed() > 0) {
1655 std::cout << " waypointSpeed=" << stop.getSpeed() << " vehPos=" << myState.myPos << " endPos=" << stop.pars.endPos << "\n";
1656 }
1657 }
1658#endif
1659 if (stop.duration <= 0 && stop.pars.join != "") {
1660 // join this train (part) to another one
1661 MSVehicle* joinVeh = dynamic_cast<MSVehicle*>(MSNet::getInstance()->getVehicleControl().getVehicle(stop.pars.join));
1662 if (joinVeh && joinVeh->hasDeparted() && (joinVeh->joinTrainPart(this) || joinVeh->joinTrainPartFront(this))) {
1663 stop.joinTriggered = false;
1667 }
1668 // avoid collision warning before this vehicle is removed (joinVeh was already made longer)
1670 // mark this vehicle as arrived
1672 const_cast<SUMOVehicleParameter*>(myParameter)->arrivalEdge = getRoutePosition();
1673 // handle transportables that want to continue in the other vehicle
1674 if (myPersonDevice != nullptr) {
1676 }
1677 if (myContainerDevice != nullptr) {
1679 }
1680 }
1681 }
1682 boardTransportables(stop);
1683 if (time > stop.endBoarding) {
1684 // for taxi: cancel customers
1685 MSDevice_Taxi* taxiDevice = static_cast<MSDevice_Taxi*>(getDevice(typeid(MSDevice_Taxi)));
1686 if (taxiDevice != nullptr) {
1687 // may invalidate stops including the current reference
1688 taxiDevice->cancelCurrentCustomers();
1690 return currentVelocity;
1691 }
1692 }
1693 if (!keepStopping() && isOnRoad()) {
1694#ifdef DEBUG_STOPS
1695 if (DEBUG_COND) {
1696 std::cout << SIMTIME << " vehicle '" << getID() << "' resumes from stopping." << std::endl;
1697 }
1698#endif
1700 if (isRail() && hasStops()) {
1701 // stay on the current lane in case of a double stop
1702 const MSStop& nextStop = getNextStop();
1703 if (nextStop.edge == myCurrEdge) {
1704 const double stopSpeed = getCarFollowModel().stopSpeed(this, getSpeed(), nextStop.pars.endPos - myState.myPos);
1705 //std::cout << SIMTIME << " veh=" << getID() << " resumedFromStopping currentVelocity=" << currentVelocity << " stopSpeed=" << stopSpeed << "\n";
1706 return stopSpeed;
1707 }
1708 }
1709 } else {
1710 if (stop.triggered) {
1711 if (getVehicleType().getPersonCapacity() == getPersonNumber()) {
1712 WRITE_WARNINGF(TL("Vehicle '%' ignores triggered stop on lane '%' due to capacity constraints."), getID(), stop.lane->getID());
1713 stop.triggered = false;
1714 } else if (!myAmRegisteredAsWaiting && stop.duration <= DELTA_T) {
1715 // we can only register after waiting for one step. otherwise we might falsely signal a deadlock
1718#ifdef DEBUG_STOPS
1719 if (DEBUG_COND) {
1720 std::cout << SIMTIME << " vehicle '" << getID() << "' registers as waiting for person." << std::endl;
1721 }
1722#endif
1723 }
1724 }
1725 if (stop.containerTriggered) {
1726 if (getVehicleType().getContainerCapacity() == getContainerNumber()) {
1727 WRITE_WARNINGF(TL("Vehicle '%' ignores container triggered stop on lane '%' due to capacity constraints."), getID(), stop.lane->getID());
1728 stop.containerTriggered = false;
1729 } else if (stop.containerTriggered && !myAmRegisteredAsWaiting && stop.duration <= DELTA_T) {
1730 // we can only register after waiting for one step. otherwise we might falsely signal a deadlock
1733#ifdef DEBUG_STOPS
1734 if (DEBUG_COND) {
1735 std::cout << SIMTIME << " vehicle '" << getID() << "' registers as waiting for container." << std::endl;
1736 }
1737#endif
1738 }
1739 }
1740 // joining only takes place after stop duration is over
1742 && stop.duration <= (stop.pars.extension >= 0 ? -stop.pars.extension : 0)) {
1743 if (stop.pars.extension >= 0) {
1744 WRITE_WARNINGF(TL("Vehicle '%' aborts joining after extension of %s at time %."), getID(), STEPS2TIME(stop.pars.extension), time2string(SIMSTEP));
1745 stop.joinTriggered = false;
1746 } else {
1747 // keep stopping indefinitely but ensure that simulation terminates
1750 }
1751 }
1752 if (stop.getSpeed() > 0) {
1753 //waypoint mode
1754 if (stop.duration == 0) {
1755 return stop.getSpeed();
1756 } else {
1757 // stop for 'until' (computed in planMove)
1758 return currentVelocity;
1759 }
1760 } else {
1761 // brake
1763 return 0;
1764 } else {
1765 // ballistic:
1766 return getSpeed() - getCarFollowModel().getMaxDecel();
1767 }
1768 }
1769 }
1770 } else {
1771
1772#ifdef DEBUG_STOPS
1773 if (DEBUG_COND) {
1774 std::cout << SIMTIME << " vehicle '" << getID() << "' hasn't reached next stop." << std::endl;
1775 }
1776#endif
1777 //std::cout << SIMTIME << " myStopDist=" << myStopDist << " bGap=" << getBrakeGap(myLane->getVehicleMaxSpeed(this)) << "\n";
1778 if (stop.pars.onDemand && !stop.skipOnDemand && myStopDist <= getCarFollowModel().brakeGap(myLane->getVehicleMaxSpeed(this))) {
1779 MSNet* const net = MSNet::getInstance();
1780 const bool noExits = ((myPersonDevice == nullptr || !myPersonDevice->anyLeavingAtStop(stop))
1781 && (myContainerDevice == nullptr || !myContainerDevice->anyLeavingAtStop(stop)));
1782 const bool noEntries = ((!net->hasPersons() || !net->getPersonControl().hasAnyWaiting(stop.getEdge(), this))
1783 && (!net->hasContainers() || !net->getContainerControl().hasAnyWaiting(stop.getEdge(), this)));
1784 if (noExits && noEntries) {
1785 //std::cout << " skipOnDemand\n";
1786 stop.skipOnDemand = true;
1787 }
1788 }
1789 // is the next stop on the current lane?
1790 if (stop.edge == myCurrEdge) {
1791 // get the stopping position
1792 bool useStoppingPlace = stop.busstop != nullptr || stop.containerstop != nullptr || stop.parkingarea != nullptr;
1793 bool fitsOnStoppingPlace = true;
1794 if (!stop.skipOnDemand) { // no need to check available space if we skip it anyway
1795 if (stop.busstop != nullptr) {
1796 fitsOnStoppingPlace &= stop.busstop->fits(myState.myPos, *this);
1797 }
1798 if (stop.containerstop != nullptr) {
1799 fitsOnStoppingPlace &= stop.containerstop->fits(myState.myPos, *this);
1800 }
1801 // if the stop is a parking area we check if there is a free position on the area
1802 if (stop.parkingarea != nullptr) {
1803 fitsOnStoppingPlace &= myState.myPos > stop.parkingarea->getBeginLanePosition();
1804 if (stop.parkingarea->getOccupancy() >= stop.parkingarea->getCapacity()) {
1805 fitsOnStoppingPlace = false;
1806 // trigger potential parkingZoneReroute
1807 MSParkingArea* oldParkingArea = stop.parkingarea;
1808 for (MSMoveReminder* rem : myLane->getMoveReminders()) {
1809 if (rem->isParkingRerouter()) {
1810 rem->notifyEnter(*this, MSMoveReminder::NOTIFICATION_PARKING_REROUTE, myLane);
1811 }
1812 }
1813 if (myStops.empty() || myStops.front().parkingarea != oldParkingArea) {
1814 // rerouted, keep driving
1815 return currentVelocity;
1816 }
1817 } else if (stop.parkingarea->getOccupancyIncludingReservations(this) >= stop.parkingarea->getCapacity()) {
1818 fitsOnStoppingPlace = false;
1819 } else if (stop.parkingarea->parkOnRoad() && stop.parkingarea->getLotIndex(this) < 0) {
1820 fitsOnStoppingPlace = false;
1821 }
1822 }
1823 }
1824 const double targetPos = myState.myPos + myStopDist + (stop.getSpeed() > 0 ? (stop.pars.startPos - stop.pars.endPos) : 0);
1825 const double reachedThreshold = (useStoppingPlace ? targetPos - STOPPING_PLACE_OFFSET : stop.getReachedThreshold()) - NUMERICAL_EPS;
1826#ifdef DEBUG_STOPS
1827 if (DEBUG_COND) {
1828 std::cout << " pos=" << myState.pos() << " speed=" << currentVelocity << " targetPos=" << targetPos << " fits=" << fitsOnStoppingPlace
1829 << " reachedThresh=" << reachedThreshold
1830 << " myLane=" << Named::getIDSecure(myLane)
1831 << " stopLane=" << Named::getIDSecure(stop.lane)
1832 << "\n";
1833 }
1834#endif
1835 const bool posReached = myState.pos() >= reachedThreshold && currentVelocity <= stop.getSpeed() + SUMO_const_haltingSpeed && myLane == stop.lane;
1836 if (posReached && !fitsOnStoppingPlace && MSStopOut::active()) {
1837 MSStopOut::getInstance()->stopBlocked(this, time);
1838 }
1839 if (fitsOnStoppingPlace && posReached && (!MSGlobals::gModelParkingManoeuver || myManoeuvre.entryManoeuvreIsComplete(this))) {
1840 // ok, we may stop (have reached the stop) and either we are not modelling maneuvering or have completed entry
1841 stop.reached = true;
1842 if (!stop.startedFromState) {
1843 stop.pars.started = time;
1844 }
1845#ifdef DEBUG_STOPS
1846 if (DEBUG_COND) {
1847 std::cout << SIMTIME << " vehicle '" << getID() << "' reached next stop." << std::endl;
1848 }
1849#endif
1850 if (MSStopOut::active()) {
1852 }
1853 myLane->getEdge().addWaiting(this);
1856 // compute stopping time
1857 stop.duration = stop.getMinDuration(time);
1858 stop.endBoarding = stop.pars.extension >= 0 ? time + stop.duration + stop.pars.extension : SUMOTime_MAX;
1859 MSDevice_Taxi* taxiDevice = static_cast<MSDevice_Taxi*>(getDevice(typeid(MSDevice_Taxi)));
1860 if (taxiDevice != nullptr && stop.pars.extension >= 0) {
1861 // earliestPickupTime is set with waitUntil
1862 stop.endBoarding = MAX2(time, stop.pars.waitUntil) + stop.pars.extension;
1863 }
1864 if (stop.getSpeed() > 0) {
1865 // ignore duration parameter in waypoint mode unless 'until' or 'ended' are set
1866 if (stop.getUntil() > time) {
1867 stop.duration = stop.getUntil() - time;
1868 } else {
1869 stop.duration = 0;
1870 }
1871 }
1872 if (stop.busstop != nullptr) {
1873 // let the bus stop know the vehicle
1874 stop.busstop->enter(this, stop.pars.parking == ParkingType::OFFROAD);
1875 }
1876 if (stop.containerstop != nullptr) {
1877 // let the container stop know the vehicle
1879 }
1880 if (stop.parkingarea != nullptr && stop.getSpeed() <= 0) {
1881 // let the parking area know the vehicle
1882 stop.parkingarea->enter(this, stop.pars.parking == ParkingType::OFFROAD);
1883 }
1884 if (stop.chargingStation != nullptr) {
1885 // let the container stop know the vehicle
1887 }
1888
1889 if (stop.pars.tripId != "") {
1890 ((SUMOVehicleParameter&)getParameter()).setParameter("tripId", stop.pars.tripId);
1891 }
1892 if (stop.pars.line != "") {
1893 ((SUMOVehicleParameter&)getParameter()).line = stop.pars.line;
1894 }
1895 if (stop.pars.split != "") {
1896 // split the train
1897 MSVehicle* splitVeh = dynamic_cast<MSVehicle*>(MSNet::getInstance()->getVehicleControl().getVehicle(stop.pars.split));
1898 if (splitVeh == nullptr) {
1899 WRITE_WARNINGF(TL("Vehicle '%' to split from vehicle '%' is not known. time=%."), stop.pars.split, getID(), SIMTIME)
1900 } else {
1902 splitVeh->getRoute().getEdges()[0]->removeWaiting(splitVeh);
1904 const double newLength = MAX2(myType->getLength() - splitVeh->getVehicleType().getLength(),
1906 getSingularType().setLength(newLength);
1907 // handle transportables that want to continue in the split part
1908 if (myPersonDevice != nullptr) {
1910 }
1911 if (myContainerDevice != nullptr) {
1913 }
1915 const double backShift = splitVeh->getLength() + getVehicleType().getMinGap();
1916 myState.myPos -= backShift;
1917 myState.myBackPos -= backShift;
1918 }
1919 }
1920 }
1921
1922 boardTransportables(stop);
1923 if (stop.pars.posLat != INVALID_DOUBLE) {
1924 myState.myPosLat = stop.pars.posLat;
1925 }
1926 }
1927 }
1928 }
1929 return currentVelocity;
1930}
1931
1932
1933void
1935 if (stop.skipOnDemand) {
1936 return;
1937 }
1938 // we have reached the stop
1939 // any waiting persons may board now
1941 MSNet* const net = MSNet::getInstance();
1942 const bool boarded = (time <= stop.endBoarding
1943 && net->hasPersons()
1945 && stop.numExpectedPerson == 0);
1946 // load containers
1947 const bool loaded = (time <= stop.endBoarding
1948 && net->hasContainers()
1950 && stop.numExpectedContainer == 0);
1951
1952 bool unregister = false;
1953 if (time > stop.endBoarding) {
1954 stop.triggered = false;
1955 stop.containerTriggered = false;
1957 unregister = true;
1959 }
1960 }
1961 if (boarded) {
1962 // the triggering condition has been fulfilled. Maybe we want to wait a bit longer for additional riders (car pooling)
1964 unregister = true;
1965 }
1966 stop.triggered = false;
1968 }
1969 if (loaded) {
1970 // the triggering condition has been fulfilled
1972 unregister = true;
1973 }
1974 stop.containerTriggered = false;
1976 }
1977
1978 if (unregister) {
1980#ifdef DEBUG_STOPS
1981 if (DEBUG_COND) {
1982 std::cout << SIMTIME << " vehicle '" << getID() << "' unregisters as waiting for transportable." << std::endl;
1983 }
1984#endif
1985 }
1986}
1987
1988bool
1990 // check if veh is close enough to be joined to the rear of this vehicle
1991 MSLane* backLane = myFurtherLanes.size() == 0 ? myLane : myFurtherLanes.back();
1992 double gap = getBackPositionOnLane() - veh->getPositionOnLane();
1993 if (isStopped() && myStops.begin()->duration <= DELTA_T && myStops.begin()->joinTriggered && backLane == veh->getLane()
1994 && gap >= 0 && gap <= getVehicleType().getMinGap() + 1) {
1995 const double newLength = myType->getLength() + veh->getVehicleType().getLength();
1996 getSingularType().setLength(newLength);
1997 myStops.begin()->joinTriggered = false;
2001 }
2002 return true;
2003 } else {
2004 return false;
2005 }
2006}
2007
2008
2009bool
2011 // check if veh is close enough to be joined to the front of this vehicle
2012 MSLane* backLane = veh->myFurtherLanes.size() == 0 ? veh->myLane : veh->myFurtherLanes.back();
2013 double gap = veh->getBackPositionOnLane(backLane) - getPositionOnLane();
2014 if (isStopped() && myStops.begin()->duration <= DELTA_T && myStops.begin()->joinTriggered && backLane == getLane()
2015 && gap >= 0 && gap <= getVehicleType().getMinGap() + 1) {
2016 double skippedLaneLengths = 0;
2017 if (veh->myFurtherLanes.size() > 0) {
2018 skippedLaneLengths += getLane()->getLength();
2019 // this vehicle must be moved to the lane of veh
2020 // ensure that lane and furtherLanes of veh match our route
2021 int routeIndex = getRoutePosition();
2022 if (myLane->isInternal()) {
2023 routeIndex++;
2024 }
2025 for (int i = (int)veh->myFurtherLanes.size() - 1; i >= 0; i--) {
2026 MSEdge* edge = &veh->myFurtherLanes[i]->getEdge();
2027 if (edge->isInternal()) {
2028 continue;
2029 }
2030 if (!edge->isInternal() && edge != myRoute->getEdges()[routeIndex]) {
2031 std::string warn = TL("Cannot join vehicle '%' to vehicle '%' due to incompatible routes. time=%.");
2032 WRITE_WARNINGF(warn, veh->getID(), getID(), time2string(SIMSTEP));
2033 return false;
2034 }
2035 routeIndex++;
2036 }
2037 if (veh->getCurrentEdge()->getNormalSuccessor() != myRoute->getEdges()[routeIndex]) {
2038 std::string warn = TL("Cannot join vehicle '%' to vehicle '%' due to incompatible routes. time=%.");
2039 WRITE_WARNINGF(warn, veh->getID(), getID(), time2string(SIMSTEP));
2040 return false;
2041 }
2042 for (int i = (int)veh->myFurtherLanes.size() - 2; i >= 0; i--) {
2043 skippedLaneLengths += veh->myFurtherLanes[i]->getLength();
2044 }
2045 }
2046
2047 const double newLength = myType->getLength() + veh->getVehicleType().getLength();
2048 getSingularType().setLength(newLength);
2049 // lane will be advanced just as for regular movement
2050 myState.myPos = skippedLaneLengths + veh->getPositionOnLane();
2051 myStops.begin()->joinTriggered = false;
2055 }
2056 return true;
2057 } else {
2058 return false;
2059 }
2060}
2061
2062double
2063MSVehicle::getBrakeGap(bool delayed) const {
2064 return getCarFollowModel().brakeGap(getSpeed(), getCarFollowModel().getMaxDecel(), delayed ? getCarFollowModel().getHeadwayTime() : 0);
2065}
2066
2067
2068bool
2071 if (myActionStep) {
2072 myLastActionTime = t;
2073 }
2074 return myActionStep;
2075}
2076
2077
2078void
2079MSVehicle::resetActionOffset(const SUMOTime timeUntilNextAction) {
2080 myLastActionTime = MSNet::getInstance()->getCurrentTimeStep() + timeUntilNextAction;
2081}
2082
2083
2084void
2085MSVehicle::updateActionOffset(const SUMOTime oldActionStepLength, const SUMOTime newActionStepLength) {
2087 SUMOTime timeSinceLastAction = now - myLastActionTime;
2088 if (timeSinceLastAction == 0) {
2089 // Action was scheduled now, may be delayed be new action step length
2090 timeSinceLastAction = oldActionStepLength;
2091 }
2092 if (timeSinceLastAction >= newActionStepLength) {
2093 // Action point required in this step
2094 myLastActionTime = now;
2095 } else {
2096 SUMOTime timeUntilNextAction = newActionStepLength - timeSinceLastAction;
2097 resetActionOffset(timeUntilNextAction);
2098 }
2099}
2100
2101
2102
2103void
2104MSVehicle::planMove(const SUMOTime t, const MSLeaderInfo& ahead, const double lengthsInFront) {
2105#ifdef DEBUG_PLAN_MOVE
2106 if (DEBUG_COND) {
2107 std::cout
2108 << "\nPLAN_MOVE\n"
2109 << SIMTIME
2110 << std::setprecision(gPrecision)
2111 << " veh=" << getID()
2112 << " lane=" << myLane->getID()
2113 << " pos=" << getPositionOnLane()
2114 << " posLat=" << getLateralPositionOnLane()
2115 << " speed=" << getSpeed()
2116 << "\n";
2117 }
2118#endif
2119 // Update the driver state
2120 if (hasDriverState()) {
2122 setActionStepLength(myDriverState->getDriverState()->getActionStepLength(), false);
2123 }
2124
2125 if (!checkActionStep(t)) {
2126#ifdef DEBUG_ACTIONSTEPS
2127 if (DEBUG_COND) {
2128 std::cout << STEPS2TIME(t) << " vehicle '" << getID() << "' skips action." << std::endl;
2129 }
2130#endif
2131 // During non-action passed drive items still need to be removed
2132 // @todo rather work with updating myCurrentDriveItem (refs #3714)
2134 return;
2135 } else {
2136#ifdef DEBUG_ACTIONSTEPS
2137 if (DEBUG_COND) {
2138 std::cout << STEPS2TIME(t) << " vehicle = '" << getID() << "' takes action." << std::endl;
2139 }
2140#endif
2142 if (myInfluencer != nullptr) {
2144 }
2146#ifdef DEBUG_PLAN_MOVE
2147 if (DEBUG_COND) {
2148 DriveItemVector::iterator i;
2149 for (i = myLFLinkLanes.begin(); i != myLFLinkLanes.end(); ++i) {
2150 std::cout
2151 << " vPass=" << (*i).myVLinkPass
2152 << " vWait=" << (*i).myVLinkWait
2153 << " linkLane=" << ((*i).myLink == 0 ? "NULL" : (*i).myLink->getViaLaneOrLane()->getID())
2154 << " request=" << (*i).mySetRequest
2155 << "\n";
2156 }
2157 }
2158#endif
2159 checkRewindLinkLanes(lengthsInFront, myLFLinkLanes);
2161 // ideally would only do this with the call inside planMoveInternal - but that needs a const method
2162 // so this is a kludge here - nuisance as it adds an extra check in a busy loop
2166 }
2167 }
2168 }
2170}
2171
2172
2173bool
2174MSVehicle::brakeForOverlap(const MSLink* link, const MSLane* lane) const {
2175 // @review needed
2176 //const double futurePosLat = getLateralPositionOnLane() + link->getLateralShift();
2177 //const double overlap = getLateralOverlap(futurePosLat, link->getViaLaneOrLane());
2178 //const double edgeWidth = link->getViaLaneOrLane()->getEdge().getWidth();
2179 const double futurePosLat = getLateralPositionOnLane() + (
2180 lane != myLane && lane->isInternal() ? lane->getIncomingLanes()[0].viaLink->getLateralShift() : 0);
2181 const double overlap = getLateralOverlap(futurePosLat, lane);
2182 const double edgeWidth = lane->getEdge().getWidth();
2183 const bool result = (overlap > POSITION_EPS
2184 // do not get stuck on narrow edges
2185 && getVehicleType().getWidth() <= edgeWidth
2186 && link->getViaLane() == nullptr
2187 // this is the exit link of a junction. The normal edge should support the shadow
2188 && ((myLaneChangeModel->getShadowLane(link->getLane()) == nullptr)
2189 // the internal lane after an internal junction has no parallel lane. make sure there is no shadow before continuing
2190 || (lane->getEdge().isInternal() && lane->getIncomingLanes()[0].lane->getEdge().isInternal()))
2191 // ignore situations where the shadow lane is part of a double-connection with the current lane
2192 && (myLaneChangeModel->getShadowLane() == nullptr
2193 || myLaneChangeModel->getShadowLane()->getLinkCont().size() == 0
2194 || myLaneChangeModel->getShadowLane()->getLinkCont().front()->getLane() != link->getLane())
2195 // emergency vehicles may do some crazy stuff
2197
2198#ifdef DEBUG_PLAN_MOVE
2199 if (DEBUG_COND) {
2200 std::cout << SIMTIME << " veh=" << getID() << " link=" << link->getDescription() << " lane=" << lane->getID()
2201 << " shift=" << link->getLateralShift()
2202 << " fpLat=" << futurePosLat << " overlap=" << overlap << " w=" << getVehicleType().getWidth() << " result=" << result << "\n";
2203 }
2204#endif
2205 return result;
2206}
2207
2208
2209
2210void
2211MSVehicle::planMoveInternal(const SUMOTime t, MSLeaderInfo ahead, DriveItemVector& lfLinks, double& newStopDist, std::pair<double, const MSLink*>& nextTurn) const {
2212 lfLinks.clear();
2213 newStopDist = std::numeric_limits<double>::max();
2214 //
2215 const MSCFModel& cfModel = getCarFollowModel();
2216 const double vehicleLength = getVehicleType().getLength();
2217 const double maxV = cfModel.maxNextSpeed(myState.mySpeed, this);
2218 const double maxVD = MAX2(getMaxSpeed(), MIN2(maxV, getDesiredMaxSpeed()));
2219 const bool opposite = myLaneChangeModel->isOpposite();
2220 // maxVD is possibly higher than vType-maxSpeed and in this case laneMaxV may be higher as well
2221 double laneMaxV = myLane->getVehicleMaxSpeed(this, maxVD);
2222 const double vMinComfortable = cfModel.minNextSpeed(getSpeed(), this);
2223 double lateralShift = 0;
2224 if (isRail()) {
2225 // speed limits must hold for the whole length of the train
2226 for (MSLane* l : myFurtherLanes) {
2227 laneMaxV = MIN2(laneMaxV, l->getVehicleMaxSpeed(this, maxVD));
2228#ifdef DEBUG_PLAN_MOVE
2229 if (DEBUG_COND) {
2230 std::cout << " laneMaxV=" << laneMaxV << " lane=" << l->getID() << "\n";
2231 }
2232#endif
2233 }
2234 }
2235 // speed limits are not emergencies (e.g. when the limit changes suddenly due to TraCI or a variableSpeedSignal)
2236 laneMaxV = MAX2(laneMaxV, vMinComfortable);
2238 laneMaxV = std::numeric_limits<double>::max();
2239 }
2240 // v is the initial maximum velocity of this vehicle in this step
2241 double v = cfModel.maximumLaneSpeedCF(this, maxV, laneMaxV);
2242 // if we are modelling parking then we dawdle until the manoeuvre is complete - by setting a very low max speed
2243 // in practice this only applies to exit manoeuvre because entry manoeuvre just delays setting stop.reached - when the vehicle is virtually stopped
2246 }
2247
2248 if (myInfluencer != nullptr) {
2249 const double vMin = MAX2(0., cfModel.minNextSpeed(myState.mySpeed, this));
2250#ifdef DEBUG_TRACI
2251 if (DEBUG_COND) {
2252 std::cout << SIMTIME << " veh=" << getID() << " speedBeforeTraci=" << v;
2253 }
2254#endif
2255 v = myInfluencer->influenceSpeed(t, v, v, vMin, maxV);
2256#ifdef DEBUG_TRACI
2257 if (DEBUG_COND) {
2258 std::cout << " influencedSpeed=" << v;
2259 }
2260#endif
2261 v = myInfluencer->gapControlSpeed(t, this, v, v, vMin, maxV);
2262#ifdef DEBUG_TRACI
2263 if (DEBUG_COND) {
2264 std::cout << " gapControlSpeed=" << v << "\n";
2265 }
2266#endif
2267 }
2268 // all links within dist are taken into account (potentially)
2269 const double dist = SPEED2DIST(maxV) + cfModel.brakeGap(maxV);
2270
2271 const std::vector<MSLane*>& bestLaneConts = getBestLanesContinuation();
2272#ifdef DEBUG_PLAN_MOVE
2273 if (DEBUG_COND) {
2274 std::cout << " dist=" << dist << " bestLaneConts=" << toString(bestLaneConts)
2275 << "\n maxV=" << maxV << " laneMaxV=" << laneMaxV << " v=" << v << "\n";
2276 }
2277#endif
2278 assert(bestLaneConts.size() > 0);
2279 bool hadNonInternal = false;
2280 // the distance already "seen"; in the following always up to the end of the current "lane"
2281 double seen = opposite ? myState.myPos : myLane->getLength() - myState.myPos;
2282 nextTurn.first = seen;
2283 nextTurn.second = nullptr;
2284 bool encounteredTurn = (MSGlobals::gLateralResolution <= 0); // next turn is only needed for sublane
2285 double seenNonInternal = 0;
2286 double seenInternal = myLane->isInternal() ? seen : 0;
2287 double vLinkPass = MIN2(cfModel.estimateSpeedAfterDistance(seen, v, cfModel.getMaxAccel()), laneMaxV); // upper bound
2288 int view = 0;
2289 DriveProcessItem* lastLink = nullptr;
2290 bool slowedDownForMinor = false; // whether the vehicle already had to slow down on approach to a minor link
2291 double mustSeeBeforeReversal = 0;
2292 // iterator over subsequent lanes and fill lfLinks until stopping distance or stopped
2293 const MSLane* lane = opposite ? myLane->getParallelOpposite() : myLane;
2294 assert(lane != 0);
2295 const MSLane* leaderLane = myLane;
2296 bool foundRailSignal = !isRail();
2297 bool planningToStop = false;
2298#ifdef PARALLEL_STOPWATCH
2299 myLane->getStopWatch()[0].start();
2300#endif
2301
2302 // optionally slow down to match arrival time
2303 const double sfp = getVehicleType().getParameter().speedFactorPremature;
2304 if (v > vMinComfortable && hasStops() && myStops.front().pars.arrival >= 0 && sfp > 0
2305 && v > myLane->getSpeedLimit() * sfp
2306 && !myStops.front().reached) {
2307 const double vSlowDown = slowDownForSchedule(vMinComfortable);
2308 v = MIN2(v, vSlowDown);
2309 }
2310 auto stopIt = myStops.begin();
2311 while (true) {
2312 // check leader on lane
2313 // leader is given for the first edge only
2314 if (opposite &&
2315 (leaderLane->getVehicleNumberWithPartials() > 1
2316 || (leaderLane != myLane && leaderLane->getVehicleNumber() > 0))) {
2317 ahead.clear();
2318 // find opposite-driving leader that must be respected on the currently looked at lane
2319 // (only looking at one lane at a time)
2320 const double backOffset = leaderLane == myLane ? getPositionOnLane() : leaderLane->getLength();
2321 const double gapOffset = leaderLane == myLane ? 0 : seen - leaderLane->getLength();
2322 const MSLeaderDistanceInfo cands = leaderLane->getFollowersOnConsecutive(this, backOffset, true, backOffset, MSLane::MinorLinkMode::FOLLOW_NEVER);
2323 MSLeaderDistanceInfo oppositeLeaders(leaderLane->getWidth(), this, 0.);
2324 const double minTimeToLeaveLane = MSGlobals::gSublane ? MAX2(TS, (0.5 * myLane->getWidth() - getLateralPositionOnLane()) / getVehicleType().getMaxSpeedLat()) : TS;
2325 for (int i = 0; i < cands.numSublanes(); i++) {
2326 CLeaderDist cand = cands[i];
2327 if (cand.first != 0) {
2328 if ((cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() != leaderLane)
2329 || (!cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() == leaderLane)) {
2330 // respect leaders that also drive in the opposite direction (fully or with some overlap)
2331 oppositeLeaders.addLeader(cand.first, cand.second + gapOffset - getVehicleType().getMinGap() + cand.first->getVehicleType().getMinGap() - cand.first->getVehicleType().getLength());
2332 } else {
2333 // avoid frontal collision
2334 const bool assumeStopped = cand.first->isStopped() || cand.first->getWaitingSeconds() > 1;
2335 const double predMaxDist = cand.first->getSpeed() + (assumeStopped ? 0 : cand.first->getCarFollowModel().getMaxAccel()) * minTimeToLeaveLane;
2336 if (cand.second >= 0 && (cand.second - v * minTimeToLeaveLane - predMaxDist < 0 || assumeStopped)) {
2337 oppositeLeaders.addLeader(cand.first, cand.second + gapOffset - predMaxDist - getVehicleType().getMinGap());
2338 }
2339 }
2340 }
2341 }
2342#ifdef DEBUG_PLAN_MOVE
2343 if (DEBUG_COND) {
2344 std::cout << " leaderLane=" << leaderLane->getID() << " gapOffset=" << gapOffset << " minTimeToLeaveLane=" << minTimeToLeaveLane
2345 << " cands=" << cands.toString() << " oppositeLeaders=" << oppositeLeaders.toString() << "\n";
2346 }
2347#endif
2348 adaptToLeaderDistance(oppositeLeaders, 0, seen, lastLink, v, vLinkPass);
2349 } else {
2351 const double rightOL = getRightSideOnLane(lane) + lateralShift;
2352 const double leftOL = getLeftSideOnLane(lane) + lateralShift;
2353 const bool outsideLeft = leftOL > lane->getWidth();
2354#ifdef DEBUG_PLAN_MOVE
2355 if (DEBUG_COND) {
2356 std::cout << SIMTIME << " veh=" << getID() << " lane=" << lane->getID() << " rightOL=" << rightOL << " leftOL=" << leftOL << "\n";
2357 }
2358#endif
2359 if (rightOL < 0 || outsideLeft) {
2360 MSLeaderInfo outsideLeaders(lane->getWidth());
2361 // if ego is driving outside lane bounds we must consider
2362 // potential leaders that are also outside bounds
2363 int sublaneOffset = 0;
2364 if (outsideLeft) {
2365 sublaneOffset = MIN2(-1, -(int)ceil((leftOL - lane->getWidth()) / MSGlobals::gLateralResolution));
2366 } else {
2367 sublaneOffset = MAX2(1, (int)ceil(-rightOL / MSGlobals::gLateralResolution));
2368 }
2369 outsideLeaders.setSublaneOffset(sublaneOffset);
2370#ifdef DEBUG_PLAN_MOVE
2371 if (DEBUG_COND) {
2372 std::cout << SIMTIME << " veh=" << getID() << " lane=" << lane->getID() << " sublaneOffset=" << sublaneOffset << " outsideLeft=" << outsideLeft << "\n";
2373 }
2374#endif
2375 for (const MSVehicle* cand : lane->getVehiclesSecure()) {
2376 if ((lane != myLane || cand->getPositionOnLane() > getPositionOnLane())
2377 && ((!outsideLeft && cand->getLeftSideOnEdge() < 0)
2378 || (outsideLeft && cand->getLeftSideOnEdge() > lane->getEdge().getWidth()))) {
2379 outsideLeaders.addLeader(cand, true);
2380#ifdef DEBUG_PLAN_MOVE
2381 if (DEBUG_COND) {
2382 std::cout << " outsideLeader=" << cand->getID() << " ahead=" << outsideLeaders.toString() << "\n";
2383 }
2384#endif
2385 }
2386 }
2387 lane->releaseVehicles();
2388 if (outsideLeaders.hasVehicles()) {
2389 adaptToLeaders(outsideLeaders, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2390 }
2391 }
2392 }
2393 adaptToLeaders(ahead, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2394 }
2395 if (lastLink != nullptr) {
2396 lastLink->myVLinkWait = MIN2(lastLink->myVLinkWait, v);
2397 }
2398#ifdef DEBUG_PLAN_MOVE
2399 if (DEBUG_COND) {
2400 std::cout << "\nv = " << v << "\n";
2401
2402 }
2403#endif
2404 // XXX efficiently adapt to shadow leaders using neighAhead by iteration over the whole edge in parallel (lanechanger-style)
2405 if (myLaneChangeModel->getShadowLane() != nullptr) {
2406 // also slow down for leaders on the shadowLane relative to the current lane
2407 const MSLane* shadowLane = myLaneChangeModel->getShadowLane(leaderLane);
2408 if (shadowLane != nullptr
2409 && (MSGlobals::gLateralResolution > 0 || getLateralOverlap() > POSITION_EPS
2410 // continous lane change cannot be stopped so we must adapt to the leader on the target lane
2412 if ((&shadowLane->getEdge() == &leaderLane->getEdge() || myLaneChangeModel->isOpposite())) {
2415 // ego posLat is added when retrieving sublanes but it
2416 // should be negated (subtract twice to compensate)
2417 latOffset = ((myLane->getWidth() + shadowLane->getWidth()) * 0.5
2418 - 2 * getLateralPositionOnLane());
2419
2420 }
2421 MSLeaderInfo shadowLeaders = shadowLane->getLastVehicleInformation(this, latOffset, lane->getLength() - seen);
2422#ifdef DEBUG_PLAN_MOVE
2424 std::cout << SIMTIME << " opposite veh=" << getID() << " shadowLane=" << shadowLane->getID() << " latOffset=" << latOffset << " shadowLeaders=" << shadowLeaders.toString() << "\n";
2425 }
2426#endif
2428 // ignore oncoming vehicles on the shadow lane
2429 shadowLeaders.removeOpposite(shadowLane);
2430 }
2431 const double turningDifference = MAX2(0.0, leaderLane->getLength() - shadowLane->getLength());
2432 adaptToLeaders(shadowLeaders, latOffset, seen - turningDifference, lastLink, shadowLane, v, vLinkPass);
2433 } else if (shadowLane == myLaneChangeModel->getShadowLane() && leaderLane == myLane) {
2434 // check for leader vehicles driving in the opposite direction on the opposite-direction shadow lane
2435 // (and thus in the same direction as ego)
2436 MSLeaderDistanceInfo shadowLeaders = shadowLane->getFollowersOnConsecutive(this, myLane->getOppositePos(getPositionOnLane()), true);
2437 const double latOffset = 0;
2438#ifdef DEBUG_PLAN_MOVE
2439 if (DEBUG_COND) {
2440 std::cout << SIMTIME << " opposite shadows veh=" << getID() << " shadowLane=" << shadowLane->getID()
2441 << " latOffset=" << latOffset << " shadowLeaders=" << shadowLeaders.toString() << "\n";
2442 }
2443#endif
2444 shadowLeaders.fixOppositeGaps(true);
2445#ifdef DEBUG_PLAN_MOVE
2446 if (DEBUG_COND) {
2447 std::cout << " shadowLeadersFixed=" << shadowLeaders.toString() << "\n";
2448 }
2449#endif
2450 adaptToLeaderDistance(shadowLeaders, latOffset, seen, lastLink, v, vLinkPass);
2451 }
2452 }
2453 }
2454 // adapt to pedestrians on the same lane
2455 if (lane->getEdge().getPersons().size() > 0 && lane->hasPedestrians()) {
2456 const double relativePos = lane->getLength() - seen;
2457#ifdef DEBUG_PLAN_MOVE
2458 if (DEBUG_COND) {
2459 std::cout << SIMTIME << " adapt to pedestrians on lane=" << lane->getID() << " relPos=" << relativePos << "\n";
2460 }
2461#endif
2462 const double stopTime = MAX2(1.0, ceil(getSpeed() / cfModel.getMaxDecel()));
2463 PersonDist leader = lane->nextBlocking(relativePos,
2464 getRightSideOnLane(lane), getRightSideOnLane(lane) + getVehicleType().getWidth(), stopTime);
2465 if (leader.first != 0) {
2466 const double stopSpeed = cfModel.stopSpeed(this, getSpeed(), leader.second - getVehicleType().getMinGap());
2467 v = MIN2(v, stopSpeed);
2468#ifdef DEBUG_PLAN_MOVE
2469 if (DEBUG_COND) {
2470 std::cout << SIMTIME << " pedLeader=" << leader.first->getID() << " dist=" << leader.second << " v=" << v << "\n";
2471 }
2472#endif
2473 }
2474 }
2475 if (lane->getBidiLane() != nullptr) {
2476 // adapt to pedestrians on the bidi lane
2477 const MSLane* bidiLane = lane->getBidiLane();
2478 if (bidiLane->getEdge().getPersons().size() > 0 && bidiLane->hasPedestrians()) {
2479 const double relativePos = seen;
2480#ifdef DEBUG_PLAN_MOVE
2481 if (DEBUG_COND) {
2482 std::cout << SIMTIME << " adapt to pedestrians on lane=" << lane->getID() << " relPos=" << relativePos << "\n";
2483 }
2484#endif
2485 const double stopTime = ceil(getSpeed() / cfModel.getMaxDecel());
2486 const double leftSideOnLane = bidiLane->getWidth() - getRightSideOnLane(lane);
2487 PersonDist leader = bidiLane->nextBlocking(relativePos,
2488 leftSideOnLane - getVehicleType().getWidth(), leftSideOnLane, stopTime, true);
2489 if (leader.first != 0) {
2490 const double stopSpeed = cfModel.stopSpeed(this, getSpeed(), leader.second - getVehicleType().getMinGap());
2491 v = MIN2(v, stopSpeed);
2492#ifdef DEBUG_PLAN_MOVE
2493 if (DEBUG_COND) {
2494 std::cout << SIMTIME << " pedLeader=" << leader.first->getID() << " dist=" << leader.second << " v=" << v << "\n";
2495 }
2496#endif
2497 }
2498 }
2499 }
2500 // adapt to vehicles blocked from (urgent) lane-changing
2501 if (!opposite && lane->getEdge().hasLaneChanger()) {
2502 const double vHelp = myLaneChangeModel->getCooperativeHelpSpeed(lane, seen);
2503#ifdef DEBUG_PLAN_MOVE
2504 if (DEBUG_COND && vHelp < v) {
2505 std::cout << SIMTIME << " applying cooperativeHelpSpeed v=" << vHelp << "\n";
2506 }
2507#endif
2508 v = MIN2(v, vHelp);
2509 }
2510
2511 // process all stops and waypoints on the current edge
2512 bool foundRealStop = false;
2513 while (stopIt != myStops.end()
2514 && ((&stopIt->lane->getEdge() == &lane->getEdge())
2515 || (stopIt->isOpposite && stopIt->lane->getEdge().getOppositeEdge() == &lane->getEdge()))
2516 // ignore stops that occur later in a looped route
2517 && stopIt->edge == myCurrEdge + view) {
2518 double stopDist = std::numeric_limits<double>::max();
2519 const MSStop& stop = *stopIt;
2520 const bool isFirstStop = stopIt == myStops.begin();
2521 stopIt++;
2522 if (!stop.reached || (stop.getSpeed() > 0 && keepStopping())) {
2523 // we are approaching a stop on the edge; must not drive further
2524 bool isWaypoint = stop.getSpeed() > 0;
2525 double endPos = stop.getEndPos(*this) + NUMERICAL_EPS;
2526 if (stop.parkingarea != nullptr) {
2527 // leave enough space so parking vehicles can exit
2528 const double brakePos = getBrakeGap() + lane->getLength() - seen;
2529 endPos = stop.parkingarea->getLastFreePosWithReservation(t, *this, brakePos);
2530 } else if (isWaypoint && !stop.reached) {
2531 endPos = stop.pars.startPos;
2532 }
2533 stopDist = seen + endPos - lane->getLength();
2534#ifdef DEBUG_STOPS
2535 if (DEBUG_COND) {
2536 std::cout << SIMTIME << " veh=" << getID() << " stopDist=" << stopDist << " stopLane=" << stop.lane->getID() << " stopEndPos=" << endPos << "\n";
2537 }
2538#endif
2539 // regular stops are not emergencies
2540 double stopSpeed = laneMaxV;
2541 if (isWaypoint) {
2542 bool waypointWithStop = false;
2543 if (stop.getUntil() > t) {
2544 // check if we have to slow down or even stop
2545 SUMOTime time2end = 0;
2546 if (stop.reached) {
2547 time2end = TIME2STEPS((stop.pars.endPos - myState.myPos) / stop.getSpeed());
2548 } else {
2549 time2end = TIME2STEPS(
2550 // time to reach waypoint start
2551 stopDist / ((getSpeed() + stop.getSpeed()) / 2)
2552 // time to reach waypoint end
2553 + (stop.pars.endPos - stop.pars.startPos) / stop.getSpeed());
2554 }
2555 if (stop.getUntil() > t + time2end) {
2556 // we need to stop
2557 double distToEnd = stopDist;
2558 if (!stop.reached) {
2559 distToEnd += stop.pars.endPos - stop.pars.startPos;
2560 }
2561 stopSpeed = MAX2(cfModel.stopSpeed(this, getSpeed(), distToEnd), vMinComfortable);
2562 waypointWithStop = true;
2563 }
2564 }
2565 if (stop.reached) {
2566 stopSpeed = MIN2(stop.getSpeed(), stopSpeed);
2567 if (myState.myPos >= stop.pars.endPos && !waypointWithStop) {
2568 stopDist = std::numeric_limits<double>::max();
2569 }
2570 } else {
2571 stopSpeed = MIN2(MAX2(cfModel.freeSpeed(this, getSpeed(), stopDist, stop.getSpeed()), vMinComfortable), stopSpeed);
2572 if (!stop.reached) {
2573 stopDist += stop.pars.endPos - stop.pars.startPos;
2574 }
2575 if (lastLink != nullptr) {
2576 lastLink->adaptLeaveSpeed(cfModel.freeSpeed(this, vLinkPass, endPos, stop.getSpeed(), false, MSCFModel::CalcReason::FUTURE));
2577 }
2578 }
2579 } else {
2580 stopSpeed = MAX2(cfModel.stopSpeed(this, getSpeed(), stopDist), vMinComfortable);
2581 if (lastLink != nullptr) {
2582 lastLink->adaptLeaveSpeed(cfModel.stopSpeed(this, vLinkPass, endPos, MSCFModel::CalcReason::FUTURE));
2583 }
2584 }
2585 v = MIN2(v, stopSpeed);
2586 if (lane->isInternal()) {
2587 std::vector<MSLink*>::const_iterator exitLink = MSLane::succLinkSec(*this, view + 1, *lane, bestLaneConts);
2588 assert(!lane->isLinkEnd(exitLink));
2589 bool dummySetRequest;
2590 double dummyVLinkWait;
2591 checkLinkLeaderCurrentAndParallel(*exitLink, lane, seen, lastLink, v, vLinkPass, dummyVLinkWait, dummySetRequest);
2592 }
2593
2594#ifdef DEBUG_PLAN_MOVE
2595 if (DEBUG_COND) {
2596 std::cout << "\n" << SIMTIME << " next stop: distance = " << stopDist << " requires stopSpeed = " << stopSpeed << "\n";
2597
2598 }
2599#endif
2600 if (isFirstStop) {
2601 newStopDist = stopDist;
2602 // if the vehicle is going to stop we don't need to look further
2603 // (except for trains that make use of further link-approach registration for safety purposes)
2604 if (!isWaypoint) {
2605 planningToStop = true;
2606 if (!isRail()) {
2607 lfLinks.emplace_back(v, stopDist);
2608 foundRealStop = true;
2609 break;
2610 }
2611 }
2612 }
2613 }
2614 }
2615 if (foundRealStop) {
2616 break;
2617 }
2618
2619 // move to next lane
2620 // get the next link used
2621 std::vector<MSLink*>::const_iterator link = MSLane::succLinkSec(*this, view + 1, *lane, bestLaneConts);
2622 if (lane->isLinkEnd(link) && myLaneChangeModel->hasBlueLight() && myCurrEdge != myRoute->end() - 1) {
2623 // emergency vehicle is on the wrong lane. Obtain the link that it would use from the correct turning lane
2624 const int currentIndex = lane->getIndex();
2625 const MSLane* bestJump = nullptr;
2626 for (const LaneQ& preb : getBestLanes()) {
2627 if (preb.allowsContinuation &&
2628 (bestJump == nullptr
2629 || abs(currentIndex - preb.lane->getIndex()) < abs(currentIndex - bestJump->getIndex()))) {
2630 bestJump = preb.lane;
2631 }
2632 }
2633 if (bestJump != nullptr) {
2634 const MSEdge* nextEdge = *(myCurrEdge + 1);
2635 for (auto cand_it = bestJump->getLinkCont().begin(); cand_it != bestJump->getLinkCont().end(); cand_it++) {
2636 if (&(*cand_it)->getLane()->getEdge() == nextEdge) {
2637 link = cand_it;
2638 break;
2639 }
2640 }
2641 }
2642 }
2643
2644 // Check whether this is a turn (to save info about the next upcoming turn)
2645 if (!encounteredTurn) {
2646 if (!lane->isLinkEnd(link) && lane->getLinkCont().size() > 1) {
2647 LinkDirection linkDir = (*link)->getDirection();
2648 switch (linkDir) {
2651 break;
2652 default:
2653 nextTurn.first = seen;
2654 nextTurn.second = *link;
2655 encounteredTurn = true;
2656#ifdef DEBUG_NEXT_TURN
2657 if (DEBUG_COND) {
2658 std::cout << SIMTIME << " veh '" << getID() << "' nextTurn: " << toString(linkDir)
2659 << " at " << nextTurn.first << "m." << std::endl;
2660 }
2661#endif
2662 }
2663 }
2664 }
2665
2666 // check whether the vehicle is on its final edge
2667 if (myCurrEdge + view + 1 == myRoute->end()
2668 || (myParameter->arrivalEdge >= 0 && getRoutePosition() + view == myParameter->arrivalEdge)) {
2669 const double arrivalSpeed = (myParameter->arrivalSpeedProcedure == ArrivalSpeedDefinition::GIVEN ?
2670 myParameter->arrivalSpeed : laneMaxV);
2671 // subtract the arrival speed from the remaining distance so we get one additional driving step with arrival speed
2672 // XXX: This does not work for ballistic update refs #2579
2673 const double distToArrival = seen + myArrivalPos - lane->getLength() - SPEED2DIST(arrivalSpeed);
2674 const double va = MAX2(NUMERICAL_EPS, cfModel.freeSpeed(this, getSpeed(), distToArrival, arrivalSpeed));
2675 v = MIN2(v, va);
2676 if (lastLink != nullptr) {
2677 lastLink->adaptLeaveSpeed(va);
2678 }
2679 lfLinks.push_back(DriveProcessItem(v, seen, lane->getEdge().isFringe() ? 1000 : 0));
2680 break;
2681 }
2682 // check whether the lane or the shadowLane is a dead end (allow some leeway on intersections)
2683 if (lane->isLinkEnd(link)
2684 || (MSGlobals::gSublane && brakeForOverlap(*link, lane))
2685 || (opposite && (*link)->getViaLaneOrLane()->getParallelOpposite() == nullptr
2687 double va = cfModel.stopSpeed(this, getSpeed(), seen);
2688 if (lastLink != nullptr) {
2689 lastLink->adaptLeaveSpeed(va);
2690 }
2693 } else {
2694 v = MIN2(va, v);
2695 }
2696#ifdef DEBUG_PLAN_MOVE
2697 if (DEBUG_COND) {
2698 std::cout << " braking for link end lane=" << lane->getID() << " seen=" << seen
2699 << " overlap=" << getLateralOverlap() << " va=" << va << " committed=" << myLaneChangeModel->getCommittedSpeed() << " v=" << v << "\n";
2700
2701 }
2702#endif
2703 if (lane->isLinkEnd(link)) {
2704 lfLinks.emplace_back(v, seen);
2705 break;
2706 }
2707 }
2708 lateralShift += (*link)->getLateralShift();
2709 const bool yellowOrRed = (*link)->haveRed() || (*link)->haveYellow();
2710 // We distinguish 3 cases when determining the point at which a vehicle stops:
2711 // - allway_stop: the vehicle should stop close to the stop line but may stop at larger distance
2712 // - red/yellow light: here the vehicle 'knows' that it will have priority eventually and does not need to stop on a precise spot
2713 // - other types of minor links: the vehicle needs to stop as close to the junction as necessary
2714 // to minimize the time window for passing the junction. If the
2715 // vehicle 'decides' to accelerate and cannot enter the junction in
2716 // the next step, new foes may appear and cause a collision (see #1096)
2717 // - major links: stopping point is irrelevant
2718 double laneStopOffset;
2719 const double majorStopOffset = MAX2(getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_STOPLINE_GAP, DIST_TO_STOPLINE_EXPECT_PRIORITY), lane->getVehicleStopOffset(this));
2720 // override low desired decel at yellow and red
2721 const double stopDecel = yellowOrRed && !isRail() ? MAX2(MIN2(MSGlobals::gTLSYellowMinDecel, cfModel.getEmergencyDecel()), cfModel.getMaxDecel()) : cfModel.getMaxDecel();
2722 const double brakeDist = cfModel.brakeGap(myState.mySpeed, stopDecel, 0);
2723 const bool canBrakeBeforeLaneEnd = seen >= brakeDist;
2724 const bool canBrakeBeforeStopLine = seen - lane->getVehicleStopOffset(this) >= brakeDist;
2725 if (yellowOrRed) {
2726 // Wait at red traffic light with full distance if possible
2727 laneStopOffset = majorStopOffset;
2728 } else if ((*link)->havePriority()) {
2729 // On priority link, we should never stop below visibility distance
2730 laneStopOffset = MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, majorStopOffset);
2731 } else {
2732 double minorStopOffset = MAX2(lane->getVehicleStopOffset(this),
2733 getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_STOPLINE_CROSSING_GAP, MSPModel::SAFETY_GAP) - (*link)->getDistToFoePedCrossing());
2734#ifdef DEBUG_PLAN_MOVE
2735 if (DEBUG_COND) {
2736 std::cout << " minorStopOffset=" << minorStopOffset << " distToFoePedCrossing=" << (*link)->getDistToFoePedCrossing() << "\n";
2737 }
2738#endif
2739 if ((*link)->getState() == LINKSTATE_ALLWAY_STOP) {
2740 minorStopOffset = MAX2(minorStopOffset, getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_STOPLINE_GAP, 0));
2741 } else {
2742 minorStopOffset = MAX2(minorStopOffset, getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_STOPLINE_GAP_MINOR, 0));
2743 }
2744 // On minor link, we should likewise never stop below visibility distance
2745 laneStopOffset = MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, minorStopOffset);
2746 }
2747#ifdef DEBUG_PLAN_MOVE
2748 if (DEBUG_COND) {
2749 std::cout << SIMTIME << " veh=" << getID() << " desired stopOffset on lane '" << lane->getID() << "' is " << laneStopOffset << "\n";
2750 }
2751#endif
2752 if (canBrakeBeforeLaneEnd) {
2753 // avoid emergency braking if possible
2754 laneStopOffset = MIN2(laneStopOffset, seen - brakeDist);
2755 }
2756 laneStopOffset = MAX2(POSITION_EPS, laneStopOffset);
2757 double stopDist = MAX2(0., seen - laneStopOffset);
2758 if (yellowOrRed && getDevice(typeid(MSDevice_GLOSA)) != nullptr
2759 && static_cast<MSDevice_GLOSA*>(getDevice(typeid(MSDevice_GLOSA)))->getOverrideSafety()
2760 && static_cast<MSDevice_GLOSA*>(getDevice(typeid(MSDevice_GLOSA)))->isSpeedAdviceActive()) {
2761 stopDist = std::numeric_limits<double>::max();
2762 }
2763 if (newStopDist != std::numeric_limits<double>::max()) {
2764 stopDist = MAX2(stopDist, newStopDist);
2765 }
2766#ifdef DEBUG_PLAN_MOVE
2767 if (DEBUG_COND) {
2768 std::cout << SIMTIME << " veh=" << getID() << " effective stopOffset on lane '" << lane->getID()
2769 << "' is " << laneStopOffset << " (-> stopDist=" << stopDist << ")" << std::endl;
2770 }
2771#endif
2772 if (isRail()
2773 && !lane->isInternal()) {
2774 // check for train direction reversal
2775 if (lane->getBidiLane() != nullptr
2776 && (*link)->getLane()->getBidiLane() == lane) {
2777 double vMustReverse = getCarFollowModel().stopSpeed(this, getSpeed(), seen - POSITION_EPS);
2778 if (seen < 1) {
2779 mustSeeBeforeReversal = 2 * seen + getLength();
2780 }
2781 v = MIN2(v, vMustReverse);
2782 }
2783 // signal that is passed in the current step does not count
2784 foundRailSignal |= ((*link)->getTLLogic() != nullptr
2785 && (*link)->getTLLogic()->getLogicType() == TrafficLightType::RAIL_SIGNAL
2786 && seen > SPEED2DIST(v));
2787 }
2788
2789 bool canReverseEventually = false;
2790 const double vReverse = checkReversal(canReverseEventually, laneMaxV, seen);
2791 v = MIN2(v, vReverse);
2792#ifdef DEBUG_PLAN_MOVE
2793 if (DEBUG_COND) {
2794 std::cout << SIMTIME << " veh=" << getID() << " canReverseEventually=" << canReverseEventually << " v=" << v << "\n";
2795 }
2796#endif
2797
2798 // check whether we need to slow down in order to finish a continuous lane change
2800 if ( // slow down to finish lane change before a turn lane
2801 ((*link)->getDirection() == LinkDirection::LEFT || (*link)->getDirection() == LinkDirection::RIGHT) ||
2802 // slow down to finish lane change before the shadow lane ends
2803 (myLaneChangeModel->getShadowLane() != nullptr &&
2804 (*link)->getViaLaneOrLane()->getParallelLane(myLaneChangeModel->getShadowDirection()) == nullptr)) {
2805 // XXX maybe this is too harsh. Vehicles could cut some corners here
2806 const double timeRemaining = STEPS2TIME(myLaneChangeModel->remainingTime());
2807 assert(timeRemaining != 0);
2808 // XXX: Euler-logic (#860), but I couldn't identify problems from this yet (Leo). Refs. #2575
2809 const double va = MAX2(cfModel.stopSpeed(this, getSpeed(), seen - POSITION_EPS),
2810 (seen - POSITION_EPS) / timeRemaining);
2811#ifdef DEBUG_PLAN_MOVE
2812 if (DEBUG_COND) {
2813 std::cout << SIMTIME << " veh=" << getID() << " slowing down to finish continuous change before"
2814 << " link=" << (*link)->getViaLaneOrLane()->getID()
2815 << " timeRemaining=" << timeRemaining
2816 << " v=" << v
2817 << " va=" << va
2818 << std::endl;
2819 }
2820#endif
2821 v = MIN2(va, v);
2822 }
2823 }
2824
2825 // - always issue a request to leave the intersection we are currently on
2826 const bool leavingCurrentIntersection = myLane->getEdge().isInternal() && lastLink == nullptr;
2827 // - do not issue a request to enter an intersection after we already slowed down for an earlier one
2828 const bool abortRequestAfterMinor = slowedDownForMinor && (*link)->getInternalLaneBefore() == nullptr;
2829 // - even if red, if we cannot break we should issue a request
2830 bool setRequest = (v > NUMERICAL_EPS_SPEED && !abortRequestAfterMinor) || (leavingCurrentIntersection);
2831
2832 double stopSpeed = cfModel.stopSpeed(this, getSpeed(), stopDist, stopDecel, MSCFModel::CalcReason::CURRENT_WAIT);
2833 double vLinkWait = MIN2(v, stopSpeed);
2834#ifdef DEBUG_PLAN_MOVE
2835 if (DEBUG_COND) {
2836 std::cout
2837 << " stopDist=" << stopDist
2838 << " stopDecel=" << stopDecel
2839 << " vLinkWait=" << vLinkWait
2840 << " brakeDist=" << brakeDist
2841 << " seen=" << seen
2842 << " leaveIntersection=" << leavingCurrentIntersection
2843 << " setRequest=" << setRequest
2844 //<< std::setprecision(16)
2845 //<< " v=" << v
2846 //<< " speedEps=" << NUMERICAL_EPS_SPEED
2847 //<< std::setprecision(gPrecision)
2848 << "\n";
2849 }
2850#endif
2851
2852 if (yellowOrRed && canBrakeBeforeStopLine && !ignoreRed(*link, canBrakeBeforeStopLine) && seen >= mustSeeBeforeReversal) {
2853 if (lane->isInternal()) {
2854 checkLinkLeaderCurrentAndParallel(*link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
2855 }
2856 // arrivalSpeed / arrivalTime when braking for red light is only relevent for rail signal switching
2857 const SUMOTime arrivalTime = getArrivalTime(t, seen, v, vLinkPass);
2858 // the vehicle is able to brake in front of a yellow/red traffic light
2859 lfLinks.push_back(DriveProcessItem(*link, v, vLinkWait, false, arrivalTime, vLinkWait, 0, seen, -1));
2860 //lfLinks.push_back(DriveProcessItem(0, vLinkWait, vLinkWait, false, 0, 0, stopDist));
2861 break;
2862 }
2863
2864 const MSLink* entryLink = (*link)->getCorrespondingEntryLink();
2865 if (entryLink->haveRed() && ignoreRed(*link, canBrakeBeforeStopLine) && STEPS2TIME(t - entryLink->getLastStateChange()) > 2) {
2866 // restrict speed when ignoring a red light
2867 const double redSpeed = MIN2(v, getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_DRIVE_RED_SPEED, v));
2868 const double va = MAX2(redSpeed, cfModel.freeSpeed(this, getSpeed(), seen, redSpeed));
2869 v = MIN2(va, v);
2870#ifdef DEBUG_PLAN_MOVE
2871 if (DEBUG_COND) std::cout
2872 << " ignoreRed spent=" << STEPS2TIME(t - (*link)->getLastStateChange())
2873 << " redSpeed=" << redSpeed
2874 << " va=" << va
2875 << " v=" << v
2876 << "\n";
2877#endif
2878 }
2879
2880 checkLinkLeaderCurrentAndParallel(*link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
2881
2882 if (lastLink != nullptr) {
2883 lastLink->adaptLeaveSpeed(laneMaxV);
2884 }
2885 double arrivalSpeed = vLinkPass;
2886 // vehicles should decelerate when approaching a minor link
2887 // - unless they are close enough to have clear visibility of all relevant foe lanes and may start to accelerate again
2888 // - and unless they are so close that stopping is impossible (i.e. when a green light turns to yellow when close to the junction)
2889
2890 // whether the vehicle/driver is close enough to the link to see all possible foes #2123
2891 const double visibilityDistance = (*link)->getFoeVisibilityDistance();
2892 const double determinedFoePresence = seen <= visibilityDistance;
2893// // VARIANT: account for time needed to recognize whether relevant vehicles are on the foe lanes. (Leo)
2894// double foeRecognitionTime = 0.0;
2895// double determinedFoePresence = seen < visibilityDistance - myState.mySpeed*foeRecognitionTime;
2896
2897#ifdef DEBUG_PLAN_MOVE
2898 if (DEBUG_COND) {
2899 std::cout << " approaching link=" << (*link)->getViaLaneOrLane()->getID() << " prio=" << (*link)->havePriority() << " seen=" << seen << " visibilityDistance=" << visibilityDistance << " brakeDist=" << brakeDist << "\n";
2900 }
2901#endif
2902
2903 const bool couldBrakeForMinor = !(*link)->havePriority() && brakeDist < seen && !(*link)->lastWasContMajor();
2904 if (couldBrakeForMinor && !determinedFoePresence) {
2905 // vehicle decelerates just enough to be able to stop if necessary and then accelerates
2906 double maxSpeedAtVisibilityDist = cfModel.maximumSafeStopSpeed(visibilityDistance, cfModel.getMaxDecel(), myState.mySpeed, false, 0., false);
2907 // XXX: estimateSpeedAfterDistance does not use euler-logic (thus returns a lower value than possible here...)
2908 double maxArrivalSpeed = cfModel.estimateSpeedAfterDistance(visibilityDistance, maxSpeedAtVisibilityDist, cfModel.getMaxAccel());
2909 arrivalSpeed = MIN2(vLinkPass, maxArrivalSpeed);
2910 slowedDownForMinor = true;
2911#ifdef DEBUG_PLAN_MOVE
2912 if (DEBUG_COND) {
2913 std::cout << " slowedDownForMinor maxSpeedAtVisDist=" << maxSpeedAtVisibilityDist << " maxArrivalSpeed=" << maxArrivalSpeed << " arrivalSpeed=" << arrivalSpeed << "\n";
2914 }
2915#endif
2916 } else if ((*link)->getState() == LINKSTATE_EQUAL && myWaitingTime > 0) {
2917 // check for deadlock (circular yielding)
2918 //std::cout << SIMTIME << " veh=" << getID() << " check rbl-deadlock\n";
2919 std::pair<const SUMOVehicle*, const MSLink*> blocker = (*link)->getFirstApproachingFoe(*link);
2920 //std::cout << " blocker=" << Named::getIDSecure(blocker.first) << "\n";
2921 int n = 100;
2922 while (blocker.second != nullptr && blocker.second != *link && n > 0) {
2923 blocker = blocker.second->getFirstApproachingFoe(*link);
2924 n--;
2925 //std::cout << " blocker=" << Named::getIDSecure(blocker.first) << "\n";
2926 }
2927 if (n == 0) {
2928 WRITE_WARNINGF(TL("Suspicious right_before_left junction '%'."), lane->getEdge().getToJunction()->getID());
2929 }
2930 //std::cout << " blockerLink=" << blocker.second << " link=" << *link << "\n";
2931 if (blocker.second == *link) {
2932 const double threshold = (*link)->getDirection() == LinkDirection::STRAIGHT ? 0.25 : 0.75;
2933 if (RandHelper::rand(getRNG()) < threshold) {
2934 //std::cout << " abort request, threshold=" << threshold << "\n";
2935 setRequest = false;
2936 }
2937 }
2938 }
2939
2940 const SUMOTime arrivalTime = getArrivalTime(t, seen, v, arrivalSpeed);
2941 if (couldBrakeForMinor && determinedFoePresence && (*link)->getLane()->getEdge().isRoundabout()) {
2942 const bool wasOpened = (*link)->opened(arrivalTime, arrivalSpeed, arrivalSpeed,
2944 getCarFollowModel().getMaxDecel(),
2946 nullptr, false, this);
2947 if (!wasOpened) {
2948 slowedDownForMinor = true;
2949 }
2950#ifdef DEBUG_PLAN_MOVE
2951 if (DEBUG_COND) {
2952 std::cout << " slowedDownForMinor at roundabout=" << (!wasOpened) << "\n";
2953 }
2954#endif
2955 }
2956
2957 // compute arrival speed and arrival time if vehicle starts braking now
2958 // if stopping is possible, arrivalTime can be arbitrarily large. A small value keeps fractional times (impatience) meaningful
2959 double arrivalSpeedBraking = 0;
2960 const double bGap = cfModel.brakeGap(v);
2961 if (seen < bGap && !isStopped() && !planningToStop) { // XXX: should this use the current speed (at least for the ballistic case)? (Leo) Refs. #2575
2962 // vehicle cannot come to a complete stop in time
2964 arrivalSpeedBraking = cfModel.getMinimalArrivalSpeedEuler(seen, v);
2965 // due to discrete/continuous mismatch (when using Euler update) we have to ensure that braking actually helps
2966 arrivalSpeedBraking = MIN2(arrivalSpeedBraking, arrivalSpeed);
2967 } else {
2968 arrivalSpeedBraking = cfModel.getMinimalArrivalSpeed(seen, myState.mySpeed);
2969 }
2970 }
2971
2972 // estimate leave speed for passing time computation
2973 // l=linkLength, a=accel, t=continuousTime, v=vLeave
2974 // l=v*t + 0.5*a*t^2, solve for t and multiply with a, then add v
2975 const double estimatedLeaveSpeed = MIN2((*link)->getViaLaneOrLane()->getVehicleMaxSpeed(this, maxVD),
2976 getCarFollowModel().estimateSpeedAfterDistance((*link)->getLength(), arrivalSpeed, getVehicleType().getCarFollowModel().getMaxAccel()));
2977 lfLinks.push_back(DriveProcessItem(*link, v, vLinkWait, setRequest,
2978 arrivalTime, arrivalSpeed,
2979 arrivalSpeedBraking,
2980 seen, estimatedLeaveSpeed));
2981 if ((*link)->getViaLane() == nullptr) {
2982 hadNonInternal = true;
2983 ++view;
2984 }
2985#ifdef DEBUG_PLAN_MOVE
2986 if (DEBUG_COND) {
2987 std::cout << " checkAbort setRequest=" << setRequest << " v=" << v << " seen=" << seen << " dist=" << dist
2988 << " seenNonInternal=" << seenNonInternal
2989 << " seenInternal=" << seenInternal << " length=" << vehicleLength << "\n";
2990 }
2991#endif
2992 // we need to look ahead far enough to see available space for checkRewindLinkLanes
2993 if ((!setRequest || v <= 0 || seen > dist) && hadNonInternal && seenNonInternal > MAX2(vehicleLength * CRLL_LOOK_AHEAD, vehicleLength + seenInternal) && foundRailSignal) {
2994 break;
2995 }
2996 // get the following lane
2997 lane = (*link)->getViaLaneOrLane();
2998 laneMaxV = lane->getVehicleMaxSpeed(this, maxVD);
3000 laneMaxV = std::numeric_limits<double>::max();
3001 }
3002 // the link was passed
3003 // compute the velocity to use when the link is not blocked by other vehicles
3004 // the vehicle shall be not faster when reaching the next lane than allowed
3005 // speed limits are not emergencies (e.g. when the limit changes suddenly due to TraCI or a variableSpeedSignal)
3006 const double va = MAX2(cfModel.freeSpeed(this, getSpeed(), seen, laneMaxV), vMinComfortable);
3007 v = MIN2(va, v);
3008#ifdef DEBUG_PLAN_MOVE
3009 if (DEBUG_COND) {
3010 std::cout << " laneMaxV=" << laneMaxV << " freeSpeed=" << va << " v=" << v << "\n";
3011 }
3012#endif
3013 if (lane->getEdge().isInternal()) {
3014 seenInternal += lane->getLength();
3015 } else {
3016 seenNonInternal += lane->getLength();
3017 }
3018 // do not restrict results to the current vehicle to allow caching for the current time step
3019 leaderLane = opposite ? lane->getParallelOpposite() : lane;
3020 if (leaderLane == nullptr) {
3021
3022 break;
3023 }
3024 ahead = opposite ? MSLeaderInfo(leaderLane->getWidth()) : leaderLane->getLastVehicleInformation(nullptr, 0);
3025 seen += lane->getLength();
3026 vLinkPass = MIN2(cfModel.estimateSpeedAfterDistance(lane->getLength(), v, cfModel.getMaxAccel()), laneMaxV); // upper bound
3027 lastLink = &lfLinks.back();
3028 }
3029
3030//#ifdef DEBUG_PLAN_MOVE
3031// if(DEBUG_COND){
3032// std::cout << "planMoveInternal found safe speed v = " << v << std::endl;
3033// }
3034//#endif
3035
3036#ifdef PARALLEL_STOPWATCH
3037 myLane->getStopWatch()[0].stop();
3038#endif
3039}
3040
3041
3042double
3043MSVehicle::slowDownForSchedule(double vMinComfortable) const {
3044 const double sfp = getVehicleType().getParameter().speedFactorPremature;
3045 const MSStop& stop = myStops.front();
3046 std::pair<double, double> timeDist = estimateTimeToNextStop();
3047 double arrivalDelay = SIMTIME + timeDist.first - STEPS2TIME(stop.pars.arrival);
3048 double t = STEPS2TIME(stop.pars.arrival - SIMSTEP);
3051 arrivalDelay += STEPS2TIME(stop.pars.arrival - flexStart);
3052 t = STEPS2TIME(flexStart - SIMSTEP);
3053 } else if (stop.pars.started >= 0 && MSGlobals::gUseStopStarted) {
3054 arrivalDelay += STEPS2TIME(stop.pars.arrival - stop.pars.started);
3055 t = STEPS2TIME(stop.pars.started - SIMSTEP);
3056 }
3057 if (arrivalDelay < 0 && sfp < getChosenSpeedFactor()) {
3058 // we can slow down to better match the schedule (and increase energy efficiency)
3059 const double vSlowDownMin = MAX2(myLane->getSpeedLimit() * sfp, vMinComfortable);
3060 const double s = timeDist.second;
3061 const double b = getCarFollowModel().getMaxDecel();
3062 // x = speed for arriving in t seconds
3063 // u = time at full speed
3064 // u * x + (t - u) * 0.5 * x = s
3065 // t - u = x / b
3066 // eliminate u, solve x
3067 const double radicand = 4 * t * t * b * b - 8 * s * b;
3068 const double x = radicand >= 0 ? t * b - sqrt(radicand) * 0.5 : vSlowDownMin;
3069 double vSlowDown = x < vSlowDownMin ? vSlowDownMin : x;
3070#ifdef DEBUG_PLAN_MOVE
3071 if (DEBUG_COND) {
3072 std::cout << SIMTIME << " veh=" << getID() << " ad=" << arrivalDelay << " t=" << t << " vsm=" << vSlowDownMin
3073 << " r=" << radicand << " vs=" << vSlowDown << "\n";
3074 }
3075#endif
3076 return vSlowDown;
3077 } else if (arrivalDelay > 0 && sfp > getChosenSpeedFactor()) {
3078 // in principle we could up to catch up with the schedule
3079 // but at this point we can only lower the speed, the
3080 // information would have to be used when computing getVehicleMaxSpeed
3081 }
3082 return getMaxSpeed();
3083}
3084
3086MSVehicle::getArrivalTime(SUMOTime t, double seen, double v, double arrivalSpeed) const {
3087 const MSCFModel& cfModel = getCarFollowModel();
3088 SUMOTime arrivalTime;
3090 // @note intuitively it would make sense to compare arrivalSpeed with getSpeed() instead of v
3091 // however, due to the current position update rule (ticket #860) the vehicle moves with v in this step
3092 // subtract DELTA_T because t is the time at the end of this step and the movement is not carried out yet
3093 arrivalTime = t - DELTA_T + cfModel.getMinimalArrivalTime(seen, v, arrivalSpeed);
3094 } else {
3095 arrivalTime = t - DELTA_T + cfModel.getMinimalArrivalTime(seen, myState.mySpeed, arrivalSpeed);
3096 }
3097 if (isStopped()) {
3098 arrivalTime += MAX2((SUMOTime)0, myStops.front().duration);
3099 }
3100 return arrivalTime;
3101}
3102
3103
3104void
3105MSVehicle::adaptToLeaders(const MSLeaderInfo& ahead, double latOffset,
3106 const double seen, DriveProcessItem* const lastLink,
3107 const MSLane* const lane, double& v, double& vLinkPass) const {
3108 int rightmost;
3109 int leftmost;
3110 ahead.getSubLanes(this, latOffset, rightmost, leftmost);
3111#ifdef DEBUG_PLAN_MOVE
3112 if (DEBUG_COND) std::cout << SIMTIME
3113 << "\nADAPT_TO_LEADERS\nveh=" << getID()
3114 << " lane=" << lane->getID()
3115 << " latOffset=" << latOffset
3116 << " rm=" << rightmost
3117 << " lm=" << leftmost
3118 << " shift=" << ahead.getSublaneOffset()
3119 << " ahead=" << ahead.toString()
3120 << "\n";
3121#endif
3122 /*
3123 if (myLaneChangeModel->getCommittedSpeed() > 0) {
3124 v = MIN2(v, myLaneChangeModel->getCommittedSpeed());
3125 vLinkPass = MIN2(vLinkPass, myLaneChangeModel->getCommittedSpeed());
3126 #ifdef DEBUG_PLAN_MOVE
3127 if (DEBUG_COND) std::cout << " hasCommitted=" << myLaneChangeModel->getCommittedSpeed() << "\n";
3128 #endif
3129 return;
3130 }
3131 */
3132 for (int sublane = rightmost; sublane <= leftmost; ++sublane) {
3133 const MSVehicle* pred = ahead[sublane];
3134 if (pred != nullptr && pred != this) {
3135 // @todo avoid multiple adaptations to the same leader
3136 const double predBack = pred->getBackPositionOnLane(lane);
3137 double gap = (lastLink == nullptr
3138 ? predBack - myState.myPos - getVehicleType().getMinGap()
3139 : predBack + seen - lane->getLength() - getVehicleType().getMinGap());
3140 bool oncoming = false;
3142 if (pred->getLaneChangeModel().isOpposite() || lane == pred->getLaneChangeModel().getShadowLane()) {
3143 // ego might and leader are driving against lane
3144 gap = (lastLink == nullptr
3145 ? myState.myPos - predBack - getVehicleType().getMinGap()
3146 : predBack + seen - lane->getLength() - getVehicleType().getMinGap());
3147 } else {
3148 // ego and leader are driving in the same direction as lane (shadowlane for ego)
3149 gap = (lastLink == nullptr
3150 ? predBack - (myLane->getLength() - myState.myPos) - getVehicleType().getMinGap()
3151 : predBack + seen - lane->getLength() - getVehicleType().getMinGap());
3152 }
3153 } else if (pred->getLaneChangeModel().isOpposite() && pred->getLaneChangeModel().getShadowLane() != lane) {
3154 // must react to stopped / dangerous oncoming vehicles
3155 gap += -pred->getVehicleType().getLength() + getVehicleType().getMinGap() - MAX2(getVehicleType().getMinGap(), pred->getVehicleType().getMinGap());
3156 // try to avoid collision in the next second
3157 const double predMaxDist = pred->getSpeed() + pred->getCarFollowModel().getMaxAccel();
3158#ifdef DEBUG_PLAN_MOVE
3159 if (DEBUG_COND) {
3160 std::cout << " fixedGap=" << gap << " predMaxDist=" << predMaxDist << "\n";
3161 }
3162#endif
3163 if (gap < predMaxDist + getSpeed() || pred->getLane() == lane->getBidiLane()) {
3164 gap -= predMaxDist;
3165 }
3166 } else if (pred->getLane() == lane->getBidiLane()) {
3167 gap -= pred->getVehicleType().getLengthWithGap();
3168 oncoming = true;
3169 }
3170#ifdef DEBUG_PLAN_MOVE
3171 if (DEBUG_COND) {
3172 std::cout << " pred=" << pred->getID() << " predLane=" << pred->getLane()->getID() << " predPos=" << pred->getPositionOnLane() << " gap=" << gap << " predBack=" << predBack << " seen=" << seen << " lane=" << lane->getID() << " myLane=" << myLane->getID() << " lastLink=" << (lastLink == nullptr ? "NULL" : lastLink->myLink->getDescription()) << " oncoming=" << oncoming << "\n";
3173 }
3174#endif
3175 if (oncoming && gap >= 0) {
3176 adaptToOncomingLeader(std::make_pair(pred, gap), lastLink, v, vLinkPass);
3177 } else {
3178 adaptToLeader(std::make_pair(pred, gap), seen, lastLink, v, vLinkPass);
3179 }
3180 }
3181 }
3182}
3183
3184void
3186 double seen,
3187 DriveProcessItem* const lastLink,
3188 double& v, double& vLinkPass) const {
3189 int rightmost;
3190 int leftmost;
3191 ahead.getSubLanes(this, latOffset, rightmost, leftmost);
3192#ifdef DEBUG_PLAN_MOVE
3193 if (DEBUG_COND) std::cout << SIMTIME
3194 << "\nADAPT_TO_LEADERS_DISTANCE\nveh=" << getID()
3195 << " latOffset=" << latOffset
3196 << " rm=" << rightmost
3197 << " lm=" << leftmost
3198 << " ahead=" << ahead.toString()
3199 << "\n";
3200#endif
3201 for (int sublane = rightmost; sublane <= leftmost; ++sublane) {
3202 CLeaderDist predDist = ahead[sublane];
3203 const MSVehicle* pred = predDist.first;
3204 if (pred != nullptr && pred != this) {
3205#ifdef DEBUG_PLAN_MOVE
3206 if (DEBUG_COND) {
3207 std::cout << " pred=" << pred->getID() << " predLane=" << pred->getLane()->getID() << " predPos=" << pred->getPositionOnLane() << " gap=" << predDist.second << "\n";
3208 }
3209#endif
3210 adaptToLeader(predDist, seen, lastLink, v, vLinkPass);
3211 }
3212 }
3213}
3214
3215
3216void
3217MSVehicle::adaptToLeader(const std::pair<const MSVehicle*, double> leaderInfo,
3218 double seen,
3219 DriveProcessItem* const lastLink,
3220 double& v, double& vLinkPass) const {
3221 if (leaderInfo.first != 0) {
3222 if (ignoreFoe(leaderInfo.first)) {
3223#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3224 if (DEBUG_COND) {
3225 std::cout << " foe ignored\n";
3226 }
3227#endif
3228 return;
3229 }
3230 const MSCFModel& cfModel = getCarFollowModel();
3231 double vsafeLeader = 0;
3233 vsafeLeader = -std::numeric_limits<double>::max();
3234 }
3235 bool backOnRoute = true;
3236 if (leaderInfo.second < 0 && lastLink != nullptr && lastLink->myLink != nullptr) {
3237 backOnRoute = false;
3238 // this can either be
3239 // a) a merging situation (leader back is is not our route) or
3240 // b) a minGap violation / collision
3241 MSLane* current = lastLink->myLink->getViaLaneOrLane();
3242 if (leaderInfo.first->getBackLane() == current) {
3243 backOnRoute = true;
3244 } else {
3245 for (MSLane* lane : getBestLanesContinuation()) {
3246 if (lane == current) {
3247 break;
3248 }
3249 if (leaderInfo.first->getBackLane() == lane) {
3250 backOnRoute = true;
3251 }
3252 }
3253 }
3254#ifdef DEBUG_PLAN_MOVE
3255 if (DEBUG_COND) {
3256 std::cout << SIMTIME << " current=" << current->getID() << " leaderBackLane=" << leaderInfo.first->getBackLane()->getID() << " backOnRoute=" << backOnRoute << "\n";
3257 }
3258#endif
3259 if (!backOnRoute) {
3260 double stopDist = seen - current->getLength() - POSITION_EPS;
3261 if (lastLink->myLink->getInternalLaneBefore() != nullptr) {
3262 // do not drive onto the junction conflict area
3263 stopDist -= lastLink->myLink->getInternalLaneBefore()->getLength();
3264 }
3265 vsafeLeader = cfModel.stopSpeed(this, getSpeed(), stopDist);
3266 }
3267 }
3268 if (backOnRoute) {
3269 vsafeLeader = cfModel.followSpeed(this, getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3270 }
3271 if (lastLink != nullptr) {
3272 const double futureVSafe = cfModel.followSpeed(this, lastLink->accelV, leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first, MSCFModel::CalcReason::FUTURE);
3273 lastLink->adaptLeaveSpeed(futureVSafe);
3274#ifdef DEBUG_PLAN_MOVE
3275 if (DEBUG_COND) {
3276 std::cout << " vlinkpass=" << lastLink->myVLinkPass << " futureVSafe=" << futureVSafe << "\n";
3277 }
3278#endif
3279 }
3280 v = MIN2(v, vsafeLeader);
3281 vLinkPass = MIN2(vLinkPass, vsafeLeader);
3282#ifdef DEBUG_PLAN_MOVE
3283 if (DEBUG_COND) std::cout
3284 << SIMTIME
3285 //std::cout << std::setprecision(10);
3286 << " veh=" << getID()
3287 << " lead=" << leaderInfo.first->getID()
3288 << " leadSpeed=" << leaderInfo.first->getSpeed()
3289 << " gap=" << leaderInfo.second
3290 << " leadLane=" << leaderInfo.first->getLane()->getID()
3291 << " predPos=" << leaderInfo.first->getPositionOnLane()
3292 << " myLane=" << myLane->getID()
3293 << " v=" << v
3294 << " vSafeLeader=" << vsafeLeader
3295 << " vLinkPass=" << vLinkPass
3296 << "\n";
3297#endif
3298 }
3299}
3300
3301
3302void
3303MSVehicle::adaptToJunctionLeader(const std::pair<const MSVehicle*, double> leaderInfo,
3304 const double seen, DriveProcessItem* const lastLink,
3305 const MSLane* const lane, double& v, double& vLinkPass,
3306 double distToCrossing) const {
3307 if (leaderInfo.first != 0) {
3308 if (ignoreFoe(leaderInfo.first)) {
3309#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3310 if (DEBUG_COND) {
3311 std::cout << " junction foe ignored\n";
3312 }
3313#endif
3314 return;
3315 }
3316 const MSCFModel& cfModel = getCarFollowModel();
3317 double vsafeLeader = 0;
3319 vsafeLeader = -std::numeric_limits<double>::max();
3320 }
3321 if (leaderInfo.second >= 0) {
3322 if (hasDeparted()) {
3323 vsafeLeader = cfModel.followSpeed(this, getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3324 } else {
3325 // called in the context of MSLane::isInsertionSuccess
3326 vsafeLeader = cfModel.insertionFollowSpeed(this, getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3327 }
3328 } else if (leaderInfo.first != this) {
3329 // the leading, in-lapping vehicle is occupying the complete next lane
3330 // stop before entering this lane
3331 vsafeLeader = cfModel.stopSpeed(this, getSpeed(), seen - lane->getLength() - POSITION_EPS);
3332#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3333 if (DEBUG_COND) {
3334 std::cout << SIMTIME << " veh=" << getID() << " stopping before junction: lane=" << lane->getID() << " seen=" << seen
3335 << " laneLength=" << lane->getLength()
3336 << " stopDist=" << seen - lane->getLength() - POSITION_EPS
3337 << " vsafeLeader=" << vsafeLeader
3338 << " distToCrossing=" << distToCrossing
3339 << "\n";
3340 }
3341#endif
3342 }
3343 if (distToCrossing >= 0) {
3344 // can the leader still stop in the way?
3345 const double vStop = cfModel.stopSpeed(this, getSpeed(), distToCrossing - getVehicleType().getMinGap());
3346 if (leaderInfo.first == this) {
3347 // braking for pedestrian
3348 const double vStopCrossing = cfModel.stopSpeed(this, getSpeed(), distToCrossing);
3349 vsafeLeader = vStopCrossing;
3350#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3351 if (DEBUG_COND) {
3352 std::cout << " breaking for pedestrian distToCrossing=" << distToCrossing << " vStopCrossing=" << vStopCrossing << "\n";
3353 }
3354#endif
3355 if (lastLink != nullptr) {
3356 lastLink->adaptStopSpeed(vsafeLeader);
3357 }
3358 } else if (leaderInfo.second == -std::numeric_limits<double>::max()) {
3359 // drive up to the crossing point and stop
3360#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3361 if (DEBUG_COND) {
3362 std::cout << " stop at crossing point for critical leader vStop=" << vStop << "\n";
3363 };
3364#endif
3365 vsafeLeader = MAX2(vsafeLeader, vStop);
3366 } else {
3367 const double leaderDistToCrossing = distToCrossing - leaderInfo.second;
3368 // estimate the time at which the leader has gone past the crossing point
3369 const double leaderPastCPTime = leaderDistToCrossing / MAX2(leaderInfo.first->getSpeed(), SUMO_const_haltingSpeed);
3370 // reach distToCrossing after that time
3371 // avgSpeed * leaderPastCPTime = distToCrossing
3372 // ballistic: avgSpeed = (getSpeed + vFinal) / 2
3373 const double vFinal = MAX2(getSpeed(), 2 * (distToCrossing - getVehicleType().getMinGap()) / leaderPastCPTime - getSpeed());
3374 const double v2 = getSpeed() + ACCEL2SPEED((vFinal - getSpeed()) / leaderPastCPTime);
3375 vsafeLeader = MAX2(vsafeLeader, MIN2(v2, vStop));
3376#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3377 if (DEBUG_COND) {
3378 std::cout << " driving up to the crossing point (distToCrossing=" << distToCrossing << ")"
3379 << " leaderPastCPTime=" << leaderPastCPTime
3380 << " vFinal=" << vFinal
3381 << " v2=" << v2
3382 << " vStop=" << vStop
3383 << " vsafeLeader=" << vsafeLeader << "\n";
3384 }
3385#endif
3386 }
3387 }
3388 if (lastLink != nullptr) {
3389 lastLink->adaptLeaveSpeed(vsafeLeader);
3390 }
3391 v = MIN2(v, vsafeLeader);
3392 vLinkPass = MIN2(vLinkPass, vsafeLeader);
3393#ifdef DEBUG_PLAN_MOVE
3394 if (DEBUG_COND) std::cout
3395 << SIMTIME
3396 //std::cout << std::setprecision(10);
3397 << " veh=" << getID()
3398 << " lead=" << leaderInfo.first->getID()
3399 << " leadSpeed=" << leaderInfo.first->getSpeed()
3400 << " gap=" << leaderInfo.second
3401 << " leadLane=" << leaderInfo.first->getLane()->getID()
3402 << " predPos=" << leaderInfo.first->getPositionOnLane()
3403 << " seen=" << seen
3404 << " lane=" << lane->getID()
3405 << " myLane=" << myLane->getID()
3406 << " dTC=" << distToCrossing
3407 << " v=" << v
3408 << " vSafeLeader=" << vsafeLeader
3409 << " vLinkPass=" << vLinkPass
3410 << "\n";
3411#endif
3412 }
3413}
3414
3415
3416void
3417MSVehicle::adaptToOncomingLeader(const std::pair<const MSVehicle*, double> leaderInfo,
3418 DriveProcessItem* const lastLink,
3419 double& v, double& vLinkPass) const {
3420 if (leaderInfo.first != 0) {
3421 if (ignoreFoe(leaderInfo.first)) {
3422#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3423 if (DEBUG_COND) {
3424 std::cout << " oncoming foe ignored\n";
3425 }
3426#endif
3427 return;
3428 }
3429 const MSCFModel& cfModel = getCarFollowModel();
3430 const MSVehicle* lead = leaderInfo.first;
3431 const MSCFModel& cfModelL = lead->getCarFollowModel();
3432 // assume the leader reacts symmetrically (neither stopping instantly nor ignoring ego)
3433 const double leaderBrakeGap = cfModelL.brakeGap(lead->getSpeed(), cfModelL.getMaxDecel(), 0);
3434 const double egoBrakeGap = cfModel.brakeGap(getSpeed(), cfModel.getMaxDecel(), 0);
3435 const double gapSum = leaderBrakeGap + egoBrakeGap;
3436 // ensure that both vehicles can leave an intersection if they are currently on it
3437 double egoExit = getDistanceToLeaveJunction();
3438 const double leaderExit = lead->getDistanceToLeaveJunction();
3439 double gap = leaderInfo.second;
3440 if (egoExit + leaderExit < gap) {
3441 gap -= egoExit + leaderExit;
3442 } else {
3443 egoExit = 0;
3444 }
3445 // split any distance in excess of brakeGaps evenly
3446 const double freeGap = MAX2(0.0, gap - gapSum);
3447 const double splitGap = MIN2(gap, gapSum);
3448 // assume remaining distance is allocated in proportion to braking distance
3449 const double gapRatio = gapSum > 0 ? egoBrakeGap / gapSum : 0.5;
3450 const double vsafeLeader = cfModel.stopSpeed(this, getSpeed(), splitGap * gapRatio + egoExit + 0.5 * freeGap);
3451 if (lastLink != nullptr) {
3452 const double futureVSafe = cfModel.stopSpeed(this, lastLink->accelV, leaderInfo.second, MSCFModel::CalcReason::FUTURE);
3453 lastLink->adaptLeaveSpeed(futureVSafe);
3454#ifdef DEBUG_PLAN_MOVE
3455 if (DEBUG_COND) {
3456 std::cout << " vlinkpass=" << lastLink->myVLinkPass << " futureVSafe=" << futureVSafe << "\n";
3457 }
3458#endif
3459 }
3460 v = MIN2(v, vsafeLeader);
3461 vLinkPass = MIN2(vLinkPass, vsafeLeader);
3462#ifdef DEBUG_PLAN_MOVE
3463 if (DEBUG_COND) std::cout
3464 << SIMTIME
3465 //std::cout << std::setprecision(10);
3466 << " veh=" << getID()
3467 << " oncomingLead=" << lead->getID()
3468 << " leadSpeed=" << lead->getSpeed()
3469 << " gap=" << leaderInfo.second
3470 << " gap2=" << gap
3471 << " gapRatio=" << gapRatio
3472 << " leadLane=" << lead->getLane()->getID()
3473 << " predPos=" << lead->getPositionOnLane()
3474 << " myLane=" << myLane->getID()
3475 << " v=" << v
3476 << " vSafeLeader=" << vsafeLeader
3477 << " vLinkPass=" << vLinkPass
3478 << "\n";
3479#endif
3480 }
3481}
3482
3483
3484void
3485MSVehicle::checkLinkLeaderCurrentAndParallel(const MSLink* link, const MSLane* lane, double seen,
3486 DriveProcessItem* const lastLink, double& v, double& vLinkPass, double& vLinkWait, bool& setRequest) const {
3488 // we want to pass the link but need to check for foes on internal lanes
3489 checkLinkLeader(link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
3490 if (myLaneChangeModel->getShadowLane() != nullptr) {
3491 const MSLink* const parallelLink = link->getParallelLink(myLaneChangeModel->getShadowDirection());
3492 if (parallelLink != nullptr) {
3493 checkLinkLeader(parallelLink, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest, true);
3494 }
3495 }
3496 }
3497
3498}
3499
3500void
3501MSVehicle::checkLinkLeader(const MSLink* link, const MSLane* lane, double seen,
3502 DriveProcessItem* const lastLink, double& v, double& vLinkPass, double& vLinkWait, bool& setRequest,
3503 bool isShadowLink) const {
3504#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3505 if (DEBUG_COND) {
3506 gDebugFlag1 = true; // See MSLink::getLeaderInfo
3507 }
3508#endif
3509 const MSLink::LinkLeaders linkLeaders = link->getLeaderInfo(this, seen, nullptr, isShadowLink);
3510#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3511 if (DEBUG_COND) {
3512 gDebugFlag1 = false; // See MSLink::getLeaderInfo
3513 }
3514#endif
3515 for (MSLink::LinkLeaders::const_iterator it = linkLeaders.begin(); it != linkLeaders.end(); ++it) {
3516 // the vehicle to enter the junction first has priority
3517 const MSVehicle* leader = (*it).vehAndGap.first;
3518 if (leader == nullptr) {
3519 // leader is a pedestrian. Passing 'this' as a dummy.
3520#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3521 if (DEBUG_COND) {
3522 std::cout << SIMTIME << " veh=" << getID() << " is blocked on link to " << link->getViaLaneOrLane()->getID() << " by pedestrian. dist=" << it->distToCrossing << "\n";
3523 }
3524#endif
3527#ifdef DEBUG_PLAN_MOVE
3528 if (DEBUG_COND) {
3529 std::cout << SIMTIME << " veh=" << getID() << " is ignoring pedestrian (jmIgnoreJunctionFoeProb)\n";
3530 }
3531#endif
3532 continue;
3533 }
3534 adaptToJunctionLeader(std::make_pair(this, -1), seen, lastLink, lane, v, vLinkPass, it->distToCrossing);
3535 // if blocked by a pedestrian for too long we must yield our request
3537 setRequest = false;
3538#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3539 if (DEBUG_COND) {
3540 std::cout << " aborting request\n";
3541 }
3542#endif
3543 }
3544 } else if (isLeader(link, leader, (*it).vehAndGap.second) || (*it).inTheWay()) {
3547#ifdef DEBUG_PLAN_MOVE
3548 if (DEBUG_COND) {
3549 std::cout << SIMTIME << " veh=" << getID() << " is ignoring linkLeader=" << leader->getID() << " (jmIgnoreJunctionFoeProb)\n";
3550 }
3551#endif
3552 continue;
3553 }
3555 // sibling link (XXX: could also be partial occupator where this check fails)
3556 &leader->getLane()->getEdge() == &lane->getEdge()) {
3557 // check for sublane obstruction (trivial for sibling link leaders)
3558 const MSLane* conflictLane = link->getInternalLaneBefore();
3559 MSLeaderInfo linkLeadersAhead = MSLeaderInfo(conflictLane->getWidth());
3560 linkLeadersAhead.addLeader(leader, false, 0); // assume sibling lane has the same geometry as the leader lane
3561 const double latOffset = isShadowLink ? (getLane()->getRightSideOnEdge() - myLaneChangeModel->getShadowLane()->getRightSideOnEdge()) : 0;
3562 // leader is neither on lane nor conflictLane (the conflict is only established geometrically)
3563 adaptToLeaders(linkLeadersAhead, latOffset, seen, lastLink, leader->getLane(), v, vLinkPass);
3564#ifdef DEBUG_PLAN_MOVE
3565 if (DEBUG_COND) {
3566 std::cout << SIMTIME << " veh=" << getID()
3567 << " siblingFoe link=" << link->getViaLaneOrLane()->getID()
3568 << " isShadowLink=" << isShadowLink
3569 << " lane=" << lane->getID()
3570 << " foe=" << leader->getID()
3571 << " foeLane=" << leader->getLane()->getID()
3572 << " latOffset=" << latOffset
3573 << " latOffsetFoe=" << leader->getLatOffset(lane)
3574 << " linkLeadersAhead=" << linkLeadersAhead.toString()
3575 << "\n";
3576 }
3577#endif
3578 } else {
3579#ifdef DEBUG_PLAN_MOVE
3580 if (DEBUG_COND) {
3581 std::cout << SIMTIME << " veh=" << getID() << " linkLeader=" << leader->getID() << " gap=" << it->vehAndGap.second
3582 << " ET=" << myJunctionEntryTime << " lET=" << leader->myJunctionEntryTime
3583 << " ETN=" << myJunctionEntryTimeNeverYield << " lETN=" << leader->myJunctionEntryTimeNeverYield
3584 << " CET=" << myJunctionConflictEntryTime << " lCET=" << leader->myJunctionConflictEntryTime
3585 << "\n";
3586 }
3587#endif
3588 adaptToJunctionLeader(it->vehAndGap, seen, lastLink, lane, v, vLinkPass, it->distToCrossing);
3589 }
3590 if (lastLink != nullptr) {
3591 // we are not yet on the junction with this linkLeader.
3592 // at least we can drive up to the previous link and stop there
3593 v = MAX2(v, lastLink->myVLinkWait);
3594 }
3595 // if blocked by a leader from the same or next lane we must yield our request
3596 // also, if blocked by a stopped or blocked leader
3598 //&& leader->getSpeed() < SUMO_const_haltingSpeed
3600 || leader->getLane()->getLogicalPredecessorLane() == myLane
3601 || leader->isStopped()
3603 setRequest = false;
3604#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3605 if (DEBUG_COND) {
3606 std::cout << " aborting request\n";
3607 }
3608#endif
3609 if (lastLink != nullptr && leader->getLane()->getLogicalPredecessorLane() == myLane) {
3610 // we are not yet on the junction so must abort that request as well
3611 // (or maybe we are already on the junction and the leader is a partial occupator beyond)
3612 lastLink->mySetRequest = false;
3613#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3614 if (DEBUG_COND) {
3615 std::cout << " aborting previous request\n";
3616 }
3617#endif
3618 }
3619 }
3620 }
3621#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3622 else {
3623 if (DEBUG_COND) {
3624 std::cout << SIMTIME << " veh=" << getID() << " ignoring leader " << leader->getID() << " gap=" << (*it).vehAndGap.second << " dtC=" << (*it).distToCrossing
3625 << " ET=" << myJunctionEntryTime << " lET=" << leader->myJunctionEntryTime
3626 << " ETN=" << myJunctionEntryTimeNeverYield << " lETN=" << leader->myJunctionEntryTimeNeverYield
3627 << " CET=" << myJunctionConflictEntryTime << " lCET=" << leader->myJunctionConflictEntryTime
3628 << "\n";
3629 }
3630 }
3631#endif
3632 }
3633 // if this is the link between two internal lanes we may have to slow down for pedestrians
3634 vLinkWait = MIN2(vLinkWait, v);
3635}
3636
3637
3638double
3639MSVehicle::getDeltaPos(const double accel) const {
3640 double vNext = myState.mySpeed + ACCEL2SPEED(accel);
3642 // apply implicit Euler positional update
3643 return SPEED2DIST(MAX2(vNext, 0.));
3644 } else {
3645 // apply ballistic update
3646 if (vNext >= 0) {
3647 // assume constant acceleration during this time step
3648 return SPEED2DIST(myState.mySpeed + 0.5 * ACCEL2SPEED(accel));
3649 } else {
3650 // negative vNext indicates a stop within the middle of time step
3651 // The corresponding stop time is s = mySpeed/deceleration \in [0,dt], and the
3652 // covered distance is therefore deltaPos = mySpeed*s - 0.5*deceleration*s^2.
3653 // Here, deceleration = (myState.mySpeed - vNext)/dt is the constant deceleration
3654 // until the vehicle stops.
3655 return -SPEED2DIST(0.5 * myState.mySpeed * myState.mySpeed / ACCEL2SPEED(accel));
3656 }
3657 }
3658}
3659
3660void
3661MSVehicle::processLinkApproaches(double& vSafe, double& vSafeMin, double& vSafeMinDist) {
3662
3663 // Speed limit due to zipper merging
3664 double vSafeZipper = std::numeric_limits<double>::max();
3665
3666 myHaveToWaitOnNextLink = false;
3667 bool canBrakeVSafeMin = false;
3668
3669 // Get safe velocities from DriveProcessItems.
3670 assert(myLFLinkLanes.size() != 0 || isRemoteControlled());
3671 for (const DriveProcessItem& dpi : myLFLinkLanes) {
3672 MSLink* const link = dpi.myLink;
3673
3674#ifdef DEBUG_EXEC_MOVE
3675 if (DEBUG_COND) {
3676 std::cout
3677 << SIMTIME
3678 << " veh=" << getID()
3679 << " link=" << (link == 0 ? "NULL" : link->getViaLaneOrLane()->getID())
3680 << " req=" << dpi.mySetRequest
3681 << " vP=" << dpi.myVLinkPass
3682 << " vW=" << dpi.myVLinkWait
3683 << " d=" << dpi.myDistance
3684 << "\n";
3685 gDebugFlag1 = true; // See MSLink_DEBUG_OPENED
3686 }
3687#endif
3688
3689 // the vehicle must change the lane on one of the next lanes (XXX: refs to code further below???, Leo)
3690 if (link != nullptr && dpi.mySetRequest) {
3691
3692 const LinkState ls = link->getState();
3693 // vehicles should brake when running onto a yellow light if the distance allows to halt in front
3694 const bool yellow = link->haveYellow();
3695 const bool canBrake = (dpi.myDistance > getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getMaxDecel(), 0.)
3697 assert(link->getLaneBefore() != nullptr);
3698 const bool beyondStopLine = dpi.myDistance < link->getLaneBefore()->getVehicleStopOffset(this);
3699 const bool ignoreRedLink = ignoreRed(link, canBrake) || beyondStopLine;
3700 if (yellow && canBrake && !ignoreRedLink) {
3701 vSafe = dpi.myVLinkWait;
3703#ifdef DEBUG_CHECKREWINDLINKLANES
3704 if (DEBUG_COND) {
3705 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (yellow)\n";
3706 }
3707#endif
3708 break;
3709 }
3710 const bool influencerPrio = (myInfluencer != nullptr && !myInfluencer->getRespectJunctionPriority());
3711 MSLink::BlockingFoes collectFoes;
3712 bool opened = (yellow || influencerPrio
3713 || link->opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3715 canBrake ? getImpatience() : 1,
3718 ls == LINKSTATE_ZIPPER ? &collectFoes : nullptr,
3719 ignoreRedLink, this, dpi.myDistance));
3720 if (opened && myLaneChangeModel->getShadowLane() != nullptr) {
3721 const MSLink* const parallelLink = dpi.myLink->getParallelLink(myLaneChangeModel->getShadowDirection());
3722 if (parallelLink != nullptr) {
3723 const double shadowLatPos = getLateralPositionOnLane() - myLaneChangeModel->getShadowDirection() * 0.5 * (
3725 opened = yellow || influencerPrio || (opened && parallelLink->opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3728 getWaitingTimeFor(link), shadowLatPos, nullptr,
3729 ignoreRedLink, this, dpi.myDistance));
3730#ifdef DEBUG_EXEC_MOVE
3731 if (DEBUG_COND) {
3732 std::cout << SIMTIME
3733 << " veh=" << getID()
3734 << " shadowLane=" << myLaneChangeModel->getShadowLane()->getID()
3735 << " shadowDir=" << myLaneChangeModel->getShadowDirection()
3736 << " parallelLink=" << (parallelLink == 0 ? "NULL" : parallelLink->getViaLaneOrLane()->getID())
3737 << " opened=" << opened
3738 << "\n";
3739 }
3740#endif
3741 }
3742 }
3743 // vehicles should decelerate when approaching a minor link
3744#ifdef DEBUG_EXEC_MOVE
3745 if (DEBUG_COND) {
3746 std::cout << SIMTIME
3747 << " opened=" << opened
3748 << " influencerPrio=" << influencerPrio
3749 << " linkPrio=" << link->havePriority()
3750 << " lastContMajor=" << link->lastWasContMajor()
3751 << " isCont=" << link->isCont()
3752 << " ignoreRed=" << ignoreRedLink
3753 << "\n";
3754 }
3755#endif
3756 double visibilityDistance = link->getFoeVisibilityDistance();
3757 bool determinedFoePresence = dpi.myDistance <= visibilityDistance;
3758 if (opened && !influencerPrio && !link->havePriority() && !link->lastWasContMajor() && !link->isCont() && !ignoreRedLink) {
3759 if (!determinedFoePresence && (canBrake || !yellow)) {
3760 vSafe = dpi.myVLinkWait;
3762#ifdef DEBUG_CHECKREWINDLINKLANES
3763 if (DEBUG_COND) {
3764 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (minor)\n";
3765 }
3766#endif
3767 break;
3768 } else {
3769 // past the point of no return. we need to drive fast enough
3770 // to make it across the link. However, minor slowdowns
3771 // should be permissible to follow leading traffic safely
3772 // basically, this code prevents dawdling
3773 // (it's harder to do this later using
3774 // SUMO_ATTR_JM_SIGMA_MINOR because we don't know whether the
3775 // vehicle is already too close to stop at that part of the code)
3776 //
3777 // XXX: There is a problem in subsecond simulation: If we cannot
3778 // make it across the minor link in one step, new traffic
3779 // could appear on a major foe link and cause a collision. Refs. #1845, #2123
3780 vSafeMinDist = dpi.myDistance; // distance that must be covered
3782 vSafeMin = MIN3((double)DIST2SPEED(vSafeMinDist + POSITION_EPS), dpi.myVLinkPass, getCarFollowModel().maxNextSafeMin(getSpeed(), this));
3783 } else {
3784 vSafeMin = MIN3((double)DIST2SPEED(2 * vSafeMinDist + NUMERICAL_EPS) - getSpeed(), dpi.myVLinkPass, getCarFollowModel().maxNextSafeMin(getSpeed(), this));
3785 }
3786 canBrakeVSafeMin = canBrake;
3787#ifdef DEBUG_EXEC_MOVE
3788 if (DEBUG_COND) {
3789 std::cout << " vSafeMin=" << vSafeMin << " vSafeMinDist=" << vSafeMinDist << " canBrake=" << canBrake << "\n";
3790 }
3791#endif
3792 }
3793 }
3794 // have waited; may pass if opened...
3795 if (opened) {
3796 vSafe = dpi.myVLinkPass;
3797 if (vSafe < getCarFollowModel().getMaxDecel() && vSafe <= dpi.myVLinkWait && vSafe < getCarFollowModel().maxNextSpeed(getSpeed(), this)) {
3798 // this vehicle is probably not gonna drive across the next junction (heuristic)
3800#ifdef DEBUG_CHECKREWINDLINKLANES
3801 if (DEBUG_COND) {
3802 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (very slow)\n";
3803 }
3804#endif
3805 }
3806 if (link->mustStop() && determinedFoePresence && myHaveStoppedFor == nullptr) {
3807 myHaveStoppedFor = link;
3808 }
3809 } else if (link->getState() == LINKSTATE_ZIPPER) {
3810 vSafeZipper = MIN2(vSafeZipper,
3811 link->getZipperSpeed(this, dpi.myDistance, dpi.myVLinkPass, dpi.myArrivalTime, &collectFoes));
3812 } else if (!canBrake
3813 // always brake hard for traffic lights (since an emergency stop is necessary anyway)
3814 && link->getTLLogic() == nullptr
3815 // cannot brake even with emergency deceleration
3816 && dpi.myDistance < getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getEmergencyDecel(), 0.)) {
3817#ifdef DEBUG_EXEC_MOVE
3818 if (DEBUG_COND) {
3819 std::cout << SIMTIME << " too fast to brake for closed link\n";
3820 }
3821#endif
3822 vSafe = dpi.myVLinkPass;
3823 } else {
3824 vSafe = dpi.myVLinkWait;
3826#ifdef DEBUG_CHECKREWINDLINKLANES
3827 if (DEBUG_COND) {
3828 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (closed)\n";
3829 }
3830#endif
3831#ifdef DEBUG_EXEC_MOVE
3832 if (DEBUG_COND) {
3833 std::cout << SIMTIME << " braking for closed link=" << link->getViaLaneOrLane()->getID() << "\n";
3834 }
3835#endif
3836 break;
3837 }
3838 } else {
3839 if (link != nullptr && link->getInternalLaneBefore() != nullptr && myLane->isInternal() && link->getJunction() == myLane->getEdge().getToJunction()) {
3840 // blocked on the junction. yield request so other vehicles may
3841 // become junction leader
3842#ifdef DEBUG_EXEC_MOVE
3843 if (DEBUG_COND) {
3844 std::cout << SIMTIME << " resetting junctionEntryTime at junction '" << link->getJunction()->getID() << "' beause of non-request exitLink\n";
3845 }
3846#endif
3849 }
3850 // we have: i->link == 0 || !i->setRequest
3851 vSafe = dpi.myVLinkWait;
3852 if (link != nullptr || myStopDist < (myLane->getLength() - getPositionOnLane())) {
3853 if (vSafe < getSpeed()) {
3855#ifdef DEBUG_CHECKREWINDLINKLANES
3856 if (DEBUG_COND) {
3857 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (no request, braking) vSafe=" << vSafe << "\n";
3858 }
3859#endif
3860 } else if (vSafe < SUMO_const_haltingSpeed) {
3862#ifdef DEBUG_CHECKREWINDLINKLANES
3863 if (DEBUG_COND) {
3864 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (no request, stopping)\n";
3865 }
3866#endif
3867 }
3868 }
3869 if (link == nullptr && myLFLinkLanes.size() == 1
3870 && getBestLanesContinuation().size() > 1
3871 && getBestLanesContinuation()[1]->hadPermissionChanges()
3872 && myLane->getFirstAnyVehicle() == this) {
3873 // temporal lane closing without notification, visible to the
3874 // vehicle at the front of the queue
3875 updateBestLanes(true);
3876 //std::cout << SIMTIME << " veh=" << getID() << " updated bestLanes=" << toString(getBestLanesContinuation()) << "\n";
3877 }
3878 break;
3879 }
3880 }
3881
3882//#ifdef DEBUG_EXEC_MOVE
3883// if (DEBUG_COND) {
3884// std::cout << "\nvCurrent = " << toString(getSpeed(), 24) << "" << std::endl;
3885// std::cout << "vSafe = " << toString(vSafe, 24) << "" << std::endl;
3886// std::cout << "vSafeMin = " << toString(vSafeMin, 24) << "" << std::endl;
3887// std::cout << "vSafeMinDist = " << toString(vSafeMinDist, 24) << "" << std::endl;
3888//
3889// double gap = getLeader().second;
3890// std::cout << "gap = " << toString(gap, 24) << std::endl;
3891// std::cout << "vSafeStoppedLeader = " << toString(getCarFollowModel().stopSpeed(this, getSpeed(), gap, MSCFModel::CalcReason::FUTURE), 24)
3892// << "\n" << std::endl;
3893// }
3894//#endif
3895
3896 if ((MSGlobals::gSemiImplicitEulerUpdate && vSafe + NUMERICAL_EPS < vSafeMin)
3897 || (!MSGlobals::gSemiImplicitEulerUpdate && (vSafe + NUMERICAL_EPS < vSafeMin && vSafeMin != 0))) { // this might be good for the euler case as well
3898 // XXX: (Leo) This often called stopSpeed with vSafeMinDist==0 (for the ballistic update), since vSafe can become negative
3899 // For the Euler update the term '+ NUMERICAL_EPS' prevented a call here... Recheck, consider of -INVALID_SPEED instead of 0 to indicate absence of vSafeMin restrictions. Refs. #2577
3900#ifdef DEBUG_EXEC_MOVE
3901 if (DEBUG_COND) {
3902 std::cout << "vSafeMin Problem? vSafe=" << vSafe << " vSafeMin=" << vSafeMin << " vSafeMinDist=" << vSafeMinDist << std::endl;
3903 }
3904#endif
3905 if (canBrakeVSafeMin && vSafe < getSpeed()) {
3906 // cannot drive across a link so we need to stop before it
3907 vSafe = MIN2(vSafe, MAX2(getCarFollowModel().minNextSpeed(getSpeed(), this),
3908 getCarFollowModel().stopSpeed(this, getSpeed(), vSafeMinDist)));
3909 vSafeMin = 0;
3911#ifdef DEBUG_CHECKREWINDLINKLANES
3912 if (DEBUG_COND) {
3913 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (vSafe=" << vSafe << " < vSafeMin=" << vSafeMin << ")\n";
3914 }
3915#endif
3916 } else {
3917 // if the link is yellow or visibility distance is large
3918 // then we might not make it across the link in one step anyway..
3919 // Possibly, the lane after the intersection has a lower speed limit so
3920 // we really need to drive slower already
3921 // -> keep driving without dawdling
3922 vSafeMin = vSafe;
3923 }
3924 }
3925
3926 // vehicles inside a roundabout should maintain their requests
3927 if (myLane->getEdge().isRoundabout()) {
3928 myHaveToWaitOnNextLink = false;
3929 }
3930
3931 vSafe = MIN2(vSafe, vSafeZipper);
3932}
3933
3934
3935double
3936MSVehicle::processTraCISpeedControl(double vSafe, double vNext) {
3937 if (myInfluencer != nullptr) {
3939#ifdef DEBUG_TRACI
3940 if DEBUG_COND2(this) {
3941 std::cout << SIMTIME << " MSVehicle::processTraCISpeedControl() for vehicle '" << getID() << "'"
3942 << " vSafe=" << vSafe << " (init)vNext=" << vNext << " keepStopping=" << keepStopping();
3943 }
3944#endif
3947 }
3948 const double vMax = getVehicleType().getCarFollowModel().maxNextSpeed(myState.mySpeed, this);
3951 vMin = MAX2(0., vMin);
3952 }
3953 vNext = myInfluencer->influenceSpeed(MSNet::getInstance()->getCurrentTimeStep(), vNext, vSafe, vMin, vMax);
3954 if (keepStopping() && myStops.front().getSpeed() == 0) {
3955 // avoid driving while stopped (unless it's actually a waypoint
3956 vNext = myInfluencer->getOriginalSpeed();
3957 }
3958#ifdef DEBUG_TRACI
3959 if DEBUG_COND2(this) {
3960 std::cout << " (processed)vNext=" << vNext << std::endl;
3961 }
3962#endif
3963 }
3964 return vNext;
3965}
3966
3967
3968void
3970#ifdef DEBUG_ACTIONSTEPS
3971 if (DEBUG_COND) {
3972 std::cout << SIMTIME << " veh=" << getID() << " removePassedDriveItems()\n"
3973 << " Current items: ";
3974 for (auto& j : myLFLinkLanes) {
3975 if (j.myLink == 0) {
3976 std::cout << "\n Stop at distance " << j.myDistance;
3977 } else {
3978 const MSLane* to = j.myLink->getViaLaneOrLane();
3979 const MSLane* from = j.myLink->getLaneBefore();
3980 std::cout << "\n Link at distance " << j.myDistance << ": '"
3981 << (from == 0 ? "NONE" : from->getID()) << "' -> '" << (to == 0 ? "NONE" : to->getID()) << "'";
3982 }
3983 }
3984 std::cout << "\n myNextDriveItem: ";
3985 if (myLFLinkLanes.size() != 0) {
3986 if (myNextDriveItem->myLink == 0) {
3987 std::cout << "\n Stop at distance " << myNextDriveItem->myDistance;
3988 } else {
3989 const MSLane* to = myNextDriveItem->myLink->getViaLaneOrLane();
3990 const MSLane* from = myNextDriveItem->myLink->getLaneBefore();
3991 std::cout << "\n Link at distance " << myNextDriveItem->myDistance << ": '"
3992 << (from == 0 ? "NONE" : from->getID()) << "' -> '" << (to == 0 ? "NONE" : to->getID()) << "'";
3993 }
3994 }
3995 std::cout << std::endl;
3996 }
3997#endif
3998 for (auto j = myLFLinkLanes.begin(); j != myNextDriveItem; ++j) {
3999#ifdef DEBUG_ACTIONSTEPS
4000 if (DEBUG_COND) {
4001 std::cout << " Removing item: ";
4002 if (j->myLink == 0) {
4003 std::cout << "Stop at distance " << j->myDistance;
4004 } else {
4005 const MSLane* to = j->myLink->getViaLaneOrLane();
4006 const MSLane* from = j->myLink->getLaneBefore();
4007 std::cout << "Link at distance " << j->myDistance << ": '"
4008 << (from == 0 ? "NONE" : from->getID()) << "' -> '" << (to == 0 ? "NONE" : to->getID()) << "'";
4009 }
4010 std::cout << std::endl;
4011 }
4012#endif
4013 if (j->myLink != nullptr) {
4014 j->myLink->removeApproaching(this);
4015 }
4016 }
4019}
4020
4021
4022void
4024#ifdef DEBUG_ACTIONSTEPS
4025 if (DEBUG_COND) {
4026 std::cout << SIMTIME << " updateDriveItems(), veh='" << getID() << "' (lane: '" << getLane()->getID() << "')\nCurrent drive items:" << std::endl;
4027 for (const auto& dpi : myLFLinkLanes) {
4028 std::cout
4029 << " vPass=" << dpi.myVLinkPass
4030 << " vWait=" << dpi.myVLinkWait
4031 << " linkLane=" << (dpi.myLink == 0 ? "NULL" : dpi.myLink->getViaLaneOrLane()->getID())
4032 << " request=" << dpi.mySetRequest
4033 << "\n";
4034 }
4035 std::cout << " myNextDriveItem's linked lane: " << (myNextDriveItem->myLink == 0 ? "NULL" : myNextDriveItem->myLink->getViaLaneOrLane()->getID()) << std::endl;
4036 }
4037#endif
4038 if (myLFLinkLanes.size() == 0) {
4039 // nothing to update
4040 return;
4041 }
4042 const MSLink* nextPlannedLink = nullptr;
4043// auto i = myLFLinkLanes.begin();
4044 auto i = myNextDriveItem;
4045 while (i != myLFLinkLanes.end() && nextPlannedLink == nullptr) {
4046 nextPlannedLink = i->myLink;
4047 ++i;
4048 }
4049
4050 if (nextPlannedLink == nullptr) {
4051 // No link for upcoming item -> no need for an update
4052#ifdef DEBUG_ACTIONSTEPS
4053 if (DEBUG_COND) {
4054 std::cout << "Found no link-related drive item." << std::endl;
4055 }
4056#endif
4057 return;
4058 }
4059
4060 if (getLane() == nextPlannedLink->getLaneBefore()) {
4061 // Current lane approaches the stored next link, i.e. no LC happend and no update is required.
4062#ifdef DEBUG_ACTIONSTEPS
4063 if (DEBUG_COND) {
4064 std::cout << "Continuing on planned lane sequence, no update required." << std::endl;
4065 }
4066#endif
4067 return;
4068 }
4069 // Lane must have been changed, determine the change direction
4070 const MSLink* parallelLink = nextPlannedLink->getParallelLink(1);
4071 if (parallelLink != nullptr && parallelLink->getLaneBefore() == getLane()) {
4072 // lcDir = 1;
4073 } else {
4074 parallelLink = nextPlannedLink->getParallelLink(-1);
4075 if (parallelLink != nullptr && parallelLink->getLaneBefore() == getLane()) {
4076 // lcDir = -1;
4077 } else {
4078 // If the vehicle's current lane is not the approaching lane for the next
4079 // drive process item's link, it is expected to lead to a parallel link,
4080 // XXX: What if the lc was an overtaking maneuver and there is no upcoming link?
4081 // Then a stop item should be scheduled! -> TODO!
4082 //assert(false);
4083 return;
4084 }
4085 }
4086#ifdef DEBUG_ACTIONSTEPS
4087 if (DEBUG_COND) {
4088 std::cout << "Changed lane. Drive items will be updated along the current lane continuation." << std::endl;
4089 }
4090#endif
4091 // Trace link sequence along current best lanes and transfer drive items to the corresponding links
4092// DriveItemVector::iterator driveItemIt = myLFLinkLanes.begin();
4093 DriveItemVector::iterator driveItemIt = myNextDriveItem;
4094 // In the loop below, lane holds the currently considered lane on the vehicles continuation (including internal lanes)
4095 const MSLane* lane = myLane;
4096 assert(myLane == parallelLink->getLaneBefore());
4097 // *lit is a pointer to the next lane in best continuations for the current lane (always non-internal)
4098 std::vector<MSLane*>::const_iterator bestLaneIt = getBestLanesContinuation().begin() + 1;
4099 // Pointer to the new link for the current drive process item
4100 MSLink* newLink = nullptr;
4101 while (driveItemIt != myLFLinkLanes.end()) {
4102 if (driveItemIt->myLink == nullptr) {
4103 // Items not related to a specific link are not updated
4104 // (XXX: when a stop item corresponded to a dead end, which is overcome by the LC that made
4105 // the update necessary, this may slow down the vehicle's continuation on the new lane...)
4106 ++driveItemIt;
4107 continue;
4108 }
4109 // Continuation links for current best lanes are less than for the former drive items (myLFLinkLanes)
4110 // We just remove the leftover link-items, as they cannot be mapped to new links.
4111 if (bestLaneIt == getBestLanesContinuation().end()) {
4112#ifdef DEBUG_ACTIONSTEPS
4113 if (DEBUG_COND) {
4114 std::cout << "Reached end of the new continuation sequence. Erasing leftover link-items." << std::endl;
4115 }
4116#endif
4117 while (driveItemIt != myLFLinkLanes.end()) {
4118 if (driveItemIt->myLink == nullptr) {
4119 ++driveItemIt;
4120 continue;
4121 } else {
4122 driveItemIt->myLink->removeApproaching(this);
4123 driveItemIt = myLFLinkLanes.erase(driveItemIt);
4124 }
4125 }
4126 break;
4127 }
4128 // Do the actual link-remapping for the item. And un/register approaching information on the corresponding links
4129 const MSLane* const target = *bestLaneIt;
4130 assert(!target->isInternal());
4131 newLink = nullptr;
4132 for (MSLink* const link : lane->getLinkCont()) {
4133 if (link->getLane() == target) {
4134 newLink = link;
4135 break;
4136 }
4137 }
4138
4139 if (newLink == driveItemIt->myLink) {
4140 // new continuation merged into previous - stop update
4141#ifdef DEBUG_ACTIONSTEPS
4142 if (DEBUG_COND) {
4143 std::cout << "Old and new continuation sequences merge at link\n"
4144 << "'" << newLink->getLaneBefore()->getID() << "'->'" << newLink->getViaLaneOrLane()->getID() << "'"
4145 << "\nNo update beyond merge required." << std::endl;
4146 }
4147#endif
4148 break;
4149 }
4150
4151#ifdef DEBUG_ACTIONSTEPS
4152 if (DEBUG_COND) {
4153 std::cout << "lane=" << lane->getID() << "\nUpdating link\n '" << driveItemIt->myLink->getLaneBefore()->getID() << "'->'" << driveItemIt->myLink->getViaLaneOrLane()->getID() << "'"
4154 << "==> " << "'" << newLink->getLaneBefore()->getID() << "'->'" << newLink->getViaLaneOrLane()->getID() << "'" << std::endl;
4155 }
4156#endif
4157 newLink->setApproaching(this, driveItemIt->myLink->getApproaching(this));
4158 driveItemIt->myLink->removeApproaching(this);
4159 driveItemIt->myLink = newLink;
4160 lane = newLink->getViaLaneOrLane();
4161 ++driveItemIt;
4162 if (!lane->isInternal()) {
4163 ++bestLaneIt;
4164 }
4165 }
4166#ifdef DEBUG_ACTIONSTEPS
4167 if (DEBUG_COND) {
4168 std::cout << "Updated drive items:" << std::endl;
4169 for (const auto& dpi : myLFLinkLanes) {
4170 std::cout
4171 << " vPass=" << dpi.myVLinkPass
4172 << " vWait=" << dpi.myVLinkWait
4173 << " linkLane=" << (dpi.myLink == 0 ? "NULL" : dpi.myLink->getViaLaneOrLane()->getID())
4174 << " request=" << dpi.mySetRequest
4175 << "\n";
4176 }
4177 }
4178#endif
4179}
4180
4181
4182void
4184 // To avoid casual blinking brake lights at high speeds due to dawdling of the
4185 // leading vehicle, we don't show brake lights when the deceleration could be caused
4186 // by frictional forces and air resistance (i.e. proportional to v^2, coefficient could be adapted further)
4187 double pseudoFriction = (0.05 + 0.005 * getSpeed()) * getSpeed();
4188 bool brakelightsOn = vNext < getSpeed() - ACCEL2SPEED(pseudoFriction);
4189
4190 if (vNext <= SUMO_const_haltingSpeed) {
4191 brakelightsOn = true;
4192 }
4193 if (brakelightsOn && !isStopped()) {
4195 } else {
4197 }
4198}
4199
4200
4201void
4206 } else {
4207 myWaitingTime = 0;
4209 if (hasInfluencer()) {
4211 }
4212 }
4213}
4214
4215
4216void
4218 // update time loss (depends on the updated edge)
4219 if (!isStopped()) {
4220 const double vmax = myLane->getVehicleMaxSpeed(this);
4221 if (vmax > 0) {
4222 myTimeLoss += TS * (vmax - vNext) / vmax;
4223 }
4224 }
4225}
4226
4227
4228double
4229MSVehicle::checkReversal(bool& canReverse, double speedThreshold, double seen) const {
4230 const bool stopOk = (myStops.empty() || myStops.front().edge != myCurrEdge
4231 || (myStops.front().getSpeed() > 0 && myState.myPos > myStops.front().pars.endPos - 2 * POSITION_EPS));
4232#ifdef DEBUG_REVERSE_BIDI
4233 if (DEBUG_COND) std::cout << SIMTIME << " checkReversal lane=" << myLane->getID()
4234 << " pos=" << myState.myPos
4235 << " speed=" << std::setprecision(6) << getPreviousSpeed() << std::setprecision(gPrecision)
4236 << " speedThreshold=" << speedThreshold
4237 << " seen=" << seen
4238 << " isRail=" << isRail()
4239 << " speedOk=" << (getPreviousSpeed() <= speedThreshold)
4240 << " posOK=" << (myState.myPos <= myLane->getLength())
4241 << " normal=" << !myLane->isInternal()
4242 << " routeOK=" << ((myCurrEdge + 1) != myRoute->end())
4243 << " bidi=" << (myLane->getEdge().getBidiEdge() == *(myCurrEdge + 1))
4244 << " stopOk=" << stopOk
4245 << "\n";
4246#endif
4247 if ((getVClass() & SVC_RAIL_CLASSES) != 0
4248 && getPreviousSpeed() <= speedThreshold
4249 && myState.myPos <= myLane->getLength()
4250 && !myLane->isInternal()
4251 && (myCurrEdge + 1) != myRoute->end()
4252 && myLane->getEdge().getBidiEdge() == *(myCurrEdge + 1)
4253 // ensure there are no further stops on this edge
4254 && stopOk
4255 ) {
4256 //if (isSelected()) std::cout << " check1 passed\n";
4257
4258 // ensure that the vehicle is fully on bidi edges that allow reversal
4259 const int neededFutureRoute = 1 + (int)(MSGlobals::gUsingInternalLanes
4260 ? myFurtherLanes.size()
4261 : ceil((double)myFurtherLanes.size() / 2.0));
4262 const int remainingRoute = int(myRoute->end() - myCurrEdge) - 1;
4263 if (remainingRoute < neededFutureRoute) {
4264#ifdef DEBUG_REVERSE_BIDI
4265 if (DEBUG_COND) {
4266 std::cout << " fail: remainingEdges=" << ((int)(myRoute->end() - myCurrEdge)) << " further=" << myFurtherLanes.size() << "\n";
4267 }
4268#endif
4269 return getMaxSpeed();
4270 }
4271 //if (isSelected()) std::cout << " check2 passed\n";
4272
4273 // ensure that the turn-around connection exists from the current edge to its bidi-edge
4274 const MSEdgeVector& succ = myLane->getEdge().getSuccessors();
4275 if (std::find(succ.begin(), succ.end(), myLane->getEdge().getBidiEdge()) == succ.end()) {
4276#ifdef DEBUG_REVERSE_BIDI
4277 if (DEBUG_COND) {
4278 std::cout << " noTurn (bidi=" << myLane->getEdge().getBidiEdge()->getID() << " succ=" << toString(succ) << "\n";
4279 }
4280#endif
4281 return getMaxSpeed();
4282 }
4283 //if (isSelected()) std::cout << " check3 passed\n";
4284
4285 // ensure that the vehicle front will not move past a stop on the bidi edge of the current edge
4286 if (!myStops.empty() && myStops.front().edge == (myCurrEdge + 1)) {
4287 const double stopPos = myStops.front().getEndPos(*this);
4288 const double brakeDist = getCarFollowModel().brakeGap(getSpeed(), getCarFollowModel().getMaxDecel(), 0);
4289 const double newPos = myLane->getLength() - (getBackPositionOnLane() + brakeDist);
4290 if (newPos > stopPos) {
4291#ifdef DEBUG_REVERSE_BIDI
4292 if (DEBUG_COND) {
4293 std::cout << " reversal would go past stop on " << myLane->getBidiLane()->getID() << "\n";
4294 }
4295#endif
4296 if (seen > MAX2(brakeDist, 1.0)) {
4297 return getMaxSpeed();
4298 } else {
4299#ifdef DEBUG_REVERSE_BIDI
4300 if (DEBUG_COND) {
4301 std::cout << " train is too long, skipping stop at " << stopPos << " cannot be avoided\n";
4302 }
4303#endif
4304 }
4305 }
4306 }
4307 //if (isSelected()) std::cout << " check4 passed\n";
4308
4309 // ensure that bidi-edges exist for all further edges
4310 // and that no stops will be skipped when reversing
4311 // and that the train will not be on top of a red rail signal after reversal
4312 const MSLane* bidi = myLane->getBidiLane();
4313 int view = 2;
4314 for (MSLane* further : myFurtherLanes) {
4315 if (!further->getEdge().isInternal()) {
4316 if (further->getEdge().getBidiEdge() != *(myCurrEdge + view)) {
4317#ifdef DEBUG_REVERSE_BIDI
4318 if (DEBUG_COND) {
4319 std::cout << " noBidi view=" << view << " further=" << further->getID() << " furtherBidi=" << Named::getIDSecure(further->getEdge().getBidiEdge()) << " future=" << (*(myCurrEdge + view))->getID() << "\n";
4320 }
4321#endif
4322 return getMaxSpeed();
4323 }
4324 const MSLane* nextBidi = further->getBidiLane();
4325 const MSLink* toNext = bidi->getLinkTo(nextBidi);
4326 if (toNext == nullptr) {
4327 // can only happen if the route is invalid
4328 return getMaxSpeed();
4329 }
4330 if (toNext->haveRed()) {
4331#ifdef DEBUG_REVERSE_BIDI
4332 if (DEBUG_COND) {
4333 std::cout << " do not reverse on a red signal\n";
4334 }
4335#endif
4336 return getMaxSpeed();
4337 }
4338 bidi = nextBidi;
4339 if (!myStops.empty() && myStops.front().edge == (myCurrEdge + view)) {
4340 const double brakeDist = getCarFollowModel().brakeGap(getSpeed(), getCarFollowModel().getMaxDecel(), 0);
4341 const double stopPos = myStops.front().getEndPos(*this);
4342 const double newPos = further->getLength() - (getBackPositionOnLane(further) + brakeDist);
4343 if (newPos > stopPos) {
4344#ifdef DEBUG_REVERSE_BIDI
4345 if (DEBUG_COND) {
4346 std::cout << " reversal would go past stop on further-opposite lane " << further->getBidiLane()->getID() << "\n";
4347 }
4348#endif
4349 if (seen > MAX2(brakeDist, 1.0)) {
4350 canReverse = false;
4351 return getMaxSpeed();
4352 } else {
4353#ifdef DEBUG_REVERSE_BIDI
4354 if (DEBUG_COND) {
4355 std::cout << " train is too long, skipping stop at " << stopPos << " cannot be avoided\n";
4356 }
4357#endif
4358 }
4359 }
4360 }
4361 view++;
4362 }
4363 }
4364 // reverse as soon as comfortably possible
4365 const double vMinComfortable = getCarFollowModel().minNextSpeed(getSpeed(), this);
4366#ifdef DEBUG_REVERSE_BIDI
4367 if (DEBUG_COND) {
4368 std::cout << SIMTIME << " seen=" << seen << " vReverseOK=" << vMinComfortable << "\n";
4369 }
4370#endif
4371 canReverse = true;
4372 return vMinComfortable;
4373 }
4374 return getMaxSpeed();
4375}
4376
4377
4378void
4379MSVehicle::processLaneAdvances(std::vector<MSLane*>& passedLanes, std::string& emergencyReason) {
4380 for (std::vector<MSLane*>::reverse_iterator i = myFurtherLanes.rbegin(); i != myFurtherLanes.rend(); ++i) {
4381 passedLanes.push_back(*i);
4382 }
4383 if (passedLanes.size() == 0 || passedLanes.back() != myLane) {
4384 passedLanes.push_back(myLane);
4385 }
4386 // let trains reverse direction
4387 bool reverseTrain = false;
4388 checkReversal(reverseTrain);
4389 if (reverseTrain) {
4390 // Train is 'reversing' so toggle the logical state
4392 // add some slack to ensure that the back of train does appear looped
4393 myState.myPos += 2 * (myLane->getLength() - myState.myPos) + myType->getLength() + NUMERICAL_EPS;
4394 myState.mySpeed = 0;
4395#ifdef DEBUG_REVERSE_BIDI
4396 if (DEBUG_COND) {
4397 std::cout << SIMTIME << " reversing train=" << getID() << " newPos=" << myState.myPos << "\n";
4398 }
4399#endif
4400 }
4401 // move on lane(s)
4402 if (myState.myPos > myLane->getLength()) {
4403 // The vehicle has moved at least to the next lane (maybe it passed even more than one)
4404 if (myCurrEdge != myRoute->end() - 1) {
4405 MSLane* approachedLane = myLane;
4406 // move the vehicle forward
4408 while (myNextDriveItem != myLFLinkLanes.end() && approachedLane != nullptr && myState.myPos > approachedLane->getLength()) {
4409 const MSLink* link = myNextDriveItem->myLink;
4410 const double linkDist = myNextDriveItem->myDistance;
4412 // check whether the vehicle was allowed to enter lane
4413 // otherwise it is decelerated and we do not need to test for it's
4414 // approach on the following lanes when a lane changing is performed
4415 // proceed to the next lane
4416 if (approachedLane->mustCheckJunctionCollisions()) {
4417 // vehicle moves past approachedLane within a single step, collision checking must still be done
4419 }
4420 if (link != nullptr) {
4421 if ((getVClass() & SVC_RAIL_CLASSES) != 0
4422 && !myLane->isInternal()
4423 && myLane->getBidiLane() != nullptr
4424 && link->getLane()->getBidiLane() == myLane
4425 && !reverseTrain) {
4426 emergencyReason = " because it must reverse direction";
4427 approachedLane = nullptr;
4428 break;
4429 }
4430 if ((getVClass() & SVC_RAIL_CLASSES) != 0
4431 && myState.myPos < myLane->getLength() + NUMERICAL_EPS
4432 && hasStops() && getNextStop().edge == myCurrEdge) {
4433 // avoid skipping stop due to numerical instability
4434 // this is a special case for rail vehicles because they
4435 // continue myLFLinkLanes past stops
4436 approachedLane = myLane;
4438 break;
4439 }
4440 approachedLane = link->getViaLaneOrLane();
4442 bool beyondStopLine = linkDist < link->getLaneBefore()->getVehicleStopOffset(this);
4443 if (link->haveRed() && !ignoreRed(link, false) && !beyondStopLine && !reverseTrain) {
4444 emergencyReason = " because of a red traffic light";
4445 break;
4446 }
4447 }
4448 if (reverseTrain && approachedLane->isInternal()) {
4449 // avoid getting stuck on a slow turn-around internal lane
4450 myState.myPos += approachedLane->getLength();
4451 }
4452 } else if (myState.myPos < myLane->getLength() + NUMERICAL_EPS) {
4453 // avoid warning due to numerical instability
4454 approachedLane = myLane;
4456 } else if (reverseTrain) {
4457 approachedLane = (*(myCurrEdge + 1))->getLanes()[0];
4458 link = myLane->getLinkTo(approachedLane);
4459 assert(link != 0);
4460 while (link->getViaLane() != nullptr) {
4461 link = link->getViaLane()->getLinkCont()[0];
4462 }
4464 } else {
4465 emergencyReason = " because there is no connection to the next edge";
4466 approachedLane = nullptr;
4467 break;
4468 }
4469 if (approachedLane != myLane && approachedLane != nullptr) {
4472 assert(myState.myPos > 0);
4473 enterLaneAtMove(approachedLane);
4474 if (link->isEntryLink()) {
4477 myHaveStoppedFor = nullptr;
4478 }
4479 if (link->isConflictEntryLink()) {
4481 // renew yielded request
4483 }
4484 if (link->isExitLink()) {
4485 // passed junction, reset for approaching the next one
4489 }
4490#ifdef DEBUG_PLAN_MOVE_LEADERINFO
4491 if (DEBUG_COND) {
4492 std::cout << "Update junctionTimes link=" << link->getViaLaneOrLane()->getID()
4493 << " entry=" << link->isEntryLink() << " conflict=" << link->isConflictEntryLink() << " exit=" << link->isExitLink()
4494 << " ET=" << myJunctionEntryTime
4495 << " ETN=" << myJunctionEntryTimeNeverYield
4496 << " CET=" << myJunctionConflictEntryTime
4497 << "\n";
4498 }
4499#endif
4500 if (hasArrivedInternal()) {
4501 break;
4502 }
4505 // abort lane change
4506 WRITE_WARNING("Vehicle '" + getID() + "' could not finish continuous lane change (turn lane) time=" +
4507 time2string(MSNet::getInstance()->getCurrentTimeStep()) + ".");
4509 }
4510 }
4511 if (approachedLane->getEdge().isVaporizing()) {
4513 break;
4514 }
4515 passedLanes.push_back(approachedLane);
4516 }
4517 }
4518 // NOTE: Passed drive items will be erased in the next simstep's planMove()
4519
4520#ifdef DEBUG_ACTIONSTEPS
4521 if (DEBUG_COND && myNextDriveItem != myLFLinkLanes.begin()) {
4522 std::cout << "Updated drive items:" << std::endl;
4523 for (DriveItemVector::iterator i = myLFLinkLanes.begin(); i != myLFLinkLanes.end(); ++i) {
4524 std::cout
4525 << " vPass=" << (*i).myVLinkPass
4526 << " vWait=" << (*i).myVLinkWait
4527 << " linkLane=" << ((*i).myLink == 0 ? "NULL" : (*i).myLink->getViaLaneOrLane()->getID())
4528 << " request=" << (*i).mySetRequest
4529 << "\n";
4530 }
4531 }
4532#endif
4533 } else if (!hasArrivedInternal() && myState.myPos < myLane->getLength() + NUMERICAL_EPS) {
4534 // avoid warning due to numerical instability when stopping at the end of the route
4536 }
4537
4538 }
4539}
4540
4541
4542
4543bool
4545#ifdef DEBUG_EXEC_MOVE
4546 if (DEBUG_COND) {
4547 std::cout << "\nEXECUTE_MOVE\n"
4548 << SIMTIME
4549 << " veh=" << getID()
4550 << " speed=" << getSpeed() // toString(getSpeed(), 24)
4551 << std::endl;
4552 }
4553#endif
4554
4555
4556 // Maximum safe velocity
4557 double vSafe = std::numeric_limits<double>::max();
4558 // Minimum safe velocity (lower bound).
4559 double vSafeMin = -std::numeric_limits<double>::max();
4560 // The distance to a link, which should either be crossed this step
4561 // or in front of which we need to stop.
4562 double vSafeMinDist = 0;
4563
4564 if (myActionStep) {
4565 // Actuate control (i.e. choose bounds for safe speed in current simstep (euler), resp. after current sim step (ballistic))
4566 processLinkApproaches(vSafe, vSafeMin, vSafeMinDist);
4567#ifdef DEBUG_ACTIONSTEPS
4568 if (DEBUG_COND) {
4569 std::cout << SIMTIME << " vehicle '" << getID() << "'\n"
4570 " vsafe from processLinkApproaches(): vsafe " << vSafe << std::endl;
4571 }
4572#endif
4573 } else {
4574 // Continue with current acceleration
4575 vSafe = getSpeed() + ACCEL2SPEED(myAcceleration);
4576#ifdef DEBUG_ACTIONSTEPS
4577 if (DEBUG_COND) {
4578 std::cout << SIMTIME << " vehicle '" << getID() << "' skips processLinkApproaches()\n"
4579 " continues with constant accel " << myAcceleration << "...\n"
4580 << "speed: " << getSpeed() << " -> " << vSafe << std::endl;
4581 }
4582#endif
4583 }
4584
4585
4586//#ifdef DEBUG_EXEC_MOVE
4587// if (DEBUG_COND) {
4588// std::cout << "vSafe = " << toString(vSafe,12) << "\n" << std::endl;
4589// }
4590//#endif
4591
4592 // Determine vNext = speed after current sim step (ballistic), resp. in current simstep (euler)
4593 // Call to finalizeSpeed applies speed reduction due to dawdling / lane changing but ensures minimum safe speed
4594 double vNext = vSafe;
4595 const double rawAccel = SPEED2ACCEL(MAX2(vNext, 0.) - myState.mySpeed);
4596 if (vNext <= SUMO_const_haltingSpeed * TS && myWaitingTime > MSGlobals::gStartupWaitThreshold && rawAccel <= accelThresholdForWaiting() && myActionStep) {
4598 } else if (isStopped()) {
4599 // do not apply startupDelay for waypoints
4600 if (getCarFollowModel().startupDelayStopped() && getNextStop().pars.speed <= 0) {
4602 } else {
4603 // do not apply startupDelay but signal that a stop has taken place
4605 }
4606 } else {
4607 // identify potential startup (before other effects reduce the speed again)
4609 }
4610 if (myActionStep) {
4611 vNext = getCarFollowModel().finalizeSpeed(this, vSafe);
4612 if (vNext > 0) {
4613 vNext = MAX2(vNext, vSafeMin);
4614 }
4615 }
4616 // (Leo) to avoid tiny oscillations (< 1e-10) of vNext in a standing vehicle column (observed for ballistic update), we cap off vNext
4617 // (We assure to do this only for vNext<<NUMERICAL_EPS since otherwise this would nullify the workaround for #2995
4618 // (Jakob) We also need to make sure to reach a stop at the start of the next edge
4619 if (fabs(vNext) < NUMERICAL_EPS_SPEED && (myStopDist > POSITION_EPS || (hasStops() && myCurrEdge == getNextStop().edge))) {
4620 vNext = 0.;
4621 }
4622#ifdef DEBUG_EXEC_MOVE
4623 if (DEBUG_COND) {
4624 std::cout << SIMTIME << " finalizeSpeed vSafe=" << vSafe << " vSafeMin=" << (vSafeMin == -std::numeric_limits<double>::max() ? "-Inf" : toString(vSafeMin))
4625 << " vNext=" << vNext << " (i.e. accel=" << SPEED2ACCEL(vNext - getSpeed()) << ")" << std::endl;
4626 }
4627#endif
4628
4629 // vNext may be higher than vSafe without implying a bug:
4630 // - when approaching a green light that suddenly switches to yellow
4631 // - when using unregulated junctions
4632 // - when using tau < step-size
4633 // - when using unsafe car following models
4634 // - when using TraCI and some speedMode / laneChangeMode settings
4635 //if (vNext > vSafe + NUMERICAL_EPS) {
4636 // WRITE_WARNING("vehicle '" + getID() + "' cannot brake hard enough to reach safe speed "
4637 // + toString(vSafe, 4) + ", moving at " + toString(vNext, 4) + " instead. time="
4638 // + time2string(MSNet::getInstance()->getCurrentTimeStep()) + ".");
4639 //}
4640
4642 vNext = MAX2(vNext, 0.);
4643 } else {
4644 // (Leo) Ballistic: negative vNext can be used to indicate a stop within next step.
4645 }
4646
4647 // Check for speed advices from the traci client
4648 vNext = processTraCISpeedControl(vSafe, vNext);
4649
4650 // the acceleration of a vehicle equipped with the elecHybrid device is restricted by the maximal power of the electric drive as well
4651 MSDevice_ElecHybrid* elecHybridOfVehicle = dynamic_cast<MSDevice_ElecHybrid*>(getDevice(typeid(MSDevice_ElecHybrid)));
4652 if (elecHybridOfVehicle != nullptr) {
4653 // this is the consumption given by the car following model-computed acceleration
4654 elecHybridOfVehicle->setConsum(elecHybridOfVehicle->consumption(*this, (vNext - this->getSpeed()) / TS, vNext));
4655 // but the maximum power of the electric motor may be lower
4656 // it needs to be converted from [W] to [Wh/s] (3600s / 1h) so that TS can be taken into account
4657 double maxPower = getEmissionParameters()->getDoubleOptional(SUMO_ATTR_MAXIMUMPOWER, 100000.) / 3600;
4658 if (elecHybridOfVehicle->getConsum() / TS > maxPower) {
4659 // no, we cannot accelerate that fast, recompute the maximum possible acceleration
4660 double accel = elecHybridOfVehicle->acceleration(*this, maxPower, this->getSpeed());
4661 // and update the speed of the vehicle
4662 vNext = MIN2(vNext, this->getSpeed() + accel * TS);
4663 vNext = MAX2(vNext, 0.);
4664 // and set the vehicle consumption to reflect this
4665 elecHybridOfVehicle->setConsum(elecHybridOfVehicle->consumption(*this, (vNext - this->getSpeed()) / TS, vNext));
4666 }
4667 }
4668
4669 setBrakingSignals(vNext);
4670
4671 // update position and speed
4672 int oldLaneOffset = myLane->getEdge().getNumLanes() - myLane->getIndex();
4673 const MSLane* oldLaneMaybeOpposite = myLane;
4675 // transform to the forward-direction lane, move and then transform back
4678 }
4679 updateState(vNext);
4680 updateWaitingTime(vNext);
4681
4682 // Lanes, which the vehicle touched at some moment of the executed simstep
4683 std::vector<MSLane*> passedLanes;
4684 // remember previous lane (myLane is updated in processLaneAdvances)
4685 const MSLane* oldLane = myLane;
4686 // Reason for a possible emergency stop
4687 std::string emergencyReason;
4688 processLaneAdvances(passedLanes, emergencyReason);
4689
4690 updateTimeLoss(vNext);
4692
4694 if (myState.myPos > myLane->getLength()) {
4695 if (emergencyReason == "") {
4696 emergencyReason = TL(" for unknown reasons");
4697 }
4698 WRITE_WARNINGF(TL("Vehicle '%' performs emergency stop at the end of lane '%'% (decel=%, offset=%), time=%."),
4699 getID(), myLane->getID(), emergencyReason, myAcceleration - myState.mySpeed,
4704 myState.mySpeed = 0;
4705 myAcceleration = 0;
4706 }
4707 const MSLane* oldBackLane = getBackLane();
4709 passedLanes.clear(); // ignore back occupation
4710 }
4711#ifdef DEBUG_ACTIONSTEPS
4712 if (DEBUG_COND) {
4713 std::cout << SIMTIME << " veh '" << getID() << "' updates further lanes." << std::endl;
4714 }
4715#endif
4717 if (passedLanes.size() > 1 && isRail()) {
4718 for (auto pi = passedLanes.rbegin(); pi != passedLanes.rend(); ++pi) {
4719 MSLane* pLane = *pi;
4720 if (pLane != myLane && std::find(myFurtherLanes.begin(), myFurtherLanes.end(), pLane) == myFurtherLanes.end()) {
4722 }
4723 }
4724 }
4725 // bestLanes need to be updated before lane changing starts. NOTE: This call is also a presumption for updateDriveItems()
4727 if (myLane != oldLane || oldBackLane != getBackLane()) {
4728 if (myLaneChangeModel->getShadowLane() != nullptr || getLateralOverlap() > POSITION_EPS) {
4729 // shadow lane must be updated if the front or back lane changed
4730 // either if we already have a shadowLane or if there is lateral overlap
4732 }
4734 // The vehicles target lane must be also be updated if the front or back lane changed
4736 }
4737 }
4738 setBlinkerInformation(); // needs updated bestLanes
4739 //change the blue light only for emergency vehicles SUMOVehicleClass
4741 setEmergencyBlueLight(MSNet::getInstance()->getCurrentTimeStep());
4742 }
4743 // must be done before angle computation
4744 // State needs to be reset for all vehicles before the next call to MSEdgeControl::changeLanes
4745 if (myActionStep) {
4746 // check (#2681): Can this be skipped?
4748 } else {
4750#ifdef DEBUG_ACTIONSTEPS
4751 if (DEBUG_COND) {
4752 std::cout << SIMTIME << " veh '" << getID() << "' skips LCM->prepareStep()." << std::endl;
4753 }
4754#endif
4755 }
4758 }
4759
4760#ifdef DEBUG_EXEC_MOVE
4761 if (DEBUG_COND) {
4762 std::cout << SIMTIME << " executeMove finished veh=" << getID() << " lane=" << myLane->getID() << " myPos=" << getPositionOnLane() << " myPosLat=" << getLateralPositionOnLane() << "\n";
4763 gDebugFlag1 = false; // See MSLink_DEBUG_OPENED
4764 }
4765#endif
4767 // transform back to the opposite-direction lane
4768 MSLane* newOpposite = nullptr;
4769 const MSEdge* newOppositeEdge = myLane->getEdge().getOppositeEdge();
4770 if (newOppositeEdge != nullptr) {
4771 newOpposite = newOppositeEdge->getLanes()[newOppositeEdge->getNumLanes() - MAX2(1, oldLaneOffset)];
4772#ifdef DEBUG_EXEC_MOVE
4773 if (DEBUG_COND) {
4774 std::cout << SIMTIME << " newOppositeEdge=" << newOppositeEdge->getID() << " oldLaneOffset=" << oldLaneOffset << " leftMost=" << newOppositeEdge->getNumLanes() - 1 << " newOpposite=" << Named::getIDSecure(newOpposite) << "\n";
4775 }
4776#endif
4777 }
4778 if (newOpposite == nullptr) {
4780 // unusual overtaking at junctions is ok for emergency vehicles
4781 WRITE_WARNINGF(TL("Unexpected end of opposite lane for vehicle '%' at lane '%', time=%."),
4783 }
4785 if (myState.myPos < getLength()) {
4786 // further lanes is always cleared during opposite driving
4787 MSLane* oldOpposite = oldLane->getOpposite();
4788 if (oldOpposite != nullptr) {
4789 myFurtherLanes.push_back(oldOpposite);
4790 myFurtherLanesPosLat.push_back(0);
4791 // small value since the lane is going in the other direction
4794 } else {
4795 SOFT_ASSERT(false);
4796 }
4797 }
4798 } else {
4800 myLane = newOpposite;
4801 oldLane = oldLaneMaybeOpposite;
4802 //std::cout << SIMTIME << " updated myLane=" << Named::getIDSecure(myLane) << " oldLane=" << oldLane->getID() << "\n";
4805 }
4806 }
4808 // Return whether the vehicle did move to another lane
4809 return myLane != oldLane;
4810}
4811
4812void
4814 myState.myPos += dist;
4817
4818 const std::vector<const MSLane*> lanes = getUpcomingLanesUntil(dist);
4820 for (int i = 0; i < (int)lanes.size(); i++) {
4821 MSLink* link = nullptr;
4822 if (i + 1 < (int)lanes.size()) {
4823 const MSLane* const to = lanes[i + 1];
4824 const bool internal = to->isInternal();
4825 for (MSLink* const l : lanes[i]->getLinkCont()) {
4826 if ((internal && l->getViaLane() == to) || (!internal && l->getLane() == to)) {
4827 link = l;
4828 break;
4829 }
4830 }
4831 }
4832 myLFLinkLanes.emplace_back(link, getSpeed(), getSpeed(), true, t, getSpeed(), 0, 0, dist);
4833 }
4834 // minimum execute move:
4835 std::vector<MSLane*> passedLanes;
4836 // Reason for a possible emergency stop
4837 if (lanes.size() > 1) {
4839 }
4840 std::string emergencyReason;
4841 processLaneAdvances(passedLanes, emergencyReason);
4842#ifdef DEBUG_EXTRAPOLATE_DEPARTPOS
4843 if (DEBUG_COND) {
4844 std::cout << SIMTIME << " veh=" << getID() << " executeFractionalMove dist=" << dist
4845 << " passedLanes=" << toString(passedLanes) << " lanes=" << toString(lanes)
4846 << " finalPos=" << myState.myPos
4847 << " speed=" << getSpeed()
4848 << " myFurtherLanes=" << toString(myFurtherLanes)
4849 << "\n";
4850 }
4851#endif
4853 if (lanes.size() > 1) {
4854 for (std::vector<MSLane*>::iterator i = myFurtherLanes.begin(); i != myFurtherLanes.end(); ++i) {
4855#ifdef DEBUG_FURTHER
4856 if (DEBUG_COND) {
4857 std::cout << SIMTIME << " leaveLane \n";
4858 }
4859#endif
4860 (*i)->resetPartialOccupation(this);
4861 }
4862 myFurtherLanes.clear();
4863 myFurtherLanesPosLat.clear();
4865 }
4866}
4867
4868
4869void
4870MSVehicle::updateState(double vNext, bool parking) {
4871 // update position and speed
4872 double deltaPos; // positional change
4874 // euler
4875 deltaPos = SPEED2DIST(vNext);
4876 } else {
4877 // ballistic
4878 deltaPos = getDeltaPos(SPEED2ACCEL(vNext - myState.mySpeed));
4879 }
4880
4881 // the *mean* acceleration during the next step (probably most appropriate for emission calculation)
4882 // NOTE: for the ballistic update vNext may be negative, indicating a stop.
4884
4885#ifdef DEBUG_EXEC_MOVE
4886 if (DEBUG_COND) {
4887 std::cout << SIMTIME << " updateState() for veh '" << getID() << "': deltaPos=" << deltaPos
4888 << " pos=" << myState.myPos << " newPos=" << myState.myPos + deltaPos << std::endl;
4889 }
4890#endif
4891 double decelPlus = -myAcceleration - getCarFollowModel().getMaxDecel() - NUMERICAL_EPS;
4892 if (decelPlus > 0) {
4893 const double previousAcceleration = SPEED2ACCEL(myState.mySpeed - myState.myPreviousSpeed);
4894 if (myAcceleration + NUMERICAL_EPS < previousAcceleration) {
4895 // vehicle brakes beyond wished maximum deceleration (only warn at the start of the braking manoeuvre)
4896 decelPlus += 2 * NUMERICAL_EPS;
4897 const double emergencyFraction = decelPlus / MAX2(NUMERICAL_EPS, getCarFollowModel().getEmergencyDecel() - getCarFollowModel().getMaxDecel());
4898 if (emergencyFraction >= MSGlobals::gEmergencyDecelWarningThreshold) {
4899 WRITE_WARNINGF(TL("Vehicle '%' performs emergency braking on lane '%' with decel=%, wished=%, severity=%, time=%."),
4900 //+ " decelPlus=" + toString(decelPlus)
4901 //+ " prevAccel=" + toString(previousAcceleration)
4902 //+ " reserve=" + toString(MAX2(NUMERICAL_EPS, getCarFollowModel().getEmergencyDecel() - getCarFollowModel().getMaxDecel()))
4903 getID(), myLane->getID(), -myAcceleration, getCarFollowModel().getMaxDecel(), emergencyFraction, time2string(SIMSTEP));
4905 }
4906 }
4907 }
4908
4910 myState.mySpeed = MAX2(vNext, 0.);
4911
4912 if (isRemoteControlled()) {
4913 deltaPos = myInfluencer->implicitDeltaPosRemote(this);
4914 }
4915
4916 myState.myPos += deltaPos;
4917 myState.myLastCoveredDist = deltaPos;
4918 myNextTurn.first -= deltaPos;
4919
4920 if (!parking) {
4922 }
4923}
4924
4925void
4927 updateState(0, true);
4928 // deboard while parked
4929 if (myPersonDevice != nullptr) {
4931 }
4932 if (myContainerDevice != nullptr) {
4934 }
4935 for (MSVehicleDevice* const dev : myDevices) {
4936 dev->notifyParking();
4937 }
4938}
4939
4940
4941void
4947
4948
4949const MSLane*
4951 if (myFurtherLanes.size() > 0) {
4952 return myFurtherLanes.back();
4953 } else {
4954 return myLane;
4955 }
4956}
4957
4958
4959double
4960MSVehicle::updateFurtherLanes(std::vector<MSLane*>& furtherLanes, std::vector<double>& furtherLanesPosLat,
4961 const std::vector<MSLane*>& passedLanes) {
4962#ifdef DEBUG_SETFURTHER
4963 if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID()
4964 << " updateFurtherLanes oldFurther=" << toString(furtherLanes)
4965 << " oldFurtherPosLat=" << toString(furtherLanesPosLat)
4966 << " passed=" << toString(passedLanes)
4967 << "\n";
4968#endif
4969 for (MSLane* further : furtherLanes) {
4970 further->resetPartialOccupation(this);
4971 if (further->getBidiLane() != nullptr
4972 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
4973 further->getBidiLane()->resetPartialOccupation(this);
4974 }
4975 }
4976
4977 std::vector<MSLane*> newFurther;
4978 std::vector<double> newFurtherPosLat;
4979 double backPosOnPreviousLane = myState.myPos - getLength();
4980 bool widthShift = myFurtherLanesPosLat.size() > myFurtherLanes.size();
4981 if (passedLanes.size() > 1) {
4982 // There are candidates for further lanes. (passedLanes[-1] is the current lane, or current shadow lane in context of updateShadowLanes())
4983 std::vector<MSLane*>::const_iterator fi = furtherLanes.begin();
4984 std::vector<double>::const_iterator fpi = furtherLanesPosLat.begin();
4985 for (auto pi = passedLanes.rbegin() + 1; pi != passedLanes.rend() && backPosOnPreviousLane < 0; ++pi) {
4986 // As long as vehicle back reaches into passed lane, add it to the further lanes
4987 MSLane* further = *pi;
4988 newFurther.push_back(further);
4989 backPosOnPreviousLane += further->setPartialOccupation(this);
4990 if (further->getBidiLane() != nullptr
4991 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
4992 further->getBidiLane()->setPartialOccupation(this);
4993 }
4994 if (fi != furtherLanes.end() && further == *fi) {
4995 // Lateral position on this lane is already known. Assume constant and use old value.
4996 newFurtherPosLat.push_back(*fpi);
4997 ++fi;
4998 ++fpi;
4999 } else {
5000 // The lane *pi was not in furtherLanes before.
5001 // If it is downstream, we assume as lateral position the current position
5002 // If it is a new lane upstream (can appear as shadow further in case of LC-maneuvering, e.g.)
5003 // we assign the last known lateral position.
5004 if (newFurtherPosLat.size() == 0) {
5005 if (widthShift) {
5006 newFurtherPosLat.push_back(myFurtherLanesPosLat.back());
5007 } else {
5008 newFurtherPosLat.push_back(myState.myPosLat);
5009 }
5010 } else {
5011 newFurtherPosLat.push_back(newFurtherPosLat.back());
5012 }
5013 }
5014#ifdef DEBUG_SETFURTHER
5015 if (DEBUG_COND) {
5016 std::cout << SIMTIME << " updateFurtherLanes \n"
5017 << " further lane '" << further->getID() << "' backPosOnPreviousLane=" << backPosOnPreviousLane
5018 << std::endl;
5019 }
5020#endif
5021 }
5022 furtherLanes = newFurther;
5023 furtherLanesPosLat = newFurtherPosLat;
5024 } else {
5025 furtherLanes.clear();
5026 furtherLanesPosLat.clear();
5027 }
5028#ifdef DEBUG_SETFURTHER
5029 if (DEBUG_COND) std::cout
5030 << " newFurther=" << toString(furtherLanes)
5031 << " newFurtherPosLat=" << toString(furtherLanesPosLat)
5032 << " newBackPos=" << backPosOnPreviousLane
5033 << "\n";
5034#endif
5035 return backPosOnPreviousLane;
5036}
5037
5038
5039double
5040MSVehicle::getBackPositionOnLane(const MSLane* lane, bool calledByGetPosition) const {
5041#ifdef DEBUG_FURTHER
5042 if (DEBUG_COND) {
5043 std::cout << SIMTIME
5044 << " getBackPositionOnLane veh=" << getID()
5045 << " lane=" << Named::getIDSecure(lane)
5046 << " cbgP=" << calledByGetPosition
5047 << " pos=" << myState.myPos
5048 << " backPos=" << myState.myBackPos
5049 << " myLane=" << myLane->getID()
5050 << " myLaneBidi=" << Named::getIDSecure(myLane->getBidiLane())
5051 << " further=" << toString(myFurtherLanes)
5052 << " furtherPosLat=" << toString(myFurtherLanesPosLat)
5053 << "\n shadowLane=" << Named::getIDSecure(myLaneChangeModel->getShadowLane())
5054 << " shadowFurther=" << toString(myLaneChangeModel->getShadowFurtherLanes())
5055 << " shadowFurtherPosLat=" << toString(myLaneChangeModel->getShadowFurtherLanesPosLat())
5056 << "\n targetLane=" << Named::getIDSecure(myLaneChangeModel->getTargetLane())
5057 << " furtherTargets=" << toString(myLaneChangeModel->getFurtherTargetLanes())
5058 << std::endl;
5059 }
5060#endif
5061 if (lane == myLane
5062 || lane == myLaneChangeModel->getShadowLane()
5063 || lane == myLaneChangeModel->getTargetLane()) {
5065 if (lane == myLaneChangeModel->getShadowLane()) {
5066 return lane->getLength() - myState.myPos - myType->getLength();
5067 } else {
5068 return myState.myPos + (calledByGetPosition ? -1 : 1) * myType->getLength();
5069 }
5070 } else if (&lane->getEdge() != &myLane->getEdge()) {
5071 return lane->getLength() - myState.myPos + (calledByGetPosition ? -1 : 1) * myType->getLength();
5072 } else {
5073 // account for parallel lanes of different lengths in the most conservative manner (i.e. while turning)
5074 return myState.myPos - myType->getLength() + MIN2(0.0, lane->getLength() - myLane->getLength());
5075 }
5076 } else if (lane == myLane->getBidiLane()) {
5077 return lane->getLength() - myState.myPos + myType->getLength() * (calledByGetPosition ? -1 : 1);
5078 } else if (myFurtherLanes.size() > 0 && lane == myFurtherLanes.back()) {
5079 return myState.myBackPos;
5080 } else if ((myLaneChangeModel->getShadowFurtherLanes().size() > 0 && lane == myLaneChangeModel->getShadowFurtherLanes().back())
5081 || (myLaneChangeModel->getFurtherTargetLanes().size() > 0 && lane == myLaneChangeModel->getFurtherTargetLanes().back())) {
5082 assert(myFurtherLanes.size() > 0);
5083 if (lane->getLength() == myFurtherLanes.back()->getLength()) {
5084 return myState.myBackPos;
5085 } else {
5086 // interpolate
5087 //if (DEBUG_COND) {
5088 //if (myFurtherLanes.back()->getLength() != lane->getLength()) {
5089 // std::cout << SIMTIME << " veh=" << getID() << " lane=" << lane->getID() << " further=" << myFurtherLanes.back()->getID()
5090 // << " len=" << lane->getLength() << " fLen=" << myFurtherLanes.back()->getLength()
5091 // << " backPos=" << myState.myBackPos << " result=" << myState.myBackPos / myFurtherLanes.back()->getLength() * lane->getLength() << "\n";
5092 //}
5093 return myState.myBackPos / myFurtherLanes.back()->getLength() * lane->getLength();
5094 }
5095 } else {
5096 //if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID() << " myFurtherLanes=" << toString(myFurtherLanes) << "\n";
5097 double leftLength = myType->getLength() - myState.myPos;
5098
5099 std::vector<MSLane*>::const_iterator i = myFurtherLanes.begin();
5100 while (leftLength > 0 && i != myFurtherLanes.end()) {
5101 leftLength -= (*i)->getLength();
5102 //if (DEBUG_COND) std::cout << " comparing i=" << (*i)->getID() << " lane=" << lane->getID() << "\n";
5103 if (*i == lane) {
5104 return -leftLength;
5105 } else if (*i == lane->getBidiLane()) {
5106 return lane->getLength() + leftLength - (calledByGetPosition ? 2 * myType->getLength() : 0);
5107 }
5108 ++i;
5109 }
5110 //if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID() << " myShadowFurtherLanes=" << toString(myLaneChangeModel->getShadowFurtherLanes()) << "\n";
5111 leftLength = myType->getLength() - myState.myPos;
5113 while (leftLength > 0 && i != myLaneChangeModel->getShadowFurtherLanes().end()) {
5114 leftLength -= (*i)->getLength();
5115 //if (DEBUG_COND) std::cout << " comparing i=" << (*i)->getID() << " lane=" << lane->getID() << "\n";
5116 if (*i == lane) {
5117 return -leftLength;
5118 }
5119 ++i;
5120 }
5121 //if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID() << " myFurtherTargetLanes=" << toString(myLaneChangeModel->getFurtherTargetLanes()) << "\n";
5122 leftLength = myType->getLength() - myState.myPos;
5123 i = getFurtherLanes().begin();
5124 const std::vector<MSLane*> furtherTargetLanes = myLaneChangeModel->getFurtherTargetLanes();
5125 auto j = furtherTargetLanes.begin();
5126 while (leftLength > 0 && j != furtherTargetLanes.end()) {
5127 leftLength -= (*i)->getLength();
5128 // if (DEBUG_COND) std::cout << " comparing i=" << (*i)->getID() << " lane=" << lane->getID() << "\n";
5129 if (*j == lane) {
5130 return -leftLength;
5131 }
5132 ++i;
5133 ++j;
5134 }
5135 WRITE_WARNING("Request backPos of vehicle '" + getID() + "' for invalid lane '" + Named::getIDSecure(lane)
5136 + "' time=" + time2string(MSNet::getInstance()->getCurrentTimeStep()) + ".")
5137 SOFT_ASSERT(false);
5138 return myState.myBackPos;
5139 }
5140}
5141
5142
5143double
5145 return getBackPositionOnLane(lane, true) + myType->getLength();
5146}
5147
5148
5149bool
5151 return lane == myLane || lane == myLaneChangeModel->getShadowLane() || lane == myLane->getBidiLane();
5152}
5153
5154
5155void
5156MSVehicle::checkRewindLinkLanes(const double lengthsInFront, DriveItemVector& lfLinks) const {
5158 double seenSpace = -lengthsInFront;
5159#ifdef DEBUG_CHECKREWINDLINKLANES
5160 if (DEBUG_COND) {
5161 std::cout << "\nCHECK_REWIND_LINKLANES\n" << " veh=" << getID() << " lengthsInFront=" << lengthsInFront << "\n";
5162 };
5163#endif
5164 bool foundStopped = false;
5165 // compute available space until a stopped vehicle is found
5166 // this is the sum of non-interal lane length minus in-between vehicle lengths
5167 for (int i = 0; i < (int)lfLinks.size(); ++i) {
5168 // skip unset links
5169 DriveProcessItem& item = lfLinks[i];
5170#ifdef DEBUG_CHECKREWINDLINKLANES
5171 if (DEBUG_COND) std::cout << SIMTIME
5172 << " link=" << (item.myLink == 0 ? "NULL" : item.myLink->getViaLaneOrLane()->getID())
5173 << " foundStopped=" << foundStopped;
5174#endif
5175 if (item.myLink == nullptr || foundStopped) {
5176 if (!foundStopped) {
5177 item.availableSpace += seenSpace;
5178 } else {
5179 item.availableSpace = seenSpace;
5180 }
5181#ifdef DEBUG_CHECKREWINDLINKLANES
5182 if (DEBUG_COND) {
5183 std::cout << " avail=" << item.availableSpace << "\n";
5184 }
5185#endif
5186 continue;
5187 }
5188 // get the next lane, determine whether it is an internal lane
5189 const MSLane* approachedLane = item.myLink->getViaLane();
5190 if (approachedLane != nullptr) {
5191 if (keepClear(item.myLink)) {
5192 seenSpace = seenSpace - approachedLane->getBruttoVehLenSum();
5193 if (approachedLane == myLane) {
5194 seenSpace += getVehicleType().getLengthWithGap();
5195 }
5196 } else {
5197 seenSpace = seenSpace + approachedLane->getSpaceTillLastStanding(this, foundStopped);// - approachedLane->getBruttoVehLenSum() + approachedLane->getLength();
5198 }
5199 item.availableSpace = seenSpace;
5200#ifdef DEBUG_CHECKREWINDLINKLANES
5201 if (DEBUG_COND) std::cout
5202 << " approached=" << approachedLane->getID()
5203 << " approachedBrutto=" << approachedLane->getBruttoVehLenSum()
5204 << " avail=" << item.availableSpace
5205 << " seenSpace=" << seenSpace
5206 << " hadStoppedVehicle=" << item.hadStoppedVehicle
5207 << " lengthsInFront=" << lengthsInFront
5208 << "\n";
5209#endif
5210 continue;
5211 }
5212 approachedLane = item.myLink->getLane();
5213 const MSVehicle* last = approachedLane->getLastAnyVehicle();
5214 if (last == nullptr || last == this) {
5215 if (approachedLane->getLength() > getVehicleType().getLength()
5216 || keepClear(item.myLink)) {
5217 seenSpace += approachedLane->getLength();
5218 }
5219 item.availableSpace = seenSpace;
5220#ifdef DEBUG_CHECKREWINDLINKLANES
5221 if (DEBUG_COND) {
5222 std::cout << " last=" << Named::getIDSecure(last) << " laneLength=" << approachedLane->getLength() << " avail=" << item.availableSpace << "\n";
5223 }
5224#endif
5225 } else {
5226 bool foundStopped2 = false;
5227 double spaceTillLastStanding = approachedLane->getSpaceTillLastStanding(this, foundStopped2);
5228 if (approachedLane->getBidiLane() != nullptr) {
5229 const MSVehicle* oncomingVeh = approachedLane->getBidiLane()->getFirstFullVehicle();
5230 if (oncomingVeh) {
5231 const double oncomingGap = approachedLane->getLength() - oncomingVeh->getPositionOnLane();
5232 const double oncomingBGap = oncomingVeh->getBrakeGap(true);
5233 // oncoming movement until ego enters the junction
5234 const double oncomingMove = STEPS2TIME(item.myArrivalTime - SIMSTEP) * oncomingVeh->getSpeed();
5235 const double spaceTillOncoming = oncomingGap - oncomingBGap - oncomingMove;
5236 spaceTillLastStanding = MIN2(spaceTillLastStanding, spaceTillOncoming);
5237 if (spaceTillOncoming <= getVehicleType().getLengthWithGap()) {
5238 foundStopped = true;
5239 }
5240#ifdef DEBUG_CHECKREWINDLINKLANES
5241 if (DEBUG_COND) {
5242 std::cout << " oVeh=" << oncomingVeh->getID()
5243 << " oGap=" << oncomingGap
5244 << " bGap=" << oncomingBGap
5245 << " mGap=" << oncomingMove
5246 << " sto=" << spaceTillOncoming;
5247 }
5248#endif
5249 }
5250 }
5251 seenSpace += spaceTillLastStanding;
5252 if (foundStopped2) {
5253 foundStopped = true;
5254 item.hadStoppedVehicle = true;
5255 }
5256 item.availableSpace = seenSpace;
5257 if (last->myHaveToWaitOnNextLink || last->isStopped()) {
5258 foundStopped = true;
5259 item.hadStoppedVehicle = true;
5260 }
5261#ifdef DEBUG_CHECKREWINDLINKLANES
5262 if (DEBUG_COND) std::cout
5263 << " approached=" << approachedLane->getID()
5264 << " last=" << last->getID()
5265 << " lastHasToWait=" << last->myHaveToWaitOnNextLink
5266 << " lastBrakeLight=" << last->signalSet(VEH_SIGNAL_BRAKELIGHT)
5267 << " lastBrakeGap=" << last->getCarFollowModel().brakeGap(last->getSpeed())
5268 << " lastGap=" << (last->getBackPositionOnLane(approachedLane) + last->getCarFollowModel().brakeGap(last->getSpeed()) - last->getSpeed() * last->getCarFollowModel().getHeadwayTime()
5269 // gap of last up to the next intersection
5270 - last->getVehicleType().getMinGap())
5271 << " stls=" << spaceTillLastStanding
5272 << " avail=" << item.availableSpace
5273 << " seenSpace=" << seenSpace
5274 << " foundStopped=" << foundStopped
5275 << " foundStopped2=" << foundStopped2
5276 << "\n";
5277#endif
5278 }
5279 }
5280
5281 // check which links allow continuation and add pass available to the previous item
5282 for (int i = ((int)lfLinks.size() - 1); i > 0; --i) {
5283 DriveProcessItem& item = lfLinks[i - 1];
5284 DriveProcessItem& nextItem = lfLinks[i];
5285 const bool canLeaveJunction = item.myLink->getViaLane() == nullptr || nextItem.myLink == nullptr || nextItem.mySetRequest;
5286 const bool opened = (item.myLink != nullptr
5287 && (canLeaveJunction || (
5288 // indirect bicycle turn
5289 nextItem.myLink != nullptr && nextItem.myLink->isInternalJunctionLink() && nextItem.myLink->haveRed()))
5290 && (
5291 item.myLink->havePriority()
5292 || i == 1 // the upcoming link (item 0) is checked in executeMove anyway. No need to use outdata approachData here
5294 || item.myLink->opened(item.myArrivalTime, item.myArrivalSpeed,
5297 bool allowsContinuation = (item.myLink == nullptr || item.myLink->isCont() || opened) && !item.hadStoppedVehicle;
5298#ifdef DEBUG_CHECKREWINDLINKLANES
5299 if (DEBUG_COND) std::cout
5300 << " link=" << (item.myLink == 0 ? "NULL" : item.myLink->getViaLaneOrLane()->getID())
5301 << " canLeave=" << canLeaveJunction
5302 << " opened=" << opened
5303 << " allowsContinuation=" << allowsContinuation
5304 << " foundStopped=" << foundStopped
5305 << "\n";
5306#endif
5307 if (!opened && item.myLink != nullptr) {
5308 foundStopped = true;
5309 if (i > 1) {
5310 DriveProcessItem& item2 = lfLinks[i - 2];
5311 if (item2.myLink != nullptr && item2.myLink->isCont()) {
5312 allowsContinuation = true;
5313 }
5314 }
5315 }
5316 if (allowsContinuation) {
5317 item.availableSpace = nextItem.availableSpace;
5318#ifdef DEBUG_CHECKREWINDLINKLANES
5319 if (DEBUG_COND) std::cout
5320 << " link=" << (item.myLink == nullptr ? "NULL" : item.myLink->getViaLaneOrLane()->getID())
5321 << " copy nextAvail=" << nextItem.availableSpace
5322 << "\n";
5323#endif
5324 }
5325 }
5326
5327 // find removalBegin
5328 int removalBegin = -1;
5329 for (int i = 0; foundStopped && i < (int)lfLinks.size() && removalBegin < 0; ++i) {
5330 // skip unset links
5331 const DriveProcessItem& item = lfLinks[i];
5332 if (item.myLink == nullptr) {
5333 continue;
5334 }
5335 /*
5336 double impatienceCorrection = MAX2(0., double(double(myWaitingTime)));
5337 if (seenSpace<getVehicleType().getLengthWithGap()-impatienceCorrection/10.&&nextSeenNonInternal!=0) {
5338 removalBegin = lastLinkToInternal;
5339 }
5340 */
5341
5342 const double leftSpace = item.availableSpace - getVehicleType().getLengthWithGap();
5343#ifdef DEBUG_CHECKREWINDLINKLANES
5344 if (DEBUG_COND) std::cout
5345 << SIMTIME
5346 << " veh=" << getID()
5347 << " link=" << (item.myLink == 0 ? "NULL" : item.myLink->getViaLaneOrLane()->getID())
5348 << " avail=" << item.availableSpace
5349 << " leftSpace=" << leftSpace
5350 << "\n";
5351#endif
5352 if (leftSpace < 0/* && item.myLink->willHaveBlockedFoe()*/) {
5353 double impatienceCorrection = 0;
5354 /*
5355 if(item.myLink->getState()==LINKSTATE_MINOR) {
5356 impatienceCorrection = MAX2(0., STEPS2TIME(myWaitingTime));
5357 }
5358 */
5359 // may ignore keepClear rules
5360 if (leftSpace < -impatienceCorrection / 10. && keepClear(item.myLink)) {
5361 removalBegin = i;
5362 }
5363 //removalBegin = i;
5364 }
5365 }
5366 // abort requests
5367 if (removalBegin != -1 && !(removalBegin == 0 && myLane->getEdge().isInternal())) {
5368 const double brakeGap = getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getMaxDecel(), 0.);
5369 while (removalBegin < (int)(lfLinks.size())) {
5370 DriveProcessItem& dpi = lfLinks[removalBegin];
5371 if (dpi.myLink == nullptr) {
5372 break;
5373 }
5374 dpi.myVLinkPass = dpi.myVLinkWait;
5375#ifdef DEBUG_CHECKREWINDLINKLANES
5376 if (DEBUG_COND) {
5377 std::cout << " removalBegin=" << removalBegin << " brakeGap=" << brakeGap << " dist=" << dpi.myDistance << " speed=" << myState.mySpeed << " a2s=" << ACCEL2SPEED(getCarFollowModel().getMaxDecel()) << "\n";
5378 }
5379#endif
5380 if (dpi.myDistance >= brakeGap + POSITION_EPS) {
5381 // always leave junctions after requesting to enter
5382 if (!dpi.myLink->isExitLink() || !lfLinks[removalBegin - 1].mySetRequest) {
5383 dpi.mySetRequest = false;
5384 }
5385 }
5386 ++removalBegin;
5387 }
5388 }
5389 }
5390}
5391
5392
5393void
5395 if (!myActionStep) {
5396 return;
5397 }
5399 for (DriveProcessItem& dpi : myLFLinkLanes) {
5400 if (dpi.myLink != nullptr) {
5401 if (dpi.myLink->getState() == LINKSTATE_ALLWAY_STOP) {
5402 dpi.myArrivalTime += (SUMOTime)RandHelper::rand((int)2, getRNG()); // tie braker
5403 }
5404 dpi.myLink->setApproaching(this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
5405 dpi.mySetRequest, dpi.myArrivalSpeedBraking, getWaitingTimeFor(dpi.myLink), dpi.myDistance, getLateralPositionOnLane());
5406 }
5407 }
5408 if (isRail()) {
5409 for (DriveProcessItem& dpi : myLFLinkLanes) {
5410 if (dpi.myLink != nullptr && dpi.myLink->getTLLogic() != nullptr && dpi.myLink->getTLLogic()->getLogicType() == TrafficLightType::RAIL_SIGNAL) {
5412 }
5413 }
5414 }
5415 if (myLaneChangeModel->getShadowLane() != nullptr) {
5416 // register on all shadow links
5417 for (const DriveProcessItem& dpi : myLFLinkLanes) {
5418 if (dpi.myLink != nullptr) {
5419 MSLink* parallelLink = dpi.myLink->getParallelLink(myLaneChangeModel->getShadowDirection());
5420 if (parallelLink == nullptr && getLaneChangeModel().isOpposite() && dpi.myLink->isEntryLink()) {
5421 // register on opposite direction entry link to warn foes at minor side road
5422 parallelLink = dpi.myLink->getOppositeDirectionLink();
5423 }
5424 if (parallelLink != nullptr) {
5425 const double latOffset = getLane()->getRightSideOnEdge() - myLaneChangeModel->getShadowLane()->getRightSideOnEdge();
5426 parallelLink->setApproaching(this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
5427 dpi.mySetRequest, dpi.myArrivalSpeedBraking, getWaitingTimeFor(dpi.myLink), dpi.myDistance,
5428 latOffset);
5430 }
5431 }
5432 }
5433 }
5434#ifdef DEBUG_PLAN_MOVE
5435 if (DEBUG_COND) {
5436 std::cout << SIMTIME
5437 << " veh=" << getID()
5438 << " after checkRewindLinkLanes\n";
5439 for (DriveProcessItem& dpi : myLFLinkLanes) {
5440 std::cout
5441 << " vPass=" << dpi.myVLinkPass
5442 << " vWait=" << dpi.myVLinkWait
5443 << " linkLane=" << (dpi.myLink == 0 ? "NULL" : dpi.myLink->getViaLaneOrLane()->getID())
5444 << " request=" << dpi.mySetRequest
5445 << " atime=" << dpi.myArrivalTime
5446 << "\n";
5447 }
5448 }
5449#endif
5450}
5451
5452
5453void
5455 DriveProcessItem dpi(0, dist);
5456 dpi.myLink = link;
5457 const double arrivalSpeedBraking = getCarFollowModel().getMinimalArrivalSpeedEuler(dist, getSpeed());
5458 link->setApproaching(this, SUMOTime_MAX, 0, 0, false, arrivalSpeedBraking, 0, dpi.myDistance, 0);
5459 // ensure cleanup in the next step
5460 myLFLinkLanes.push_back(dpi);
5462}
5463
5464
5465void
5466MSVehicle::enterLaneAtMove(MSLane* enteredLane, bool onTeleporting) {
5467 myAmOnNet = !onTeleporting;
5468 // vaporizing edge?
5469 /*
5470 if (enteredLane->getEdge().isVaporizing()) {
5471 // yep, let's do the vaporization...
5472 myLane = enteredLane;
5473 return true;
5474 }
5475 */
5476 // Adjust MoveReminder offset to the next lane
5477 adaptLaneEntering2MoveReminder(*enteredLane);
5478 // set the entered lane as the current lane
5479 MSLane* oldLane = myLane;
5480 myLane = enteredLane;
5481 myLastBestLanesEdge = nullptr;
5482
5483 // internal edges are not a part of the route...
5484 if (!enteredLane->getEdge().isInternal()) {
5485 ++myCurrEdge;
5487 }
5488 if (myInfluencer != nullptr) {
5490 }
5491 if (!onTeleporting) {
5495 // transform lateral position when the lane width changes
5496 assert(oldLane != nullptr);
5497 const MSLink* const link = oldLane->getLinkTo(myLane);
5498 if (link != nullptr) {
5499 myState.myPosLat += link->getLateralShift();
5500 } else {
5502 }
5503 } else if (fabs(myState.myPosLat) > NUMERICAL_EPS) {
5504 const double overlap = MAX2(0.0, getLateralOverlap(myState.myPosLat, oldLane));
5505 const double range = (oldLane->getWidth() - getVehicleType().getWidth()) * 0.5 + overlap;
5506 const double range2 = (myLane->getWidth() - getVehicleType().getWidth()) * 0.5 + overlap;
5507 myState.myPosLat *= range2 / range;
5508 }
5509 if (myLane->getBidiLane() != nullptr && (!isRailway(getVClass()) || (myLane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5510 // railways don't need to "see" each other when moving in opposite directions on the same track (efficiency)
5511 // (unless the lane is shared with cars)
5513 }
5514 } else {
5515 // normal move() isn't called so reset position here. must be done
5516 // before calling reminders
5517 myState.myPos = 0;
5520 }
5521 // update via
5522 if (myParameter->via.size() > 0 && myLane->getEdge().getID() == myParameter->via.front()) {
5523 myParameter->via.erase(myParameter->via.begin());
5524 }
5525}
5526
5527
5528void
5530 myAmOnNet = true;
5531 myLane = enteredLane;
5533 // need to update myCurrentLaneInBestLanes
5535 // switch to and activate the new lane's reminders
5536 // keep OldLaneReminders
5537 for (std::vector< MSMoveReminder* >::const_iterator rem = enteredLane->getMoveReminders().begin(); rem != enteredLane->getMoveReminders().end(); ++rem) {
5538 addReminder(*rem);
5539 }
5541 MSLane* lane = myLane;
5542 double leftLength = getVehicleType().getLength() - myState.myPos;
5543 int deleteFurther = 0;
5544#ifdef DEBUG_SETFURTHER
5545 if (DEBUG_COND) {
5546 std::cout << SIMTIME << " enterLaneAtLaneChange entered=" << Named::getIDSecure(enteredLane) << " oldFurther=" << toString(myFurtherLanes) << "\n";
5547 }
5548#endif
5549 if (myLane->getBidiLane() != nullptr && (!isRailway(getVClass()) || (myLane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5550 // railways don't need to "see" each other when moving in opposite directions on the same track (efficiency)
5551 // (unless the lane is shared with cars)
5553 }
5554 for (int i = 0; i < (int)myFurtherLanes.size(); i++) {
5555 if (lane != nullptr) {
5557 }
5558#ifdef DEBUG_SETFURTHER
5559 if (DEBUG_COND) {
5560 std::cout << " enterLaneAtLaneChange i=" << i << " lane=" << Named::getIDSecure(lane) << " leftLength=" << leftLength << "\n";
5561 }
5562#endif
5563 if (leftLength > 0) {
5564 if (lane != nullptr) {
5566 if (myFurtherLanes[i]->getBidiLane() != nullptr
5567 && (!isRailway(getVClass()) || (myFurtherLanes[i]->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5568 myFurtherLanes[i]->getBidiLane()->resetPartialOccupation(this);
5569 }
5570 // lane changing onto longer lanes may reduce the number of
5571 // remaining further lanes
5572 myFurtherLanes[i] = lane;
5574 leftLength -= lane->setPartialOccupation(this);
5575 if (lane->getBidiLane() != nullptr
5576 && (!isRailway(getVClass()) || (lane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5577 lane->getBidiLane()->setPartialOccupation(this);
5578 }
5579 myState.myBackPos = -leftLength;
5580#ifdef DEBUG_SETFURTHER
5581 if (DEBUG_COND) {
5582 std::cout << SIMTIME << " newBackPos=" << myState.myBackPos << "\n";
5583 }
5584#endif
5585 } else {
5586 // keep the old values, but ensure there is no shadow
5589 }
5590 if (myState.myBackPos < 0) {
5591 myState.myBackPos += myFurtherLanes[i]->getLength();
5592 }
5593#ifdef DEBUG_SETFURTHER
5594 if (DEBUG_COND) {
5595 std::cout << SIMTIME << " i=" << i << " further=" << myFurtherLanes[i]->getID() << " newBackPos=" << myState.myBackPos << "\n";
5596 }
5597#endif
5598 }
5599 } else {
5600 myFurtherLanes[i]->resetPartialOccupation(this);
5601 if (myFurtherLanes[i]->getBidiLane() != nullptr
5602 && (!isRailway(getVClass()) || (myFurtherLanes[i]->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5603 myFurtherLanes[i]->getBidiLane()->resetPartialOccupation(this);
5604 }
5605 deleteFurther++;
5606 }
5607 }
5608 if (deleteFurther > 0) {
5609#ifdef DEBUG_SETFURTHER
5610 if (DEBUG_COND) {
5611 std::cout << SIMTIME << " veh=" << getID() << " shortening myFurtherLanes by " << deleteFurther << "\n";
5612 }
5613#endif
5614 myFurtherLanes.erase(myFurtherLanes.end() - deleteFurther, myFurtherLanes.end());
5615 myFurtherLanesPosLat.erase(myFurtherLanesPosLat.end() - deleteFurther, myFurtherLanesPosLat.end());
5616 }
5617#ifdef DEBUG_SETFURTHER
5618 if (DEBUG_COND) {
5619 std::cout << SIMTIME << " enterLaneAtLaneChange new furtherLanes=" << toString(myFurtherLanes)
5620 << " furterLanesPosLat=" << toString(myFurtherLanesPosLat) << "\n";
5621 }
5622#endif
5624}
5625
5626
5627void
5628MSVehicle::computeFurtherLanes(MSLane* enteredLane, double pos, bool collision) {
5629 // build the list of lanes the vehicle is lapping into
5630 if (!myLaneChangeModel->isOpposite()) {
5631 double leftLength = myType->getLength() - pos;
5632 MSLane* clane = enteredLane;
5633 int routeIndex = getRoutePosition();
5634 while (leftLength > 0) {
5635 if (routeIndex > 0 && clane->getEdge().isNormal()) {
5636 // get predecessor lane that corresponds to prior route
5637 routeIndex--;
5638 const MSEdge* fromRouteEdge = myRoute->getEdges()[routeIndex];
5639 MSLane* target = clane;
5640 clane = nullptr;
5641 for (auto ili : target->getIncomingLanes()) {
5642 if (ili.lane->getEdge().getNormalBefore() == fromRouteEdge) {
5643 clane = ili.lane;
5644 break;
5645 }
5646 }
5647 } else {
5648 clane = clane->getLogicalPredecessorLane();
5649 }
5650 if (clane == nullptr || clane == myLane || clane == myLane->getBidiLane()
5651 || (clane->isInternal() && (
5652 clane->getLinkCont()[0]->getDirection() == LinkDirection::TURN
5653 || clane->getLinkCont()[0]->getDirection() == LinkDirection::TURN_LEFTHAND))) {
5654 break;
5655 }
5656 if (!collision || std::find(myFurtherLanes.begin(), myFurtherLanes.end(), clane) == myFurtherLanes.end()) {
5657 myFurtherLanes.push_back(clane);
5659 clane->setPartialOccupation(this);
5660 if (clane->getBidiLane() != nullptr
5661 && (!isRailway(getVClass()) || (clane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5662 clane->getBidiLane()->setPartialOccupation(this);
5663 }
5664 }
5665 leftLength -= clane->getLength();
5666 }
5667 myState.myBackPos = -leftLength;
5668#ifdef DEBUG_SETFURTHER
5669 if (DEBUG_COND) {
5670 std::cout << SIMTIME << " computeFurtherLanes veh=" << getID() << " pos=" << pos << " myFurtherLanes=" << toString(myFurtherLanes) << " backPos=" << myState.myBackPos << "\n";
5671 }
5672#endif
5673 } else {
5674 // clear partial occupation
5675 for (MSLane* further : myFurtherLanes) {
5676#ifdef DEBUG_SETFURTHER
5677 if (DEBUG_COND) {
5678 std::cout << SIMTIME << " opposite: resetPartialOccupation " << further->getID() << " \n";
5679 }
5680#endif
5681 further->resetPartialOccupation(this);
5682 if (further->getBidiLane() != nullptr
5683 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5684 further->getBidiLane()->resetPartialOccupation(this);
5685 }
5686 }
5687 myFurtherLanes.clear();
5688 myFurtherLanesPosLat.clear();
5689 }
5690}
5691
5692
5693void
5694MSVehicle::enterLaneAtInsertion(MSLane* enteredLane, double pos, double speed, double posLat, MSMoveReminder::Notification notification) {
5695 myState = State(pos, speed, posLat, pos - getVehicleType().getLength(), hasDeparted() ? myState.myPreviousSpeed : speed);
5697 onDepart();
5698 }
5700 assert(myState.myPos >= 0);
5701 assert(myState.mySpeed >= 0);
5702 myLane = enteredLane;
5703 myAmOnNet = true;
5704 // schedule action for the next timestep
5706 if (notification != MSMoveReminder::NOTIFICATION_TELEPORT) {
5707 if (notification == MSMoveReminder::NOTIFICATION_PARKING && myInfluencer != nullptr) {
5708 drawOutsideNetwork(false);
5709 }
5710 // set and activate the new lane's reminders, teleports already did that at enterLaneAtMove
5711 for (std::vector< MSMoveReminder* >::const_iterator rem = enteredLane->getMoveReminders().begin(); rem != enteredLane->getMoveReminders().end(); ++rem) {
5712 addReminder(*rem);
5713 }
5714 activateReminders(notification, enteredLane);
5715 } else {
5716 myLastBestLanesEdge = nullptr;
5719 while (!myStops.empty() && myStops.front().edge == myCurrEdge && &myStops.front().lane->getEdge() == &myLane->getEdge()
5720 && myStops.front().pars.endPos < pos) {
5721 WRITE_WARNINGF(TL("Vehicle '%' skips stop on lane '%' time=%."), getID(), myStops.front().lane->getID(),
5722 time2string(MSNet::getInstance()->getCurrentTimeStep()));
5723 myStops.pop_front();
5724 }
5725 // avoid startup-effects after teleport
5727
5728 }
5729 computeFurtherLanes(enteredLane, pos);
5733 } else if (MSGlobals::gLaneChangeDuration > 0) {
5735 }
5736 if (notification != MSMoveReminder::NOTIFICATION_LOAD_STATE) {
5739 myAngle += M_PI;
5740 }
5741 }
5742 if (MSNet::getInstance()->hasPersons()) {
5743 for (MSLane* further : myFurtherLanes) {
5744 if (further->mustCheckJunctionCollisions()) {
5746 }
5747 }
5748 }
5749}
5750
5751
5752void
5753MSVehicle::leaveLane(const MSMoveReminder::Notification reason, const MSLane* approachedLane) {
5754 for (MoveReminderCont::iterator rem = myMoveReminders.begin(); rem != myMoveReminders.end();) {
5755 if (rem->first->notifyLeave(*this, myState.myPos + rem->second, reason, approachedLane)) {
5756#ifdef _DEBUG
5757 if (myTraceMoveReminders) {
5758 traceMoveReminder("notifyLeave", rem->first, rem->second, true);
5759 }
5760#endif
5761 ++rem;
5762 } else {
5763#ifdef _DEBUG
5764 if (myTraceMoveReminders) {
5765 traceMoveReminder("notifyLeave", rem->first, rem->second, false);
5766 }
5767#endif
5768 rem = myMoveReminders.erase(rem);
5769 }
5770 }
5774 && myLane != nullptr) {
5776 }
5777 if (myLane != nullptr && myLane->getBidiLane() != nullptr && myAmOnNet
5778 && (!isRailway(getVClass()) || (myLane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5780 }
5782 // @note. In case of lane change, myFurtherLanes and partial occupation
5783 // are handled in enterLaneAtLaneChange()
5784 for (MSLane* further : myFurtherLanes) {
5785#ifdef DEBUG_FURTHER
5786 if (DEBUG_COND) {
5787 std::cout << SIMTIME << " leaveLane \n";
5788 }
5789#endif
5790 further->resetPartialOccupation(this);
5791 if (further->getBidiLane() != nullptr
5792 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5793 further->getBidiLane()->resetPartialOccupation(this);
5794 }
5795 }
5796 myFurtherLanes.clear();
5797 myFurtherLanesPosLat.clear();
5798 }
5800 myAmOnNet = false;
5801 myWaitingTime = 0;
5802 }
5804 myStopDist = std::numeric_limits<double>::max();
5805 if (myPastStops.back().speed <= 0) {
5806 WRITE_WARNINGF(TL("Vehicle '%' aborts stop."), getID());
5807 }
5808 }
5810 while (!myStops.empty() && myStops.front().edge == myCurrEdge && &myStops.front().lane->getEdge() == &myLane->getEdge()) {
5811 if (myStops.front().getSpeed() <= 0) {
5812 WRITE_WARNINGF(TL("Vehicle '%' skips stop on lane '%' time=%."), getID(), myStops.front().lane->getID(),
5813 time2string(MSNet::getInstance()->getCurrentTimeStep()))
5814 if (MSStopOut::active()) {
5815 // clean up if stopBlocked was called
5817 }
5818 myStops.pop_front();
5819 } else {
5820 MSStop& stop = myStops.front();
5821 // passed waypoint at the end of the lane
5822 if (!stop.reached) {
5823 if (MSStopOut::active()) {
5825 }
5826 stop.reached = true;
5827 // enter stopping place so leaveFrom works as expected
5828 if (stop.busstop != nullptr) {
5829 // let the bus stop know the vehicle
5830 stop.busstop->enter(this, stop.pars.parking == ParkingType::OFFROAD);
5831 }
5832 if (stop.containerstop != nullptr) {
5833 // let the container stop know the vehicle
5835 }
5836 // do not enter parkingarea!
5837 if (stop.chargingStation != nullptr) {
5838 // let the container stop know the vehicle
5840 }
5841 }
5843 }
5844 myStopDist = std::numeric_limits<double>::max();
5845 }
5846 }
5847}
5848
5849
5850void
5852 for (MoveReminderCont::iterator rem = myMoveReminders.begin(); rem != myMoveReminders.end();) {
5853 if (rem->first->notifyLeaveBack(*this, reason, leftLane)) {
5854#ifdef _DEBUG
5855 if (myTraceMoveReminders) {
5856 traceMoveReminder("notifyLeaveBack", rem->first, rem->second, true);
5857 }
5858#endif
5859 ++rem;
5860 } else {
5861#ifdef _DEBUG
5862 if (myTraceMoveReminders) {
5863 traceMoveReminder("notifyLeaveBack", rem->first, rem->second, false);
5864 }
5865#endif
5866 rem = myMoveReminders.erase(rem);
5867 }
5868 }
5869#ifdef DEBUG_MOVEREMINDERS
5870 if (DEBUG_COND) {
5871 std::cout << SIMTIME << " veh=" << getID() << " myReminders:";
5872 for (auto rem : myMoveReminders) {
5873 std::cout << rem.first->getDescription() << " ";
5874 }
5875 std::cout << "\n";
5876 }
5877#endif
5878}
5879
5880
5885
5886
5891
5892bool
5894 return (lane->isInternal()
5895 ? & (lane->getLinkCont()[0]->getLane()->getEdge()) != *(myCurrEdge + 1)
5896 : &lane->getEdge() != *myCurrEdge);
5897}
5898
5899const std::vector<MSVehicle::LaneQ>&
5901 return *myBestLanes.begin();
5902}
5903
5904
5905void
5906MSVehicle::updateBestLanes(bool forceRebuild, const MSLane* startLane) {
5907#ifdef DEBUG_BESTLANES
5908 if (DEBUG_COND) {
5909 std::cout << SIMTIME << " updateBestLanes veh=" << getID() << " force=" << forceRebuild << " startLane1=" << Named::getIDSecure(startLane) << " myLane=" << Named::getIDSecure(myLane) << "\n";
5910 }
5911#endif
5912 if (startLane == nullptr) {
5913 startLane = myLane;
5914 }
5915 assert(startLane != 0);
5917 // depending on the calling context, startLane might be the forward lane
5918 // or the reverse-direction lane. In the latter case we need to
5919 // transform it to the forward lane.
5920 if (isOppositeLane(startLane)) {
5921 // use leftmost lane of forward edge
5922 startLane = startLane->getEdge().getOppositeEdge()->getLanes().back();
5923 assert(startLane != 0);
5924#ifdef DEBUG_BESTLANES
5925 if (DEBUG_COND) {
5926 std::cout << " startLaneIsOpposite newStartLane=" << startLane->getID() << "\n";
5927 }
5928#endif
5929 }
5930 }
5931 if (forceRebuild) {
5932 myLastBestLanesEdge = nullptr;
5934 }
5935 if (myBestLanes.size() > 0 && !forceRebuild && myLastBestLanesEdge == &startLane->getEdge()) {
5937#ifdef DEBUG_BESTLANES
5938 if (DEBUG_COND) {
5939 std::cout << " only updateOccupancyAndCurrentBestLane\n";
5940 }
5941#endif
5942 return;
5943 }
5944 if (startLane->getEdge().isInternal()) {
5945 if (myBestLanes.size() == 0 || forceRebuild) {
5946 // rebuilt from previous non-internal lane (may backtrack twice if behind an internal junction)
5947 updateBestLanes(true, startLane->getLogicalPredecessorLane());
5948 }
5949 if (myLastBestLanesInternalLane == startLane && !forceRebuild) {
5950#ifdef DEBUG_BESTLANES
5951 if (DEBUG_COND) {
5952 std::cout << " nothing to do on internal\n";
5953 }
5954#endif
5955 return;
5956 }
5957 // adapt best lanes to fit the current internal edge:
5958 // keep the entries that are reachable from this edge
5959 const MSEdge* nextEdge = startLane->getNextNormal();
5960 assert(!nextEdge->isInternal());
5961 for (std::vector<std::vector<LaneQ> >::iterator it = myBestLanes.begin(); it != myBestLanes.end();) {
5962 std::vector<LaneQ>& lanes = *it;
5963 assert(lanes.size() > 0);
5964 if (&(lanes[0].lane->getEdge()) == nextEdge) {
5965 // keep those lanes which are successors of internal lanes from the edge of startLane
5966 std::vector<LaneQ> oldLanes = lanes;
5967 lanes.clear();
5968 const std::vector<MSLane*>& sourceLanes = startLane->getEdge().getLanes();
5969 for (std::vector<MSLane*>::const_iterator it_source = sourceLanes.begin(); it_source != sourceLanes.end(); ++it_source) {
5970 for (std::vector<LaneQ>::iterator it_lane = oldLanes.begin(); it_lane != oldLanes.end(); ++it_lane) {
5971 if ((*it_source)->getLinkCont()[0]->getLane() == (*it_lane).lane) {
5972 lanes.push_back(*it_lane);
5973 break;
5974 }
5975 }
5976 }
5977 assert(lanes.size() == startLane->getEdge().getLanes().size());
5978 // patch invalid bestLaneOffset and updated myCurrentLaneInBestLanes
5979 for (int i = 0; i < (int)lanes.size(); ++i) {
5980 if (i + lanes[i].bestLaneOffset < 0) {
5981 lanes[i].bestLaneOffset = -i;
5982 }
5983 if (i + lanes[i].bestLaneOffset >= (int)lanes.size()) {
5984 lanes[i].bestLaneOffset = (int)lanes.size() - i - 1;
5985 }
5986 assert(i + lanes[i].bestLaneOffset >= 0);
5987 assert(i + lanes[i].bestLaneOffset < (int)lanes.size());
5988 if (lanes[i].bestContinuations[0] != 0) {
5989 // patch length of bestContinuation to match expectations (only once)
5990 lanes[i].bestContinuations.insert(lanes[i].bestContinuations.begin(), (MSLane*)nullptr);
5991 }
5992 if (startLane->getLinkCont()[0]->getLane() == lanes[i].lane) {
5993 myCurrentLaneInBestLanes = lanes.begin() + i;
5994 }
5995 assert(&(lanes[i].lane->getEdge()) == nextEdge);
5996 }
5997 myLastBestLanesInternalLane = startLane;
5999#ifdef DEBUG_BESTLANES
6000 if (DEBUG_COND) {
6001 std::cout << " updated for internal\n";
6002 }
6003#endif
6004 return;
6005 } else {
6006 // remove passed edges
6007 it = myBestLanes.erase(it);
6008 }
6009 }
6010 assert(false); // should always find the next edge
6011 }
6012 // start rebuilding
6014 myLastBestLanesEdge = &startLane->getEdge();
6016
6017 // get information about the next stop
6018 MSRouteIterator nextStopEdge = myRoute->end();
6019 const MSLane* nextStopLane = nullptr;
6020 double nextStopPos = 0;
6021 bool nextStopIsWaypoint = false;
6022 if (!myStops.empty()) {
6023 const MSStop& nextStop = myStops.front();
6024 nextStopLane = nextStop.lane;
6025 if (nextStop.isOpposite) {
6026 // target leftmost lane in forward direction
6027 nextStopLane = nextStopLane->getEdge().getOppositeEdge()->getLanes().back();
6028 }
6029 nextStopEdge = nextStop.edge;
6030 nextStopPos = nextStop.pars.startPos;
6031 nextStopIsWaypoint = nextStop.getSpeed() > 0;
6032 }
6033 // myArrivalTime = -1 in the context of validating departSpeed with departLane=best
6034 if (myParameter->arrivalLaneProcedure >= ArrivalLaneDefinition::GIVEN && nextStopEdge == myRoute->end() && myArrivalLane >= 0) {
6035 nextStopEdge = (myRoute->end() - 1);
6036 nextStopLane = (*nextStopEdge)->getLanes()[myArrivalLane];
6037 nextStopPos = myArrivalPos;
6038 }
6039 if (nextStopEdge != myRoute->end()) {
6040 // make sure that the "wrong" lanes get a penalty. (penalty needs to be
6041 // large enough to overcome a magic threshold in MSLaneChangeModel::DK2004.cpp:383)
6042 nextStopPos = MAX2(POSITION_EPS, MIN2((double)nextStopPos, (double)(nextStopLane->getLength() - 2 * POSITION_EPS)));
6043 if (nextStopLane->isInternal()) {
6044 // switch to the correct lane before entering the intersection
6045 nextStopPos = (*nextStopEdge)->getLength();
6046 }
6047 }
6048
6049 // go forward along the next lanes;
6050 // trains do not have to deal with lane-changing for stops but their best
6051 // lanes lookahead is needed for rail signal control
6052 const bool continueAfterStop = nextStopIsWaypoint || isRailway(getVClass());
6053 int seen = 0;
6054 double seenLength = 0;
6055 bool progress = true;
6056 // bestLanes must cover the braking distance even when at the very end of the current lane to avoid unecessary slow down
6057 const double maxBrakeDist = startLane->getLength() + getCarFollowModel().getHeadwayTime() * getMaxSpeed() + getCarFollowModel().brakeGap(getMaxSpeed()) + getVehicleType().getMinGap();
6058 const double lookahead = getLaneChangeModel().getStrategicLookahead();
6059 for (MSRouteIterator ce = myCurrEdge; progress;) {
6060 std::vector<LaneQ> currentLanes;
6061 const std::vector<MSLane*>* allowed = nullptr;
6062 const MSEdge* nextEdge = nullptr;
6063 if (ce != myRoute->end() && ce + 1 != myRoute->end()) {
6064 nextEdge = *(ce + 1);
6065 allowed = (*ce)->allowedLanes(*nextEdge, myType->getVehicleClass());
6066 }
6067 const std::vector<MSLane*>& lanes = (*ce)->getLanes();
6068 for (std::vector<MSLane*>::const_iterator i = lanes.begin(); i != lanes.end(); ++i) {
6069 LaneQ q;
6070 MSLane* cl = *i;
6071 q.lane = cl;
6072 q.bestContinuations.push_back(cl);
6073 q.bestLaneOffset = 0;
6074 q.length = cl->allowsVehicleClass(myType->getVehicleClass()) ? (*ce)->getLength() : 0;
6075 q.currentLength = q.length;
6076 // if all lanes are forbidden (i.e. due to a dynamic closing) we want to express no preference
6077 q.allowsContinuation = allowed == nullptr || std::find(allowed->begin(), allowed->end(), cl) != allowed->end();
6078 q.occupation = 0;
6079 q.nextOccupation = 0;
6080 currentLanes.push_back(q);
6081 }
6082 //
6083 if (nextStopEdge == ce
6084 // already past the stop edge
6085 && !(ce == myCurrEdge && myLane != nullptr && myLane->isInternal())) {
6086 if (!nextStopLane->isInternal() && !continueAfterStop) {
6087 progress = false;
6088 }
6089 const MSLane* normalStopLane = nextStopLane->getNormalPredecessorLane();
6090 for (std::vector<LaneQ>::iterator q = currentLanes.begin(); q != currentLanes.end(); ++q) {
6091 if (nextStopLane != nullptr && normalStopLane != (*q).lane) {
6092 (*q).allowsContinuation = false;
6093 (*q).length = nextStopPos;
6094 (*q).currentLength = (*q).length;
6095 }
6096 }
6097 }
6098
6099 myBestLanes.push_back(currentLanes);
6100 ++seen;
6101 seenLength += currentLanes[0].lane->getLength();
6102 ++ce;
6103 if (lookahead >= 0) {
6104 progress &= (seen <= 2 || seenLength < lookahead); // custom (but we need to look at least one edge ahead)
6105 } else {
6106 progress &= (seen <= 4 || seenLength < MAX2(maxBrakeDist, 3000.0)); // motorway
6107 progress &= (seen <= 8 || seenLength < MAX2(maxBrakeDist, 200.0) || isRailway(getVClass())); // urban
6108 }
6109 progress &= ce != myRoute->end();
6110 /*
6111 if(progress) {
6112 progress &= (currentLanes.size()!=1||(*ce)->getLanes().size()!=1);
6113 }
6114 */
6115 }
6116
6117 // we are examining the last lane explicitly
6118 if (myBestLanes.size() != 0) {
6119 double bestLength = -1;
6120 // minimum and maximum lane index with best length
6121 int bestThisIndex = 0;
6122 int bestThisMaxIndex = 0;
6123 int index = 0;
6124 std::vector<LaneQ>& last = myBestLanes.back();
6125 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
6126 if ((*j).length > bestLength) {
6127 bestLength = (*j).length;
6128 bestThisIndex = index;
6129 bestThisMaxIndex = index;
6130 } else if ((*j).length == bestLength) {
6131 bestThisMaxIndex = index;
6132 }
6133 }
6134 index = 0;
6135 bool requiredChangeRightForbidden = false;
6136 int requireChangeToLeftForbidden = -1;
6137 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
6138 if ((*j).length < bestLength) {
6139 if (abs(bestThisIndex - index) < abs(bestThisMaxIndex - index)) {
6140 (*j).bestLaneOffset = bestThisIndex - index;
6141 } else {
6142 (*j).bestLaneOffset = bestThisMaxIndex - index;
6143 }
6144 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(getVClass())
6145 || !(*j).lane->getParallelLane(-1, false)->allowsVehicleClass(getVClass())
6146 || requiredChangeRightForbidden)) {
6147 // this lane and all further lanes to the left cannot be used
6148 requiredChangeRightForbidden = true;
6149 (*j).length = 0;
6150 } else if ((*j).bestLaneOffset > 0 && (!(*j).lane->allowsChangingLeft(getVClass())
6151 || !(*j).lane->getParallelLane(1, false)->allowsVehicleClass(getVClass()))) {
6152 // this lane and all previous lanes to the right cannot be used
6153 requireChangeToLeftForbidden = (*j).lane->getIndex();
6154 }
6155 }
6156 }
6157 for (int i = requireChangeToLeftForbidden; i >= 0; i--) {
6158 if (last[i].bestLaneOffset > 0) {
6159 last[i].length = 0;
6160 }
6161 }
6162#ifdef DEBUG_BESTLANES
6163 if (DEBUG_COND) {
6164 std::cout << " last edge=" << last.front().lane->getEdge().getID() << " (bestIndex=" << bestThisIndex << " bestMaxIndex=" << bestThisMaxIndex << "):\n";
6165 std::vector<LaneQ>& laneQs = myBestLanes.back();
6166 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
6167 std::cout << " lane=" << (*j).lane->getID() << " length=" << (*j).length << " bestOffset=" << (*j).bestLaneOffset << "\n";
6168 }
6169 }
6170#endif
6171 }
6172 // go backward through the lanes
6173 // track back best lane and compute the best prior lane(s)
6174 for (std::vector<std::vector<LaneQ> >::reverse_iterator i = myBestLanes.rbegin() + 1; i != myBestLanes.rend(); ++i) {
6175 std::vector<LaneQ>& nextLanes = (*(i - 1));
6176 std::vector<LaneQ>& clanes = (*i);
6177 MSEdge* const cE = &clanes[0].lane->getEdge();
6178 int index = 0;
6179 double bestConnectedLength = -1;
6180 double bestLength = -1;
6181 for (const LaneQ& j : nextLanes) {
6182 if (j.lane->isApproachedFrom(cE) && bestConnectedLength < j.length) {
6183 bestConnectedLength = j.length;
6184 }
6185 if (bestLength < j.length) {
6186 bestLength = j.length;
6187 }
6188 }
6189 // compute index of the best lane (highest length and least offset from the best next lane)
6190 int bestThisIndex = 0;
6191 int bestThisMaxIndex = 0;
6192 if (bestConnectedLength > 0) {
6193 index = 0;
6194 for (LaneQ& j : clanes) {
6195 const LaneQ* bestConnectedNext = nullptr;
6196 if (j.allowsContinuation) {
6197 for (const LaneQ& m : nextLanes) {
6198 if ((m.lane->allowsVehicleClass(getVClass()) || m.lane->hadPermissionChanges())
6199 && m.lane->isApproachedFrom(cE, j.lane)) {
6200 if (betterContinuation(bestConnectedNext, m)) {
6201 bestConnectedNext = &m;
6202 }
6203 }
6204 }
6205 if (bestConnectedNext != nullptr) {
6206 if (bestConnectedNext->length == bestConnectedLength && abs(bestConnectedNext->bestLaneOffset) < 2) {
6207 j.length += bestLength;
6208 } else {
6209 j.length += bestConnectedNext->length;
6210 }
6211 j.bestLaneOffset = bestConnectedNext->bestLaneOffset;
6212 }
6213 }
6214 if (bestConnectedNext != nullptr && (bestConnectedNext->allowsContinuation || bestConnectedNext->length > 0)) {
6215 copy(bestConnectedNext->bestContinuations.begin(), bestConnectedNext->bestContinuations.end(), back_inserter(j.bestContinuations));
6216 } else {
6217 j.allowsContinuation = false;
6218 }
6219 if (clanes[bestThisIndex].length < j.length
6220 || (clanes[bestThisIndex].length == j.length && abs(clanes[bestThisIndex].bestLaneOffset) > abs(j.bestLaneOffset))
6221 || (clanes[bestThisIndex].length == j.length && abs(clanes[bestThisIndex].bestLaneOffset) == abs(j.bestLaneOffset) &&
6222 nextLinkPriority(clanes[bestThisIndex].bestContinuations) < nextLinkPriority(j.bestContinuations))
6223 ) {
6224 bestThisIndex = index;
6225 bestThisMaxIndex = index;
6226 } else if (clanes[bestThisIndex].length == j.length
6227 && abs(clanes[bestThisIndex].bestLaneOffset) == abs(j.bestLaneOffset)
6228 && nextLinkPriority(clanes[bestThisIndex].bestContinuations) == nextLinkPriority(j.bestContinuations)) {
6229 bestThisMaxIndex = index;
6230 }
6231 index++;
6232 }
6233
6234 //vehicle with elecHybrid device prefers running under an overhead wire
6235 if (getDevice(typeid(MSDevice_ElecHybrid)) != nullptr) {
6236 index = 0;
6237 for (const LaneQ& j : clanes) {
6238 std::string overheadWireSegmentID = MSNet::getInstance()->getStoppingPlaceID(j.lane, j.currentLength / 2., SUMO_TAG_OVERHEAD_WIRE_SEGMENT);
6239 if (overheadWireSegmentID != "") {
6240 bestThisIndex = index;
6241 bestThisMaxIndex = index;
6242 }
6243 index++;
6244 }
6245 }
6246
6247 } else {
6248 // only needed in case of disconnected routes
6249 int bestNextIndex = 0;
6250 int bestDistToNeeded = (int) clanes.size();
6251 index = 0;
6252 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6253 if ((*j).allowsContinuation) {
6254 int nextIndex = 0;
6255 for (std::vector<LaneQ>::const_iterator m = nextLanes.begin(); m != nextLanes.end(); ++m, ++nextIndex) {
6256 if ((*m).lane->isApproachedFrom(cE, (*j).lane)) {
6257 if (bestDistToNeeded > abs((*m).bestLaneOffset)) {
6258 bestDistToNeeded = abs((*m).bestLaneOffset);
6259 bestThisIndex = index;
6260 bestThisMaxIndex = index;
6261 bestNextIndex = nextIndex;
6262 }
6263 }
6264 }
6265 }
6266 }
6267 clanes[bestThisIndex].length += nextLanes[bestNextIndex].length;
6268 copy(nextLanes[bestNextIndex].bestContinuations.begin(), nextLanes[bestNextIndex].bestContinuations.end(), back_inserter(clanes[bestThisIndex].bestContinuations));
6269
6270 }
6271 // set bestLaneOffset for all lanes
6272 index = 0;
6273 bool requiredChangeRightForbidden = false;
6274 int requireChangeToLeftForbidden = -1;
6275 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6276 if ((*j).length < clanes[bestThisIndex].length
6277 || ((*j).length == clanes[bestThisIndex].length && abs((*j).bestLaneOffset) > abs(clanes[bestThisIndex].bestLaneOffset))
6278 || (nextLinkPriority((*j).bestContinuations)) < nextLinkPriority(clanes[bestThisIndex].bestContinuations)
6279 ) {
6280 if (abs(bestThisIndex - index) < abs(bestThisMaxIndex - index)) {
6281 (*j).bestLaneOffset = bestThisIndex - index;
6282 } else {
6283 (*j).bestLaneOffset = bestThisMaxIndex - index;
6284 }
6285 if ((nextLinkPriority((*j).bestContinuations)) < nextLinkPriority(clanes[bestThisIndex].bestContinuations)) {
6286 // try to move away from the lower-priority lane before it ends
6287 (*j).length = (*j).currentLength;
6288 }
6289 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(getVClass())
6290 || !(*j).lane->getParallelLane(-1, false)->allowsVehicleClass(getVClass())
6291 || requiredChangeRightForbidden)) {
6292 // this lane and all further lanes to the left cannot be used
6293 requiredChangeRightForbidden = true;
6294 if ((*j).length == (*j).currentLength) {
6295 (*j).length = 0;
6296 }
6297 } else if ((*j).bestLaneOffset > 0 && (!(*j).lane->allowsChangingLeft(getVClass())
6298 || !(*j).lane->getParallelLane(1, false)->allowsVehicleClass(getVClass()))) {
6299 // this lane and all previous lanes to the right cannot be used
6300 requireChangeToLeftForbidden = (*j).lane->getIndex();
6301 }
6302 } else {
6303 (*j).bestLaneOffset = 0;
6304 }
6305 }
6306 for (int idx = requireChangeToLeftForbidden; idx >= 0; idx--) {
6307 if (clanes[idx].length == clanes[idx].currentLength) {
6308 clanes[idx].length = 0;
6309 };
6310 }
6311
6312 //vehicle with elecHybrid device prefers running under an overhead wire
6313 if (static_cast<MSDevice_ElecHybrid*>(getDevice(typeid(MSDevice_ElecHybrid))) != 0) {
6314 index = 0;
6315 std::string overheadWireID = MSNet::getInstance()->getStoppingPlaceID(clanes[bestThisIndex].lane, (clanes[bestThisIndex].currentLength) / 2, SUMO_TAG_OVERHEAD_WIRE_SEGMENT);
6316 if (overheadWireID != "") {
6317 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6318 (*j).bestLaneOffset = bestThisIndex - index;
6319 }
6320 }
6321 }
6322
6323#ifdef DEBUG_BESTLANES
6324 if (DEBUG_COND) {
6325 std::cout << " edge=" << cE->getID() << " (bestIndex=" << bestThisIndex << " bestMaxIndex=" << bestThisMaxIndex << "):\n";
6326 std::vector<LaneQ>& laneQs = clanes;
6327 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
6328 std::cout << " lane=" << (*j).lane->getID() << " length=" << (*j).length << " bestOffset=" << (*j).bestLaneOffset << " allowCont=" << (*j).allowsContinuation << "\n";
6329 }
6330 }
6331#endif
6332
6333 }
6335#ifdef DEBUG_BESTLANES
6336 if (DEBUG_COND) {
6337 std::cout << SIMTIME << " veh=" << getID() << " bestCont=" << toString(getBestLanesContinuation()) << "\n";
6338 }
6339#endif
6340}
6341
6342void
6344 if (myLane != nullptr) {
6346 }
6347}
6348
6349bool
6350MSVehicle::betterContinuation(const LaneQ* bestConnectedNext, const LaneQ& m) const {
6351 if (bestConnectedNext == nullptr) {
6352 return true;
6353 } else if (m.lane->getBidiLane() != nullptr && bestConnectedNext->lane->getBidiLane() == nullptr) {
6354 return false;
6355 } else if (bestConnectedNext->lane->getBidiLane() != nullptr && m.lane->getBidiLane() == nullptr) {
6356 return true;
6357 } else if (bestConnectedNext->length < m.length) {
6358 return true;
6359 } else if (bestConnectedNext->length == m.length) {
6360 if (abs(bestConnectedNext->bestLaneOffset) > abs(m.bestLaneOffset)) {
6361 return true;
6362 }
6363 const double contRight = getVehicleType().getParameter().getLCParam(SUMO_ATTR_LCA_CONTRIGHT, 1);
6364 if (contRight < 1
6365 // if we don't check for adjacency, the rightmost line will get
6366 // multiple chances to be better which leads to an uninituitve distribution
6367 && (m.lane->getIndex() - bestConnectedNext->lane->getIndex()) == 1
6368 && RandHelper::rand(getRNG()) > contRight) {
6369 return true;
6370 }
6371 }
6372 return false;
6373}
6374
6375
6376int
6377MSVehicle::nextLinkPriority(const std::vector<MSLane*>& conts) {
6378 if (conts.size() < 2) {
6379 return -1;
6380 } else {
6381 const MSLink* const link = conts[0]->getLinkTo(conts[1]);
6382 if (link != nullptr) {
6383 return link->havePriority() ? 1 : 0;
6384 } else {
6385 // disconnected route
6386 return -1;
6387 }
6388 }
6389}
6390
6391
6392void
6394 std::vector<LaneQ>& currLanes = *myBestLanes.begin();
6395 std::vector<LaneQ>::iterator i;
6396 for (i = currLanes.begin(); i != currLanes.end(); ++i) {
6397 double nextOccupation = 0;
6398 for (std::vector<MSLane*>::const_iterator j = (*i).bestContinuations.begin() + 1; j != (*i).bestContinuations.end(); ++j) {
6399 nextOccupation += (*j)->getBruttoVehLenSum();
6400 }
6401 (*i).nextOccupation = nextOccupation;
6402#ifdef DEBUG_BESTLANES
6403 if (DEBUG_COND) {
6404 std::cout << " lane=" << (*i).lane->getID() << " nextOccupation=" << nextOccupation << "\n";
6405 }
6406#endif
6407 if ((*i).lane == startLane) {
6409 }
6410 }
6411}
6412
6413
6414const std::vector<MSLane*>&
6416 if (myBestLanes.empty() || myBestLanes[0].empty()) {
6417 return myEmptyLaneVector;
6418 }
6419 return (*myCurrentLaneInBestLanes).bestContinuations;
6420}
6421
6422
6423const std::vector<MSLane*>&
6425 const MSLane* lane = l;
6426 // XXX: shouldn't this be a "while" to cover more than one internal lane? (Leo) Refs. #2575
6427 if (lane->getEdge().isInternal()) {
6428 // internal edges are not kept inside the bestLanes structure
6429 lane = lane->getLinkCont()[0]->getLane();
6430 }
6431 if (myBestLanes.size() == 0) {
6432 return myEmptyLaneVector;
6433 }
6434 for (std::vector<LaneQ>::const_iterator i = myBestLanes[0].begin(); i != myBestLanes[0].end(); ++i) {
6435 if ((*i).lane == lane) {
6436 return (*i).bestContinuations;
6437 }
6438 }
6439 return myEmptyLaneVector;
6440}
6441
6442const std::vector<const MSLane*>
6443MSVehicle::getUpcomingLanesUntil(double distance) const {
6444 std::vector<const MSLane*> lanes;
6445
6446 if (distance <= 0. || hasArrived()) {
6447 // WRITE_WARNINGF(TL("MSVehicle::getUpcomingLanesUntil(): distance ('%') should be greater than 0."), distance);
6448 return lanes;
6449 }
6450
6451 if (!myLaneChangeModel->isOpposite()) {
6452 distance += getPositionOnLane();
6453 } else {
6454 distance += myLane->getOppositePos(getPositionOnLane());
6455 }
6457 while (lane->isInternal() && (distance > 0.)) { // include initial internal lanes
6458 lanes.insert(lanes.end(), lane);
6459 distance -= lane->getLength();
6460 lane = lane->getLinkCont().front()->getViaLaneOrLane();
6461 }
6462
6463 const std::vector<MSLane*>& contLanes = getBestLanesContinuation();
6464 if (contLanes.empty()) {
6465 return lanes;
6466 }
6467 auto contLanesIt = contLanes.begin();
6468 MSRouteIterator routeIt = myCurrEdge; // keep track of covered edges in myRoute
6469 while (distance > 0.) {
6470 MSLane* l = nullptr;
6471 if (contLanesIt != contLanes.end()) {
6472 l = *contLanesIt;
6473 if (l != nullptr) {
6474 assert(l->getEdge().getID() == (*routeIt)->getLanes().front()->getEdge().getID());
6475 }
6476 ++contLanesIt;
6477 if (l != nullptr || myLane->isInternal()) {
6478 ++routeIt;
6479 }
6480 if (l == nullptr) {
6481 continue;
6482 }
6483 } else if (routeIt != myRoute->end()) { // bestLanes didn't get us far enough
6484 // choose left-most lane as default (avoid sidewalks, bike lanes etc)
6485 l = (*routeIt)->getLanes().back();
6486 ++routeIt;
6487 } else { // the search distance goes beyond our route
6488 break;
6489 }
6490
6491 assert(l != nullptr);
6492
6493 // insert internal lanes if applicable
6494 const MSLane* internalLane = lanes.size() > 0 ? lanes.back()->getInternalFollowingLane(l) : nullptr;
6495 while ((internalLane != nullptr) && internalLane->isInternal() && (distance > 0.)) {
6496 lanes.insert(lanes.end(), internalLane);
6497 distance -= internalLane->getLength();
6498 internalLane = internalLane->getLinkCont().front()->getViaLaneOrLane();
6499 }
6500 if (distance <= 0.) {
6501 break;
6502 }
6503
6504 lanes.insert(lanes.end(), l);
6505 distance -= l->getLength();
6506 }
6507
6508 return lanes;
6509}
6510
6511const std::vector<const MSLane*>
6512MSVehicle::getPastLanesUntil(double distance) const {
6513 std::vector<const MSLane*> lanes;
6514
6515 if (distance <= 0.) {
6516 // WRITE_WARNINGF(TL("MSVehicle::getPastLanesUntil(): distance ('%') should be greater than 0."), distance);
6517 return lanes;
6518 }
6519
6520 MSRouteIterator routeIt = myCurrEdge;
6521 if (!myLaneChangeModel->isOpposite()) {
6522 distance += myLane->getLength() - getPositionOnLane();
6523 } else {
6525 }
6527 while (lane->isInternal() && (distance > 0.)) { // include initial internal lanes
6528 lanes.insert(lanes.end(), lane);
6529 distance -= lane->getLength();
6530 lane = lane->getLogicalPredecessorLane();
6531 }
6532
6533 while (distance > 0.) {
6534 // choose left-most lane as default (avoid sidewalks, bike lanes etc)
6535 MSLane* l = (*routeIt)->getLanes().back();
6536
6537 // insert internal lanes if applicable
6538 const MSEdge* internalEdge = lanes.size() > 0 ? (*routeIt)->getInternalFollowingEdge(&(lanes.back()->getEdge()), getVClass()) : nullptr;
6539 const MSLane* internalLane = internalEdge != nullptr ? internalEdge->getLanes().front() : nullptr;
6540 std::vector<const MSLane*> internalLanes;
6541 while ((internalLane != nullptr) && internalLane->isInternal()) { // collect all internal successor lanes
6542 internalLanes.insert(internalLanes.begin(), internalLane);
6543 internalLane = internalLane->getLinkCont().front()->getViaLaneOrLane();
6544 }
6545 for (auto it = internalLanes.begin(); (it != internalLanes.end()) && (distance > 0.); ++it) { // check remaining distance in correct order
6546 lanes.insert(lanes.end(), *it);
6547 distance -= (*it)->getLength();
6548 }
6549 if (distance <= 0.) {
6550 break;
6551 }
6552
6553 lanes.insert(lanes.end(), l);
6554 distance -= l->getLength();
6555
6556 // NOTE: we're going backwards with the (bi-directional) Iterator
6557 // TODO: consider make reverse_iterator() when moving on to C++14 or later
6558 if (routeIt != myRoute->begin()) {
6559 --routeIt;
6560 } else { // we went backwards to begin() and already processed the first and final element
6561 break;
6562 }
6563 }
6564
6565 return lanes;
6566}
6567
6568
6569const std::vector<MSLane*>
6571 const std::vector<const MSLane*> routeLanes = getPastLanesUntil(myLane->getMaximumBrakeDist());
6572 std::vector<MSLane*> result;
6573 for (const MSLane* lane : routeLanes) {
6574 MSLane* opposite = lane->getOpposite();
6575 if (opposite != nullptr) {
6576 result.push_back(opposite);
6577 } else {
6578 break;
6579 }
6580 }
6581 return result;
6582}
6583
6584
6585int
6587 if (myBestLanes.empty() || myBestLanes[0].empty()) {
6588 return 0;
6589 } else {
6590 return (*myCurrentLaneInBestLanes).bestLaneOffset;
6591 }
6592}
6593
6594double
6596 if (myBestLanes.empty() || myBestLanes[0].empty()) {
6597 return -1;
6598 } else {
6599 return (*myCurrentLaneInBestLanes).length;
6600 }
6601}
6602
6603
6604
6605void
6606MSVehicle::adaptBestLanesOccupation(int laneIndex, double density) {
6607 std::vector<MSVehicle::LaneQ>& preb = myBestLanes.front();
6608 assert(laneIndex < (int)preb.size());
6609 preb[laneIndex].occupation = density + preb[laneIndex].nextOccupation;
6610}
6611
6612
6613void
6619
6620std::pair<const MSLane*, double>
6621MSVehicle::getLanePosAfterDist(double distance) const {
6622 if (distance == 0) {
6623 return std::make_pair(myLane, getPositionOnLane());
6624 }
6625 const std::vector<const MSLane*> lanes = getUpcomingLanesUntil(distance);
6626 distance += getPositionOnLane();
6627 for (const MSLane* lane : lanes) {
6628 if (lane->getLength() > distance) {
6629 return std::make_pair(lane, distance);
6630 }
6631 distance -= lane->getLength();
6632 }
6633 return std::make_pair(nullptr, -1);
6634}
6635
6636
6637double
6638MSVehicle::getDistanceToPosition(double destPos, const MSLane* destLane) const {
6639 if (isOnRoad() && destLane != nullptr) {
6640 return myRoute->getDistanceBetween(getPositionOnLane(), destPos, myLane, destLane);
6641 }
6642 return std::numeric_limits<double>::max();
6643}
6644
6645
6646std::pair<const MSVehicle* const, double>
6647MSVehicle::getLeader(double dist, bool considerCrossingFoes) const {
6648 if (myLane == nullptr) {
6649 return std::make_pair(static_cast<const MSVehicle*>(nullptr), -1);
6650 }
6651 if (dist == 0) {
6653 }
6654 const MSVehicle* lead = nullptr;
6655 const MSLane* lane = myLane; // ensure lane does not change between getVehiclesSecure and releaseVehicles;
6656 const MSLane::VehCont& vehs = lane->getVehiclesSecure();
6657 // vehicle might be outside the road network
6658 MSLane::VehCont::const_iterator it = std::find(vehs.begin(), vehs.end(), this);
6659 if (it != vehs.end() && it + 1 != vehs.end()) {
6660 lead = *(it + 1);
6661 }
6662 if (lead != nullptr) {
6663 std::pair<const MSVehicle* const, double> result(
6664 lead, lead->getBackPositionOnLane(myLane) - getPositionOnLane() - getVehicleType().getMinGap());
6665 lane->releaseVehicles();
6666 return result;
6667 }
6668 const double seen = myLane->getLength() - getPositionOnLane();
6669 const std::vector<MSLane*>& bestLaneConts = getBestLanesContinuation(myLane);
6670 std::pair<const MSVehicle* const, double> result = myLane->getLeaderOnConsecutive(dist, seen, getSpeed(), *this, bestLaneConts, considerCrossingFoes);
6671 lane->releaseVehicles();
6672 return result;
6673}
6674
6675
6676std::pair<const MSVehicle* const, double>
6677MSVehicle::getFollower(double dist) const {
6678 if (myLane == nullptr) {
6679 return std::make_pair(static_cast<const MSVehicle*>(nullptr), -1);
6680 }
6681 if (dist == 0) {
6682 dist = getCarFollowModel().brakeGap(myLane->getEdge().getSpeedLimit() * 2, 4.5, 0);
6683 }
6685}
6686
6687
6688double
6690 // calling getLeader with 0 would induce a dist calculation but we only want to look for the leaders on the current lane
6691 std::pair<const MSVehicle* const, double> leaderInfo = getLeader(-1);
6692 if (leaderInfo.first == nullptr || getSpeed() == 0) {
6693 return -1;
6694 }
6695 return (leaderInfo.second + getVehicleType().getMinGap()) / getSpeed();
6696}
6697
6698
6699void
6701 MSBaseVehicle::addTransportable(transportable);
6702 if (myStops.size() > 0 && myStops.front().reached) {
6703 if (transportable->isPerson()) {
6704 if (myStops.front().triggered && myStops.front().numExpectedPerson > 0) {
6705 myStops.front().numExpectedPerson -= (int)myStops.front().pars.awaitedPersons.count(transportable->getID());
6706 }
6707 } else {
6708 if (myStops.front().pars.containerTriggered && myStops.front().numExpectedContainer > 0) {
6709 myStops.front().numExpectedContainer -= (int)myStops.front().pars.awaitedContainers.count(transportable->getID());
6710 }
6711 }
6712 }
6713}
6714
6715
6716void
6719 int state = myLaneChangeModel->getOwnState();
6720 // do not set blinker for sublane changes or when blocked from changing to the right
6721 const bool blinkerManoeuvre = (((state & LCA_SUBLANE) == 0) && (
6722 (state & LCA_KEEPRIGHT) == 0 || (state & LCA_BLOCKED) == 0));
6726 // lane indices increase from left to right
6727 std::swap(left, right);
6728 }
6729 if ((state & LCA_LEFT) != 0 && blinkerManoeuvre) {
6730 switchOnSignal(left);
6731 } else if ((state & LCA_RIGHT) != 0 && blinkerManoeuvre) {
6732 switchOnSignal(right);
6733 } else if (myLaneChangeModel->isChangingLanes()) {
6735 switchOnSignal(left);
6736 } else {
6737 switchOnSignal(right);
6738 }
6739 } else {
6740 const MSLane* lane = getLane();
6741 std::vector<MSLink*>::const_iterator link = MSLane::succLinkSec(*this, 1, *lane, getBestLanesContinuation());
6742 if (link != lane->getLinkCont().end() && lane->getLength() - getPositionOnLane() < lane->getVehicleMaxSpeed(this) * (double) 7.) {
6743 switch ((*link)->getDirection()) {
6748 break;
6752 break;
6753 default:
6754 break;
6755 }
6756 }
6757 }
6758 // stopping related signals
6759 if (hasStops()
6760 && (myStops.begin()->reached ||
6762 && myStopDist < getCarFollowModel().brakeGap(myLane->getVehicleMaxSpeed(this), getCarFollowModel().getMaxDecel(), 3)))) {
6763 if (myStops.begin()->lane->getIndex() > 0 && myStops.begin()->lane->getParallelLane(-1)->allowsVehicleClass(getVClass())) {
6764 // not stopping on the right. Activate emergency blinkers
6766 } else if (!myStops.begin()->reached && (myStops.begin()->pars.parking == ParkingType::OFFROAD)) {
6767 // signal upcoming parking stop on the current lane when within braking distance (~2 seconds before braking)
6769 }
6770 }
6771 if (myInfluencer != nullptr && myInfluencer->getSignals() >= 0) {
6773 myInfluencer->setSignals(-1); // overwrite computed signals only once
6774 }
6775}
6776
6777void
6779
6780 //TODO look if timestep ist SIMSTEP
6781 if (currentTime % 1000 == 0) {
6784 } else {
6786 }
6787 }
6788}
6789
6790
6791int
6793 return myLane == nullptr ? -1 : myLane->getIndex();
6794}
6795
6796
6797void
6798MSVehicle::setTentativeLaneAndPosition(MSLane* lane, double pos, double posLat) {
6799 myLane = lane;
6800 myState.myPos = pos;
6801 myState.myPosLat = posLat;
6803}
6804
6805
6806double
6808 return myState.myPosLat + 0.5 * myLane->getWidth() - 0.5 * getVehicleType().getWidth();
6809}
6810
6811
6812double
6814 return myState.myPosLat + 0.5 * myLane->getWidth() + 0.5 * getVehicleType().getWidth();
6815}
6816
6817
6818double
6820 return myState.myPosLat + 0.5 * lane->getWidth() - 0.5 * getVehicleType().getWidth();
6821}
6822
6823
6824double
6826 return myState.myPosLat + 0.5 * lane->getWidth() + 0.5 * getVehicleType().getWidth();
6827}
6828
6829
6830double
6832 return getCenterOnEdge(lane) - 0.5 * getVehicleType().getWidth();
6833}
6834
6835
6836double
6838 return getCenterOnEdge(lane) + 0.5 * getVehicleType().getWidth();
6839}
6840
6841
6842double
6844 if (lane == nullptr || &lane->getEdge() == &myLane->getEdge()) {
6846 } else if (lane == myLaneChangeModel->getShadowLane()) {
6847 if (myLaneChangeModel->isOpposite() && &lane->getEdge() != &myLane->getEdge()) {
6848 return lane->getRightSideOnEdge() + lane->getWidth() - myState.myPosLat + 0.5 * myLane->getWidth();
6849 }
6851 return lane->getRightSideOnEdge() + lane->getWidth() + myState.myPosLat + 0.5 * myLane->getWidth();
6852 } else {
6853 return lane->getRightSideOnEdge() - myLane->getWidth() + myState.myPosLat + 0.5 * myLane->getWidth();
6854 }
6855 } else if (lane == myLane->getBidiLane()) {
6856 return lane->getRightSideOnEdge() - myState.myPosLat + 0.5 * lane->getWidth();
6857 } else {
6858 assert(myFurtherLanes.size() == myFurtherLanesPosLat.size());
6859 for (int i = 0; i < (int)myFurtherLanes.size(); ++i) {
6860 if (myFurtherLanes[i] == lane) {
6861#ifdef DEBUG_FURTHER
6862 if (DEBUG_COND) std::cout << " getCenterOnEdge veh=" << getID() << " lane=" << lane->getID() << " i=" << i << " furtherLat=" << myFurtherLanesPosLat[i]
6863 << " result=" << lane->getRightSideOnEdge() + myFurtherLanesPosLat[i] + 0.5 * lane->getWidth()
6864 << "\n";
6865#endif
6866 return lane->getRightSideOnEdge() + myFurtherLanesPosLat[i] + 0.5 * lane->getWidth();
6867 } else if (myFurtherLanes[i]->getBidiLane() == lane) {
6868#ifdef DEBUG_FURTHER
6869 if (DEBUG_COND) std::cout << " getCenterOnEdge veh=" << getID() << " lane=" << lane->getID() << " i=" << i << " furtherLat(bidi)=" << myFurtherLanesPosLat[i]
6870 << " result=" << lane->getRightSideOnEdge() + myFurtherLanesPosLat[i] + 0.5 * lane->getWidth()
6871 << "\n";
6872#endif
6873 return lane->getRightSideOnEdge() - myFurtherLanesPosLat[i] + 0.5 * lane->getWidth();
6874 }
6875 }
6876 //if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID() << " myShadowFurtherLanes=" << toString(myLaneChangeModel->getShadowFurtherLanes()) << "\n";
6877 const std::vector<MSLane*>& shadowFurther = myLaneChangeModel->getShadowFurtherLanes();
6878 for (int i = 0; i < (int)shadowFurther.size(); ++i) {
6879 //if (DEBUG_COND) std::cout << " comparing i=" << (*i)->getID() << " lane=" << lane->getID() << "\n";
6880 if (shadowFurther[i] == lane) {
6881 assert(myLaneChangeModel->getShadowLane() != 0);
6882 return (lane->getRightSideOnEdge() + myLaneChangeModel->getShadowFurtherLanesPosLat()[i] + 0.5 * lane->getWidth()
6884 }
6885 }
6886 assert(false);
6887 throw ProcessError("Request lateral pos of vehicle '" + getID() + "' for invalid lane '" + Named::getIDSecure(lane) + "'");
6888 }
6889}
6890
6891
6892double
6894 assert(lane != 0);
6895 if (&lane->getEdge() == &myLane->getEdge()) {
6896 return myLane->getRightSideOnEdge() - lane->getRightSideOnEdge();
6897 } else if (myLane->getParallelOpposite() == lane) {
6898 return (myLane->getWidth() + lane->getWidth()) * 0.5 - 2 * getLateralPositionOnLane();
6899 } else if (myLane->getBidiLane() == lane) {
6900 return -2 * getLateralPositionOnLane();
6901 } else {
6902 // Check whether the lane is a further lane for the vehicle
6903 for (int i = 0; i < (int)myFurtherLanes.size(); ++i) {
6904 if (myFurtherLanes[i] == lane) {
6905#ifdef DEBUG_FURTHER
6906 if (DEBUG_COND) {
6907 std::cout << " getLatOffset veh=" << getID() << " lane=" << lane->getID() << " i=" << i << " posLat=" << myState.myPosLat << " furtherLat=" << myFurtherLanesPosLat[i] << "\n";
6908 }
6909#endif
6911 } else if (myFurtherLanes[i]->getBidiLane() == lane) {
6912#ifdef DEBUG_FURTHER
6913 if (DEBUG_COND) {
6914 std::cout << " getLatOffset veh=" << getID() << " lane=" << lane->getID() << " i=" << i << " posLat=" << myState.myPosLat << " furtherBidiLat=" << myFurtherLanesPosLat[i] << "\n";
6915 }
6916#endif
6917 return -2 * (myFurtherLanesPosLat[i] - myState.myPosLat);
6918 }
6919 }
6920#ifdef DEBUG_FURTHER
6921 if (DEBUG_COND) {
6922 std::cout << SIMTIME << " veh=" << getID() << " myShadowFurtherLanes=" << toString(myLaneChangeModel->getShadowFurtherLanes()) << "\n";
6923 }
6924#endif
6925 // Check whether the lane is a "shadow further lane" for the vehicle
6926 const std::vector<MSLane*>& shadowFurther = myLaneChangeModel->getShadowFurtherLanes();
6927 for (int i = 0; i < (int)shadowFurther.size(); ++i) {
6928 if (shadowFurther[i] == lane) {
6929#ifdef DEBUG_FURTHER
6930 if (DEBUG_COND) std::cout << " getLatOffset veh=" << getID()
6931 << " shadowLane=" << Named::getIDSecure(myLaneChangeModel->getShadowLane())
6932 << " lane=" << lane->getID()
6933 << " i=" << i
6934 << " posLat=" << myState.myPosLat
6935 << " shadowPosLat=" << getLatOffset(myLaneChangeModel->getShadowLane())
6936 << " shadowFurtherLat=" << myLaneChangeModel->getShadowFurtherLanesPosLat()[i]
6937 << "\n";
6938#endif
6940 }
6941 }
6942 // Check whether the vehicle issued a maneuverReservation on the lane.
6943 const std::vector<MSLane*>& furtherTargets = myLaneChangeModel->getFurtherTargetLanes();
6944 for (int i = 0; i < (int)myFurtherLanes.size(); ++i) {
6945 // Further target lanes are just neighboring lanes of the vehicle's further lanes, @see MSAbstractLaneChangeModel::updateTargetLane()
6946 MSLane* targetLane = furtherTargets[i];
6947 if (targetLane == lane) {
6948 const double targetDir = myLaneChangeModel->getManeuverDist() < 0 ? -1. : 1.;
6949 const double latOffset = myFurtherLanesPosLat[i] - myState.myPosLat + targetDir * 0.5 * (myFurtherLanes[i]->getWidth() + targetLane->getWidth());
6950#ifdef DEBUG_TARGET_LANE
6951 if (DEBUG_COND) {
6952 std::cout << " getLatOffset veh=" << getID()
6953 << " wrt targetLane=" << Named::getIDSecure(myLaneChangeModel->getTargetLane())
6954 << "\n i=" << i
6955 << " posLat=" << myState.myPosLat
6956 << " furtherPosLat=" << myFurtherLanesPosLat[i]
6957 << " maneuverDist=" << myLaneChangeModel->getManeuverDist()
6958 << " targetDir=" << targetDir
6959 << " latOffset=" << latOffset
6960 << std::endl;
6961 }
6962#endif
6963 return latOffset;
6964 }
6965 }
6966 assert(false);
6967 throw ProcessError("Request lateral offset of vehicle '" + getID() + "' for invalid lane '" + Named::getIDSecure(lane) + "'");
6968 }
6969}
6970
6971
6972double
6973MSVehicle::lateralDistanceToLane(const int offset) const {
6974 // compute the distance when changing to the neighboring lane
6975 // (ensure we do not lap into the line behind neighLane since there might be unseen blockers)
6976 assert(offset == 0 || offset == 1 || offset == -1);
6977 assert(myLane != nullptr);
6978 assert(myLane->getParallelLane(offset) != nullptr || myLane->getParallelOpposite() != nullptr);
6979 const double halfCurrentLaneWidth = 0.5 * myLane->getWidth();
6980 const double halfVehWidth = 0.5 * (getWidth() + NUMERICAL_EPS);
6981 const double latPos = getLateralPositionOnLane();
6982 const double oppositeSign = getLaneChangeModel().isOpposite() ? -1 : 1;
6983 double leftLimit = halfCurrentLaneWidth - halfVehWidth - oppositeSign * latPos;
6984 double rightLimit = -halfCurrentLaneWidth + halfVehWidth - oppositeSign * latPos;
6985 double latLaneDist = 0; // minimum distance to move the vehicle fully onto the new lane
6986 if (offset == 0) {
6987 if (latPos + halfVehWidth > halfCurrentLaneWidth) {
6988 // correct overlapping left
6989 latLaneDist = halfCurrentLaneWidth - latPos - halfVehWidth;
6990 } else if (latPos - halfVehWidth < -halfCurrentLaneWidth) {
6991 // correct overlapping right
6992 latLaneDist = -halfCurrentLaneWidth - latPos + halfVehWidth;
6993 }
6994 latLaneDist *= oppositeSign;
6995 } else if (offset == -1) {
6996 latLaneDist = rightLimit - (getWidth() + NUMERICAL_EPS);
6997 } else if (offset == 1) {
6998 latLaneDist = leftLimit + (getWidth() + NUMERICAL_EPS);
6999 }
7000#ifdef DEBUG_ACTIONSTEPS
7001 if (DEBUG_COND) {
7002 std::cout << SIMTIME
7003 << " veh=" << getID()
7004 << " halfCurrentLaneWidth=" << halfCurrentLaneWidth
7005 << " halfVehWidth=" << halfVehWidth
7006 << " latPos=" << latPos
7007 << " latLaneDist=" << latLaneDist
7008 << " leftLimit=" << leftLimit
7009 << " rightLimit=" << rightLimit
7010 << "\n";
7011 }
7012#endif
7013 return latLaneDist;
7014}
7015
7016
7017double
7018MSVehicle::getLateralOverlap(double posLat, const MSLane* lane) const {
7019 return (fabs(posLat) + 0.5 * getVehicleType().getWidth()
7020 - 0.5 * lane->getWidth());
7021}
7022
7023double
7027
7028double
7032
7033
7034void
7036 for (const DriveProcessItem& dpi : lfLinks) {
7037 if (dpi.myLink != nullptr) {
7038 dpi.myLink->removeApproaching(this);
7039 }
7040 }
7041 // unregister on all shadow links
7043}
7044
7045
7046bool
7047MSVehicle::unsafeLinkAhead(const MSLane* lane, double zipperDist) const {
7048 // the following links are unsafe:
7049 // - zipper links if they are close enough and have approaching vehicles in the relevant time range
7050 // - unprioritized links if the vehicle is currently approaching a prioritzed link and unable to stop in time
7051 double seen = myLane->getLength() - getPositionOnLane();
7052 const double dist = MAX2(zipperDist, getCarFollowModel().brakeGap(getSpeed(), getCarFollowModel().getMaxDecel(), 0));
7053 if (seen < dist) {
7054 const std::vector<MSLane*>& bestLaneConts = getBestLanesContinuation(lane);
7055 int view = 1;
7056 std::vector<MSLink*>::const_iterator link = MSLane::succLinkSec(*this, view, *lane, bestLaneConts);
7057 DriveItemVector::const_iterator di = myLFLinkLanes.begin();
7058 while (!lane->isLinkEnd(link) && seen <= dist) {
7059 if ((!lane->isInternal()
7060 && (((*link)->getState() == LINKSTATE_ZIPPER && seen < (*link)->getFoeVisibilityDistance())
7061 || !(*link)->havePriority()))
7062 || (lane->isInternal() && zipperDist > 0)) {
7063 // find the drive item corresponding to this link
7064 bool found = false;
7065 while (di != myLFLinkLanes.end() && !found) {
7066 if ((*di).myLink != nullptr) {
7067 const MSLane* diPredLane = (*di).myLink->getLaneBefore();
7068 if (diPredLane != nullptr) {
7069 if (&diPredLane->getEdge() == &lane->getEdge()) {
7070 found = true;
7071 }
7072 }
7073 }
7074 if (!found) {
7075 di++;
7076 }
7077 }
7078 if (found) {
7079 const SUMOTime leaveTime = (*link)->getLeaveTime((*di).myArrivalTime, (*di).myArrivalSpeed,
7080 (*di).getLeaveSpeed(), getVehicleType().getLength());
7081 const MSLink* entry = (*link)->getCorrespondingEntryLink();
7082 //if (DEBUG_COND) {
7083 // std::cout << SIMTIME << " veh=" << getID() << " changeTo=" << Named::getIDSecure(bestLaneConts.front()) << " linkState=" << toString((*link)->getState()) << " seen=" << seen << " dist=" << dist << " zipperDist=" << zipperDist << " aT=" << STEPS2TIME((*di).myArrivalTime) << " lT=" << STEPS2TIME(leaveTime) << "\n";
7084 //}
7085 if (entry->hasApproachingFoe((*di).myArrivalTime, leaveTime, (*di).myArrivalSpeed, getCarFollowModel().getMaxDecel())) {
7086 //std::cout << SIMTIME << " veh=" << getID() << " aborting changeTo=" << Named::getIDSecure(bestLaneConts.front()) << " linkState=" << toString((*link)->getState()) << " seen=" << seen << " dist=" << dist << "\n";
7087 return true;
7088 }
7089 }
7090 // no drive item is found if the vehicle aborts its request within dist
7091 }
7092 lane = (*link)->getViaLaneOrLane();
7093 if (!lane->getEdge().isInternal()) {
7094 view++;
7095 }
7096 seen += lane->getLength();
7097 link = MSLane::succLinkSec(*this, view, *lane, bestLaneConts);
7098 }
7099 }
7100 return false;
7101}
7102
7103
7105MSVehicle::getBoundingBox(double offset) const {
7106 PositionVector centerLine;
7107 Position pos = getPosition();
7108 centerLine.push_back(pos);
7109 switch (myType->getGuiShape()) {
7116 for (MSLane* lane : myFurtherLanes) {
7117 centerLine.push_back(lane->getShape().back());
7118 }
7119 break;
7120 }
7121 default:
7122 break;
7123 }
7124 double l = getLength();
7125 Position backPos = getBackPosition();
7126 if (pos.distanceTo2D(backPos) > l + NUMERICAL_EPS) {
7127 // getBackPosition may not match the visual back in networks without internal lanes
7128 double a = getAngle() + M_PI; // angle pointing backwards
7129 backPos = pos + Position(l * cos(a), l * sin(a));
7130 }
7131 centerLine.push_back(backPos);
7132 if (offset != 0) {
7133 centerLine.extrapolate2D(offset);
7134 }
7135 PositionVector result = centerLine;
7136 result.move2side(MAX2(0.0, 0.5 * myType->getWidth() + offset));
7137 centerLine.move2side(MIN2(0.0, -0.5 * myType->getWidth() - offset));
7138 result.append(centerLine.reverse(), POSITION_EPS);
7139 return result;
7140}
7141
7142
7144MSVehicle::getBoundingPoly(double offset) const {
7145 switch (myType->getGuiShape()) {
7151 // box with corners cut off
7152 PositionVector result;
7153 PositionVector centerLine;
7154 centerLine.push_back(getPosition());
7155 centerLine.push_back(getBackPosition());
7156 if (offset != 0) {
7157 centerLine.extrapolate2D(offset);
7158 }
7159 PositionVector line1 = centerLine;
7160 PositionVector line2 = centerLine;
7161 line1.move2side(MAX2(0.0, 0.3 * myType->getWidth() + offset));
7162 line2.move2side(MAX2(0.0, 0.5 * myType->getWidth() + offset));
7163 line2.scaleRelative(0.8);
7164 result.push_back(line1[0]);
7165 result.push_back(line2[0]);
7166 result.push_back(line2[1]);
7167 result.push_back(line1[1]);
7168 line1.move2side(MIN2(0.0, -0.6 * myType->getWidth() - offset));
7169 line2.move2side(MIN2(0.0, -1.0 * myType->getWidth() - offset));
7170 result.push_back(line1[1]);
7171 result.push_back(line2[1]);
7172 result.push_back(line2[0]);
7173 result.push_back(line1[0]);
7174 return result;
7175 }
7176 default:
7177 return getBoundingBox();
7178 }
7179}
7180
7181
7182bool
7184 for (std::vector<MSLane*>::const_iterator i = myFurtherLanes.begin(); i != myFurtherLanes.end(); ++i) {
7185 if (&(*i)->getEdge() == edge) {
7186 return true;
7187 }
7188 }
7189 return false;
7190}
7191
7192
7193bool
7194MSVehicle::isBidiOn(const MSLane* lane) const {
7195 return lane->getBidiLane() != nullptr && (
7196 myLane == lane->getBidiLane()
7197 || onFurtherEdge(&lane->getBidiLane()->getEdge()));
7198}
7199
7200
7201bool
7202MSVehicle::rerouteParkingArea(const std::string& parkingAreaID, std::string& errorMsg) {
7203 // this function is based on MSTriggeredRerouter::rerouteParkingArea in order to keep
7204 // consistency in the behaviour.
7205
7206 // get vehicle params
7207 MSParkingArea* destParkArea = getNextParkingArea();
7208 const MSRoute& route = getRoute();
7209 const MSEdge* lastEdge = route.getLastEdge();
7210
7211 if (destParkArea == nullptr) {
7212 // not driving towards a parking area
7213 errorMsg = "Vehicle " + getID() + " is not driving to a parking area so it cannot be rerouted.";
7214 return false;
7215 }
7216
7217 // if the current route ends at the parking area, the new route will also and at the new area
7218 bool newDestination = (&destParkArea->getLane().getEdge() == route.getLastEdge()
7219 && getArrivalPos() >= destParkArea->getBeginLanePosition()
7220 && getArrivalPos() <= destParkArea->getEndLanePosition());
7221
7222 // retrieve info on the new parking area
7224 parkingAreaID, SumoXMLTag::SUMO_TAG_PARKING_AREA);
7225
7226 if (newParkingArea == nullptr) {
7227 errorMsg = "Parking area ID " + toString(parkingAreaID) + " not found in the network.";
7228 return false;
7229 }
7230
7231 const MSEdge* newEdge = &(newParkingArea->getLane().getEdge());
7233
7234 // Compute the route from the current edge to the parking area edge
7235 ConstMSEdgeVector edgesToPark;
7236 router.compute(getEdge(), getPositionOnLane(), newEdge, newParkingArea->getEndLanePosition(), this, MSNet::getInstance()->getCurrentTimeStep(), edgesToPark);
7237
7238 // Compute the route from the parking area edge to the end of the route
7239 ConstMSEdgeVector edgesFromPark;
7240 if (!newDestination) {
7241 router.compute(newEdge, lastEdge, this, MSNet::getInstance()->getCurrentTimeStep(), edgesFromPark);
7242 } else {
7243 // adapt plans of any riders
7244 for (MSTransportable* p : getPersons()) {
7245 p->rerouteParkingArea(getNextParkingArea(), newParkingArea);
7246 }
7247 }
7248
7249 // we have a new destination, let's replace the vehicle route
7250 ConstMSEdgeVector edges = edgesToPark;
7251 if (edgesFromPark.size() > 0) {
7252 edges.insert(edges.end(), edgesFromPark.begin() + 1, edgesFromPark.end());
7253 }
7254
7255 if (newDestination) {
7256 SUMOVehicleParameter* newParameter = new SUMOVehicleParameter();
7257 *newParameter = getParameter();
7259 newParameter->arrivalPos = newParkingArea->getEndLanePosition();
7260 replaceParameter(newParameter);
7261 }
7262 const double routeCost = router.recomputeCosts(edges, this, MSNet::getInstance()->getCurrentTimeStep());
7263 ConstMSEdgeVector prevEdges(myCurrEdge, myRoute->end());
7264 const double savings = router.recomputeCosts(prevEdges, this, MSNet::getInstance()->getCurrentTimeStep());
7265 if (replaceParkingArea(newParkingArea, errorMsg)) {
7266 const bool onInit = myLane == nullptr;
7267 replaceRouteEdges(edges, routeCost, savings, "TraCI:" + toString(SUMO_TAG_PARKING_AREA_REROUTE), onInit, false, false);
7268 } else {
7269 WRITE_WARNING("Vehicle '" + getID() + "' could not reroute to new parkingArea '" + newParkingArea->getID()
7270 + "' reason=" + errorMsg + ", time=" + time2string(MSNet::getInstance()->getCurrentTimeStep()) + ".");
7271 return false;
7272 }
7273 return true;
7274}
7275
7276
7277bool
7279 const int numStops = (int)myStops.size();
7280 const bool result = MSBaseVehicle::addTraciStop(stop, errorMsg);
7281 if (myLane != nullptr && numStops != (int)myStops.size()) {
7282 updateBestLanes(true);
7283 }
7284 return result;
7285}
7286
7287
7288bool
7289MSVehicle::handleCollisionStop(MSStop& stop, const double distToStop) {
7290 if (myCurrEdge == stop.edge && distToStop + POSITION_EPS < getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getMaxDecel(), 0)) {
7291 if (distToStop < getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getEmergencyDecel(), 0)) {
7292 double vNew = getCarFollowModel().maximumSafeStopSpeed(distToStop, getCarFollowModel().getMaxDecel(), getSpeed(), false, 0);
7293 //std::cout << SIMTIME << " veh=" << getID() << " v=" << myState.mySpeed << " distToStop=" << distToStop
7294 // << " vMinNex=" << getCarFollowModel().minNextSpeed(getSpeed(), this)
7295 // << " bg1=" << getCarFollowModel().brakeGap(myState.mySpeed)
7296 // << " bg2=" << getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getEmergencyDecel(), 0)
7297 // << " vNew=" << vNew
7298 // << "\n";
7299 myState.mySpeed = MIN2(myState.mySpeed, vNew + ACCEL2SPEED(getCarFollowModel().getEmergencyDecel()));
7302 if (myState.myPos < myType->getLength()) {
7306 myAngle += M_PI;
7307 }
7308 }
7309 }
7310 }
7311 return true;
7312}
7313
7314
7315bool
7317 if (isStopped()) {
7321 }
7322 MSStop& stop = myStops.front();
7323 // we have waited long enough and fulfilled any passenger-requirements
7324 if (stop.busstop != nullptr) {
7325 // inform bus stop about leaving it
7326 stop.busstop->leaveFrom(this);
7327 }
7328 // we have waited long enough and fulfilled any container-requirements
7329 if (stop.containerstop != nullptr) {
7330 // inform container stop about leaving it
7331 stop.containerstop->leaveFrom(this);
7332 }
7333 if (stop.parkingarea != nullptr && stop.getSpeed() <= 0) {
7334 // inform parking area about leaving it
7335 stop.parkingarea->leaveFrom(this);
7336 }
7337 if (stop.chargingStation != nullptr) {
7338 // inform charging station about leaving it
7339 stop.chargingStation->leaveFrom(this);
7340 }
7341 // the current stop is no longer valid
7342 myLane->getEdge().removeWaiting(this);
7343 // MSStopOut needs to know whether the stop had a loaded 'ended' value so we call this before replacing the value
7344 if (stop.pars.started == -1) {
7345 // waypoint edge was passed in a single step
7347 }
7348 if (MSStopOut::active()) {
7349 MSStopOut::getInstance()->stopEnded(this, stop.pars, stop.lane->getID());
7350 }
7352 for (const auto& rem : myMoveReminders) {
7353 rem.first->notifyStopEnded();
7354 }
7356 myCollisionImmunity = TIME2STEPS(5); // leave the conflict area
7357 }
7359 // reset lateral position to default
7360 myState.myPosLat = 0;
7361 }
7362 myPastStops.push_back(stop.pars);
7363 myPastStops.back().routeIndex = (int)(stop.edge - myRoute->begin());
7364 myStops.pop_front();
7365 myStopDist = std::numeric_limits<double>::max();
7366 // do not count the stopping time towards gridlock time.
7367 // Other outputs use an independent counter and are not affected.
7368 myWaitingTime = 0;
7369 // maybe the next stop is on the same edge; let's rebuild best lanes
7370 updateBestLanes(true);
7371 // continue as wished...
7374 return true;
7375 }
7376 return false;
7377}
7378
7379
7382 if (myInfluencer == nullptr) {
7383 myInfluencer = new Influencer();
7384 }
7385 return *myInfluencer;
7386}
7387
7392
7393
7396 return myInfluencer;
7397}
7398
7401 return myInfluencer;
7402}
7403
7404
7405double
7407 if (myInfluencer != nullptr && myInfluencer->getOriginalSpeed() >= 0) {
7408 // influencer original speed is -1 on initialization
7410 }
7411 return myState.mySpeed;
7412}
7413
7414
7415int
7417 if (hasInfluencer()) {
7419 MSNet::getInstance()->getCurrentTimeStep(),
7420 myLane->getEdge(),
7421 getLaneIndex(),
7422 state);
7423 }
7424 return state;
7425}
7426
7427
7428void
7432
7433
7434bool
7438
7439
7440bool
7444
7445
7446bool
7447MSVehicle::keepClear(const MSLink* link) const {
7448 if (link->hasFoes() && link->keepClear() /* && item.myLink->willHaveBlockedFoe()*/) {
7449 const double keepClearTime = getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_IGNORE_KEEPCLEAR_TIME, -1);
7450 //std::cout << SIMTIME << " veh=" << getID() << " keepClearTime=" << keepClearTime << " accWait=" << getAccumulatedWaitingSeconds() << " keepClear=" << (keepClearTime < 0 || getAccumulatedWaitingSeconds() < keepClearTime) << "\n";
7451 return keepClearTime < 0 || getAccumulatedWaitingSeconds() < keepClearTime;
7452 } else {
7453 return false;
7454 }
7455}
7456
7457
7458bool
7459MSVehicle::ignoreRed(const MSLink* link, bool canBrake) const {
7460 if ((myInfluencer != nullptr && !myInfluencer->getEmergencyBrakeRedLight())) {
7461 return true;
7462 }
7463 const double ignoreRedTime = getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_DRIVE_AFTER_RED_TIME, -1);
7464#ifdef DEBUG_IGNORE_RED
7465 if (DEBUG_COND) {
7466 std::cout << SIMTIME << " veh=" << getID() << " link=" << link->getViaLaneOrLane()->getID() << " state=" << toString(link->getState()) << "\n";
7467 }
7468#endif
7469 if (ignoreRedTime < 0) {
7470 const double ignoreYellowTime = getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_DRIVE_AFTER_YELLOW_TIME, 0);
7471 if (ignoreYellowTime > 0 && link->haveYellow()) {
7472 assert(link->getTLLogic() != 0);
7473 const double yellowDuration = STEPS2TIME(MSNet::getInstance()->getCurrentTimeStep() - link->getLastStateChange());
7474 // when activating ignoreYellow behavior, vehicles will drive if they cannot brake
7475 return !canBrake || ignoreYellowTime > yellowDuration;
7476 } else {
7477 return false;
7478 }
7479 } else if (link->haveYellow()) {
7480 // always drive at yellow when ignoring red
7481 return true;
7482 } else if (link->haveRed()) {
7483 assert(link->getTLLogic() != 0);
7484 const double redDuration = STEPS2TIME(MSNet::getInstance()->getCurrentTimeStep() - link->getLastStateChange());
7485#ifdef DEBUG_IGNORE_RED
7486 if (DEBUG_COND) {
7487 std::cout
7488 // << SIMTIME << " veh=" << getID() << " link=" << link->getViaLaneOrLane()->getID()
7489 << " ignoreRedTime=" << ignoreRedTime
7490 << " spentRed=" << redDuration
7491 << " canBrake=" << canBrake << "\n";
7492 }
7493#endif
7494 // when activating ignoreRed behavior, vehicles will always drive if they cannot brake
7495 return !canBrake || ignoreRedTime > redDuration;
7496 } else {
7497 return false;
7498 }
7499}
7500
7501bool
7504 return false;
7505 }
7506 for (const std::string& typeID : StringTokenizer(getParameter().getParameter(toString(SUMO_ATTR_CF_IGNORE_TYPES), "")).getVector()) {
7507 if (typeID == foe->getVehicleType().getID()) {
7508 return true;
7509 }
7510 }
7511 for (const std::string& id : StringTokenizer(getParameter().getParameter(toString(SUMO_ATTR_CF_IGNORE_IDS), "")).getVector()) {
7512 if (id == foe->getID()) {
7513 return true;
7514 }
7515 }
7516 return false;
7517}
7518
7519bool
7521 // either on an internal lane that was entered via minor link
7522 // or on approach to minor link below visibility distance
7523 if (myLane == nullptr) {
7524 return false;
7525 }
7526 if (myLane->getEdge().isInternal()) {
7527 return !myLane->getIncomingLanes().front().viaLink->havePriority();
7528 } else if (myLFLinkLanes.size() > 0 && myLFLinkLanes.front().myLink != nullptr) {
7529 MSLink* link = myLFLinkLanes.front().myLink;
7530 return !link->havePriority() && myLFLinkLanes.front().myDistance <= link->getFoeVisibilityDistance();
7531 }
7532 return false;
7533}
7534
7535bool
7536MSVehicle::isLeader(const MSLink* link, const MSVehicle* veh, const double gap) const {
7537 assert(link->fromInternalLane());
7538 if (veh == nullptr) {
7539 return false;
7540 }
7541 if (!myLane->isInternal() || myLane->getEdge().getToJunction() != link->getJunction()) {
7542 // if this vehicle is not yet on the junction, every vehicle is a leader
7543 return true;
7544 }
7545 if (veh->getLaneChangeModel().hasBlueLight()) {
7546 // blue light device automatically gets right of way
7547 return true;
7548 }
7549 const MSLane* foeLane = veh->getLane();
7550 if (foeLane->isInternal()) {
7551 if (foeLane->getEdge().getFromJunction() == link->getJunction()) {
7553 SUMOTime foeET = veh->myJunctionEntryTime;
7554 // check relationship between link and foeLane
7556 // we are entering the junction from the same lane
7558 foeET = veh->myJunctionEntryTimeNeverYield;
7561 }
7562 } else {
7563 const MSLink* foeLink = foeLane->getIncomingLanes()[0].viaLink;
7564 const MSJunctionLogic* logic = link->getJunction()->getLogic();
7565 assert(logic != nullptr);
7566 // determine who has right of way
7567 bool response; // ego response to foe
7568 bool response2; // foe response to ego
7569 // attempt 1: tlLinkState
7570 const MSLink* entry = link->getCorrespondingEntryLink();
7571 const MSLink* foeEntry = foeLink->getCorrespondingEntryLink();
7572 if (entry->haveRed() || foeEntry->haveRed()) {
7573 // ensure that vehicles which are stuck on the intersection may exit
7574 if (!foeEntry->haveRed() && veh->getSpeed() > SUMO_const_haltingSpeed && gap < 0) {
7575 // foe might be oncoming, don't drive unless foe can still brake safely
7576 const double foeNextSpeed = veh->getSpeed() + ACCEL2SPEED(veh->getCarFollowModel().getMaxAccel());
7577 const double foeBrakeGap = veh->getCarFollowModel().brakeGap(
7578 foeNextSpeed, veh->getCarFollowModel().getMaxDecel(), veh->getCarFollowModel().getHeadwayTime());
7579 // the minGap was subtracted from gap in MSLink::getLeaderInfo (enlarging the negative gap)
7580 // so the -2* makes it point in the right direction
7581 const double foeGap = -gap - veh->getLength() - 2 * getVehicleType().getMinGap();
7582#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7583 if (DEBUG_COND) {
7584 std::cout << " foeGap=" << foeGap << " foeBGap=" << foeBrakeGap << "\n";
7585
7586 }
7587#endif
7588 if (foeGap < foeBrakeGap) {
7589 response = true;
7590 response2 = false;
7591 } else {
7592 response = false;
7593 response2 = true;
7594 }
7595 } else {
7596 // let conflict entry time decide
7597 response = true;
7598 response2 = true;
7599 }
7600 } else if (entry->havePriority() != foeEntry->havePriority()) {
7601 response = !entry->havePriority();
7602 response2 = !foeEntry->havePriority();
7603 } else if (entry->haveYellow() && foeEntry->haveYellow()) {
7604 // let the faster vehicle keep moving
7605 response = veh->getSpeed() >= getSpeed();
7606 response2 = getSpeed() >= veh->getSpeed();
7607 } else {
7608 // fallback if pedestrian crossings are involved
7609 response = logic->getResponseFor(link->getIndex()).test(foeLink->getIndex());
7610 response2 = logic->getResponseFor(foeLink->getIndex()).test(link->getIndex());
7611 }
7612#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7613 if (DEBUG_COND) {
7614 std::cout << SIMTIME
7615 << " foeLane=" << foeLane->getID()
7616 << " foeLink=" << foeLink->getViaLaneOrLane()->getID()
7617 << " linkIndex=" << link->getIndex()
7618 << " foeLinkIndex=" << foeLink->getIndex()
7619 << " entryState=" << toString(entry->getState())
7620 << " entryState2=" << toString(foeEntry->getState())
7621 << " response=" << response
7622 << " response2=" << response2
7623 << "\n";
7624 }
7625#endif
7626 if (!response) {
7627 // if we have right of way over the foe, entryTime does not matter
7628 foeET = veh->myJunctionConflictEntryTime;
7629 egoET = myJunctionEntryTime;
7630 } else if (response && response2) {
7631 // in a mutual conflict scenario, use entry time to avoid deadlock
7632 foeET = veh->myJunctionConflictEntryTime;
7634 }
7635 }
7636 if (egoET == foeET) {
7637 // try to use speed as tie braker
7638 if (getSpeed() == veh->getSpeed()) {
7639 // use ID as tie braker
7640#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7641 if (DEBUG_COND) {
7642 std::cout << SIMTIME << " veh=" << getID() << " equal ET " << egoET << " with foe " << veh->getID()
7643 << " foeIsLeaderByID=" << (getID() < veh->getID()) << "\n";
7644 }
7645#endif
7646 return getID() < veh->getID();
7647 } else {
7648#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7649 if (DEBUG_COND) {
7650 std::cout << SIMTIME << " veh=" << getID() << " equal ET " << egoET << " with foe " << veh->getID()
7651 << " foeIsLeaderBySpeed=" << (getSpeed() < veh->getSpeed())
7652 << " v=" << getSpeed() << " foeV=" << veh->getSpeed()
7653 << "\n";
7654 }
7655#endif
7656 return getSpeed() < veh->getSpeed();
7657 }
7658 } else {
7659 // leader was on the junction first
7660#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7661 if (DEBUG_COND) {
7662 std::cout << SIMTIME << " veh=" << getID() << " egoET " << egoET << " with foe " << veh->getID()
7663 << " foeET=" << foeET << " isLeader=" << (egoET > foeET) << "\n";
7664 }
7665#endif
7666 return egoET > foeET;
7667 }
7668 } else {
7669 // vehicle can only be partially on the junction. Must be a leader
7670 return true;
7671 }
7672 } else {
7673 // vehicle can only be partially on the junction. Must be a leader
7674 return true;
7675 }
7676}
7677
7678void
7681 // here starts the vehicle internal part (see loading)
7682 std::vector<std::string> internals;
7683 internals.push_back(toString(myParameter->parametersSet));
7684 internals.push_back(toString(myDeparture));
7685 internals.push_back(toString(distance(myRoute->begin(), myCurrEdge)));
7686 internals.push_back(toString(myDepartPos));
7687 internals.push_back(toString(myWaitingTime));
7688 internals.push_back(toString(myTimeLoss));
7689 internals.push_back(toString(myLastActionTime));
7690 internals.push_back(toString(isStopped()));
7691 internals.push_back(toString(myPastStops.size()));
7692 out.writeAttr(SUMO_ATTR_STATE, internals);
7694 out.writeAttr(SUMO_ATTR_SPEED, std::vector<double> { myState.mySpeed, myState.myPreviousSpeed });
7699 // save past stops
7701 stop.write(out, false);
7702 // do not write started and ended twice
7703 if ((stop.parametersSet & STOP_STARTED_SET) == 0) {
7704 out.writeAttr(SUMO_ATTR_STARTED, time2string(stop.started));
7705 }
7706 if ((stop.parametersSet & STOP_ENDED_SET) == 0) {
7707 out.writeAttr(SUMO_ATTR_ENDED, time2string(stop.ended));
7708 }
7709 stop.writeParams(out);
7710 out.closeTag();
7711 }
7712 // save upcoming stops
7713 for (MSStop& stop : myStops) {
7714 stop.write(out);
7715 }
7716 // save parameters and device states
7718 for (MSVehicleDevice* const dev : myDevices) {
7719 dev->saveState(out);
7720 }
7721 out.closeTag();
7722}
7723
7724void
7726 if (!attrs.hasAttribute(SUMO_ATTR_POSITION)) {
7727 throw ProcessError(TL("Error: Invalid vehicles in state (may be a meso state)!"));
7728 }
7729 int routeOffset;
7730 bool stopped;
7731 int pastStops;
7732
7733 std::istringstream bis(attrs.getString(SUMO_ATTR_STATE));
7734 bis >> myParameter->parametersSet;
7735 bis >> myDeparture;
7736 bis >> routeOffset;
7737 bis >> myDepartPos;
7738 bis >> myWaitingTime;
7739 bis >> myTimeLoss;
7740 bis >> myLastActionTime;
7741 bis >> stopped;
7742 bis >> pastStops;
7743
7745 bool ok;
7746 myArrivalPos = attrs.get<double>(SUMO_ATTR_ARRIVALPOS_RANDOMIZED, getID().c_str(), ok);
7747 }
7748 // load stops
7749 myStops.clear();
7751
7752 if (hasDeparted()) {
7753 myCurrEdge = myRoute->begin() + routeOffset;
7754 myDeparture -= offset;
7755 // fix stops
7756 while (pastStops > 0) {
7757 myPastStops.push_back(myStops.front().pars);
7758 myPastStops.back().routeIndex = (int)(myStops.front().edge - myRoute->begin());
7759 myStops.pop_front();
7760 pastStops--;
7761 }
7762 // see MSBaseVehicle constructor
7765 }
7766 // a (tentative lane is needed for calling hasArrivedInternal
7767 myLane = (*myCurrEdge)->getLanes()[0];
7768 }
7771 WRITE_WARNINGF(TL("Action steps are out of sync for loaded vehicle '%'."), getID());
7772 }
7773 std::istringstream pis(attrs.getString(SUMO_ATTR_POSITION));
7775 std::istringstream sis(attrs.getString(SUMO_ATTR_SPEED));
7780 std::istringstream dis(attrs.getString(SUMO_ATTR_DISTANCE));
7781 dis >> myOdometer >> myNumberReroutes;
7783 if (stopped) {
7784 myStops.front().startedFromState = true;
7785 myStopDist = 0;
7786 }
7788 // no need to reset myCachedPosition here since state loading happens directly after creation
7789}
7790
7791void
7793 SUMOTime arrivalTime, double arrivalSpeed,
7794 double arrivalSpeedBraking,
7795 double dist, double leaveSpeed) {
7796 // ensure that approach information is reset on the next call to setApproachingForAllLinks
7797 myLFLinkLanes.push_back(DriveProcessItem(link, 0, 0, setRequest,
7798 arrivalTime, arrivalSpeed, arrivalSpeedBraking, dist, leaveSpeed));
7799
7800}
7801
7802
7803std::shared_ptr<MSSimpleDriverState>
7807
7808
7809double
7811 return myFrictionDevice == nullptr ? 1. : myFrictionDevice->getMeasuredFriction();
7812}
7813
7814
7815void
7816MSVehicle::setPreviousSpeed(double prevSpeed, double prevAcceleration) {
7817 myState.mySpeed = MAX2(0., prevSpeed);
7818 // also retcon acceleration
7819 if (prevAcceleration != std::numeric_limits<double>::min()) {
7820 myAcceleration = prevAcceleration;
7821 } else {
7823 }
7824}
7825
7826
7827double
7829 //return MAX2(-myAcceleration, getCarFollowModel().getApparentDecel());
7831}
7832
7833/****************************************************************************/
7834bool
7838
7839/* -------------------------------------------------------------------------
7840 * methods of MSVehicle::manoeuvre
7841 * ----------------------------------------------------------------------- */
7842
7843MSVehicle::Manoeuvre::Manoeuvre() : myManoeuvreStop(""), myManoeuvreStartTime(0), myManoeuvreCompleteTime(0), myManoeuvreType(MSVehicle::MANOEUVRE_NONE), myGUIIncrement(0) {}
7844
7845
7847 myManoeuvreStop = manoeuvre.myManoeuvreStop;
7848 myManoeuvreStartTime = manoeuvre.myManoeuvreStartTime;
7849 myManoeuvreCompleteTime = manoeuvre.myManoeuvreCompleteTime;
7850 myManoeuvreType = manoeuvre.myManoeuvreType;
7851 myGUIIncrement = manoeuvre.myGUIIncrement;
7852}
7853
7854
7857 myManoeuvreStop = manoeuvre.myManoeuvreStop;
7858 myManoeuvreStartTime = manoeuvre.myManoeuvreStartTime;
7859 myManoeuvreCompleteTime = manoeuvre.myManoeuvreCompleteTime;
7860 myManoeuvreType = manoeuvre.myManoeuvreType;
7861 myGUIIncrement = manoeuvre.myGUIIncrement;
7862 return *this;
7863}
7864
7865
7866bool
7868 return (myManoeuvreStop != manoeuvre.myManoeuvreStop ||
7869 myManoeuvreStartTime != manoeuvre.myManoeuvreStartTime ||
7870 myManoeuvreCompleteTime != manoeuvre.myManoeuvreCompleteTime ||
7871 myManoeuvreType != manoeuvre.myManoeuvreType ||
7872 myGUIIncrement != manoeuvre.myGUIIncrement
7873 );
7874}
7875
7876
7877double
7879 return (myGUIIncrement);
7880}
7881
7882
7885 return (myManoeuvreType);
7886}
7887
7888
7893
7894
7895void
7899
7900
7901void
7903 myManoeuvreType = mType;
7904}
7905
7906
7907bool
7909 if (!veh->hasStops()) {
7910 return false; // should never happen - checked before call
7911 }
7912
7913 const SUMOTime currentTime = MSNet::getInstance()->getCurrentTimeStep();
7914 const MSStop& stop = veh->getNextStop();
7915
7916 int manoeuverAngle = stop.parkingarea->getLastFreeLotAngle();
7917 double GUIAngle = stop.parkingarea->getLastFreeLotGUIAngle();
7918 if (abs(GUIAngle) < 0.1) {
7919 GUIAngle = -0.1; // Wiggle vehicle on parallel entry
7920 }
7921 myManoeuvreVehicleID = veh->getID();
7922 myManoeuvreStop = stop.parkingarea->getID();
7923 myManoeuvreType = MSVehicle::MANOEUVRE_ENTRY;
7924 myManoeuvreStartTime = currentTime;
7925 myManoeuvreCompleteTime = currentTime + veh->myType->getEntryManoeuvreTime(manoeuverAngle);
7926 myGUIIncrement = GUIAngle / (STEPS2TIME(myManoeuvreCompleteTime - myManoeuvreStartTime) / TS);
7927
7928#ifdef DEBUG_STOPS
7929 if (veh->isSelected()) {
7930 std::cout << "ENTRY manoeuvre start: vehicle=" << veh->getID() << " Manoeuvre Angle=" << manoeuverAngle << " Rotation angle=" << RAD2DEG(GUIAngle) << " Road Angle" << RAD2DEG(veh->getAngle()) << " increment=" << RAD2DEG(myGUIIncrement) << " currentTime=" << currentTime <<
7931 " endTime=" << myManoeuvreCompleteTime << " manoeuvre time=" << myManoeuvreCompleteTime - currentTime << " parkArea=" << myManoeuvreStop << std::endl;
7932 }
7933#endif
7934
7935 return (true);
7936}
7937
7938
7939bool
7941 // At the moment we only want to set for parking areas
7942 if (!veh->hasStops()) {
7943 return true;
7944 }
7945 if (veh->getNextStop().parkingarea == nullptr) {
7946 return true;
7947 }
7948
7949 if (myManoeuvreType != MSVehicle::MANOEUVRE_NONE) {
7950 return (false);
7951 }
7952
7953 const SUMOTime currentTime = MSNet::getInstance()->getCurrentTimeStep();
7954
7955 int manoeuverAngle = veh->getCurrentParkingArea()->getManoeuverAngle(*veh);
7956 double GUIAngle = veh->getCurrentParkingArea()->getGUIAngle(*veh);
7957 if (abs(GUIAngle) < 0.1) {
7958 GUIAngle = 0.1; // Wiggle vehicle on parallel exit
7959 }
7960
7961 myManoeuvreVehicleID = veh->getID();
7962 myManoeuvreStop = veh->getCurrentParkingArea()->getID();
7963 myManoeuvreType = MSVehicle::MANOEUVRE_EXIT;
7964 myManoeuvreStartTime = currentTime;
7965 myManoeuvreCompleteTime = currentTime + veh->myType->getExitManoeuvreTime(manoeuverAngle);
7966 myGUIIncrement = -GUIAngle / (STEPS2TIME(myManoeuvreCompleteTime - myManoeuvreStartTime) / TS);
7967 if (veh->remainingStopDuration() > 0) {
7968 myManoeuvreCompleteTime += veh->remainingStopDuration();
7969 }
7970
7971#ifdef DEBUG_STOPS
7972 if (veh->isSelected()) {
7973 std::cout << "EXIT manoeuvre start: vehicle=" << veh->getID() << " Manoeuvre Angle=" << manoeuverAngle << " increment=" << RAD2DEG(myGUIIncrement) << " currentTime=" << currentTime
7974 << " endTime=" << myManoeuvreCompleteTime << " manoeuvre time=" << myManoeuvreCompleteTime - currentTime << " parkArea=" << myManoeuvreStop << std::endl;
7975 }
7976#endif
7977
7978 return (true);
7979}
7980
7981
7982bool
7984 // At the moment we only want to consider parking areas - need to check because we could be setting up a manoeuvre
7985 if (!veh->hasStops()) {
7986 return (true);
7987 }
7988 MSStop* currentStop = &veh->myStops.front();
7989 if (currentStop->parkingarea == nullptr) {
7990 return true;
7991 } else if (currentStop->parkingarea->getID() != myManoeuvreStop || MSVehicle::MANOEUVRE_ENTRY != myManoeuvreType) {
7992 if (configureEntryManoeuvre(veh)) {
7994 return (false);
7995 } else { // cannot configure entry so stop trying
7996 return true;
7997 }
7998 } else if (MSNet::getInstance()->getCurrentTimeStep() < myManoeuvreCompleteTime) {
7999 return false;
8000 } else { // manoeuvre complete
8001 myManoeuvreType = MSVehicle::MANOEUVRE_NONE;
8002 return true;
8003 }
8004}
8005
8006
8007bool
8009 if (checkType != myManoeuvreType) {
8010 return true; // we're not maneuvering / wrong manoeuvre
8011 }
8012
8013 if (MSNet::getInstance()->getCurrentTimeStep() < myManoeuvreCompleteTime) {
8014 return false;
8015 } else {
8016 return true;
8017 }
8018}
8019
8020
8021bool
8023 return (MSNet::getInstance()->getCurrentTimeStep() >= myManoeuvreCompleteTime);
8024}
8025
8026
8027bool
8031
8032
8033std::pair<double, double>
8035 if (hasStops()) {
8036 MSLane* lane = myLane;
8037 if (lane == nullptr) {
8038 // not in network
8039 lane = getEdge()->getLanes()[0];
8040 }
8041 const MSStop& stop = myStops.front();
8042 auto it = myCurrEdge + 1;
8043 // drive to end of current edge
8044 double dist = (lane->getLength() - getPositionOnLane());
8045 double travelTime = lane->getEdge().getMinimumTravelTime(this) * dist / lane->getLength();
8046 // drive until stop edge
8047 while (it != myRoute->end() && it < stop.edge) {
8048 travelTime += (*it)->getMinimumTravelTime(this);
8049 dist += (*it)->getLength();
8050 it++;
8051 }
8052 // drive up to the stop position
8053 const double stopEdgeDist = stop.pars.endPos - (lane == stop.lane ? lane->getLength() : 0);
8054 dist += stopEdgeDist;
8055 travelTime += stop.lane->getEdge().getMinimumTravelTime(this) * (stopEdgeDist / stop.lane->getLength());
8056 // estimate time loss due to acceleration and deceleration
8057 // maximum speed is limited by available distance:
8058 const double a = getCarFollowModel().getMaxAccel();
8059 const double b = getCarFollowModel().getMaxDecel();
8060 const double c = getSpeed();
8061 const double d = dist;
8062 const double len = getVehicleType().getLength();
8063 const double vs = MIN2(MAX2(stop.getSpeed(), 0.0), stop.lane->getVehicleMaxSpeed(this));
8064 // distAccel = (v - c)^2 / (2a)
8065 // distDecel = (v + vs)*(v - vs) / 2b = (v^2 - vs^2) / (2b)
8066 // distAccel + distDecel < d
8067 const double maxVD = MAX2(c, ((sqrt(MAX2(0.0, pow(2 * c * b, 2) + (4 * ((b * ((a * (2 * d * (b + a) + (vs * vs) - (c * c))) - (b * (c * c))))
8068 + pow((a * vs), 2))))) * 0.5) + (c * b)) / (b + a));
8069 it = myCurrEdge;
8070 double v0 = c;
8071 bool v0Stable = getAcceleration() == 0 && v0 > 0;
8072 double timeLossAccel = 0;
8073 double timeLossDecel = 0;
8074 double timeLossLength = 0;
8075 while (it != myRoute->end() && it <= stop.edge) {
8076 double v = MIN2(maxVD, (*it)->getVehicleMaxSpeed(this));
8077 double edgeLength = (it == stop.edge ? stop.pars.endPos : (*it)->getLength()) - (it == myCurrEdge ? getPositionOnLane() : 0);
8078 if (edgeLength <= len && v0Stable && v0 < v) {
8079 const double lengthDist = MIN2(len, edgeLength);
8080 const double dTL = lengthDist / v0 - lengthDist / v;
8081 //std::cout << " e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " el=" << edgeLength << " lDist=" << lengthDist << " newTLL=" << dTL<< "\n";
8082 timeLossLength += dTL;
8083 }
8084 if (edgeLength > len) {
8085 const double dv = v - v0;
8086 if (dv > 0) {
8087 // timeLossAccel = timeAccel - timeMaxspeed = dv / a - distAccel / v
8088 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
8089 //std::cout << " e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " newTLA=" << dTA << "\n";
8090 timeLossAccel += dTA;
8091 // time loss from vehicle length
8092 } else if (dv < 0) {
8093 // timeLossDecel = timeDecel - timeMaxspeed = dv / b - distDecel / v
8094 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
8095 //std::cout << " e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " newTLD=" << dTD << "\n";
8096 timeLossDecel += dTD;
8097 }
8098 v0 = v;
8099 v0Stable = true;
8100 }
8101 it++;
8102 }
8103 // final deceleration to stop (may also be acceleration or deceleration to waypoint speed)
8104 double v = vs;
8105 const double dv = v - v0;
8106 if (dv > 0) {
8107 // timeLossAccel = timeAccel - timeMaxspeed = dv / a - distAccel / v
8108 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
8109 //std::cout << " final e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " newTLA=" << dTA << "\n";
8110 timeLossAccel += dTA;
8111 // time loss from vehicle length
8112 } else if (dv < 0) {
8113 // timeLossDecel = timeDecel - timeMaxspeed = dv / b - distDecel / v
8114 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
8115 //std::cout << " final e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " newTLD=" << dTD << "\n";
8116 timeLossDecel += dTD;
8117 }
8118 const double result = travelTime + timeLossAccel + timeLossDecel + timeLossLength;
8119 //std::cout << SIMTIME << " v=" << c << " a=" << a << " b=" << b << " maxVD=" << maxVD << " tt=" << travelTime
8120 // << " ta=" << timeLossAccel << " td=" << timeLossDecel << " tl=" << timeLossLength << " res=" << result << "\n";
8121 return {MAX2(0.0, result), dist};
8122 } else {
8124 }
8125}
8126
8127
8128double
8130 if (hasStops() && myStops.front().pars.until >= 0) {
8131 const MSStop& stop = myStops.front();
8132 SUMOTime estimatedDepart = MSNet::getInstance()->getCurrentTimeStep() - DELTA_T;
8133 if (stop.reached) {
8134 return STEPS2TIME(estimatedDepart + stop.duration - stop.pars.until);
8135 }
8136 if (stop.pars.duration > 0) {
8137 estimatedDepart += stop.pars.duration;
8138 }
8139 estimatedDepart += TIME2STEPS(estimateTimeToNextStop().first);
8140 const double result = MAX2(0.0, STEPS2TIME(estimatedDepart - stop.pars.until));
8141 return result;
8142 } else {
8143 // vehicles cannot drive before 'until' so stop delay can never be
8144 // negative and we can use -1 to signal "undefined"
8145 return -1;
8146 }
8147}
8148
8149
8150double
8152 if (hasStops() && myStops.front().pars.arrival >= 0) {
8153 const MSStop& stop = myStops.front();
8154 if (stop.reached) {
8155 return STEPS2TIME(stop.pars.started - stop.pars.arrival);
8156 } else {
8157 return STEPS2TIME(MSNet::getInstance()->getCurrentTimeStep()) + estimateTimeToNextStop().first - STEPS2TIME(stop.pars.arrival);
8158 }
8159 } else {
8160 // vehicles can arrival earlier than planned so arrival delay can be negative
8161 return INVALID_DOUBLE;
8162 }
8163}
8164
8165
8166const MSEdge*
8168 return myLane != nullptr ? &myLane->getEdge() : getEdge();
8169}
8170
8171
8172const MSEdge*
8174 if (myLane == nullptr || (myCurrEdge + 1) == myRoute->end()) {
8175 return nullptr;
8176 }
8177 if (myLane->isInternal()) {
8179 } else {
8180 const MSEdge* nextNormal = succEdge(1);
8181 const MSEdge* nextInternal = myLane->getEdge().getInternalFollowingEdge(nextNormal, getVClass());
8182 return nextInternal ? nextInternal : nextNormal;
8183 }
8184}
8185
8186
8187const MSLane*
8188MSVehicle::getPreviousLane(const MSLane* current, int& furtherIndex) const {
8189 if (furtherIndex < (int)myFurtherLanes.size()) {
8190 return myFurtherLanes[furtherIndex++];
8191 } else {
8192 // try to use route information
8193 int routeIndex = getRoutePosition();
8194 bool resultInternal;
8195 if (MSGlobals::gUsingInternalLanes && MSNet::getInstance()->hasInternalLinks()) {
8196 if (myLane->isInternal()) {
8197 if (furtherIndex % 2 == 0) {
8198 routeIndex -= (furtherIndex + 0) / 2;
8199 resultInternal = false;
8200 } else {
8201 routeIndex -= (furtherIndex + 1) / 2;
8202 resultInternal = false;
8203 }
8204 } else {
8205 if (furtherIndex % 2 != 0) {
8206 routeIndex -= (furtherIndex + 1) / 2;
8207 resultInternal = false;
8208 } else {
8209 routeIndex -= (furtherIndex + 2) / 2;
8210 resultInternal = true;
8211 }
8212 }
8213 } else {
8214 routeIndex -= furtherIndex;
8215 resultInternal = false;
8216 }
8217 furtherIndex++;
8218 if (routeIndex >= 0) {
8219 if (resultInternal) {
8220 const MSEdge* prevNormal = myRoute->getEdges()[routeIndex];
8221 for (MSLane* cand : prevNormal->getLanes()) {
8222 for (MSLink* link : cand->getLinkCont()) {
8223 if (link->getLane() == current) {
8224 if (link->getViaLane() != nullptr) {
8225 return link->getViaLane();
8226 } else {
8227 return const_cast<MSLane*>(link->getLaneBefore());
8228 }
8229 }
8230 }
8231 }
8232 } else {
8233 return myRoute->getEdges()[routeIndex]->getLanes()[0];
8234 }
8235 }
8236 }
8237 return current;
8238}
8239
8242 // this vehicle currently has the highest priority on the allway_stop
8243 return link == myHaveStoppedFor ? SUMOTime_MAX : getWaitingTime();
8244}
8245
8246
8247void
8249 bool diverged = false;
8250 const ConstMSEdgeVector& route = myRoute->getEdges();
8251 int ri = getRoutePosition();
8252 for (const DriveProcessItem& dpi : myLFLinkLanes) {
8253 if (dpi.myLink != nullptr) {
8254 if (!diverged) {
8255 const MSEdge* next = route[ri + 1];
8256 if (&dpi.myLink->getLane()->getEdge() != next) {
8257 diverged = true;
8258 } else {
8259 if (dpi.myLink->getViaLane() == nullptr) {
8260 ri++;
8261 }
8262 }
8263 }
8264 if (diverged) {
8265 dpi.myLink->removeApproaching(this);
8266 }
8267 }
8268 }
8269}
8270
8271/****************************************************************************/
long long int SUMOTime
Definition GUI.h:36
#define RAD2DEG(x)
Definition GeomHelper.h:36
#define DEBUG_COND2(obj)
Definition MESegment.cpp:54
std::vector< const MSEdge * > ConstMSEdgeVector
Definition MSEdge.h:74
std::vector< MSEdge * > MSEdgeVector
Definition MSEdge.h:73
std::pair< const MSVehicle *, double > CLeaderDist
std::pair< const MSPerson *, double > PersonDist
Definition MSPModel.h:41
ConstMSEdgeVector::const_iterator MSRouteIterator
Definition MSRoute.h:57
#define NUMERICAL_EPS_SPEED
#define STOPPING_PLACE_OFFSET
#define JUNCTION_BLOCKAGE_TIME
#define DIST_TO_STOPLINE_EXPECT_PRIORITY
#define CRLL_LOOK_AHEAD
#define WRITE_WARNINGF(...)
Definition MsgHandler.h:287
#define WRITE_ERROR(msg)
Definition MsgHandler.h:295
#define WRITE_WARNING(msg)
Definition MsgHandler.h:286
#define TL(string)
Definition MsgHandler.h:304
std::shared_ptr< const MSRoute > ConstMSRoutePtr
Definition Route.h:32
SUMOTime DELTA_T
Definition SUMOTime.cpp:38
SUMOTime string2time(const std::string &r)
convert string to SUMOTime
Definition SUMOTime.cpp:46
std::string time2string(SUMOTime t, bool humanReadable)
convert SUMOTime to string (independently of global format setting)
Definition SUMOTime.cpp:91
#define STEPS2TIME(x)
Definition SUMOTime.h:55
#define SPEED2DIST(x)
Definition SUMOTime.h:45
#define SIMSTEP
Definition SUMOTime.h:61
#define ACCEL2SPEED(x)
Definition SUMOTime.h:51
#define SUMOTime_MAX
Definition SUMOTime.h:34
#define TS
Definition SUMOTime.h:42
#define SIMTIME
Definition SUMOTime.h:62
#define TIME2STEPS(x)
Definition SUMOTime.h:57
#define DIST2SPEED(x)
Definition SUMOTime.h:47
#define SPEED2ACCEL(x)
Definition SUMOTime.h:53
bool isRailway(SVCPermissions permissions)
Returns whether an edge with the given permissions is a (exclusive) railway edge.
@ RAIL_CARGO
render as a cargo train
@ RAIL
render as a rail
@ PASSENGER_VAN
render as a van
@ PASSENGER
render as a passenger vehicle
@ RAIL_CAR
render as a (city) rail without locomotive
@ PASSENGER_HATCHBACK
render as a hatchback passenger vehicle ("Fliessheck")
@ BUS_FLEXIBLE
render as a flexible city bus
@ TRUCK_1TRAILER
render as a transport vehicle with one trailer
@ PASSENGER_SEDAN
render as a sedan passenger vehicle ("Stufenheck")
@ PASSENGER_WAGON
render as a wagon passenger vehicle ("Combi")
@ TRUCK_SEMITRAILER
render as a semi-trailer transport vehicle ("Sattelschlepper")
@ SVC_RAIL_CLASSES
classes which drive on tracks
@ SVC_EMERGENCY
public emergency vehicles
const long long int VEHPARS_FORCE_REROUTE
@ GIVEN
The lane is given.
@ GIVEN
The speed is given.
@ SPLIT_FRONT
depart position for a split vehicle is in front of the continuing vehicle
const long long int VEHPARS_CFMODEL_PARAMS_SET
@ GIVEN
The arrival lane is given.
@ GIVEN
The speed is given.
const int STOP_ENDED_SET
@ GIVEN
The arrival position is given.
const int STOP_STARTED_SET
@ SUMO_TAG_PARKING_AREA_REROUTE
entry for an alternative parking zone
@ SUMO_TAG_PARKING_AREA
A parking area.
@ SUMO_TAG_OVERHEAD_WIRE_SEGMENT
An overhead wire segment.
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ TURN
The link is a 180 degree turn.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ TURN_LEFTHAND
The link is a 180 degree turn (left-hand network)
@ PARTRIGHT
The link is a partial right direction.
@ NODIR
The link has no direction (is a dead end link)
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_EQUAL
This is an uncontrolled, right-before-left link.
@ LINKSTATE_ZIPPER
This is an uncontrolled, zipper-merge link.
@ LCA_KEEPRIGHT
The action is due to the default of keeping right "Rechtsfahrgebot".
@ LCA_BLOCKED
blocked in all directions
@ LCA_URGENT
The action is urgent (to be defined by lc-model)
@ LCA_STAY
Needs to stay on the current lane.
@ LCA_SUBLANE
used by the sublane model
@ LCA_WANTS_LANECHANGE_OR_STAY
lane can change or stay
@ LCA_COOPERATIVE
The action is done to help someone else.
@ LCA_OVERLAPPING
The vehicle is blocked being overlapping.
@ LCA_LEFT
Wants go to the left.
@ LCA_STRATEGIC
The action is needed to follow the route (navigational lc)
@ LCA_TRACI
The action is due to a TraCI request.
@ LCA_SPEEDGAIN
The action is due to the wish to be faster (tactical lc)
@ LCA_RIGHT
Wants go to the right.
@ SUMO_ATTR_JM_STOPLINE_GAP_MINOR
@ SUMO_ATTR_JM_STOPLINE_CROSSING_GAP
@ SUMO_ATTR_JM_IGNORE_KEEPCLEAR_TIME
@ SUMO_ATTR_SPEED
@ SUMO_ATTR_STARTED
@ SUMO_ATTR_MAXIMUMPOWER
Maximum Power.
@ SUMO_ATTR_WAITINGTIME
@ SUMO_ATTR_CF_IGNORE_IDS
@ SUMO_ATTR_JM_STOPLINE_GAP
@ SUMO_ATTR_POSITION_LAT
@ SUMO_ATTR_JM_DRIVE_AFTER_RED_TIME
@ SUMO_ATTR_JM_DRIVE_AFTER_YELLOW_TIME
@ SUMO_ATTR_ENDED
@ SUMO_ATTR_LCA_CONTRIGHT
@ SUMO_ATTR_ANGLE
@ SUMO_ATTR_DISTANCE
@ SUMO_ATTR_CF_IGNORE_TYPES
@ SUMO_ATTR_ARRIVALPOS_RANDOMIZED
@ SUMO_ATTR_FLEX_ARRIVAL
@ SUMO_ATTR_JM_IGNORE_JUNCTION_FOE_PROB
@ SUMO_ATTR_POSITION
@ SUMO_ATTR_STATE
The state of a link.
@ SUMO_ATTR_JM_DRIVE_RED_SPEED
int gPrecision
the precision for floating point outputs
Definition StdDefs.cpp:27
bool gDebugFlag1
global utility flags for debugging
Definition StdDefs.cpp:43
const double INVALID_DOUBLE
invalid double
Definition StdDefs.h:68
const double SUMO_const_laneWidth
Definition StdDefs.h:52
T MIN3(T a, T b, T c)
Definition StdDefs.h:93
T MIN2(T a, T b)
Definition StdDefs.h:80
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
Definition StdDefs.h:62
T MAX2(T a, T b)
Definition StdDefs.h:86
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
Definition ToString.h:46
#define SOFT_ASSERT(expr)
define SOFT_ASSERT raise an assertion in debug mode everywhere except on the windows test server
double getDoubleOptional(SumoXMLAttr attr, const double def) const
Returns the value for a given key with an optional default. SUMO_ATTR_MASS and SUMO_ATTR_FRONTSURFACE...
void setDynamicValues(const SUMOTime stopDuration, const bool parking, const SUMOTime waitingTime, const double angle)
Sets the values which change possibly in every simulation step and are relevant for emsssion calculat...
static double naviDegree(const double angle)
static double fromNaviDegree(const double angle)
Interface for lane-change models.
double getLaneChangeCompletion() const
Get the current lane change completion ratio.
const std::vector< double > & getShadowFurtherLanesPosLat() const
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
int getLaneChangeDirection() const
return the direction of the current lane change maneuver
void resetChanged()
reset the flag whether a vehicle already moved to false
MSLane * getShadowLane() const
Returns the lane the vehicle's shadow is on during continuous/sublane lane change.
virtual void saveState(OutputDevice &out) const
Save the state of the laneChangeModel.
void endLaneChangeManeuver(const MSMoveReminder::Notification reason=MSMoveReminder::NOTIFICATION_LANE_CHANGE)
void setNoShadowPartialOccupator(MSLane *lane)
MSLane * getTargetLane() const
Returns the lane the vehicle has committed to enter during a sublane lane change.
SUMOTime remainingTime() const
Compute the remaining time until LC completion.
void setShadowApproachingInformation(MSLink *link) const
set approach information for the shadow vehicle
double getCooperativeHelpSpeed(const MSLane *lane, double distToLaneEnd) const
return speed for helping a vehicle that is blocked from changing
static MSAbstractLaneChangeModel * build(LaneChangeModel lcm, MSVehicle &vehicle)
Factory method for instantiating new lane changing models.
void changedToOpposite()
called when a vehicle changes between lanes in opposite directions
int getShadowDirection() const
return the direction in which the current shadow lane lies
virtual void loadState(const SUMOSAXAttributes &attrs)
Loads the state of the laneChangeModel from the given attributes.
double calcAngleOffset()
return the angle offset during a continuous change maneuver
void setPreviousAngleOffset(const double angleOffset)
set the angle offset of the previous time step
const std::vector< MSLane * > & getFurtherTargetLanes() const
double getAngleOffset() const
return the angle offset resulting from lane change and sigma
const std::vector< MSLane * > & getShadowFurtherLanes() const
bool isChangingLanes() const
return true if the vehicle currently performs a lane change maneuver
void setExtraImpatience(double value)
Sets routing behavior.
The base class for microscopic and mesoscopic vehicles.
double getMaxSpeed() const
Returns the maximum speed (the minimum of desired and technical maximum speed)
bool haveValidStopEdges(bool silent=false) const
check whether all stop.edge MSRouteIterators are valid and in order
virtual bool isSelected() const
whether this vehicle is selected in the GUI
std::list< MSStop > myStops
The vehicle's list of stops.
double getImpatience() const
Returns this vehicles impatience.
const std::vector< MSTransportable * > & getPersons() const
retrieve riding persons
virtual void initDevices()
const MSEdge * succEdge(int nSuccs) const
Returns the nSuccs'th successor of edge the vehicle is currently at.
void calculateArrivalParams(bool onInit)
(Re-)Calculates the arrival position and lane from the vehicle parameters
virtual double getArrivalPos() const
Returns this vehicle's desired arrivalPos for its current route (may change on reroute)
MoveReminderCont myMoveReminders
Currently relevant move reminders.
double myDepartPos
The real depart position.
const SUMOVehicleParameter & getParameter() const
Returns the vehicle's parameter (including departure definition)
void replaceParameter(const SUMOVehicleParameter *newParameter)
replace the vehicle parameter (deleting the old one)
double getChosenSpeedFactor() const
Returns the precomputed factor by which the driver wants to be faster than the speed limit.
std::vector< MSVehicleDevice * > myDevices
The devices this vehicle has.
virtual void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
const SUMOVehicleParameter::Stop * getNextStopParameter() const
return parameters for the next stop (SUMOVehicle Interface)
virtual bool replaceRoute(ConstMSRoutePtr route, const std::string &info, bool onInit=false, int offset=0, bool addRouteStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
bool isRail() const
MSVehicleType & getSingularType()
Replaces the current vehicle type with a new one used by this vehicle only.
const MSVehicleType * myType
This vehicle's type.
double getLength() const
Returns the vehicle's length.
bool isParking() const
Returns whether the vehicle is parking.
MSParkingArea * getCurrentParkingArea()
get the current parking area stop or nullptr
const MSEdge * getEdge() const
Returns the edge the vehicle is currently at.
int getPersonNumber() const
Returns the number of persons.
MSRouteIterator myCurrEdge
Iterator to current route-edge.
StopParVector myPastStops
The list of stops that the vehicle has already reached.
bool hasDeparted() const
Returns whether this vehicle has already departed.
ConstMSRoutePtr myRoute
This vehicle's route.
double getWidth() const
Returns the vehicle's width.
MSDevice_Transportable * myContainerDevice
The containers this vehicle may have.
const std::list< MSStop > & getStops() const
double getDesiredMaxSpeed() const
void addReminder(MSMoveReminder *rem, double pos=0)
Adds a MoveReminder dynamically.
SumoRNG * getRNG() const
SUMOTime getDeparture() const
Returns this vehicle's real departure time.
EnergyParams * getEmissionParameters() const
retrieve parameters for the energy consumption model
MSDevice_Transportable * myPersonDevice
The passengers this vehicle may have.
bool hasStops() const
Returns whether the vehicle has to stop somewhere.
virtual void activateReminders(const MSMoveReminder::Notification reason, const MSLane *enteredLane=0)
"Activates" all current move reminder
const MSStop & getNextStop() const
@ ROUTE_START_INVALID_PERMISSIONS
void addStops(const bool ignoreStopErrors, MSRouteIterator *searchStart=nullptr, bool addRouteStops=true)
Adds stops to the built vehicle.
SUMOVehicleClass getVClass() const
Returns the vehicle's access class.
MSParkingArea * getNextParkingArea()
get the upcoming parking area stop or nullptr
int myArrivalLane
The destination lane where the vehicle stops.
SUMOTime myDeparture
The real departure time.
bool isStoppedTriggered() const
Returns whether the vehicle is on a triggered stop.
void onDepart()
Called when the vehicle is inserted into the network.
virtual bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
const MSRoute & getRoute() const
Returns the current route.
int getRoutePosition() const
return index of edge within route
bool replaceParkingArea(MSParkingArea *parkingArea, std::string &errorMsg)
replace the current parking area stop with a new stop with merge duration
static const SUMOTime NOT_YET_DEPARTED
bool myAmRegisteredAsWaiting
Whether this vehicle is registered as waiting for a person or container (for deadlock-recognition)
SUMOAbstractRouter< MSEdge, SUMOVehicle > & getRouterTT() const
EnergyParams * myEnergyParams
The emission parameters this vehicle may have.
const SUMOVehicleParameter * myParameter
This vehicle's parameter.
int myRouteValidity
status of the current vehicle route
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool isStopped() const
Returns whether the vehicle is at a stop.
MSDevice * getDevice(const std::type_info &type) const
Returns a device of the given type if it exists, nullptr otherwise.
int myNumberReroutes
The number of reroutings.
double myArrivalPos
The position on the destination lane where the vehicle stops.
virtual void saveState(OutputDevice &out)
Saves the (common) state of a vehicle.
virtual void replaceVehicleType(const MSVehicleType *type)
Replaces the current vehicle type by the one given.
double myOdometer
A simple odometer to keep track of the length of the route already driven.
int getContainerNumber() const
Returns the number of containers.
bool replaceRouteEdges(ConstMSEdgeVector &edges, double cost, double savings, const std::string &info, bool onInit=false, bool check=false, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given edges.
The car-following model abstraction.
Definition MSCFModel.h:57
double estimateSpeedAfterDistance(const double dist, const double v, const double accel) const
virtual double maxNextSpeed(double speed, const MSVehicle *const veh) const
Returns the maximum speed given the current speed.
virtual double minNextSpeedEmergency(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed after emergency braking, given the current speed (depends on the numerical ...
virtual VehicleVariables * createVehicleVariables() const
Returns model specific values which are stored inside a vehicle and must be used with casting.
Definition MSCFModel.h:252
double getEmergencyDecel() const
Get the vehicle type's maximal physically possible deceleration [m/s^2].
Definition MSCFModel.h:277
SUMOTime getStartupDelay() const
Get the vehicle type's startupDelay.
Definition MSCFModel.h:293
double getMinimalArrivalSpeed(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance.
virtual void setHeadwayTime(double headwayTime)
Sets a new value for desired headway [s].
Definition MSCFModel.h:619
virtual double freeSpeed(const MSVehicle *const veh, double speed, double seen, double maxSpeed, const bool onInsertion=false, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed without a leader.
virtual double minNextSpeed(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed given the current speed (depends on the numerical update scheme and its ste...
virtual double insertionFollowSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0) const
Computes the vehicle's safe speed (no dawdling) This method is used during the insertion stage....
SUMOTime getMinimalArrivalTime(double dist, double currentSpeed, double arrivalSpeed) const
Computes the minimal time needed to cover a distance given the desired speed at arrival.
virtual double finalizeSpeed(MSVehicle *const veh, double vPos) const
Applies interaction with stops and lane changing model influences. Called at most once per simulation...
@ FUTURE
the return value is used for calculating future speeds
Definition MSCFModel.h:83
@ CURRENT_WAIT
the return value is used for calculating junction stop speeds
Definition MSCFModel.h:85
double getApparentDecel() const
Get the vehicle type's apparent deceleration [m/s^2] (the one regarded by its followers.
Definition MSCFModel.h:285
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
Definition MSCFModel.h:261
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
Definition MSCFModel.h:408
virtual double maximumLaneSpeedCF(const MSVehicle *const veh, double maxSpeed, double maxSpeedLane) const
Returns the maximum velocity the CF-model wants to achieve in the next step.
Definition MSCFModel.h:229
double maximumSafeStopSpeed(double gap, double decel, double currentSpeed, bool onInsertion=false, double headway=-1, bool relaxEmergency=true) const
Returns the maximum next velocity for stopping within gap.
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
Definition MSCFModel.h:269
double getMinimalArrivalSpeedEuler(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance for Euler update.
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0, const CalcReason usage=CalcReason::CURRENT) const =0
Computes the vehicle's follow speed (no dawdling)
double stopSpeed(const MSVehicle *const veh, const double speed, double gap, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed for approaching a non-moving obstacle (no dawdling)
Definition MSCFModel.h:173
virtual double getHeadwayTime() const
Get the driver's desired headway [s].
Definition MSCFModel.h:339
The ToC Device controls transition of control between automated and manual driving.
std::shared_ptr< MSSimpleDriverState > getDriverState() const
return internal state
void update()
update internal state
A device which collects info on the vehicle trip (mainly on departure and arrival)
double consumption(SUMOVehicle &veh, double a, double newSpeed)
return energy consumption in Wh (power multiplied by TS)
void setConsum(const double consumption)
double acceleration(SUMOVehicle &veh, double power, double oldSpeed)
double getConsum() const
Get consum.
A device which collects info on current friction Coefficient on the road.
A device which collects info on the vehicle trip (mainly on departure and arrival)
A device which collects info on the vehicle trip (mainly on departure and arrival)
void cancelCurrentCustomers()
remove the persons the taxi is currently waiting for from reservations
bool notifyMove(SUMOTrafficObject &veh, double oldPos, double newPos, double newSpeed)
Checks whether the vehicle is at a stop and transportable action is needed.
bool anyLeavingAtStop(const MSStop &stop) const
void transferAtSplitOrJoin(MSBaseVehicle *otherVeh)
transfers transportables that want to continue in the other train part (without boarding/loading dela...
void checkCollisionForInactive(MSLane *l)
trigger collision checking for inactive lane
A road/street connecting two junctions.
Definition MSEdge.h:77
static void clear()
Clears the dictionary.
Definition MSEdge.cpp:1102
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
Definition MSEdge.h:204
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
Definition MSEdge.h:168
const MSEdge * getOppositeEdge() const
Returns the opposite direction edge if on exists else a nullptr.
Definition MSEdge.cpp:1350
bool isFringe() const
return whether this edge is at the fringe of the network
Definition MSEdge.h:772
const MSEdge * getNormalSuccessor() const
if this edge is an internal edge, return its first normal successor, otherwise the edge itself
Definition MSEdge.cpp:957
const std::vector< MSLane * > * allowedLanes(const MSEdge &destination, SUMOVehicleClass vclass=SVC_IGNORING, bool ignoreTransientPermissions=false) const
Get the allowed lanes to reach the destination-edge.
Definition MSEdge.cpp:482
const MSEdge * getBidiEdge() const
return opposite superposable/congruent edge, if it exist and 0 else
Definition MSEdge.h:282
bool isNormal() const
return whether this edge is an internal edge
Definition MSEdge.h:263
double getSpeedLimit() const
Returns the speed limit of the edge @caution The speed limit of the first lane is retured; should pro...
Definition MSEdge.cpp:1168
bool hasChangeProhibitions(SUMOVehicleClass svc, int index) const
return whether this edge prohibits changing for the given vClass when starting on the given lane inde...
Definition MSEdge.cpp:1372
bool hasLaneChanger() const
Definition MSEdge.h:746
const MSJunction * getToJunction() const
Definition MSEdge.h:426
const MSJunction * getFromJunction() const
Definition MSEdge.h:422
int getNumLanes() const
Definition MSEdge.h:172
double getMinimumTravelTime(const SUMOVehicle *const veh) const
returns the minimum travel time for the given vehicle
Definition MSEdge.h:484
bool isRoundabout() const
Definition MSEdge.h:729
bool isInternal() const
return whether this edge is an internal edge
Definition MSEdge.h:268
double getWidth() const
Returns the edges's width (sum over all lanes)
Definition MSEdge.h:664
bool isVaporizing() const
Returns whether vehicles on this edge shall be vaporized.
Definition MSEdge.h:442
void addWaiting(SUMOVehicle *vehicle) const
Adds a vehicle to the list of waiting vehicles.
Definition MSEdge.cpp:1461
const MSEdge * getInternalFollowingEdge(const MSEdge *followerAfterInternal, SUMOVehicleClass vClass) const
Definition MSEdge.cpp:910
void removeWaiting(const SUMOVehicle *vehicle) const
Removes a vehicle from the list of waiting vehicles.
Definition MSEdge.cpp:1470
const MSEdgeVector & getSuccessors(SUMOVehicleClass vClass=SVC_IGNORING) const
Returns the following edges, restricted by vClass.
Definition MSEdge.cpp:1268
static bool gModelParkingManoeuver
whether parking simulation includes manoeuver time and any associated lane blocking
Definition MSGlobals.h:162
static bool gUseMesoSim
Definition MSGlobals.h:106
static bool gUseStopStarted
Definition MSGlobals.h:134
static bool gCheckRoutes
Definition MSGlobals.h:91
static SUMOTime gStartupWaitThreshold
The minimum waiting time before applying startupDelay.
Definition MSGlobals.h:180
static double gTLSYellowMinDecel
The minimum deceleration at a yellow traffic light (only overruled by emergencyDecel)
Definition MSGlobals.h:171
static double gLateralResolution
Definition MSGlobals.h:100
static bool gSemiImplicitEulerUpdate
Definition MSGlobals.h:53
static bool gLefthand
Whether lefthand-drive is being simulated.
Definition MSGlobals.h:174
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
Definition MSGlobals.h:165
static SUMOTime gLaneChangeDuration
Definition MSGlobals.h:97
static double gEmergencyDecelWarningThreshold
threshold for warning about strong deceleration
Definition MSGlobals.h:152
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
Definition MSGlobals.h:81
void add(SUMOVehicle *veh)
Adds a single vehicle for departure.
virtual const MSJunctionLogic * getLogic() const
Definition MSJunction.h:141
virtual const MSLogicJunction::LinkBits & getResponseFor(int linkIndex) const
Returns the response for the given link.
Representation of a lane in the micro simulation.
Definition MSLane.h:84
std::vector< StopWatch< std::chrono::nanoseconds > > & getStopWatch()
Definition MSLane.h:1293
const std::vector< MSMoveReminder * > & getMoveReminders() const
Return the list of this lane's move reminders.
Definition MSLane.h:323
std::pair< MSVehicle *const, double > getFollower(const MSVehicle *ego, double egoPos, double dist, MinorLinkMode mLinkMode) const
Find follower vehicle for the given ego vehicle (which may be on the opposite direction lane)
Definition MSLane.cpp:4400
std::pair< const MSPerson *, double > nextBlocking(double minPos, double minRight, double maxLeft, double stopTime=0, bool bidi=false) const
This is just a wrapper around MSPModel::nextBlocking. You should always check using hasPedestrians be...
Definition MSLane.cpp:4574
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
Definition MSLane.cpp:2850
virtual MSVehicle * removeVehicle(MSVehicle *remVehicle, MSMoveReminder::Notification notification, bool notify=true)
Definition MSLane.cpp:2832
int getVehicleNumber() const
Returns the number of vehicles on this lane (for which this lane is responsible)
Definition MSLane.h:456
MSVehicle * getFirstAnyVehicle() const
returns the first vehicle that is fully or partially on this lane
Definition MSLane.cpp:2680
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
Definition MSLane.cpp:2768
int getVehicleNumberWithPartials() const
Returns the number of vehicles on this lane (including partial occupators)
Definition MSLane.h:464
double getBruttoVehLenSum() const
Returns the sum of lengths of vehicles, including their minGaps, which were on the lane during the la...
Definition MSLane.h:1166
static std::vector< MSLink * >::const_iterator succLinkSec(const SUMOVehicle &veh, int nRouteSuccs, const MSLane &succLinkSource, const std::vector< MSLane * > &conts)
Definition MSLane.cpp:2694
void markRecalculateBruttoSum()
Set a flag to recalculate the brutto (including minGaps) occupancy of this lane (used if mingap is ch...
Definition MSLane.cpp:2433
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
Definition MSLane.cpp:2745
void forceVehicleInsertion(MSVehicle *veh, double pos, MSMoveReminder::Notification notification, double posLat=0)
Inserts the given vehicle at the given position.
Definition MSLane.cpp:1392
double getVehicleStopOffset(const MSVehicle *veh) const
Returns vehicle class specific stopOffset for the vehicle.
Definition MSLane.cpp:3778
double getSpeedLimit() const
Returns the lane's maximum allowed speed.
Definition MSLane.h:597
std::vector< MSVehicle * > VehCont
Container for vehicles.
Definition MSLane.h:119
const MSEdge * getNextNormal() const
Returns the lane's follower if it is an internal lane, the edge of the lane otherwise.
Definition MSLane.cpp:2465
SVCPermissions getPermissions() const
Returns the vehicle class permissions for this lane.
Definition MSLane.h:619
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
Definition MSLane.h:957
MSLane * getCanonicalPredecessorLane() const
Definition MSLane.cpp:3272
double getLength() const
Returns the lane's length.
Definition MSLane.h:611
double getMaximumBrakeDist() const
compute maximum braking distance on this lane
Definition MSLane.cpp:2907
const MSLane * getInternalFollowingLane(const MSLane *const) const
returns the internal lane leading to the given lane or nullptr, if there is none
Definition MSLane.cpp:2757
const MSLeaderInfo getLastVehicleInformation(const MSVehicle *ego, double latOffset, double minPos=0, bool allowCached=true) const
Returns the last vehicles on the lane.
Definition MSLane.cpp:1445
std::pair< MSVehicle *const, double > getLeaderOnConsecutive(double dist, double seen, double speed, const MSVehicle &veh, const std::vector< MSLane * > &bestLaneConts, bool considerCrossingFoes=true) const
Returns the immediate leader and the distance to him.
Definition MSLane.cpp:2991
bool isLinkEnd(std::vector< MSLink * >::const_iterator &i) const
Definition MSLane.h:860
bool allowsVehicleClass(SUMOVehicleClass vclass) const
Definition MSLane.h:932
virtual double setPartialOccupation(MSVehicle *v)
Sets the information about a vehicle lapping into this lane.
Definition MSLane.cpp:384
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
Definition MSLane.h:574
double getRightSideOnEdge() const
Definition MSLane.h:1202
bool hasPedestrians() const
whether the lane has pedestrians on it
Definition MSLane.cpp:4567
int getIndex() const
Returns the lane's index.
Definition MSLane.h:647
MSLane * getCanonicalSuccessorLane() const
Definition MSLane.cpp:3296
double getOppositePos(double pos) const
return the corresponding position on the opposite lane
Definition MSLane.cpp:4395
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
Definition MSLane.cpp:3216
double getCenterOnEdge() const
Definition MSLane.h:1210
bool isNormal() const
Definition MSLane.cpp:2626
MSVehicle * getLastAnyVehicle() const
returns the last vehicle that is fully or partially on this lane
Definition MSLane.cpp:2661
bool isInternal() const
Definition MSLane.cpp:2620
@ FOLLOW_NEVER
Definition MSLane.h:981
virtual void resetPartialOccupation(MSVehicle *v)
Removes the information about a vehicle lapping into this lane.
Definition MSLane.cpp:403
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
Definition MSLane.cpp:4383
virtual const VehCont & getVehiclesSecure() const
Returns the vehicles container; locks it for microsimulation.
Definition MSLane.h:483
virtual void releaseVehicles() const
Allows to use the container for microsimulation again.
Definition MSLane.h:513
bool mustCheckJunctionCollisions() const
whether this lane must check for junction collisions
Definition MSLane.cpp:4685
double interpolateLanePosToGeometryPos(double lanePos) const
Definition MSLane.h:554
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
Definition MSLane.cpp:4679
@ COLLISION_ACTION_WARN
Definition MSLane.h:203
virtual const PositionVector & getShape(bool) const
Definition MSLane.h:294
MSLane * getParallelOpposite() const
return the opposite direction lane of this lanes edge or nullptr
Definition MSLane.cpp:4389
MSEdge & getEdge() const
Returns the lane's edge.
Definition MSLane.h:769
double getSpaceTillLastStanding(const MSVehicle *ego, bool &foundStopped) const
return the empty space up to the last standing vehicle or the empty space on the whole lane if no veh...
Definition MSLane.cpp:4694
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
Definition MSLane.cpp:3241
MSLeaderDistanceInfo getFollowersOnConsecutive(const MSVehicle *ego, double backOffset, bool allSublanes, double searchDist=-1, MinorLinkMode mLinkMode=FOLLOW_ALWAYS) const
return the sublane followers with the largest missing rear gap among all predecessor lanes (within di...
Definition MSLane.cpp:3803
double getWidth() const
Returns the lane's width.
Definition MSLane.h:640
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
Definition MSLane.h:729
MSVehicle * getFirstFullVehicle() const
returns the first vehicle for which this lane is responsible or 0
Definition MSLane.cpp:2652
const Position geometryPositionAtOffset(double offset, double lateralOffset=0) const
Definition MSLane.h:560
static CollisionAction getCollisionAction()
Definition MSLane.h:1364
saves leader/follower vehicles and their distances relative to an ego vehicle
virtual std::string toString() const
print a debugging representation
void fixOppositeGaps(bool isFollower)
subtract vehicle length from all gaps if the leader vehicle is driving in the opposite direction
virtual int addLeader(const MSVehicle *veh, double gap, double latOffset=0, int sublane=-1)
void setSublaneOffset(int offset)
set number of sublanes by which to shift positions
void removeOpposite(const MSLane *lane)
remove vehicles that are driving in the opposite direction (fully or partially) on the given lane
int numSublanes() const
virtual int addLeader(const MSVehicle *veh, bool beyond, double latOffset=0.)
virtual std::string toString() const
print a debugging representation
virtual void clear()
discard all information
bool hasVehicles() const
int getSublaneOffset() const
void getSubLanes(const MSVehicle *veh, double latOffset, int &rightmost, int &leftmost) const
Something on a lane to be noticed about vehicle movement.
Notification
Definition of a vehicle state.
@ NOTIFICATION_TELEPORT_ARRIVED
The vehicle was teleported out of the net.
@ NOTIFICATION_PARKING_REROUTE
The vehicle needs another parking area.
@ NOTIFICATION_DEPARTED
The vehicle has departed (was inserted into the network)
@ NOTIFICATION_LANE_CHANGE
The vehicle changes lanes (micro only)
@ NOTIFICATION_VAPORIZED_VAPORIZER
The vehicle got vaporized with a vaporizer.
@ NOTIFICATION_JUNCTION
The vehicle arrived at a junction.
@ NOTIFICATION_PARKING
The vehicle starts or ends parking.
@ NOTIFICATION_VAPORIZED_COLLISION
The vehicle got removed by a collision.
@ NOTIFICATION_LOAD_STATE
The vehicle has been loaded from a state file.
@ NOTIFICATION_TELEPORT
The vehicle is being teleported.
@ NOTIFICATION_TELEPORT_CONTINUATION
The vehicle continues being teleported past an edge.
The simulated network and simulation perfomer.
Definition MSNet.h:89
void removeVehicleStateListener(VehicleStateListener *listener)
Removes a vehicle states listener.
Definition MSNet.cpp:1333
VehicleState
Definition of a vehicle state.
Definition MSNet.h:626
@ STARTING_STOP
The vehicles starts to stop.
@ STARTING_PARKING
The vehicles starts to park.
@ STARTING_TELEPORT
The vehicle started to teleport.
@ ENDING_STOP
The vehicle ends to stop.
@ ARRIVED
The vehicle arrived at his destination (is deleted)
@ EMERGENCYSTOP
The vehicle had to brake harder than permitted.
@ MANEUVERING
Vehicle maneuvering either entering or exiting a parking space.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
Definition MSNet.cpp:187
virtual MSTransportableControl & getContainerControl()
Returns the container control.
Definition MSNet.cpp:1266
std::string getStoppingPlaceID(const MSLane *lane, const double pos, const SumoXMLTag category) const
Returns the stop of the given category close to the given position.
Definition MSNet.cpp:1488
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
Definition MSNet.h:334
static bool hasInstance()
Returns whether the network was already constructed.
Definition MSNet.h:158
MSStoppingPlace * getStoppingPlace(const std::string &id, const SumoXMLTag category) const
Returns the named stopping place of the given category.
Definition MSNet.cpp:1467
void addVehicleStateListener(VehicleStateListener *listener)
Adds a vehicle states listener.
Definition MSNet.cpp:1325
bool hasContainers() const
Returns whether containers are simulated.
Definition MSNet.h:425
void informVehicleStateListener(const SUMOVehicle *const vehicle, VehicleState to, const std::string &info="")
Informs all added listeners about a vehicle's state change.
Definition MSNet.cpp:1342
bool hasPersons() const
Returns whether persons are simulated.
Definition MSNet.h:409
MSInsertionControl & getInsertionControl()
Returns the insertion control.
Definition MSNet.h:445
MSVehicleControl & getVehicleControl()
Returns the vehicle control.
Definition MSNet.h:392
virtual MSTransportableControl & getPersonControl()
Returns the person control.
Definition MSNet.cpp:1257
MSEdgeControl & getEdgeControl()
Returns the edge control.
Definition MSNet.h:435
bool hasElevation() const
return whether the network contains elevation data
Definition MSNet.h:808
static const double SAFETY_GAP
Definition MSPModel.h:59
A lane area vehicles can halt at.
int getOccupancyIncludingReservations(const SUMOVehicle *forVehicle) const
void leaveFrom(SUMOVehicle *what)
Called if a vehicle leaves this stop.
int getCapacity() const
Returns the area capacity.
int getLotIndex(const SUMOVehicle *veh) const
compute lot for this vehicle
int getLastFreeLotAngle() const
Return the angle of myLastFreeLot - the next parking lot only expected to be called after we have est...
bool parkOnRoad() const
whether vehicles park on the road
double getLastFreePosWithReservation(SUMOTime t, const SUMOVehicle &forVehicle, double brakePos)
Returns the last free position on this stop including reservations from the current lane and time ste...
double getLastFreeLotGUIAngle() const
Return the GUI angle of myLastFreeLot - the angle the GUI uses to rotate into the next parking lot as...
int getManoeuverAngle(const SUMOVehicle &forVehicle) const
Return the manoeuver angle of the lot where the vehicle is parked.
int getOccupancy() const
Returns the area occupancy.
void enter(SUMOVehicle *veh, const bool parking)
Called if a vehicle enters this stop.
double getGUIAngle(const SUMOVehicle &forVehicle) const
Return the GUI angle of the lot where the vehicle is parked.
void notifyApproach(const MSLink *link)
switch rail signal to active
static MSRailSignalControl & getInstance()
const ConstMSEdgeVector & getEdges() const
Definition MSRoute.h:128
const MSEdge * getLastEdge() const
returns the destination edge
Definition MSRoute.cpp:91
MSRouteIterator begin() const
Returns the begin of the list of edges to pass.
Definition MSRoute.cpp:73
const MSLane * lane
The lane to stop at (microsim only)
Definition MSStop.h:50
bool triggered
whether an arriving person lets the vehicle continue
Definition MSStop.h:69
bool containerTriggered
whether an arriving container lets the vehicle continue
Definition MSStop.h:71
SUMOTime timeToLoadNextContainer
The time at which the vehicle is able to load another container.
Definition MSStop.h:83
MSStoppingPlace * containerstop
(Optional) container stop if one is assigned to the stop
Definition MSStop.h:56
double getSpeed() const
return speed for passing waypoint / skipping on-demand stop
Definition MSStop.cpp:212
bool joinTriggered
whether coupling another vehicle (train) the vehicle continue
Definition MSStop.h:73
bool isOpposite
whether this an opposite-direction stop
Definition MSStop.h:87
SUMOTime getMinDuration(SUMOTime time) const
return minimum stop duration when starting stop at time
Definition MSStop.cpp:170
int numExpectedContainer
The number of still expected containers.
Definition MSStop.h:79
bool reached
Information whether the stop has been reached.
Definition MSStop.h:75
MSRouteIterator edge
The edge in the route to stop at.
Definition MSStop.h:48
SUMOTime timeToBoardNextPerson
The time at which the vehicle is able to board another person.
Definition MSStop.h:81
bool skipOnDemand
whether the decision to skip this stop has been made
Definition MSStop.h:89
const MSEdge * getEdge() const
Definition MSStop.cpp:55
double getReachedThreshold() const
return startPos taking into account opposite stopping
Definition MSStop.cpp:65
SUMOTime endBoarding
the maximum time at which persons may board this vehicle
Definition MSStop.h:85
double getEndPos(const SUMOVehicle &veh) const
return halting position for upcoming stop;
Definition MSStop.cpp:36
int numExpectedPerson
The number of still expected persons.
Definition MSStop.h:77
MSParkingArea * parkingarea
(Optional) parkingArea if one is assigned to the stop
Definition MSStop.h:58
bool startedFromState
whether the 'started' value was loaded from simulaton state
Definition MSStop.h:91
MSStoppingPlace * chargingStation
(Optional) charging station if one is assigned to the stop
Definition MSStop.h:60
SUMOTime duration
The stopping duration.
Definition MSStop.h:67
SUMOTime getUntil() const
return until / ended time
Definition MSStop.cpp:187
const SUMOVehicleParameter::Stop pars
The stop parameter.
Definition MSStop.h:65
MSStoppingPlace * busstop
(Optional) bus stop if one is assigned to the stop
Definition MSStop.h:54
void stopBlocked(const SUMOVehicle *veh, SUMOTime time)
Definition MSStopOut.cpp:66
static bool active()
Definition MSStopOut.h:54
void stopNotStarted(const SUMOVehicle *veh)
Definition MSStopOut.cpp:75
void stopStarted(const SUMOVehicle *veh, int numPersons, int numContainers, SUMOTime time)
Definition MSStopOut.cpp:82
void stopEnded(const SUMOVehicle *veh, const SUMOVehicleParameter::Stop &stop, const std::string &laneOrEdgeID, bool simEnd=false)
static MSStopOut * getInstance()
Definition MSStopOut.h:60
double getBeginLanePosition() const
Returns the begin position of this stop.
virtual void enter(SUMOVehicle *veh, const bool parking)
Called if a vehicle enters this stop.
bool fits(double pos, const SUMOVehicle &veh) const
return whether the given vehicle fits at the given position
double getEndLanePosition() const
Returns the end position of this stop.
const MSLane & getLane() const
Returns the lane this stop is located at.
virtual void leaveFrom(SUMOVehicle *what)
Called if a vehicle leaves this stop.
bool hasAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle) const
check whether any transportables are waiting for the given vehicle
bool loadAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle, SUMOTime &timeToLoadNext, SUMOTime &stopDuration, MSTransportable *const force=nullptr)
load any applicable transportables Loads any person / container that is waiting on that edge for the ...
bool isPerson() const override
Whether it is a person.
A static instance of this class in GapControlState deactivates gap control for vehicles whose referen...
Definition MSVehicle.h:1354
void vehicleStateChanged(const SUMOVehicle *const vehicle, MSNet::VehicleState to, const std::string &info="")
Called if a vehicle changes its state.
Changes the wished vehicle speed / lanes.
Definition MSVehicle.h:1349
void setLaneChangeMode(int value)
Sets lane changing behavior.
TraciLaneChangePriority myTraciLaneChangePriority
flags for determining the priority of traci lane change requests
Definition MSVehicle.h:1671
bool getEmergencyBrakeRedLight() const
Returns whether red lights shall be a reason to brake.
Definition MSVehicle.h:1519
SUMOTime getLaneTimeLineEnd()
void adaptLaneTimeLine(int indexShift)
Adapts lane timeline when moving to a new lane and the lane index changes.
void setRemoteControlled(Position xyPos, MSLane *l, double pos, double posLat, double angle, int edgeOffset, const ConstMSEdgeVector &route, SUMOTime t)
bool isRemoteAffected(SUMOTime t) const
int getSpeedMode() const
return the current speed mode
void deactivateGapController()
Deactivates the gap control.
Influencer()
Constructor.
void setSpeedMode(int speedMode)
Sets speed-constraining behaviors.
std::shared_ptr< GapControlState > myGapControlState
The gap control state.
Definition MSVehicle.h:1616
int getSignals() const
Definition MSVehicle.h:1587
bool myConsiderMaxDeceleration
Whether the maximum deceleration shall be regarded.
Definition MSVehicle.h:1637
void setLaneTimeLine(const std::vector< std::pair< SUMOTime, int > > &laneTimeLine)
Sets a new lane timeline.
bool myRespectJunctionLeaderPriority
Whether the junction priority rules are respected (within)
Definition MSVehicle.h:1646
void setOriginalSpeed(double speed)
Stores the originally longitudinal speed.
double myOriginalSpeed
The velocity before influence.
Definition MSVehicle.h:1619
bool myConsiderSpeedLimit
Whether the speed limit shall be regarded.
Definition MSVehicle.h:1631
double implicitDeltaPosRemote(const MSVehicle *veh)
return the change in longitudinal position that is implicit in the new remote position
double implicitSpeedRemote(const MSVehicle *veh, double oldSpeed)
return the speed that is implicit in the new remote position
void postProcessRemoteControl(MSVehicle *v)
update position from remote control
double gapControlSpeed(SUMOTime currentTime, const SUMOVehicle *veh, double speed, double vSafe, double vMin, double vMax)
Applies gap control logic on the speed.
void setSublaneChange(double latDist)
Sets a new sublane-change request.
double getOriginalSpeed() const
Returns the originally longitudinal speed to use.
SUMOTime myLastRemoteAccess
Definition MSVehicle.h:1655
bool getRespectJunctionLeaderPriority() const
Returns whether junction priority rules within the junction shall be respected (concerns vehicles wit...
Definition MSVehicle.h:1527
LaneChangeMode myStrategicLC
lane changing which is necessary to follow the current route
Definition MSVehicle.h:1660
LaneChangeMode mySpeedGainLC
lane changing to travel with higher speed
Definition MSVehicle.h:1664
void init()
Static initalization.
LaneChangeMode mySublaneLC
changing to the prefered lateral alignment
Definition MSVehicle.h:1668
bool getRespectJunctionPriority() const
Returns whether junction priority rules shall be respected (concerns approaching vehicles outside the...
Definition MSVehicle.h:1511
static void cleanup()
Static cleanup.
int getLaneChangeMode() const
return the current lane change mode
SUMOTime getLaneTimeLineDuration()
double influenceSpeed(SUMOTime currentTime, double speed, double vSafe, double vMin, double vMax)
Applies stored velocity information on the speed to use.
double changeRequestRemainingSeconds(const SUMOTime currentTime) const
Return the remaining number of seconds of the current laneTimeLine assuming one exists.
bool myConsiderSafeVelocity
Whether the safe velocity shall be regarded.
Definition MSVehicle.h:1628
bool mySpeedAdaptationStarted
Whether influencing the speed has already started.
Definition MSVehicle.h:1625
~Influencer()
Destructor.
void setSignals(int signals)
Definition MSVehicle.h:1583
double myLatDist
The requested lateral change.
Definition MSVehicle.h:1622
bool considerSpeedLimit() const
Returns whether speed limits shall be considered.
Definition MSVehicle.h:1538
bool myEmergencyBrakeRedLight
Whether red lights are a reason to brake.
Definition MSVehicle.h:1643
LaneChangeMode myRightDriveLC
changing to the rightmost lane
Definition MSVehicle.h:1666
void setSpeedTimeLine(const std::vector< std::pair< SUMOTime, double > > &speedTimeLine)
Sets a new velocity timeline.
void updateRemoteControlRoute(MSVehicle *v)
update route if provided by remote control
SUMOTime getLastAccessTimeStep() const
Definition MSVehicle.h:1563
bool myConsiderMaxAcceleration
Whether the maximum acceleration shall be regarded.
Definition MSVehicle.h:1634
LaneChangeMode myCooperativeLC
lane changing with the intent to help other vehicles
Definition MSVehicle.h:1662
bool isRemoteControlled() const
bool myRespectJunctionPriority
Whether the junction priority rules are respected (approaching)
Definition MSVehicle.h:1640
int influenceChangeDecision(const SUMOTime currentTime, const MSEdge &currentEdge, const int currentLaneIndex, int state)
Applies stored LaneChangeMode information and laneTimeLine.
void activateGapController(double originalTau, double newTimeHeadway, double newSpaceHeadway, double duration, double changeRate, double maxDecel, MSVehicle *refVeh=nullptr)
Activates the gap control with the given parameters,.
Container for manouevering time associated with stopping.
Definition MSVehicle.h:1273
SUMOTime myManoeuvreCompleteTime
Time at which this manoeuvre should complete.
Definition MSVehicle.h:1325
MSVehicle::ManoeuvreType getManoeuvreType() const
Accessor (get) for manoeuvre type.
std::string myManoeuvreStop
The name of the stop associated with the Manoeuvre - for debug output.
Definition MSVehicle.h:1319
bool manoeuvreIsComplete() const
Check if any manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureExitManoeuvre(MSVehicle *veh)
Setup the myManoeuvre for exiting (Sets completion time and manoeuvre type)
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
Accessor (set) for manoeuvre type.
Manoeuvre & operator=(const Manoeuvre &manoeuvre)
Assignment operator.
Manoeuvre()
Constructor.
ManoeuvreType myManoeuvreType
Manoeuvre type - currently entry, exit or none.
Definition MSVehicle.h:1328
double getGUIIncrement() const
Accessor for GUI rotation step when parking (radians)
SUMOTime myManoeuvreStartTime
Time at which the Manoeuvre for this stop started.
Definition MSVehicle.h:1322
bool operator!=(const Manoeuvre &manoeuvre)
Operator !=.
bool entryManoeuvreIsComplete(MSVehicle *veh)
Configure an entry manoeuvre if nothing is configured - otherwise check if complete.
bool manoeuvreIsComplete(const ManoeuvreType checkType) const
Check if specific manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureEntryManoeuvre(MSVehicle *veh)
Setup the entry manoeuvre for this vehicle (Sets completion time and manoeuvre type)
Container that holds the vehicles driving state (position+speed).
Definition MSVehicle.h:87
double myPosLat
the stored lateral position
Definition MSVehicle.h:140
State(double pos, double speed, double posLat, double backPos, double previousSpeed)
Constructor.
double myPreviousSpeed
the speed at the begin of the previous time step
Definition MSVehicle.h:148
double myPos
the stored position
Definition MSVehicle.h:134
bool operator!=(const State &state)
Operator !=.
double myLastCoveredDist
Definition MSVehicle.h:154
double mySpeed
the stored speed (should be >=0 at any time)
Definition MSVehicle.h:137
State & operator=(const State &state)
Assignment operator.
double pos() const
Position of this state.
Definition MSVehicle.h:107
double myBackPos
the stored back position
Definition MSVehicle.h:145
void passTime(SUMOTime dt, bool waiting)
const std::string getState() const
SUMOTime cumulatedWaitingTime(SUMOTime memory=-1) const
void setState(const std::string &state)
WaitingTimeCollector(SUMOTime memory=MSGlobals::gWaitingTimeMemory)
Constructor.
void registerEmergencyStop()
register emergency stop
SUMOVehicle * getVehicle(const std::string &id) const
Returns the vehicle with the given id.
void registerStopEnded()
register emergency stop
void registerEmergencyBraking()
register emergency stop
void removeVType(const MSVehicleType *vehType)
void registerOneWaiting()
increases the count of vehicles waiting for a transport to allow recognition of person / container re...
void unregisterOneWaiting()
decreases the count of vehicles waiting for a transport to allow recognition of person / container re...
void registerStopStarted()
register emergency stop
Abstract in-vehicle device.
Representation of a vehicle in the micro simulation.
Definition MSVehicle.h:77
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
accessor function to myManoeuvre equivalent
TraciLaneChangePriority
modes for prioritizing traci lane change requests
Definition MSVehicle.h:1151
@ LCP_OPPORTUNISTIC
Definition MSVehicle.h:1155
double getRightSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
bool wasRemoteControlled(SUMOTime lookBack=DELTA_T) const
Returns the information whether the vehicle is fully controlled via TraCI within the lookBack time.
void processLinkApproaches(double &vSafe, double &vSafeMin, double &vSafeMinDist)
This method iterates through the driveprocess items for the vehicle and adapts the given in/out param...
const MSLane * getPreviousLane(const MSLane *current, int &furtherIndex) const
void checkLinkLeader(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest, bool isShadowLink=false) const
checks for link leaders on the given link
void checkRewindLinkLanes(const double lengthsInFront, DriveItemVector &lfLinks) const
runs heuristic for keeping the intersection clear in case of downstream jamming
bool willStop() const
Returns whether the vehicle will stop on the current edge.
bool hasDriverState() const
Whether this vehicle is equipped with a MSDriverState.
Definition MSVehicle.h:996
static int nextLinkPriority(const std::vector< MSLane * > &conts)
get a numerical value for the priority of the upcoming link
double getTimeGapOnLane() const
Returns the time gap in seconds to the leader of the vehicle on the same lane.
void updateBestLanes(bool forceRebuild=false, const MSLane *startLane=0)
computes the best lanes to use in order to continue the route
bool myAmIdling
Whether the vehicle is trying to enter the network (eg after parking so engine is running)
Definition MSVehicle.h:1930
SUMOTime myWaitingTime
The time the vehicle waits (is not faster than 0.1m/s) in seconds.
Definition MSVehicle.h:1866
double getStopDelay() const
Returns the public transport stop delay in seconds.
double computeAngle() const
compute the current vehicle angle
double myTimeLoss
the time loss in seconds due to driving with less than maximum speed
Definition MSVehicle.h:1870
SUMOTime myLastActionTime
Action offset (actions are taken at time myActionOffset + N*getActionStepLength()) Initialized to 0,...
Definition MSVehicle.h:1885
ConstMSEdgeVector::const_iterator getRerouteOrigin() const
Returns the starting point for reroutes (usually the current edge)
bool hasArrivedInternal(bool oppositeTransformed=true) const
Returns whether this vehicle has already arived (reached the arrivalPosition on its final edge) metho...
double getFriction() const
Returns the current friction on the road as perceived by the friction device.
bool ignoreFoe(const SUMOTrafficObject *foe) const
decide whether a given foe object may be ignored
void boardTransportables(MSStop &stop)
board persons and load transportables at the given stop
const std::vector< const MSLane * > getUpcomingLanesUntil(double distance) const
Returns the upcoming (best followed by default 0) sequence of lanes to continue the route starting at...
bool isOnRoad() const
Returns the information whether the vehicle is on a road (is simulated)
Definition MSVehicle.h:605
void adaptLaneEntering2MoveReminder(const MSLane &enteredLane)
Adapts the vehicle's entering of a new lane.
void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
SUMOTime myJunctionConflictEntryTime
Definition MSVehicle.h:1948
double getLeftSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
PositionVector getBoundingPoly(double offset=0) const
get bounding polygon
void setTentativeLaneAndPosition(MSLane *lane, double pos, double posLat=0)
set tentative lane and position during insertion to ensure that all cfmodels work (some of them requi...
bool brakeForOverlap(const MSLink *link, const MSLane *lane) const
handle with transitions
void workOnMoveReminders(double oldPos, double newPos, double newSpeed)
Processes active move reminder.
bool isStoppedOnLane() const
double getDistanceToPosition(double destPos, const MSLane *destLane) const
bool brokeDown() const
Returns how long the vehicle has been stopped already due to lack of energy.
double myAcceleration
The current acceleration after dawdling in m/s.
Definition MSVehicle.h:1912
void registerInsertionApproach(MSLink *link, double dist)
register approach on insertion
void cleanupFurtherLanes()
remove vehicle from further lanes (on leaving the network)
void adaptToLeaders(const MSLeaderInfo &ahead, double latOffset, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass) const
const MSLane * getBackLane() const
Returns the lane the where the rear of the object is currently at.
void enterLaneAtInsertion(MSLane *enteredLane, double pos, double speed, double posLat, MSMoveReminder::Notification notification)
Update when the vehicle enters a new lane in the emit step.
double getBackPositionOnLane() const
Get the vehicle's position relative to its current lane.
Definition MSVehicle.h:405
void setPreviousSpeed(double prevSpeed, double prevAcceleration)
Sets the influenced previous speed.
SUMOTime getArrivalTime(SUMOTime t, double seen, double v, double arrivalSpeed) const
double getAccumulatedWaitingSeconds() const
Returns the number of seconds waited (speed was lesser than 0.1m/s) within the last millisecs.
Definition MSVehicle.h:714
SUMOTime getWaitingTime(const bool accumulated=false) const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
Definition MSVehicle.h:670
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
virtual ~MSVehicle()
Destructor.
void processLaneAdvances(std::vector< MSLane * > &passedLanes, std::string &emergencyReason)
This method checks if the vehicle has advanced over one or several lanes along its route and triggers...
MSAbstractLaneChangeModel & getLaneChangeModel()
void setEmergencyBlueLight(SUMOTime currentTime)
sets the blue flashing light for emergency vehicles
bool isActionStep(SUMOTime t) const
Returns whether the next simulation step will be an action point for the vehicle.
Definition MSVehicle.h:635
MSAbstractLaneChangeModel * myLaneChangeModel
Definition MSVehicle.h:1892
Position getPositionAlongBestLanes(double offset) const
Return the (x,y)-position, which the vehicle would reach if it continued along its best continuation ...
bool hasValidRouteStart(std::string &msg)
checks wether the vehicle can depart on the first edge
double getLeftSideOnLane() const
Get the lateral position of the vehicles left side on the lane:
std::vector< MSLane * > myFurtherLanes
The information into which lanes the vehicle laps into.
Definition MSVehicle.h:1919
bool signalSet(int which) const
Returns whether the given signal is on.
Definition MSVehicle.h:1187
MSCFModel::VehicleVariables * myCFVariables
The per vehicle variables of the car following model.
Definition MSVehicle.h:2160
bool betterContinuation(const LaneQ *bestConnectedNext, const LaneQ &m) const
comparison between different continuations from the same lane
bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
void checkLinkLeaderCurrentAndParallel(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest) const
checks for link leaders of the current link as well as the parallel link (if there is one)
void planMoveInternal(const SUMOTime t, MSLeaderInfo ahead, DriveItemVector &lfLinks, double &myStopDist, std::pair< double, const MSLink * > &myNextTurn) const
std::pair< double, const MSLink * > myNextTurn
the upcoming turn for the vehicle
Definition MSVehicle.h:1916
double getDistanceToLeaveJunction() const
get the distance from the start of this lane to the start of the next normal lane (or 0 if this lane ...
int influenceChangeDecision(int state)
allow TraCI to influence a lane change decision
double getMaxSpeedOnLane() const
Returns the maximal speed for the vehicle on its current lane (including speed factor and deviation,...
bool isRemoteControlled() const
Returns the information whether the vehicle is fully controlled via TraCI.
bool myAmOnNet
Whether the vehicle is on the network (not parking, teleported, vaporized, or arrived)
Definition MSVehicle.h:1927
void enterLaneAtMove(MSLane *enteredLane, bool onTeleporting=false)
Update when the vehicle enters a new lane in the move step.
void adaptBestLanesOccupation(int laneIndex, double density)
update occupation from MSLaneChanger
std::pair< double, double > estimateTimeToNextStop() const
return time (s) and distance to the next stop
double accelThresholdForWaiting() const
maximum acceleration to consider a vehicle as 'waiting' at low speed
Definition MSVehicle.h:2074
void setAngle(double angle, bool straightenFurther=false)
Set a custom vehicle angle in rad, optionally updates furtherLanePosLat.
std::vector< LaneQ >::iterator myCurrentLaneInBestLanes
Definition MSVehicle.h:1907
void setApproachingForAllLinks()
Register junction approaches for all link items in the current plan.
double getDeltaPos(const double accel) const
calculates the distance covered in the next integration step given an acceleration and assuming the c...
const MSLane * myLastBestLanesInternalLane
Definition MSVehicle.h:1895
void updateOccupancyAndCurrentBestLane(const MSLane *startLane)
updates LaneQ::nextOccupation and myCurrentLaneInBestLanes
const std::vector< MSLane * > getUpstreamOppositeLanes() const
Returns the sequence of opposite lanes corresponding to past lanes.
WaitingTimeCollector myWaitingTimeCollector
Definition MSVehicle.h:1867
void setRemoteState(Position xyPos)
sets position outside the road network
void fixPosition()
repair errors in vehicle position after changing between internal edges
double getAcceleration() const
Returns the vehicle's acceleration in m/s (this is computed as the last step's mean acceleration in c...
Definition MSVehicle.h:514
double getSpeedWithoutTraciInfluence() const
Returns the uninfluenced velocity.
PositionVector getBoundingBox(double offset=0) const
get bounding rectangle
ManoeuvreType
flag identifying which, if any, manoeuvre is in progress
Definition MSVehicle.h:1246
@ MANOEUVRE_ENTRY
Manoeuvre into stopping place.
Definition MSVehicle.h:1248
@ MANOEUVRE_NONE
not manouevring
Definition MSVehicle.h:1252
@ MANOEUVRE_EXIT
Manoeuvre out of stopping place.
Definition MSVehicle.h:1250
const MSEdge * getNextEdgePtr() const
returns the next edge (possibly an internal edge)
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
void setBrakingSignals(double vNext)
sets the braking lights on/off
const std::vector< MSLane * > & getBestLanesContinuation() const
Returns the best sequence of lanes to continue the route starting at myLane.
const MSEdge * myLastBestLanesEdge
Definition MSVehicle.h:1894
bool ignoreCollision() const
whether this vehicle is except from collision checks
Influencer * myInfluencer
An instance of a velocity/lane influencing instance; built in "getInfluencer".
Definition MSVehicle.h:2163
void saveState(OutputDevice &out)
Saves the states of a vehicle.
void onRemovalFromNet(const MSMoveReminder::Notification reason)
Called when the vehicle is removed from the network.
void planMove(const SUMOTime t, const MSLeaderInfo &ahead, const double lengthsInFront)
Compute safe velocities for the upcoming lanes based on positions and speeds from the last time step....
bool resumeFromStopping()
int getBestLaneOffset() const
void adaptToJunctionLeader(const std::pair< const MSVehicle *, double > leaderInfo, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass, double distToCrossing=-1) const
double lateralDistanceToLane(const int offset) const
Get the minimal lateral distance required to move fully onto the lane at given offset.
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
Definition MSVehicle.h:398
void leaveLaneBack(const MSMoveReminder::Notification reason, const MSLane *leftLane)
Update of reminders if vehicle back leaves a lane during (during forward movement.
void resetActionOffset(const SUMOTime timeUntilNextAction=0)
Resets the action offset for the vehicle.
std::vector< DriveProcessItem > DriveItemVector
Container for used Links/visited Lanes during planMove() and executeMove.
Definition MSVehicle.h:2017
void interpolateLateralZ(Position &pos, double offset, double posLat) const
perform lateral z interpolation in elevated networks
void setBlinkerInformation()
sets the blue flashing light for emergency vehicles
const MSEdge * getCurrentEdge() const
Returns the edge the vehicle is currently at (possibly an internal edge or nullptr)
void adaptToLeaderDistance(const MSLeaderDistanceInfo &ahead, double latOffset, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
DriveItemVector::iterator myNextDriveItem
iterator pointing to the next item in myLFLinkLanes
Definition MSVehicle.h:2030
bool unsafeLinkAhead(const MSLane *lane, double zipperDist) const
whether the vehicle may safely move to the given lane with regard to upcoming links
void leaveLane(const MSMoveReminder::Notification reason, const MSLane *approachedLane=0)
Update of members if vehicle leaves a new lane in the lane change step or at arrival.
const MSLink * myHaveStoppedFor
Definition MSVehicle.h:1952
bool isIdling() const
Returns whether a sim vehicle is waiting to enter a lane (after parking has completed)
Definition MSVehicle.h:621
std::shared_ptr< MSSimpleDriverState > getDriverState() const
Returns the vehicle driver's state.
void removeApproachingInformation(const DriveItemVector &lfLinks) const
unregister approach from all upcoming links
SUMOTime myJunctionEntryTimeNeverYield
Definition MSVehicle.h:1947
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
bool rerouteParkingArea(const std::string &parkingAreaID, std::string &errorMsg)
bool hasArrived() const
Returns whether this vehicle has already arrived (reached the arrivalPosition on its final edge)
void switchOffSignal(int signal)
Switches the given signal off.
Definition MSVehicle.h:1170
double getStopArrivalDelay() const
Returns the estimated public transport stop arrival delay in seconds.
int mySignals
State of things of the vehicle that can be on or off.
Definition MSVehicle.h:1924
bool setExitManoeuvre()
accessor function to myManoeuvre equivalent
bool isOppositeLane(const MSLane *lane) const
whether the give lane is reverse direction of the current route or not
double myStopDist
distance to the next stop or doubleMax if there is none
Definition MSVehicle.h:1938
Signalling
Some boolean values which describe the state of some vehicle parts.
Definition MSVehicle.h:1105
@ VEH_SIGNAL_BLINKER_RIGHT
Right blinker lights are switched on.
Definition MSVehicle.h:1109
@ VEH_SIGNAL_BRAKELIGHT
The brake lights are on.
Definition MSVehicle.h:1115
@ VEH_SIGNAL_EMERGENCY_BLUE
A blue emergency light is on.
Definition MSVehicle.h:1131
@ VEH_SIGNAL_BLINKER_LEFT
Left blinker lights are switched on.
Definition MSVehicle.h:1111
SUMOTime getActionStepLength() const
Returns the vehicle's action step length in millisecs, i.e. the interval between two action points.
Definition MSVehicle.h:525
bool myHaveToWaitOnNextLink
Definition MSVehicle.h:1932
SUMOTime collisionStopTime() const
Returns the remaining time a vehicle needs to stop due to a collision. A negative value indicates tha...
const std::vector< const MSLane * > getPastLanesUntil(double distance) const
Returns the sequence of past lanes (right-most on edge) based on the route starting at the current la...
double getBestLaneDist() const
returns the distance that can be driven without lane change
void replaceVehicleType(const MSVehicleType *type)
Replaces the current vehicle type by the one given.
void updateState(double vNext, bool parking=false)
updates the vehicles state, given a next value for its speed. This value can be negative in case of t...
double slowDownForSchedule(double vMinComfortable) const
optionally return an upper bound on speed to stay within the schedule
bool executeMove()
Executes planned vehicle movements with regards to right-of-way.
const MSLane * getLane() const
Returns the lane the vehicle is on.
Definition MSVehicle.h:581
std::pair< const MSVehicle *const, double > getFollower(double dist=0) const
Returns the follower of the vehicle looking for a fixed distance.
SUMOTime getWaitingTimeFor(const MSLink *link) const
getWaitingTime, but taking into account having stopped for a stop-link
ChangeRequest
Requests set via TraCI.
Definition MSVehicle.h:191
@ REQUEST_HOLD
vehicle want's to keep the current lane
Definition MSVehicle.h:199
@ REQUEST_LEFT
vehicle want's to change to left lane
Definition MSVehicle.h:195
@ REQUEST_NONE
vehicle doesn't want to change
Definition MSVehicle.h:193
@ REQUEST_RIGHT
vehicle want's to change to right lane
Definition MSVehicle.h:197
bool isLeader(const MSLink *link, const MSVehicle *veh, const double gap) const
whether the given vehicle must be followed at the given junction
void resetApproachOnReroute()
reset rail signal approach information
void computeFurtherLanes(MSLane *enteredLane, double pos, bool collision=false)
updates myFurtherLanes on lane insertion or after collision
MSLane * getMutableLane() const
Returns the lane the vehicle is on Non const version indicates that something volatile is going on.
Definition MSVehicle.h:589
std::pair< const MSLane *, double > getLanePosAfterDist(double distance) const
return lane and position along bestlanes at the given distance
SUMOTime myCollisionImmunity
amount of time for which the vehicle is immune from collisions
Definition MSVehicle.h:1941
bool passingMinor() const
decide whether the vehicle is passing a minor link or has comitted to do so
void updateWaitingTime(double vNext)
Updates the vehicle's waiting time counters (accumulated and consecutive)
void enterLaneAtLaneChange(MSLane *enteredLane)
Update when the vehicle enters a new lane in the laneChange step.
BaseInfluencer & getBaseInfluencer()
Returns the velocity/lane influencer.
Influencer & getInfluencer()
bool isBidiOn(const MSLane *lane) const
whether this vehicle is driving against lane
double getRightSideOnLane() const
Get the lateral position of the vehicles right side on the lane:
double getCurrentApparentDecel() const
get apparent deceleration based on vType parameters and current acceleration
double updateFurtherLanes(std::vector< MSLane * > &furtherLanes, std::vector< double > &furtherLanesPosLat, const std::vector< MSLane * > &passedLanes)
update a vector of further lanes and return the new backPos
DriveItemVector myLFLinkLanesPrev
planned speeds from the previous step for un-registering from junctions after the new container is fi...
Definition MSVehicle.h:2023
std::vector< std::vector< LaneQ > > myBestLanes
Definition MSVehicle.h:1902
void setActionStepLength(double actionStepLength, bool resetActionOffset=true)
Sets the action steplength of the vehicle.
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
Definition MSVehicle.h:413
double getSlope() const
Returns the slope of the road at vehicle's position in degrees.
bool myActionStep
The flag myActionStep indicates whether the current time step is an action point for the vehicle.
Definition MSVehicle.h:1882
const Position getBackPosition() const
bool congested() const
void loadState(const SUMOSAXAttributes &attrs, const SUMOTime offset)
Loads the state of this vehicle from the given description.
SUMOTime myTimeSinceStartup
duration of driving (speed > SUMO_const_haltingSpeed) after the last halting episode
Definition MSVehicle.h:1951
double getSpeed() const
Returns the vehicle's current speed.
Definition MSVehicle.h:490
SUMOTime remainingStopDuration() const
Returns the remaining stop duration for a stopped vehicle or 0.
bool keepStopping(bool afterProcessing=false) const
Returns whether the vehicle is stopped and must continue to do so.
void workOnIdleReminders()
cycle through vehicle devices invoking notifyIdle
static std::vector< MSLane * > myEmptyLaneVector
Definition MSVehicle.h:1909
Position myCachedPosition
Definition MSVehicle.h:1943
bool replaceRoute(ConstMSRoutePtr route, const std::string &info, bool onInit=false, int offset=0, bool addStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
MSVehicle::ManoeuvreType getManoeuvreType() const
accessor function to myManoeuvre equivalent
double checkReversal(bool &canReverse, double speedThreshold=SUMO_const_haltingSpeed, double seen=0) const
void updateLaneBruttoSum()
Update the lane brutto occupancy after a change in minGap.
void removePassedDriveItems()
Erase passed drive items from myLFLinkLanes (and unregister approaching information for corresponding...
const std::vector< MSLane * > & getFurtherLanes() const
Definition MSVehicle.h:835
const std::vector< LaneQ > & getBestLanes() const
Returns the description of best lanes to use in order to continue the route.
std::vector< double > myFurtherLanesPosLat
lateral positions on further lanes
Definition MSVehicle.h:1921
bool checkActionStep(const SUMOTime t)
Returns whether the vehicle is supposed to take action in the current simulation step Updates myActio...
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
Definition MSVehicle.h:969
Position validatePosition(Position result, double offset=0) const
ensure that a vehicle-relative position is not invalid
void loadPreviousApproaching(MSLink *link, bool setRequest, SUMOTime arrivalTime, double arrivalSpeed, double arrivalSpeedBraking, double dist, double leaveSpeed)
bool keepClear(const MSLink *link) const
decide whether the given link must be kept clear
bool manoeuvreIsComplete() const
accessor function to myManoeuvre equivalent
double processNextStop(double currentVelocity)
Processes stops, returns the velocity needed to reach the stop.
double myAngle
the angle in radians (
Definition MSVehicle.h:1935
bool ignoreRed(const MSLink *link, bool canBrake) const
decide whether a red (or yellow light) may be ignored
double getPositionOnLane() const
Get the vehicle's position along the lane.
Definition MSVehicle.h:374
void updateTimeLoss(double vNext)
Updates the vehicle's time loss.
MSDevice_DriverState * myDriverState
This vehicle's driver state.
Definition MSVehicle.h:1876
bool joinTrainPart(MSVehicle *veh)
try joining the given vehicle to the rear of this one (to resolve joinTriggered)
MSLane * myLane
The lane the vehicle is on.
Definition MSVehicle.h:1890
bool onFurtherEdge(const MSEdge *edge) const
whether this vehicle has its back (and no its front) on the given edge
double processTraCISpeedControl(double vSafe, double vNext)
Check for speed advices from the traci client and adjust the speed vNext in the current (euler) / aft...
Manoeuvre myManoeuvre
Definition MSVehicle.h:1335
double getLateralOverlap() const
return the amount by which the vehicle extends laterally outside it's primary lane
double getAngle() const
Returns the vehicle's direction in radians.
Definition MSVehicle.h:735
bool handleCollisionStop(MSStop &stop, const double distToStop)
bool hasInfluencer() const
whether the vehicle is individually influenced (via TraCI or special parameters)
Definition MSVehicle.h:1690
MSDevice_Friction * myFrictionDevice
This vehicle's friction perception.
Definition MSVehicle.h:1879
double getPreviousSpeed() const
Returns the vehicle's speed before the previous time step.
Definition MSVehicle.h:498
MSVehicle()
invalidated default constructor
bool joinTrainPartFront(MSVehicle *veh)
try joining the given vehicle to the front of this one (to resolve joinTriggered)
void updateActionOffset(const SUMOTime oldActionStepLength, const SUMOTime newActionStepLength)
Process an updated action step length value (only affects the vehicle's action offset,...
double getBrakeGap(bool delayed=false) const
get distance for coming to a stop (used for rerouting checks)
std::pair< const MSVehicle *const, double > getLeader(double dist=0, bool considerFoes=true) const
Returns the leader of the vehicle looking for a fixed distance.
void executeFractionalMove(double dist)
move vehicle forward by the given distance during insertion
LaneChangeMode
modes for resolving conflicts between external control (traci) and vehicle control over lane changing...
Definition MSVehicle.h:1143
virtual void drawOutsideNetwork(bool)
register vehicle for drawing while outside the network
Definition MSVehicle.h:1841
void initDevices()
void adaptToOncomingLeader(const std::pair< const MSVehicle *, double > leaderInfo, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
State myState
This Vehicles driving state (pos and speed)
Definition MSVehicle.h:1873
double getCenterOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
void adaptToLeader(const std::pair< const MSVehicle *, double > leaderInfo, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
void switchOnSignal(int signal)
Switches the given signal on.
Definition MSVehicle.h:1162
static bool overlap(const MSVehicle *veh1, const MSVehicle *veh2)
Definition MSVehicle.h:763
int getLaneIndex() const
void updateParkingState()
update state while parking
DriveItemVector myLFLinkLanes
container for the planned speeds in the current step
Definition MSVehicle.h:2020
void updateDriveItems()
Check whether the drive items (myLFLinkLanes) are up to date, and update them if required.
SUMOTime myJunctionEntryTime
time at which the current junction was entered
Definition MSVehicle.h:1946
static MSVehicleTransfer * getInstance()
Returns the instance of this object.
void remove(MSVehicle *veh)
Remove a vehicle from this transfer object.
The car-following model and parameter.
double getLengthWithGap() const
Get vehicle's length including the minimum gap [m].
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
double getMaxSpeed() const
Get vehicle's (technical) maximum speed [m/s].
const std::string & getID() const
Returns the name of the vehicle type.
double getMinGap() const
Get the free space in front of vehicles of this class.
LaneChangeModel getLaneChangeModel() const
void setLength(const double &length)
Set a new value for this type's length.
SUMOTime getExitManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning exit time for a specific manoeuver angle.
const MSCFModel & getCarFollowModel() const
Returns the vehicle type's car following model definition (const version)
bool isVehicleSpecific() const
Returns whether this type belongs to a single vehicle only (was modified)
void setActionStepLength(const SUMOTime actionStepLength, bool resetActionOffset)
Set a new value for this type's action step length.
double getLength() const
Get vehicle's length [m].
SUMOVehicleShape getGuiShape() const
Get this vehicle type's shape.
SUMOTime getEntryManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning entry time for a specific manoeuver angle.
const SUMOVTypeParameter & getParameter() const
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
Definition Named.h:67
const std::string & getID() const
Returns the id.
Definition Named.h:74
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
bool hasParameter(const std::string &key) const
Returns whether the parameter is set.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
void writeParams(OutputDevice &device) const
write Params in the given outputdevice
A point in 2D or 3D with translation and scaling methods.
Definition Position.h:37
double slopeTo2D(const Position &other) const
returns the slope of the vector pointing from here to the other position (in radians between -M_PI an...
Definition Position.h:288
static const Position INVALID
used to indicate that a position is valid
Definition Position.h:323
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
Definition Position.h:273
void setz(double z)
set position z
Definition Position.h:77
double z() const
Returns the z-position.
Definition Position.h:62
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position (in radians bet...
Definition Position.h:283
A list of positions.
double length2D() const
Returns the length.
void append(const PositionVector &v, double sameThreshold=2.0)
double rotationAtOffset(double pos) const
Returns the rotation at the given length.
Position positionAtOffset(double pos, double lateralOffset=0) const
Returns the position at the given length.
void move2side(double amount, double maxExtension=100)
move position vector to side using certain amount
double slopeDegreeAtOffset(double pos) const
Returns the slope at the given length.
void extrapolate2D(const double val, const bool onlyFirst=false)
extrapolate position vector in two dimensions (Z is ignored)
void scaleRelative(double factor)
enlarges/shrinks the polygon by a factor based at the centroid
PositionVector reverse() const
reverse position vector
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
virtual bool compute(const E *from, const E *to, const V *const vehicle, SUMOTime msTime, std::vector< const E * > &into, bool silent=false)=0
Builds the route between the given edges using the minimum effort at the given time The definition of...
virtual double recomputeCosts(const std::vector< const E * > &edges, const V *const v, SUMOTime msTime, double *lengthp=nullptr) const
Encapsulated SAX-Attributes.
virtual std::string getString(int id, bool *isPresent=nullptr) const =0
Returns the string-value of the named (by its enum-value) attribute.
T get(int attr, const char *objectid, bool &ok, bool report=true) const
Tries to read given attribute assuming it is an int.
virtual bool hasAttribute(int id) const =0
Returns the information whether the named (by its enum-value) attribute is within the current list.
double getFloat(int id) const
Returns the double-value of the named (by its enum-value) attribute.
Representation of a vehicle, person, or container.
virtual const MSVehicleType & getVehicleType() const =0
Returns the object's "vehicle" type.
virtual double getSpeed() const =0
Returns the object's current speed.
double locomotiveLength
the length of the locomotive
double speedFactorPremature
the possible speed reduction when a train is ahead of schedule
double getLCParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
double getJMParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
Representation of a vehicle.
Definition SUMOVehicle.h:62
Definition of vehicle stop (position and duration)
SUMOTime started
the time at which this stop was reached
ParkingType parking
whether the vehicle is removed from the net while stopping
SUMOTime extension
The maximum time extension for boarding / loading.
std::string split
the id of the vehicle (train portion) that splits of upon reaching this stop
double startPos
The stopping position start.
std::string line
the new line id of the trip within a cyclical public transport route
double posLat
the lateral offset when stopping
bool onDemand
whether the stop may be skipped
std::string join
the id of the vehicle (train portion) to which this vehicle shall be joined
SUMOTime until
The time at which the vehicle may continue its journey.
SUMOTime ended
the time at which this stop was ended
double endPos
The stopping position end.
SUMOTime waitUntil
The earliest pickup time for a taxi stop.
std::string tripId
id of the trip within a cyclical public transport route
bool collision
Whether this stop was triggered by a collision.
SUMOTime arrival
The (expected) time at which the vehicle reaches the stop.
SUMOTime duration
The stopping duration.
Structure representing possible vehicle parameter.
int departLane
(optional) The lane the vehicle shall depart from (index in edge)
ArrivalSpeedDefinition arrivalSpeedProcedure
Information how the vehicle's end speed shall be chosen.
double departSpeed
(optional) The initial speed of the vehicle
std::vector< std::string > via
List of the via-edges the vehicle must visit.
ArrivalLaneDefinition arrivalLaneProcedure
Information how the vehicle shall choose the lane to arrive on.
long long int parametersSet
Information for the router which parameter were set, TraCI may modify this (when changing color)
DepartLaneDefinition departLaneProcedure
Information how the vehicle shall choose the lane to depart from.
bool wasSet(long long int what) const
Returns whether the given parameter was set.
DepartSpeedDefinition departSpeedProcedure
Information how the vehicle's initial speed shall be chosen.
double arrivalPos
(optional) The position the vehicle shall arrive on
ArrivalPosDefinition arrivalPosProcedure
Information how the vehicle shall choose the arrival position.
double arrivalSpeed
(optional) The final speed of the vehicle (not used yet)
int arrivalEdge
(optional) The final edge within the route of the vehicle
DepartPosDefinition departPosProcedure
Information how the vehicle shall choose the departure position.
static SUMOTime processActionStepLength(double given)
Checks and converts given value for the action step length from seconds to miliseconds assuring it be...
std::vector< std::string > getVector()
return vector of strings
#define DEBUG_COND
Definition json.hpp:4471
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
Definition json.hpp:21884
#define M_PI
Definition odrSpiral.cpp:45
Drive process items represent bounds on the safe velocity corresponding to the upcoming links.
Definition MSVehicle.h:1959
void adaptStopSpeed(const double v)
Definition MSVehicle.h:2006
double getLeaveSpeed() const
Definition MSVehicle.h:2010
void adaptLeaveSpeed(const double v)
Definition MSVehicle.h:1998
static std::map< const MSVehicle *, GapControlState * > refVehMap
stores reference vehicles currently in use by a gapController
Definition MSVehicle.h:1408
static GapControlVehStateListener * myVehStateListener
Definition MSVehicle.h:1411
void activate(double tauOriginal, double tauTarget, double additionalGap, double duration, double changeRate, double maxDecel, const MSVehicle *refVeh)
Start gap control with given params.
static void cleanup()
Static cleanup (removes vehicle state listener)
void deactivate()
Stop gap control.
static void init()
Static initalization (adds vehicle state listener)
A structure representing the best lanes for continuing the current route starting at 'lane'.
Definition MSVehicle.h:857
double length
The overall length which may be driven when using this lane without a lane change.
Definition MSVehicle.h:861
bool allowsContinuation
Whether this lane allows to continue the drive.
Definition MSVehicle.h:871
double nextOccupation
As occupation, but without the first lane.
Definition MSVehicle.h:867
std::vector< MSLane * > bestContinuations
Definition MSVehicle.h:877
MSLane * lane
The described lane.
Definition MSVehicle.h:859
double currentLength
The length which may be driven on this lane.
Definition MSVehicle.h:863
int bestLaneOffset
The (signed) number of lanes to be crossed to get to the lane which allows to continue the drive.
Definition MSVehicle.h:869
double occupation
The overall vehicle sum on consecutive lanes which can be passed without a lane change.
Definition MSVehicle.h:865