111#define DEBUG_COND (isSelected())
113#define DEBUG_COND2(obj) (obj->isSelected())
118#define STOPPING_PLACE_OFFSET 0.5
120#define CRLL_LOOK_AHEAD 5
122#define JUNCTION_BLOCKAGE_TIME 5
125#define DIST_TO_STOPLINE_EXPECT_PRIORITY 1.0
127#define NUMERICAL_EPS_SPEED (0.1 * NUMERICAL_EPS * TS)
165 return (myPos != state.
myPos ||
175 myPos(pos), mySpeed(speed), myPosLat(posLat), myBackPos(backPos), myPreviousSpeed(previousSpeed), myLastCoveredDist(
SPEED2DIST(speed)) {}
187 assert(memorySpan <= myMemorySize);
188 if (memorySpan == -1) {
189 memorySpan = myMemorySize;
192 for (
const auto& interval : myWaitingIntervals) {
193 if (interval.second >= memorySpan) {
194 if (interval.first >= memorySpan) {
197 totalWaitingTime += memorySpan - interval.first;
200 totalWaitingTime += interval.second - interval.first;
203 return totalWaitingTime;
209 auto i = myWaitingIntervals.begin();
210 const auto end = myWaitingIntervals.end();
211 const bool startNewInterval = i == end || (i->first != 0);
214 if (i->first >= myMemorySize) {
222 auto d = std::distance(i, end);
224 myWaitingIntervals.pop_back();
230 }
else if (!startNewInterval) {
231 myWaitingIntervals.begin()->first = 0;
233 myWaitingIntervals.push_front(std::make_pair(0, dt));
241 std::ostringstream state;
242 state << myMemorySize <<
" " << myWaitingIntervals.size();
243 for (
const auto& interval : myWaitingIntervals) {
244 state <<
" " << interval.first <<
" " << interval.second;
252 std::istringstream is(state);
255 is >> myMemorySize >> numIntervals;
256 while (numIntervals-- > 0) {
258 myWaitingIntervals.emplace_back(begin, end);
277 if (GapControlState::refVehMap.find(msVeh) != end(GapControlState::refVehMap)) {
279 GapControlState::refVehMap[msVeh]->deactivate();
289std::map<const MSVehicle*, MSVehicle::Influencer::GapControlState*>
295 tauOriginal(-1), tauCurrent(-1), tauTarget(-1), addGapCurrent(-1), addGapTarget(-1),
296 remainingDuration(-1), changeRate(-1), maxDecel(-1), referenceVeh(nullptr), active(false), gapAttained(false), prevLeader(nullptr),
297 lastUpdate(-1), timeHeadwayIncrement(0.0), spaceHeadwayIncrement(0.0) {}
307 if (myVehStateListener ==
nullptr) {
313 WRITE_ERROR(
"MSVehicle::Influencer::GapControlState::init(): No MSNet instance found!")
319 if (myVehStateListener !=
nullptr) {
321 delete myVehStateListener;
332 tauOriginal = tauOrig;
333 tauCurrent = tauOrig;
336 addGapTarget = additionalGap;
337 remainingDuration = dur;
340 referenceVeh = refVeh;
343 prevLeader =
nullptr;
345 timeHeadwayIncrement = changeRate *
TS * (tauTarget - tauOriginal);
346 spaceHeadwayIncrement = changeRate *
TS * addGapTarget;
348 if (referenceVeh !=
nullptr) {
358 if (referenceVeh !=
nullptr) {
361 referenceVeh =
nullptr;
395 GapControlState::init();
400 GapControlState::cleanup();
405 mySpeedAdaptationStarted =
true;
406 mySpeedTimeLine = speedTimeLine;
411 if (myGapControlState ==
nullptr) {
412 myGapControlState = std::make_shared<GapControlState>();
415 myGapControlState->activate(originalTau, newTimeHeadway, newSpaceHeadway, duration, changeRate, maxDecel, refVeh);
420 if (myGapControlState !=
nullptr && myGapControlState->active) {
421 myGapControlState->deactivate();
427 myLaneTimeLine = laneTimeLine;
433 for (
auto& item : myLaneTimeLine) {
434 item.second += indexShift;
446 return (1 * myConsiderSafeVelocity +
447 2 * myConsiderMaxAcceleration +
448 4 * myConsiderMaxDeceleration +
449 8 * myRespectJunctionPriority +
450 16 * myEmergencyBrakeRedLight +
451 32 * !myRespectJunctionLeaderPriority
458 return (1 * myStrategicLC +
459 4 * myCooperativeLC +
461 64 * myRightDriveLC +
462 256 * myTraciLaneChangePriority +
469 for (std::vector<std::pair<SUMOTime, int>>::iterator i = myLaneTimeLine.begin(); i != myLaneTimeLine.end(); ++i) {
473 duration -= i->first;
481 if (!myLaneTimeLine.empty()) {
482 return myLaneTimeLine.back().first;
492 while (mySpeedTimeLine.size() == 1 || (mySpeedTimeLine.size() > 1 && currentTime > mySpeedTimeLine[1].first)) {
493 mySpeedTimeLine.erase(mySpeedTimeLine.begin());
496 if (!(mySpeedTimeLine.size() < 2 || currentTime < mySpeedTimeLine[0].first)) {
498 if (!mySpeedAdaptationStarted) {
499 mySpeedTimeLine[0].second = speed;
500 mySpeedAdaptationStarted =
true;
503 const double td =
STEPS2TIME(currentTime - mySpeedTimeLine[0].first) /
STEPS2TIME(mySpeedTimeLine[1].first +
DELTA_T - mySpeedTimeLine[0].first);
504 speed = mySpeedTimeLine[0].second - (mySpeedTimeLine[0].second - mySpeedTimeLine[1].second) * td;
505 if (myConsiderSafeVelocity) {
506 speed =
MIN2(speed, vSafe);
508 if (myConsiderMaxAcceleration) {
509 speed =
MIN2(speed, vMax);
511 if (myConsiderMaxDeceleration) {
512 speed =
MAX2(speed, vMin);
522 std::cout << currentTime <<
" Influencer::gapControlSpeed(): speed=" << speed
523 <<
", vSafe=" << vSafe
529 double gapControlSpeed = speed;
530 if (myGapControlState !=
nullptr && myGapControlState->active) {
532 const double currentSpeed = veh->
getSpeed();
534 assert(msVeh !=
nullptr);
535 const double desiredTargetTimeSpacing = myGapControlState->tauTarget * currentSpeed;
536 std::pair<const MSVehicle*, double> leaderInfo;
537 if (myGapControlState->referenceVeh ==
nullptr) {
540 leaderInfo = msVeh->
getLeader(
MAX2(desiredTargetTimeSpacing, myGapControlState->addGapCurrent) +
MAX2(brakeGap, 20.0));
543 std::cout <<
" --- no refVeh; myGapControlState->addGapCurrent: " << myGapControlState->addGapCurrent <<
", brakeGap: " << brakeGap <<
" in simstep: " <<
SIMSTEP << std::endl;
548 const MSVehicle* leader = myGapControlState->referenceVeh;
556 if (dist < -100000) {
558 std::cout <<
" Ego and reference vehicle are not in CF relation..." << std::endl;
560 std::cout <<
" Reference vehicle is behind ego..." << std::endl;
567 const double fakeDist =
MAX2(0.0, leaderInfo.second - myGapControlState->addGapCurrent);
570 const double desiredCurrentSpacing = myGapControlState->tauCurrent * currentSpeed;
571 std::cout <<
" Gap control active:"
572 <<
" currentSpeed=" << currentSpeed
573 <<
", desiredTargetTimeSpacing=" << desiredTargetTimeSpacing
574 <<
", desiredCurrentSpacing=" << desiredCurrentSpacing
575 <<
", leader=" << (leaderInfo.first ==
nullptr ?
"NULL" : leaderInfo.first->getID())
576 <<
", dist=" << leaderInfo.second
577 <<
", fakeDist=" << fakeDist
578 <<
",\n tauOriginal=" << myGapControlState->tauOriginal
579 <<
", tauTarget=" << myGapControlState->tauTarget
580 <<
", tauCurrent=" << myGapControlState->tauCurrent
584 if (leaderInfo.first !=
nullptr) {
585 if (myGapControlState->prevLeader !=
nullptr && myGapControlState->prevLeader != leaderInfo.first) {
589 myGapControlState->prevLeader = leaderInfo.first;
595 gapControlSpeed =
MIN2(gapControlSpeed,
596 cfm->
followSpeed(msVeh, currentSpeed, fakeDist, leaderInfo.first->
getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first));
600 std::cout <<
" -> gapControlSpeed=" << gapControlSpeed;
601 if (myGapControlState->maxDecel > 0) {
602 std::cout <<
", with maxDecel bound: " <<
MAX2(gapControlSpeed, currentSpeed -
TS * myGapControlState->maxDecel);
604 std::cout << std::endl;
607 if (myGapControlState->maxDecel > 0) {
608 gapControlSpeed =
MAX2(gapControlSpeed, currentSpeed -
TS * myGapControlState->maxDecel);
615 if (myGapControlState->lastUpdate < currentTime) {
618 std::cout <<
" Updating GapControlState." << std::endl;
621 if (myGapControlState->tauCurrent == myGapControlState->tauTarget && myGapControlState->addGapCurrent == myGapControlState->addGapTarget) {
622 if (!myGapControlState->gapAttained) {
624 myGapControlState->gapAttained = leaderInfo.first ==
nullptr || leaderInfo.second >
MAX2(desiredTargetTimeSpacing, myGapControlState->addGapTarget) - POSITION_EPS;
627 if (myGapControlState->gapAttained) {
628 std::cout <<
" Target gap was established." << std::endl;
634 myGapControlState->remainingDuration -=
TS;
637 std::cout <<
" Gap control remaining duration: " << myGapControlState->remainingDuration << std::endl;
640 if (myGapControlState->remainingDuration <= 0) {
643 std::cout <<
" Gap control duration expired, deactivating control." << std::endl;
647 myGapControlState->deactivate();
652 myGapControlState->tauCurrent =
MIN2(myGapControlState->tauCurrent + myGapControlState->timeHeadwayIncrement, myGapControlState->tauTarget);
653 myGapControlState->addGapCurrent =
MIN2(myGapControlState->addGapCurrent + myGapControlState->spaceHeadwayIncrement, myGapControlState->addGapTarget);
656 if (myConsiderSafeVelocity) {
657 gapControlSpeed =
MIN2(gapControlSpeed, vSafe);
659 if (myConsiderMaxAcceleration) {
660 gapControlSpeed =
MIN2(gapControlSpeed, vMax);
662 if (myConsiderMaxDeceleration) {
663 gapControlSpeed =
MAX2(gapControlSpeed, vMin);
665 return MIN2(speed, gapControlSpeed);
673 return myOriginalSpeed;
678 myOriginalSpeed = speed;
685 while (myLaneTimeLine.size() == 1 || (myLaneTimeLine.size() > 1 && currentTime > myLaneTimeLine[1].first)) {
686 myLaneTimeLine.erase(myLaneTimeLine.begin());
690 if (myLaneTimeLine.size() >= 2 && currentTime >= myLaneTimeLine[0].first) {
691 const int destinationLaneIndex = myLaneTimeLine[1].second;
692 if (destinationLaneIndex < (
int)currentEdge.
getLanes().size()) {
693 if (currentLaneIndex > destinationLaneIndex) {
695 }
else if (currentLaneIndex < destinationLaneIndex) {
700 }
else if (currentEdge.
getLanes().back()->getOpposite() !=
nullptr) {
709 if ((state &
LCA_TRACI) != 0 && myLatDist != 0) {
718 mode = myStrategicLC;
720 mode = myCooperativeLC;
722 mode = mySpeedGainLC;
724 mode = myRightDriveLC;
734 state &= ~LCA_WANTS_LANECHANGE_OR_STAY;
735 state &= ~LCA_URGENT;
742 state &= ~LCA_WANTS_LANECHANGE_OR_STAY;
743 state &= ~LCA_URGENT;
763 switch (changeRequest) {
779 assert(myLaneTimeLine.size() >= 2);
780 assert(currentTime >= myLaneTimeLine[0].first);
781 return STEPS2TIME(myLaneTimeLine[1].first - currentTime);
787 myConsiderSafeVelocity = ((speedMode & 1) != 0);
788 myConsiderMaxAcceleration = ((speedMode & 2) != 0);
789 myConsiderMaxDeceleration = ((speedMode & 4) != 0);
790 myRespectJunctionPriority = ((speedMode & 8) != 0);
791 myEmergencyBrakeRedLight = ((speedMode & 16) != 0);
792 myRespectJunctionLeaderPriority = ((speedMode & 32) == 0);
809 myRemoteXYPos = xyPos;
812 myRemotePosLat = posLat;
813 myRemoteAngle = angle;
814 myRemoteEdgeOffset = edgeOffset;
815 myRemoteRoute = route;
816 myLastRemoteAccess = t;
828 return myLastRemoteAccess >= t -
TIME2STEPS(10);
834 if (myRemoteRoute.size() != 0 && myRemoteRoute != v->
getRoute().
getEdges()) {
837#ifdef DEBUG_REMOTECONTROL
850 const bool wasOnRoad = v->
isOnRoad();
851 const bool withinLane = myRemoteLane !=
nullptr && fabs(myRemotePosLat) < 0.5 * (myRemoteLane->getWidth() + v->
getVehicleType().
getWidth());
852 const bool keepLane = wasOnRoad && v->
getLane() == myRemoteLane;
853 if (v->
isOnRoad() && !(keepLane && withinLane)) {
854 if (myRemoteLane !=
nullptr && &v->
getLane()->
getEdge() == &myRemoteLane->getEdge()) {
861 if (myRemoteRoute.size() != 0 && myRemoteRoute != v->
getRoute().
getEdges()) {
863#ifdef DEBUG_REMOTECONTROL
864 std::cout <<
SIMSTEP <<
" postProcessRemoteControl veh=" << v->
getID()
868 <<
" newRoute=" <<
toString(myRemoteRoute)
869 <<
" newRouteEdge=" << myRemoteRoute[myRemoteEdgeOffset]->getID()
875 myRemoteRoute.clear();
878 if (myRemoteLane !=
nullptr && myRemotePos > myRemoteLane->getLength()) {
879 myRemotePos = myRemoteLane->getLength();
881 if (myRemoteLane !=
nullptr && withinLane) {
887 if (needFurtherUpdate) {
897 myRemoteLane->forceVehicleInsertion(v, myRemotePos, notify, myRemotePosLat);
904 myRemoteLane->requireCollisionCheck();
932 if (myRemoteLane !=
nullptr) {
938 if (distAlongRoute != std::numeric_limits<double>::max()) {
939 dist = distAlongRoute;
943 const double minSpeed = myConsiderMaxDeceleration ?
945 const double maxSpeed = (myRemoteLane !=
nullptr
946 ? myRemoteLane->getVehicleMaxSpeed(veh)
957 if (myRemoteLane ==
nullptr) {
967 if (dist == std::numeric_limits<double>::max()) {
971 WRITE_WARNINGF(
TL(
"Vehicle '%' moved by TraCI from % to % (dist %) with implied speed of % (exceeding maximum speed %). time=%."),
1032 further->resetPartialOccupation(
this);
1033 if (further->getBidiLane() !=
nullptr
1034 && (!
isRailway(
getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
1035 further->getBidiLane()->resetPartialOccupation(
this);
1052#ifdef DEBUG_ACTIONSTEPS
1054 std::cout <<
SIMTIME <<
" Removing vehicle '" <<
getID() <<
"' (reason: " <<
toString(reason) <<
")" << std::endl;
1079 if (!(*myCurrEdge)->isTazConnector()) {
1081 if ((*myCurrEdge)->getDepartLane(*
this) ==
nullptr) {
1082 msg =
"Invalid departlane definition for vehicle '" +
getID() +
"'.";
1091 if ((*myCurrEdge)->allowedLanes(
getVClass()) ==
nullptr) {
1092 msg =
"Vehicle '" +
getID() +
"' is not allowed to depart on any lane of edge '" + (*myCurrEdge)->
getID() +
"'.";
1098 msg =
"Departure speed for vehicle '" +
getID() +
"' is too high for the vehicle type '" +
myType->
getID() +
"'.";
1129 updateBestLanes(
true, onInit ? (*myCurrEdge)->getLanes().front() : 0);
1132 myStopDist = std::numeric_limits<double>::max();
1150 if (!rem->first->notifyMove(*
this, oldPos + rem->second, newPos + rem->second,
MAX2(0., newSpeed))) {
1152 if (myTraceMoveReminders) {
1153 traceMoveReminder(
"notifyMove", rem->first, rem->second,
false);
1159 if (myTraceMoveReminders) {
1160 traceMoveReminder(
"notifyMove", rem->first, rem->second,
true);
1175 if (duration >= 0) {
1190 rem.first->notifyIdle(*
this);
1195 rem->notifyIdle(*
this);
1206 rem.second += oldLaneLength;
1210 if (myTraceMoveReminders) {
1211 traceMoveReminder(
"adaptedPos", rem.first, rem.second,
true);
1225 return getStops().begin()->parkingarea->getVehicleSlope(*
this);
1260 if (
myStops.begin()->parkingarea !=
nullptr) {
1261 return myStops.begin()->parkingarea->getVehiclePosition(*
this);
1271 if (offset == 0. && !changingLanes) {
1294 double relOffset = fabs(posLat) / centerDist;
1295 double newZ = (1 - relOffset) * pos.
z() + relOffset * shadowPos.
z();
1306 return MAX2(0.0, result);
1324 auto nextBestLane = bestLanes.begin();
1329 bool success =
true;
1331 while (offset > 0) {
1336 lane = lane->
getLinkCont()[0]->getViaLaneOrLane();
1338 if (lane ==
nullptr) {
1348 while (nextBestLane != bestLanes.end() && *nextBestLane ==
nullptr) {
1353 assert(lane == *nextBestLane);
1357 assert(nextBestLane == bestLanes.end() || *nextBestLane != 0);
1358 if (nextBestLane == bestLanes.end()) {
1363 assert(link !=
nullptr);
1394 int furtherIndex = 0;
1403 offset += lastLength;
1413ConstMSEdgeVector::const_iterator
1434 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
" setAngle(" << angle <<
") straightenFurther=" << straightenFurther << std::endl;
1443 if (link !=
nullptr) {
1458 const bool newActionStepLength = actionStepLengthMillisecs != previousActionStepLength;
1459 if (newActionStepLength) {
1489 if (
myStops.begin()->parkingarea !=
nullptr) {
1490 return myStops.begin()->parkingarea->getVehicleAngle(*
this);
1527 double result = (p1 != p2 ? p2.
angleTo2D(p1) :
1594 ||
myStops.front().pars.breakDown || (
myStops.front().getSpeed() > 0
1606 return myStops.front().duration;
1634 return currentVelocity;
1639 std::cout <<
"\nPROCESS_NEXT_STOP\n" <<
SIMTIME <<
" vehicle '" <<
getID() <<
"'" << std::endl;
1650 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' reached stop.\n"
1684 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' resumes from stopping." << std::endl;
1709 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' registers as waiting for person." << std::endl;
1724 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' registers as waiting for container." << std::endl;
1747 return currentVelocity;
1763 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' hasn't reached next stop." << std::endl;
1773 if (noExits && noEntries) {
1782 bool fitsOnStoppingPlace =
true;
1784 if (stop.
busstop !=
nullptr) {
1794 fitsOnStoppingPlace =
false;
1798 if (rem->isParkingRerouter()) {
1802 if (
myStops.empty() ||
myStops.front().parkingarea != oldParkingArea) {
1804 return currentVelocity;
1807 fitsOnStoppingPlace =
false;
1809 fitsOnStoppingPlace =
false;
1817 std::cout <<
" pos=" <<
myState.
pos() <<
" speed=" << currentVelocity <<
" targetPos=" << targetPos <<
" fits=" << fitsOnStoppingPlace
1818 <<
" reachedThresh=" << reachedThreshold
1833 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' reached next stop." << std::endl;
1858 if (stop.
busstop !=
nullptr) {
1884 if (splitVeh ==
nullptr) {
1915 return currentVelocity;
1938 bool unregister =
false;
1942 if (taxiDevice !=
nullptr) {
1974 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' unregisters as waiting for transportable." << std::endl;
1989 myStops.begin()->joinTriggered =
false;
2008 double skippedLaneLengths = 0;
2023 std::string warn =
TL(
"Cannot join vehicle '%' to vehicle '%' due to incompatible routes. time=%.");
2030 std::string warn =
TL(
"Cannot join vehicle '%' to vehicle '%' due to incompatible routes. time=%.");
2043 myStops.begin()->joinTriggered =
false;
2080 if (timeSinceLastAction == 0) {
2082 timeSinceLastAction = oldActionStepLength;
2084 if (timeSinceLastAction >= newActionStepLength) {
2088 SUMOTime timeUntilNextAction = newActionStepLength - timeSinceLastAction;
2097#ifdef DEBUG_PLAN_MOVE
2103 <<
" veh=" <<
getID()
2118#ifdef DEBUG_ACTIONSTEPS
2120 std::cout <<
STEPS2TIME(t) <<
" vehicle '" <<
getID() <<
"' skips action." << std::endl;
2128#ifdef DEBUG_ACTIONSTEPS
2130 std::cout <<
STEPS2TIME(t) <<
" vehicle = '" <<
getID() <<
"' takes action." << std::endl;
2138#ifdef DEBUG_PLAN_MOVE
2140 DriveItemVector::iterator i;
2143 <<
" vPass=" << (*i).myVLinkPass
2144 <<
" vWait=" << (*i).myVLinkWait
2145 <<
" linkLane=" << ((*i).myLink == 0 ?
"NULL" : (*i).myLink->getViaLaneOrLane()->getID())
2146 <<
" request=" << (*i).mySetRequest
2175 const bool result = (
overlap > POSITION_EPS
2188#ifdef DEBUG_PLAN_MOVE
2203 newStopDist = std::numeric_limits<double>::max();
2211 double lateralShift = 0;
2215 laneMaxV =
MIN2(laneMaxV, l->getVehicleMaxSpeed(
this));
2216#ifdef DEBUG_PLAN_MOVE
2218 std::cout <<
" laneMaxV=" << laneMaxV <<
" lane=" << l->getID() <<
"\n";
2224 laneMaxV =
MAX2(laneMaxV, vMinComfortable);
2226 laneMaxV = std::numeric_limits<double>::max();
2240 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" speedBeforeTraci=" << v;
2246 std::cout <<
" influencedSpeed=" << v;
2252 std::cout <<
" gapControlSpeed=" << v <<
"\n";
2260#ifdef DEBUG_PLAN_MOVE
2262 std::cout <<
" dist=" << dist <<
" bestLaneConts=" <<
toString(bestLaneConts)
2263 <<
"\n maxV=" << maxV <<
" laneMaxV=" << laneMaxV <<
" v=" << v <<
"\n";
2266 assert(bestLaneConts.size() > 0);
2267 bool hadNonInternal =
false;
2270 nextTurn.first = seen;
2271 nextTurn.second =
nullptr;
2273 double seenNonInternal = 0;
2278 bool slowedDownForMinor =
false;
2279 double mustSeeBeforeReversal = 0;
2285 bool planningToStop =
false;
2286#ifdef PARALLEL_STOPWATCH
2292 if (v > vMinComfortable &&
hasStops() &&
myStops.front().pars.arrival >= 0 && sfp > 0
2294 && !
myStops.front().reached) {
2296 v =
MIN2(v, vSlowDown);
2298 auto stopIt =
myStops.begin();
2309 const double gapOffset = leaderLane ==
myLane ? 0 : seen - leaderLane->
getLength();
2315 if (cand.first != 0) {
2316 if ((cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() != leaderLane)
2317 || (!cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() == leaderLane)) {
2319 oppositeLeaders.
addLeader(cand.first, cand.second + gapOffset -
getVehicleType().getMinGap() + cand.first->getVehicleType().
getMinGap() - cand.first->getVehicleType().getLength());
2322 const bool assumeStopped = cand.first->isStopped() || cand.first->getWaitingSeconds() > 1;
2323 const double predMaxDist = cand.first->getSpeed() + (assumeStopped ? 0 : cand.first->getCarFollowModel().getMaxAccel()) * minTimeToLeaveLane;
2324 if (cand.second >= 0 && (cand.second - v * minTimeToLeaveLane - predMaxDist < 0 || assumeStopped)) {
2330#ifdef DEBUG_PLAN_MOVE
2332 std::cout <<
" leaderLane=" << leaderLane->
getID() <<
" gapOffset=" << gapOffset <<
" minTimeToLeaveLane=" << minTimeToLeaveLane
2333 <<
" cands=" << cands.
toString() <<
" oppositeLeaders=" << oppositeLeaders.
toString() <<
"\n";
2341 const bool outsideLeft = leftOL > lane->
getWidth();
2342#ifdef DEBUG_PLAN_MOVE
2344 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" lane=" << lane->
getID() <<
" rightOL=" << rightOL <<
" leftOL=" << leftOL <<
"\n";
2347 if (rightOL < 0 || outsideLeft) {
2351 int sublaneOffset = 0;
2358#ifdef DEBUG_PLAN_MOVE
2360 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" lane=" << lane->
getID() <<
" sublaneOffset=" << sublaneOffset <<
" outsideLeft=" << outsideLeft <<
"\n";
2365 && ((!outsideLeft && cand->getLeftSideOnEdge() < 0)
2366 || (outsideLeft && cand->getLeftSideOnEdge() > lane->
getEdge().
getWidth()))) {
2368#ifdef DEBUG_PLAN_MOVE
2370 std::cout <<
" outsideLeader=" << cand->getID() <<
" ahead=" << outsideLeaders.
toString() <<
"\n";
2377 adaptToLeaders(outsideLeaders, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2381 adaptToLeaders(ahead, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2383 if (lastLink !=
nullptr) {
2386#ifdef DEBUG_PLAN_MOVE
2388 std::cout <<
"\nv = " << v <<
"\n";
2396 if (shadowLane !=
nullptr
2410#ifdef DEBUG_PLAN_MOVE
2412 std::cout <<
SIMTIME <<
" opposite veh=" <<
getID() <<
" shadowLane=" << shadowLane->
getID() <<
" latOffset=" << latOffset <<
" shadowLeaders=" << shadowLeaders.
toString() <<
"\n";
2420 adaptToLeaders(shadowLeaders, latOffset, seen - turningDifference, lastLink, shadowLane, v, vLinkPass);
2425 const double latOffset = 0;
2426#ifdef DEBUG_PLAN_MOVE
2428 std::cout <<
SIMTIME <<
" opposite shadows veh=" <<
getID() <<
" shadowLane=" << shadowLane->
getID()
2429 <<
" latOffset=" << latOffset <<
" shadowLeaders=" << shadowLeaders.
toString() <<
"\n";
2433#ifdef DEBUG_PLAN_MOVE
2435 std::cout <<
" shadowLeadersFixed=" << shadowLeaders.
toString() <<
"\n";
2444 const double relativePos = lane->
getLength() - seen;
2445#ifdef DEBUG_PLAN_MOVE
2447 std::cout <<
SIMTIME <<
" adapt to pedestrians on lane=" << lane->
getID() <<
" relPos=" << relativePos <<
"\n";
2453 if (leader.first != 0) {
2455 v =
MIN2(v, stopSpeed);
2456#ifdef DEBUG_PLAN_MOVE
2458 std::cout <<
SIMTIME <<
" pedLeader=" << leader.first->getID() <<
" dist=" << leader.second <<
" v=" << v <<
"\n";
2467 const double relativePos = seen;
2468#ifdef DEBUG_PLAN_MOVE
2470 std::cout <<
SIMTIME <<
" adapt to pedestrians on lane=" << lane->
getID() <<
" relPos=" << relativePos <<
"\n";
2477 if (leader.first != 0) {
2479 v =
MIN2(v, stopSpeed);
2480#ifdef DEBUG_PLAN_MOVE
2482 std::cout <<
SIMTIME <<
" pedLeader=" << leader.first->getID() <<
" dist=" << leader.second <<
" v=" << v <<
"\n";
2490 bool foundRealStop =
false;
2491 while (stopIt !=
myStops.end()
2492 && ((&stopIt->lane->getEdge() == &lane->
getEdge())
2493 || (stopIt->isOpposite && stopIt->lane->getEdge().getOppositeEdge() == &lane->
getEdge()))
2496 double stopDist = std::numeric_limits<double>::max();
2497 const MSStop& stop = *stopIt;
2498 const bool isFirstStop = stopIt ==
myStops.begin();
2502 bool isWaypoint = stop.
getSpeed() > 0;
2503 double endPos = stop.
getEndPos(*
this) + NUMERICAL_EPS;
2508 }
else if (isWaypoint && !stop.
reached) {
2511 stopDist = seen + endPos - lane->
getLength();
2514 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" stopDist=" << stopDist <<
" stopLane=" << stop.
lane->
getID() <<
" stopEndPos=" << endPos <<
"\n";
2518 double stopSpeed = laneMaxV;
2520 bool waypointWithStop =
false;
2533 if (stop.
getUntil() > t + time2end) {
2535 double distToEnd = stopDist;
2540 waypointWithStop =
true;
2546 stopDist = std::numeric_limits<double>::max();
2553 if (lastLink !=
nullptr) {
2559 if (lastLink !=
nullptr) {
2563 v =
MIN2(v, stopSpeed);
2565 std::vector<MSLink*>::const_iterator exitLink =
MSLane::succLinkSec(*
this, view + 1, *lane, bestLaneConts);
2567 bool dummySetRequest;
2568 double dummyVLinkWait;
2572#ifdef DEBUG_PLAN_MOVE
2574 std::cout <<
"\n" <<
SIMTIME <<
" next stop: distance = " << stopDist <<
" requires stopSpeed = " << stopSpeed <<
"\n";
2579 newStopDist = stopDist;
2583 planningToStop =
true;
2585 lfLinks.emplace_back(v, stopDist);
2586 foundRealStop =
true;
2593 if (foundRealStop) {
2599 std::vector<MSLink*>::const_iterator link =
MSLane::succLinkSec(*
this, view + 1, *lane, bestLaneConts);
2602 if (!encounteredTurn) {
2610 nextTurn.first = seen;
2611 nextTurn.second = *link;
2612 encounteredTurn =
true;
2613#ifdef DEBUG_NEXT_TURN
2616 <<
" at " << nextTurn.first <<
"m." << std::endl;
2631 const double va =
MAX2(NUMERICAL_EPS, cfModel.
freeSpeed(
this,
getSpeed(), distToArrival, arrivalSpeed));
2633 if (lastLink !=
nullptr) {
2642 || (opposite && (*link)->getViaLaneOrLane()->getParallelOpposite() ==
nullptr
2645 if (lastLink !=
nullptr) {
2653#ifdef DEBUG_PLAN_MOVE
2655 std::cout <<
" braking for link end lane=" << lane->
getID() <<
" seen=" << seen
2661 lfLinks.emplace_back(v, seen);
2665 lateralShift += (*link)->getLateralShift();
2666 const bool yellowOrRed = (*link)->haveRed() || (*link)->haveYellow();
2677 double laneStopOffset;
2682 const bool canBrakeBeforeLaneEnd = seen >= brakeDist;
2686 laneStopOffset = majorStopOffset;
2687 }
else if ((*link)->havePriority()) {
2689 laneStopOffset =
MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, majorStopOffset);
2694 laneStopOffset =
MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, minorStopOffset);
2696#ifdef DEBUG_PLAN_MOVE
2698 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" desired stopOffset on lane '" << lane->
getID() <<
"' is " << laneStopOffset <<
"\n";
2701 if (canBrakeBeforeLaneEnd) {
2703 laneStopOffset =
MIN2(laneStopOffset, seen - brakeDist);
2705 laneStopOffset =
MAX2(POSITION_EPS, laneStopOffset);
2706 double stopDist =
MAX2(0., seen - laneStopOffset);
2710 stopDist = std::numeric_limits<double>::max();
2712 if (newStopDist != std::numeric_limits<double>::max()) {
2713 stopDist =
MAX2(stopDist, newStopDist);
2715#ifdef DEBUG_PLAN_MOVE
2717 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" effective stopOffset on lane '" << lane->
getID()
2718 <<
"' is " << laneStopOffset <<
" (-> stopDist=" << stopDist <<
")" << std::endl;
2728 mustSeeBeforeReversal = 2 * seen +
getLength();
2730 v =
MIN2(v, vMustReverse);
2733 foundRailSignal |= ((*link)->getTLLogic() !=
nullptr
2738 bool canReverseEventually =
false;
2739 const double vReverse =
checkReversal(canReverseEventually, laneMaxV, seen);
2740 v =
MIN2(v, vReverse);
2741#ifdef DEBUG_PLAN_MOVE
2743 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" canReverseEventually=" << canReverseEventually <<
" v=" << v <<
"\n";
2756 assert(timeRemaining != 0);
2759 (seen - POSITION_EPS) / timeRemaining);
2760#ifdef DEBUG_PLAN_MOVE
2762 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" slowing down to finish continuous change before"
2763 <<
" link=" << (*link)->getViaLaneOrLane()->getID()
2764 <<
" timeRemaining=" << timeRemaining
2777 const bool abortRequestAfterMinor = slowedDownForMinor && (*link)->getInternalLaneBefore() ==
nullptr;
2779 bool setRequest = (v >
NUMERICAL_EPS_SPEED && !abortRequestAfterMinor) || (leavingCurrentIntersection);
2782 double vLinkWait =
MIN2(v, stopSpeed);
2783#ifdef DEBUG_PLAN_MOVE
2786 <<
" stopDist=" << stopDist
2787 <<
" stopDecel=" << stopDecel
2788 <<
" vLinkWait=" << vLinkWait
2789 <<
" brakeDist=" << brakeDist
2791 <<
" leaveIntersection=" << leavingCurrentIntersection
2792 <<
" setRequest=" << setRequest
2801 if (yellowOrRed && canBrakeBeforeStopLine && !
ignoreRed(*link, canBrakeBeforeStopLine) && seen >= mustSeeBeforeReversal) {
2808 lfLinks.push_back(
DriveProcessItem(*link, v, vLinkWait,
false, arrivalTime, vLinkWait, 0, seen, -1));
2819#ifdef DEBUG_PLAN_MOVE
2821 <<
" ignoreRed spent=" <<
STEPS2TIME(t - (*link)->getLastStateChange())
2822 <<
" redSpeed=" << redSpeed
2831 if (lastLink !=
nullptr) {
2834 double arrivalSpeed = vLinkPass;
2840 const double visibilityDistance = (*link)->getFoeVisibilityDistance();
2841 const double determinedFoePresence = seen <= visibilityDistance;
2846#ifdef DEBUG_PLAN_MOVE
2848 std::cout <<
" approaching link=" << (*link)->getViaLaneOrLane()->getID() <<
" prio=" << (*link)->havePriority() <<
" seen=" << seen <<
" visibilityDistance=" << visibilityDistance <<
" brakeDist=" << brakeDist <<
"\n";
2852 const bool couldBrakeForMinor = !(*link)->havePriority() && brakeDist < seen && !(*link)->lastWasContMajor();
2853 if (couldBrakeForMinor && !determinedFoePresence) {
2858 arrivalSpeed =
MIN2(vLinkPass, maxArrivalSpeed);
2859 slowedDownForMinor =
true;
2860#ifdef DEBUG_PLAN_MOVE
2862 std::cout <<
" slowedDownForMinor maxSpeedAtVisDist=" << maxSpeedAtVisibilityDist <<
" maxArrivalSpeed=" << maxArrivalSpeed <<
" arrivalSpeed=" << arrivalSpeed <<
"\n";
2868 std::pair<const SUMOVehicle*, const MSLink*> blocker = (*link)->getFirstApproachingFoe(*link);
2871 while (blocker.second !=
nullptr && blocker.second != *link && n > 0) {
2872 blocker = blocker.second->getFirstApproachingFoe(*link);
2880 if (blocker.second == *link) {
2890 if (couldBrakeForMinor && determinedFoePresence && (*link)->getLane()->getEdge().isRoundabout()) {
2891 const bool wasOpened = (*link)->opened(arrivalTime, arrivalSpeed, arrivalSpeed,
2895 nullptr,
false,
this);
2897 slowedDownForMinor =
true;
2899#ifdef DEBUG_PLAN_MOVE
2901 std::cout <<
" slowedDownForMinor at roundabout=" << (!wasOpened) <<
"\n";
2908 double arrivalSpeedBraking = 0;
2909 const double bGap = cfModel.
brakeGap(v);
2910 if (seen < bGap && !
isStopped() && !planningToStop) {
2915 arrivalSpeedBraking =
MIN2(arrivalSpeedBraking, arrivalSpeed);
2924 const double estimatedLeaveSpeed =
MIN2((*link)->getViaLaneOrLane()->getVehicleMaxSpeed(
this),
2927 arrivalTime, arrivalSpeed,
2928 arrivalSpeedBraking,
2929 seen, estimatedLeaveSpeed));
2930 if ((*link)->getViaLane() ==
nullptr) {
2931 hadNonInternal =
true;
2934#ifdef DEBUG_PLAN_MOVE
2936 std::cout <<
" checkAbort setRequest=" << setRequest <<
" v=" << v <<
" seen=" << seen <<
" dist=" << dist
2937 <<
" seenNonInternal=" << seenNonInternal
2938 <<
" seenInternal=" << seenInternal <<
" length=" << vehicleLength <<
"\n";
2942 if ((!setRequest || v <= 0 || seen > dist) && hadNonInternal && seenNonInternal >
MAX2(vehicleLength *
CRLL_LOOK_AHEAD, vehicleLength + seenInternal) && foundRailSignal) {
2946 lane = (*link)->getViaLaneOrLane();
2949 laneMaxV = std::numeric_limits<double>::max();
2957#ifdef DEBUG_PLAN_MOVE
2959 std::cout <<
" laneMaxV=" << laneMaxV <<
" freeSpeed=" << va <<
" v=" << v <<
"\n";
2969 if (leaderLane ==
nullptr) {
2976 lastLink = &lfLinks.back();
2985#ifdef PARALLEL_STOPWATCH
3009 const double s = timeDist.second;
3016 const double radicand = 4 * t * t * b * b - 8 * s * b;
3017 const double x = radicand >= 0 ? t * b - sqrt(radicand) * 0.5 : vSlowDownMin;
3018 double vSlowDown = x < vSlowDownMin ? vSlowDownMin : x;
3019#ifdef DEBUG_PLAN_MOVE
3021 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" ad=" << arrivalDelay <<
" t=" << t <<
" vsm=" << vSlowDownMin
3022 <<
" r=" << radicand <<
" vs=" << vSlowDown <<
"\n";
3056 const MSLane*
const lane,
double& v,
double& vLinkPass)
const {
3059 ahead.
getSubLanes(
this, latOffset, rightmost, leftmost);
3060#ifdef DEBUG_PLAN_MOVE
3062 <<
"\nADAPT_TO_LEADERS\nveh=" <<
getID()
3063 <<
" lane=" << lane->
getID()
3064 <<
" latOffset=" << latOffset
3065 <<
" rm=" << rightmost
3066 <<
" lm=" << leftmost
3081 for (
int sublane = rightmost; sublane <= leftmost; ++sublane) {
3083 if (pred !=
nullptr && pred !=
this) {
3086 double gap = (lastLink ==
nullptr
3089 bool oncoming =
false;
3093 gap = (lastLink ==
nullptr
3098 gap = (lastLink ==
nullptr
3107#ifdef DEBUG_PLAN_MOVE
3109 std::cout <<
" fixedGap=" << gap <<
" predMaxDist=" << predMaxDist <<
"\n";
3119#ifdef DEBUG_PLAN_MOVE
3121 std::cout <<
" pred=" << pred->
getID() <<
" predLane=" << pred->
getLane()->
getID() <<
" predPos=" << pred->
getPositionOnLane() <<
" gap=" << gap <<
" predBack=" << predBack <<
" seen=" << seen <<
" lane=" << lane->
getID() <<
" myLane=" <<
myLane->
getID() <<
" lastLink=" << (lastLink ==
nullptr ?
"NULL" : lastLink->
myLink->
getDescription()) <<
" oncoming=" << oncoming <<
"\n";
3124 if (oncoming && gap >= 0) {
3127 adaptToLeader(std::make_pair(pred, gap), seen, lastLink, v, vLinkPass);
3137 double& v,
double& vLinkPass)
const {
3140 ahead.
getSubLanes(
this, latOffset, rightmost, leftmost);
3141#ifdef DEBUG_PLAN_MOVE
3143 <<
"\nADAPT_TO_LEADERS_DISTANCE\nveh=" <<
getID()
3144 <<
" latOffset=" << latOffset
3145 <<
" rm=" << rightmost
3146 <<
" lm=" << leftmost
3150 for (
int sublane = rightmost; sublane <= leftmost; ++sublane) {
3153 if (pred !=
nullptr && pred !=
this) {
3154#ifdef DEBUG_PLAN_MOVE
3156 std::cout <<
" pred=" << pred->
getID() <<
" predLane=" << pred->
getLane()->
getID() <<
" predPos=" << pred->
getPositionOnLane() <<
" gap=" << predDist.second <<
"\n";
3169 double& v,
double& vLinkPass)
const {
3170 if (leaderInfo.first != 0) {
3172#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3174 std::cout <<
" foe ignored\n";
3180 double vsafeLeader = 0;
3182 vsafeLeader = -std::numeric_limits<double>::max();
3184 bool backOnRoute =
true;
3185 if (leaderInfo.second < 0 && lastLink !=
nullptr && lastLink->
myLink !=
nullptr) {
3186 backOnRoute =
false;
3191 if (leaderInfo.first->getBackLane() == current) {
3195 if (lane == current) {
3198 if (leaderInfo.first->getBackLane() == lane) {
3203#ifdef DEBUG_PLAN_MOVE
3205 std::cout <<
SIMTIME <<
" current=" << current->
getID() <<
" leaderBackLane=" << leaderInfo.first->getBackLane()->getID() <<
" backOnRoute=" << backOnRoute <<
"\n";
3209 double stopDist = seen - current->
getLength() - POSITION_EPS;
3218 vsafeLeader = cfModel.
followSpeed(
this,
getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3220 if (lastLink !=
nullptr) {
3223#ifdef DEBUG_PLAN_MOVE
3225 std::cout <<
" vlinkpass=" << lastLink->
myVLinkPass <<
" futureVSafe=" << futureVSafe <<
"\n";
3229 v =
MIN2(v, vsafeLeader);
3230 vLinkPass =
MIN2(vLinkPass, vsafeLeader);
3231#ifdef DEBUG_PLAN_MOVE
3235 <<
" veh=" <<
getID()
3236 <<
" lead=" << leaderInfo.first->getID()
3237 <<
" leadSpeed=" << leaderInfo.first->getSpeed()
3238 <<
" gap=" << leaderInfo.second
3239 <<
" leadLane=" << leaderInfo.first->getLane()->getID()
3240 <<
" predPos=" << leaderInfo.first->getPositionOnLane()
3243 <<
" vSafeLeader=" << vsafeLeader
3244 <<
" vLinkPass=" << vLinkPass
3254 const MSLane*
const lane,
double& v,
double& vLinkPass,
3255 double distToCrossing)
const {
3256 if (leaderInfo.first != 0) {
3258#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3260 std::cout <<
" junction foe ignored\n";
3266 double vsafeLeader = 0;
3268 vsafeLeader = -std::numeric_limits<double>::max();
3270 if (leaderInfo.second >= 0) {
3272 vsafeLeader = cfModel.
followSpeed(
this,
getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3275 vsafeLeader = cfModel.
insertionFollowSpeed(
this,
getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3277 }
else if (leaderInfo.first !=
this) {
3281#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3283 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" stopping before junction: lane=" << lane->
getID() <<
" seen=" << seen
3285 <<
" stopDist=" << seen - lane->
getLength() - POSITION_EPS
3286 <<
" vsafeLeader=" << vsafeLeader
3287 <<
" distToCrossing=" << distToCrossing
3292 if (distToCrossing >= 0) {
3295 if (leaderInfo.first ==
this) {
3297 const double vStopCrossing = cfModel.
stopSpeed(
this,
getSpeed(), distToCrossing);
3298 vsafeLeader = vStopCrossing;
3299#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3301 std::cout <<
" breaking for pedestrian distToCrossing=" << distToCrossing <<
" vStopCrossing=" << vStopCrossing <<
"\n";
3304 if (lastLink !=
nullptr) {
3307 }
else if (leaderInfo.second == -std::numeric_limits<double>::max()) {
3309#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3311 std::cout <<
" stop at crossing point for critical leader vStop=" << vStop <<
"\n";
3314 vsafeLeader =
MAX2(vsafeLeader, vStop);
3316 const double leaderDistToCrossing = distToCrossing - leaderInfo.second;
3324 vsafeLeader =
MAX2(vsafeLeader,
MIN2(v2, vStop));
3325#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3327 std::cout <<
" driving up to the crossing point (distToCrossing=" << distToCrossing <<
")"
3328 <<
" leaderPastCPTime=" << leaderPastCPTime
3329 <<
" vFinal=" << vFinal
3331 <<
" vStop=" << vStop
3332 <<
" vsafeLeader=" << vsafeLeader <<
"\n";
3337 if (lastLink !=
nullptr) {
3340 v =
MIN2(v, vsafeLeader);
3341 vLinkPass =
MIN2(vLinkPass, vsafeLeader);
3342#ifdef DEBUG_PLAN_MOVE
3346 <<
" veh=" <<
getID()
3347 <<
" lead=" << leaderInfo.first->getID()
3348 <<
" leadSpeed=" << leaderInfo.first->getSpeed()
3349 <<
" gap=" << leaderInfo.second
3350 <<
" leadLane=" << leaderInfo.first->getLane()->getID()
3351 <<
" predPos=" << leaderInfo.first->getPositionOnLane()
3353 <<
" lane=" << lane->
getID()
3355 <<
" dTC=" << distToCrossing
3357 <<
" vSafeLeader=" << vsafeLeader
3358 <<
" vLinkPass=" << vLinkPass
3368 double& v,
double& vLinkPass)
const {
3369 if (leaderInfo.first != 0) {
3371#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3373 std::cout <<
" oncoming foe ignored\n";
3379 const MSVehicle* lead = leaderInfo.first;
3384 const double gapSum = leaderBrakeGap + egoBrakeGap;
3388 double gap = leaderInfo.second;
3389 if (egoExit + leaderExit < gap) {
3390 gap -= egoExit + leaderExit;
3395 const double freeGap =
MAX2(0.0, gap - gapSum);
3396 const double splitGap =
MIN2(gap, gapSum);
3398 const double gapRatio = gapSum > 0 ? egoBrakeGap / gapSum : 0.5;
3399 const double vsafeLeader = cfModel.
stopSpeed(
this,
getSpeed(), splitGap * gapRatio + egoExit + 0.5 * freeGap);
3400 if (lastLink !=
nullptr) {
3403#ifdef DEBUG_PLAN_MOVE
3405 std::cout <<
" vlinkpass=" << lastLink->
myVLinkPass <<
" futureVSafe=" << futureVSafe <<
"\n";
3409 v =
MIN2(v, vsafeLeader);
3410 vLinkPass =
MIN2(vLinkPass, vsafeLeader);
3411#ifdef DEBUG_PLAN_MOVE
3415 <<
" veh=" <<
getID()
3416 <<
" oncomingLead=" << lead->
getID()
3417 <<
" leadSpeed=" << lead->
getSpeed()
3418 <<
" gap=" << leaderInfo.second
3420 <<
" gapRatio=" << gapRatio
3425 <<
" vSafeLeader=" << vsafeLeader
3426 <<
" vLinkPass=" << vLinkPass
3435 DriveProcessItem*
const lastLink,
double& v,
double& vLinkPass,
double& vLinkWait,
bool& setRequest)
const {
3438 checkLinkLeader(link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
3441 if (parallelLink !=
nullptr) {
3442 checkLinkLeader(parallelLink, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest,
true);
3451 DriveProcessItem*
const lastLink,
double& v,
double& vLinkPass,
double& vLinkWait,
bool& setRequest,
3452 bool isShadowLink)
const {
3453#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3459#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3464 for (MSLink::LinkLeaders::const_iterator it = linkLeaders.begin(); it != linkLeaders.end(); ++it) {
3466 const MSVehicle* leader = (*it).vehAndGap.first;
3467 if (leader ==
nullptr) {
3469#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3471 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is blocked on link to " << link->
getViaLaneOrLane()->
getID() <<
" by pedestrian. dist=" << it->distToCrossing <<
"\n";
3476#ifdef DEBUG_PLAN_MOVE
3478 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is ignoring pedestrian (jmIgnoreJunctionFoeProb)\n";
3483 adaptToJunctionLeader(std::make_pair(
this, -1), seen, lastLink, lane, v, vLinkPass, it->distToCrossing);
3487#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3489 std::cout <<
" aborting request\n";
3493 }
else if (
isLeader(link, leader, (*it).vehAndGap.second) || (*it).inTheWay()) {
3496#ifdef DEBUG_PLAN_MOVE
3498 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is ignoring linkLeader=" << leader->
getID() <<
" (jmIgnoreJunctionFoeProb)\n";
3509 linkLeadersAhead.
addLeader(leader,
false, 0);
3513#ifdef DEBUG_PLAN_MOVE
3517 <<
" isShadowLink=" << isShadowLink
3518 <<
" lane=" << lane->
getID()
3519 <<
" foe=" << leader->
getID()
3521 <<
" latOffset=" << latOffset
3523 <<
" linkLeadersAhead=" << linkLeadersAhead.
toString()
3528#ifdef DEBUG_PLAN_MOVE
3530 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" linkLeader=" << leader->
getID() <<
" gap=" << it->vehAndGap.second
3539 if (lastLink !=
nullptr) {
3553#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3555 std::cout <<
" aborting request\n";
3562#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3564 std::cout <<
" aborting previous request\n";
3570#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3573 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" ignoring leader " << leader->
getID() <<
" gap=" << (*it).vehAndGap.second <<
" dtC=" << (*it).distToCrossing
3583 vLinkWait =
MIN2(vLinkWait, v);
3613 double vSafeZipper = std::numeric_limits<double>::max();
3616 bool canBrakeVSafeMin =
false;
3621 MSLink*
const link = dpi.myLink;
3623#ifdef DEBUG_EXEC_MOVE
3627 <<
" veh=" <<
getID()
3629 <<
" req=" << dpi.mySetRequest
3630 <<
" vP=" << dpi.myVLinkPass
3631 <<
" vW=" << dpi.myVLinkWait
3632 <<
" d=" << dpi.myDistance
3639 if (link !=
nullptr && dpi.mySetRequest) {
3648 const bool ignoreRedLink =
ignoreRed(link, canBrake) || beyondStopLine;
3649 if (yellow && canBrake && !ignoreRedLink) {
3650 vSafe = dpi.myVLinkWait;
3652#ifdef DEBUG_CHECKREWINDLINKLANES
3654 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (yellow)\n";
3661 bool opened = (yellow || influencerPrio
3662 || link->
opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3668 ignoreRedLink,
this, dpi.myDistance));
3671 if (parallelLink !=
nullptr) {
3674 opened = yellow || influencerPrio || (opened && parallelLink->
opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3678 ignoreRedLink,
this, dpi.myDistance));
3679#ifdef DEBUG_EXEC_MOVE
3682 <<
" veh=" <<
getID()
3686 <<
" opened=" << opened
3693#ifdef DEBUG_EXEC_MOVE
3696 <<
" opened=" << opened
3697 <<
" influencerPrio=" << influencerPrio
3700 <<
" isCont=" << link->
isCont()
3701 <<
" ignoreRed=" << ignoreRedLink
3707 double determinedFoePresence = dpi.myDistance <= visibilityDistance;
3708 if (!determinedFoePresence && (canBrake || !yellow)) {
3709 vSafe = dpi.myVLinkWait;
3711#ifdef DEBUG_CHECKREWINDLINKLANES
3713 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (minor)\n";
3729 vSafeMinDist = dpi.myDistance;
3735 canBrakeVSafeMin = canBrake;
3736#ifdef DEBUG_EXEC_MOVE
3738 std::cout <<
" vSafeMin=" << vSafeMin <<
" vSafeMinDist=" << vSafeMinDist <<
" canBrake=" << canBrake <<
"\n";
3745 vSafe = dpi.myVLinkPass;
3749#ifdef DEBUG_CHECKREWINDLINKLANES
3751 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (very slow)\n";
3756 vSafeZipper =
MIN2(vSafeZipper,
3757 link->
getZipperSpeed(
this, dpi.myDistance, dpi.myVLinkPass, dpi.myArrivalTime, &collectFoes));
3758 }
else if (!canBrake
3763#ifdef DEBUG_EXEC_MOVE
3765 std::cout <<
SIMTIME <<
" too fast to brake for closed link\n";
3768 vSafe = dpi.myVLinkPass;
3770 vSafe = dpi.myVLinkWait;
3772#ifdef DEBUG_CHECKREWINDLINKLANES
3774 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (closed)\n";
3777#ifdef DEBUG_EXEC_MOVE
3788#ifdef DEBUG_EXEC_MOVE
3790 std::cout <<
SIMTIME <<
" resetting junctionEntryTime at junction '" << link->
getJunction()->
getID() <<
"' beause of non-request exitLink\n";
3797 vSafe = dpi.myVLinkWait;
3800#ifdef DEBUG_CHECKREWINDLINKLANES
3802 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (no request, braking) vSafe=" << vSafe <<
"\n";
3807#ifdef DEBUG_CHECKREWINDLINKLANES
3809 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (no request, stopping)\n";
3844#ifdef DEBUG_EXEC_MOVE
3846 std::cout <<
"vSafeMin Problem? vSafe=" << vSafe <<
" vSafeMin=" << vSafeMin <<
" vSafeMinDist=" << vSafeMinDist << std::endl;
3849 if (canBrakeVSafeMin && vSafe <
getSpeed()) {
3855#ifdef DEBUG_CHECKREWINDLINKLANES
3857 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (vSafe=" << vSafe <<
" < vSafeMin=" << vSafeMin <<
")\n";
3875 vSafe =
MIN2(vSafe, vSafeZipper);
3885 std::cout <<
SIMTIME <<
" MSVehicle::processTraCISpeedControl() for vehicle '" <<
getID() <<
"'"
3886 <<
" vSafe=" << vSafe <<
" (init)vNext=" << vNext <<
" keepStopping=" <<
keepStopping();
3895 vMin =
MAX2(0., vMin);
3904 std::cout <<
" (processed)vNext=" << vNext << std::endl;
3914#ifdef DEBUG_ACTIONSTEPS
3916 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" removePassedDriveItems()\n"
3917 <<
" Current items: ";
3919 if (j.myLink == 0) {
3920 std::cout <<
"\n Stop at distance " << j.myDistance;
3922 const MSLane* to = j.myLink->getViaLaneOrLane();
3923 const MSLane* from = j.myLink->getLaneBefore();
3924 std::cout <<
"\n Link at distance " << j.myDistance <<
": '"
3925 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
3928 std::cout <<
"\n myNextDriveItem: ";
3935 std::cout <<
"\n Link at distance " <<
myNextDriveItem->myDistance <<
": '"
3936 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
3939 std::cout << std::endl;
3943#ifdef DEBUG_ACTIONSTEPS
3945 std::cout <<
" Removing item: ";
3946 if (j->myLink == 0) {
3947 std::cout <<
"Stop at distance " << j->myDistance;
3949 const MSLane* to = j->myLink->getViaLaneOrLane();
3950 const MSLane* from = j->myLink->getLaneBefore();
3951 std::cout <<
"Link at distance " << j->myDistance <<
": '"
3952 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
3954 std::cout << std::endl;
3957 if (j->myLink !=
nullptr) {
3958 j->myLink->removeApproaching(
this);
3968#ifdef DEBUG_ACTIONSTEPS
3970 std::cout <<
SIMTIME <<
" updateDriveItems(), veh='" <<
getID() <<
"' (lane: '" <<
getLane()->
getID() <<
"')\nCurrent drive items:" << std::endl;
3973 <<
" vPass=" << dpi.myVLinkPass
3974 <<
" vWait=" << dpi.myVLinkWait
3975 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
3976 <<
" request=" << dpi.mySetRequest
3979 std::cout <<
" myNextDriveItem's linked lane: " << (
myNextDriveItem->myLink == 0 ?
"NULL" :
myNextDriveItem->myLink->getViaLaneOrLane()->getID()) << std::endl;
3986 const MSLink* nextPlannedLink =
nullptr;
3989 while (i !=
myLFLinkLanes.end() && nextPlannedLink ==
nullptr) {
3990 nextPlannedLink = i->myLink;
3994 if (nextPlannedLink ==
nullptr) {
3996#ifdef DEBUG_ACTIONSTEPS
3998 std::cout <<
"Found no link-related drive item." << std::endl;
4006#ifdef DEBUG_ACTIONSTEPS
4008 std::cout <<
"Continuing on planned lane sequence, no update required." << std::endl;
4030#ifdef DEBUG_ACTIONSTEPS
4032 std::cout <<
"Changed lane. Drive items will be updated along the current lane continuation." << std::endl;
4044 MSLink* newLink =
nullptr;
4046 if (driveItemIt->myLink ==
nullptr) {
4056#ifdef DEBUG_ACTIONSTEPS
4058 std::cout <<
"Reached end of the new continuation sequence. Erasing leftover link-items." << std::endl;
4062 if (driveItemIt->myLink ==
nullptr) {
4073 const MSLane*
const target = *bestLaneIt;
4077 if (link->getLane() == target) {
4083 if (newLink == driveItemIt->myLink) {
4085#ifdef DEBUG_ACTIONSTEPS
4087 std::cout <<
"Old and new continuation sequences merge at link\n"
4089 <<
"\nNo update beyond merge required." << std::endl;
4095#ifdef DEBUG_ACTIONSTEPS
4097 std::cout <<
"lane=" << lane->
getID() <<
"\nUpdating link\n '" << driveItemIt->myLink->getLaneBefore()->getID() <<
"'->'" << driveItemIt->myLink->getViaLaneOrLane()->getID() <<
"'"
4101 newLink->
setApproaching(
this, driveItemIt->myLink->getApproaching(
this));
4102 driveItemIt->myLink->removeApproaching(
this);
4103 driveItemIt->myLink = newLink;
4110#ifdef DEBUG_ACTIONSTEPS
4112 std::cout <<
"Updated drive items:" << std::endl;
4115 <<
" vPass=" << dpi.myVLinkPass
4116 <<
" vWait=" << dpi.myVLinkWait
4117 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
4118 <<
" request=" << dpi.mySetRequest
4135 brakelightsOn =
true;
4176#ifdef DEBUG_REVERSE_BIDI
4180 <<
" speedThreshold=" << speedThreshold
4188 <<
" stopOk=" << stopOk
4207 if (remainingRoute < neededFutureRoute) {
4208#ifdef DEBUG_REVERSE_BIDI
4220#ifdef DEBUG_REVERSE_BIDI
4231 const double stopPos =
myStops.front().getEndPos(*
this);
4234 if (newPos > stopPos) {
4235#ifdef DEBUG_REVERSE_BIDI
4240 if (seen >
MAX2(brakeDist, 1.0)) {
4243#ifdef DEBUG_REVERSE_BIDI
4245 std::cout <<
" train is too long, skipping stop at " << stopPos <<
" cannot be avoided\n";
4259 if (!further->getEdge().isInternal()) {
4260 if (further->getEdge().getBidiEdge() != *(
myCurrEdge + view)) {
4261#ifdef DEBUG_REVERSE_BIDI
4263 std::cout <<
" noBidi view=" << view <<
" further=" << further->
getID() <<
" furtherBidi=" <<
Named::getIDSecure(further->getEdge().getBidiEdge()) <<
" future=" << (*(
myCurrEdge + view))->getID() <<
"\n";
4270 if (toNext ==
nullptr) {
4275#ifdef DEBUG_REVERSE_BIDI
4277 std::cout <<
" do not reverse on a red signal\n";
4285 const double stopPos =
myStops.front().getEndPos(*
this);
4287 if (newPos > stopPos) {
4288#ifdef DEBUG_REVERSE_BIDI
4290 std::cout <<
" reversal would go past stop on further-opposite lane " << further->getBidiLane()->getID() <<
"\n";
4293 if (seen >
MAX2(brakeDist, 1.0)) {
4297#ifdef DEBUG_REVERSE_BIDI
4299 std::cout <<
" train is too long, skipping stop at " << stopPos <<
" cannot be avoided\n";
4310#ifdef DEBUG_REVERSE_BIDI
4312 std::cout <<
SIMTIME <<
" seen=" << seen <<
" vReverseOK=" << vMinComfortable <<
"\n";
4316 return vMinComfortable;
4325 passedLanes.push_back(*i);
4327 if (passedLanes.size() == 0 || passedLanes.back() !=
myLane) {
4328 passedLanes.push_back(
myLane);
4331 bool reverseTrain =
false;
4339#ifdef DEBUG_REVERSE_BIDI
4364 if (link !=
nullptr) {
4370 emergencyReason =
" because it must reverse direction";
4371 approachedLane =
nullptr;
4387 if (link->
haveRed() && !
ignoreRed(link,
false) && !beyondStopLine && !reverseTrain) {
4388 emergencyReason =
" because of a red traffic light";
4392 if (reverseTrain && approachedLane->
isInternal()) {
4400 }
else if (reverseTrain) {
4401 approachedLane = (*(
myCurrEdge + 1))->getLanes()[0];
4409 emergencyReason =
" because there is no connection to the next edge";
4410 approachedLane =
nullptr;
4413 if (approachedLane !=
myLane && approachedLane !=
nullptr) {
4433#ifdef DEBUG_PLAN_MOVE_LEADERINFO
4449 WRITE_WARNING(
"Vehicle '" +
getID() +
"' could not finish continuous lane change (turn lane) time=" +
4458 passedLanes.push_back(approachedLane);
4463#ifdef DEBUG_ACTIONSTEPS
4465 std::cout <<
"Updated drive items:" << std::endl;
4468 <<
" vPass=" << (*i).myVLinkPass
4469 <<
" vWait=" << (*i).myVLinkWait
4470 <<
" linkLane=" << ((*i).myLink == 0 ?
"NULL" : (*i).myLink->getViaLaneOrLane()->getID())
4471 <<
" request=" << (*i).mySetRequest
4488#ifdef DEBUG_EXEC_MOVE
4490 std::cout <<
"\nEXECUTE_MOVE\n"
4492 <<
" veh=" <<
getID()
4500 double vSafe = std::numeric_limits<double>::max();
4502 double vSafeMin = -std::numeric_limits<double>::max();
4505 double vSafeMinDist = 0;
4510#ifdef DEBUG_ACTIONSTEPS
4512 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"'\n"
4513 " vsafe from processLinkApproaches(): vsafe " << vSafe << std::endl;
4519#ifdef DEBUG_ACTIONSTEPS
4521 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' skips processLinkApproaches()\n"
4523 <<
"speed: " <<
getSpeed() <<
" -> " << vSafe << std::endl;
4537 double vNext = vSafe;
4556 vNext =
MAX2(vNext, vSafeMin);
4565#ifdef DEBUG_EXEC_MOVE
4567 std::cout <<
SIMTIME <<
" finalizeSpeed vSafe=" << vSafe <<
" vSafeMin=" << (vSafeMin == -std::numeric_limits<double>::max() ?
"-Inf" :
toString(vSafeMin))
4568 <<
" vNext=" << vNext <<
" (i.e. accel=" <<
SPEED2ACCEL(vNext -
getSpeed()) <<
")" << std::endl;
4585 vNext =
MAX2(vNext, 0.);
4595 if (elecHybridOfVehicle !=
nullptr) {
4597 elecHybridOfVehicle->
setConsum(elecHybridOfVehicle->
consumption(*
this, (vNext - this->getSpeed()) /
TS, vNext));
4601 if (elecHybridOfVehicle->
getConsum() /
TS > maxPower) {
4606 vNext =
MAX2(vNext, 0.);
4608 elecHybridOfVehicle->
setConsum(elecHybridOfVehicle->
consumption(*
this, (vNext - this->getSpeed()) /
TS, vNext));
4626 std::vector<MSLane*> passedLanes;
4630 std::string emergencyReason;
4638 if (emergencyReason ==
"") {
4639 emergencyReason =
TL(
" for unknown reasons");
4641 WRITE_WARNINGF(
TL(
"Vehicle '%' performs emergency stop at the end of lane '%'% (decel=%, offset=%), time=%."),
4652 passedLanes.clear();
4654#ifdef DEBUG_ACTIONSTEPS
4656 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
"' updates further lanes." << std::endl;
4661 for (
auto pi = passedLanes.rbegin(); pi != passedLanes.rend(); ++pi) {
4693#ifdef DEBUG_ACTIONSTEPS
4695 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
"' skips LCM->prepareStep()." << std::endl;
4703#ifdef DEBUG_EXEC_MOVE
4711 MSLane* newOpposite =
nullptr;
4713 if (newOppositeEdge !=
nullptr) {
4715#ifdef DEBUG_EXEC_MOVE
4717 std::cout <<
SIMTIME <<
" newOppositeEdge=" << newOppositeEdge->
getID() <<
" oldLaneOffset=" << oldLaneOffset <<
" leftMost=" << newOppositeEdge->
getNumLanes() - 1 <<
" newOpposite=" <<
Named::getIDSecure(newOpposite) <<
"\n";
4721 if (newOpposite ==
nullptr) {
4724 WRITE_WARNINGF(
TL(
"Unexpected end of opposite lane for vehicle '%' at lane '%', time=%."),
4731 if (oldOpposite !=
nullptr) {
4744 oldLane = oldLaneMaybeOpposite;
4752 return myLane != oldLane;
4763 for (
int i = 0; i < (int)lanes.size(); i++) {
4765 if (i + 1 < (
int)lanes.size()) {
4766 const MSLane*
const to = lanes[i + 1];
4768 for (
MSLink*
const l : lanes[i]->getLinkCont()) {
4769 if ((internal && l->getViaLane() == to) || (!internal && l->getLane() == to)) {
4778 std::vector<MSLane*> passedLanes;
4780 if (lanes.size() > 1) {
4783 std::string emergencyReason;
4785#ifdef DEBUG_EXTRAPOLATE_DEPARTPOS
4787 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" executeFractionalMove dist=" << dist
4788 <<
" passedLanes=" <<
toString(passedLanes) <<
" lanes=" <<
toString(lanes)
4796 if (lanes.size() > 1) {
4800 std::cout <<
SIMTIME <<
" leaveLane \n";
4803 (*i)->resetPartialOccupation(
this);
4828#ifdef DEBUG_EXEC_MOVE
4830 std::cout <<
SIMTIME <<
" updateState() for veh '" <<
getID() <<
"': deltaPos=" << deltaPos
4835 if (decelPlus > 0) {
4839 decelPlus += 2 * NUMERICAL_EPS;
4842 WRITE_WARNINGF(
TL(
"Vehicle '%' performs emergency braking on lane '%' with decel=%, wished=%, severity=%, time=%."),
4877 dev->notifyParking();
4902 const std::vector<MSLane*>& passedLanes) {
4903#ifdef DEBUG_SETFURTHER
4905 <<
" updateFurtherLanes oldFurther=" <<
toString(furtherLanes)
4906 <<
" oldFurtherPosLat=" <<
toString(furtherLanesPosLat)
4907 <<
" passed=" <<
toString(passedLanes)
4910 for (
MSLane* further : furtherLanes) {
4912 if (further->getBidiLane() !=
nullptr
4913 && (!
isRailway(
getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
4914 further->getBidiLane()->resetPartialOccupation(
this);
4918 std::vector<MSLane*> newFurther;
4919 std::vector<double> newFurtherPosLat;
4922 if (passedLanes.size() > 1) {
4924 std::vector<MSLane*>::const_iterator fi = furtherLanes.begin();
4925 std::vector<double>::const_iterator fpi = furtherLanesPosLat.begin();
4926 for (
auto pi = passedLanes.rbegin() + 1; pi != passedLanes.rend() && backPosOnPreviousLane < 0; ++pi) {
4929 newFurther.push_back(further);
4935 if (fi != furtherLanes.end() && further == *fi) {
4937 newFurtherPosLat.push_back(*fpi);
4945 if (newFurtherPosLat.size() == 0) {
4952 newFurtherPosLat.push_back(newFurtherPosLat.back());
4955#ifdef DEBUG_SETFURTHER
4957 std::cout <<
SIMTIME <<
" updateFurtherLanes \n"
4958 <<
" further lane '" << further->
getID() <<
"' backPosOnPreviousLane=" << backPosOnPreviousLane
4963 furtherLanes = newFurther;
4964 furtherLanesPosLat = newFurtherPosLat;
4966 furtherLanes.clear();
4967 furtherLanesPosLat.clear();
4969#ifdef DEBUG_SETFURTHER
4971 <<
" newFurther=" <<
toString(furtherLanes)
4972 <<
" newFurtherPosLat=" <<
toString(furtherLanesPosLat)
4973 <<
" newBackPos=" << backPosOnPreviousLane
4976 return backPosOnPreviousLane;
4985 <<
" getBackPositionOnLane veh=" <<
getID()
4987 <<
" cbgP=" << calledByGetPosition
5042 leftLength -= (*i)->getLength();
5055 leftLength -= (*i)->getLength();
5066 auto j = furtherTargetLanes.begin();
5067 while (leftLength > 0 && j != furtherTargetLanes.end()) {
5068 leftLength -= (*i)->getLength();
5099 double seenSpace = -lengthsInFront;
5100#ifdef DEBUG_CHECKREWINDLINKLANES
5102 std::cout <<
"\nCHECK_REWIND_LINKLANES\n" <<
" veh=" <<
getID() <<
" lengthsInFront=" << lengthsInFront <<
"\n";
5105 bool foundStopped =
false;
5108 for (
int i = 0; i < (int)lfLinks.size(); ++i) {
5111#ifdef DEBUG_CHECKREWINDLINKLANES
5114 <<
" foundStopped=" << foundStopped;
5116 if (item.
myLink ==
nullptr || foundStopped) {
5117 if (!foundStopped) {
5122#ifdef DEBUG_CHECKREWINDLINKLANES
5131 if (approachedLane !=
nullptr) {
5134 if (approachedLane ==
myLane) {
5141#ifdef DEBUG_CHECKREWINDLINKLANES
5143 <<
" approached=" << approachedLane->
getID()
5146 <<
" seenSpace=" << seenSpace
5148 <<
" lengthsInFront=" << lengthsInFront
5155 if (last ==
nullptr || last ==
this) {
5158 seenSpace += approachedLane->
getLength();
5161#ifdef DEBUG_CHECKREWINDLINKLANES
5167 bool foundStopped2 =
false;
5173 const double oncomingBGap = oncomingVeh->
getBrakeGap(
true);
5176 const double spaceTillOncoming = oncomingGap - oncomingBGap - oncomingMove;
5177 spaceTillLastStanding =
MIN2(spaceTillLastStanding, spaceTillOncoming);
5179 foundStopped =
true;
5181#ifdef DEBUG_CHECKREWINDLINKLANES
5183 std::cout <<
" oVeh=" << oncomingVeh->
getID()
5184 <<
" oGap=" << oncomingGap
5185 <<
" bGap=" << oncomingBGap
5186 <<
" mGap=" << oncomingMove
5187 <<
" sto=" << spaceTillOncoming;
5192 seenSpace += spaceTillLastStanding;
5193 if (foundStopped2) {
5194 foundStopped =
true;
5199 foundStopped =
true;
5202#ifdef DEBUG_CHECKREWINDLINKLANES
5204 <<
" approached=" << approachedLane->
getID()
5205 <<
" last=" << last->
getID()
5212 <<
" stls=" << spaceTillLastStanding
5214 <<
" seenSpace=" << seenSpace
5215 <<
" foundStopped=" << foundStopped
5216 <<
" foundStopped2=" << foundStopped2
5223 for (
int i = ((
int)lfLinks.size() - 1); i > 0; --i) {
5227 const bool opened = (item.
myLink !=
nullptr
5228 && (canLeaveJunction || (
5239#ifdef DEBUG_CHECKREWINDLINKLANES
5242 <<
" canLeave=" << canLeaveJunction
5243 <<
" opened=" << opened
5244 <<
" allowsContinuation=" << allowsContinuation
5245 <<
" foundStopped=" << foundStopped
5248 if (!opened && item.
myLink !=
nullptr) {
5249 foundStopped =
true;
5253 allowsContinuation =
true;
5257 if (allowsContinuation) {
5259#ifdef DEBUG_CHECKREWINDLINKLANES
5269 int removalBegin = -1;
5270 for (
int i = 0; foundStopped && i < (int)lfLinks.size() && removalBegin < 0; ++i) {
5273 if (item.
myLink ==
nullptr) {
5284#ifdef DEBUG_CHECKREWINDLINKLANES
5287 <<
" veh=" <<
getID()
5290 <<
" leftSpace=" << leftSpace
5293 if (leftSpace < 0/* && item.myLink->willHaveBlockedFoe()*/) {
5294 double impatienceCorrection = 0;
5301 if (leftSpace < -impatienceCorrection / 10. &&
keepClear(item.
myLink)) {
5310 while (removalBegin < (
int)(lfLinks.size())) {
5312 if (dpi.
myLink ==
nullptr) {
5316#ifdef DEBUG_CHECKREWINDLINKLANES
5321 if (dpi.
myDistance >= brakeGap + POSITION_EPS) {
5323 if (!dpi.
myLink->
isExitLink() || !lfLinks[removalBegin - 1].mySetRequest) {
5341 if (dpi.myLink !=
nullptr) {
5345 dpi.myLink->setApproaching(
this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
5351 if (dpi.myLink !=
nullptr && dpi.myLink->getTLLogic() !=
nullptr && dpi.myLink->getTLLogic()->getLogicType() ==
TrafficLightType::RAIL_SIGNAL) {
5359 if (dpi.myLink !=
nullptr) {
5365 if (parallelLink !=
nullptr) {
5367 parallelLink->
setApproaching(
this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
5368 dpi.mySetRequest, dpi.myArrivalSpeedBraking,
getWaitingTime(), dpi.myDistance,
5375#ifdef DEBUG_PLAN_MOVE
5378 <<
" veh=" <<
getID()
5379 <<
" after checkRewindLinkLanes\n";
5382 <<
" vPass=" << dpi.myVLinkPass
5383 <<
" vWait=" << dpi.myVLinkWait
5384 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
5385 <<
" request=" << dpi.mySetRequest
5386 <<
" atime=" << dpi.myArrivalTime
5432 if (!onTeleporting) {
5436 assert(oldLane !=
nullptr);
5438 if (link !=
nullptr) {
5482 int deleteFurther = 0;
5483#ifdef DEBUG_SETFURTHER
5494 if (lane !=
nullptr) {
5497#ifdef DEBUG_SETFURTHER
5499 std::cout <<
" enterLaneAtLaneChange i=" << i <<
" lane=" <<
Named::getIDSecure(lane) <<
" leftLength=" << leftLength <<
"\n";
5502 if (leftLength > 0) {
5503 if (lane !=
nullptr) {
5519#ifdef DEBUG_SETFURTHER
5532#ifdef DEBUG_SETFURTHER
5547 if (deleteFurther > 0) {
5548#ifdef DEBUG_SETFURTHER
5550 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" shortening myFurtherLanes by " << deleteFurther <<
"\n";
5556#ifdef DEBUG_SETFURTHER
5571 MSLane* clane = enteredLane;
5573 while (leftLength > 0) {
5577 const MSEdge* fromRouteEdge =
myRoute->getEdges()[routeIndex];
5581 if (ili.lane->getEdge().getNormalBefore() == fromRouteEdge) {
5607#ifdef DEBUG_SETFURTHER
5615#ifdef DEBUG_SETFURTHER
5617 std::cout <<
SIMTIME <<
" opposite: resetPartialOccupation " << further->getID() <<
" \n";
5620 further->resetPartialOccupation(
this);
5621 if (further->getBidiLane() !=
nullptr
5622 && (!
isRailway(
getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5623 further->getBidiLane()->resetPartialOccupation(
this);
5675 if (rem->first->notifyLeave(*
this,
myState.
myPos + rem->second, reason, approachedLane)) {
5677 if (myTraceMoveReminders) {
5678 traceMoveReminder(
"notifyLeave", rem->first, rem->second,
true);
5684 if (myTraceMoveReminders) {
5685 traceMoveReminder(
"notifyLeave", rem->first, rem->second,
false);
5707 std::cout <<
SIMTIME <<
" leaveLane \n";
5710 further->resetPartialOccupation(
this);
5711 if (further->getBidiLane() !=
nullptr
5712 && (!
isRailway(
getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5713 further->getBidiLane()->resetPartialOccupation(
this);
5724 myStopDist = std::numeric_limits<double>::max();
5731 if (
myStops.front().getSpeed() <= 0) {
5744 if (stop.
busstop !=
nullptr) {
5760 myStopDist = std::numeric_limits<double>::max();
5769 if (rem->first->notifyLeaveBack(*
this, reason, leftLane)) {
5771 if (myTraceMoveReminders) {
5772 traceMoveReminder(
"notifyLeaveBack", rem->first, rem->second,
true);
5778 if (myTraceMoveReminders) {
5779 traceMoveReminder(
"notifyLeaveBack", rem->first, rem->second,
false);
5785#ifdef DEBUG_MOVEREMINDERS
5787 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" myReminders:";
5789 std::cout << rem.first->getDescription() <<
" ";
5815const std::vector<MSVehicle::LaneQ>&
5823#ifdef DEBUG_BESTLANES
5828 if (startLane ==
nullptr) {
5831 assert(startLane != 0);
5839 assert(startLane != 0);
5840#ifdef DEBUG_BESTLANES
5842 std::cout <<
" startLaneIsOpposite newStartLane=" << startLane->
getID() <<
"\n";
5853#ifdef DEBUG_BESTLANES
5855 std::cout <<
" only updateOccupancyAndCurrentBestLane\n";
5866#ifdef DEBUG_BESTLANES
5868 std::cout <<
" nothing to do on internal\n";
5878 std::vector<LaneQ>& lanes = *it;
5879 assert(lanes.size() > 0);
5880 if (&(lanes[0].lane->getEdge()) == nextEdge) {
5882 std::vector<LaneQ> oldLanes = lanes;
5884 const std::vector<MSLane*>& sourceLanes = startLane->
getEdge().
getLanes();
5885 for (std::vector<MSLane*>::const_iterator it_source = sourceLanes.begin(); it_source != sourceLanes.end(); ++it_source) {
5886 for (std::vector<LaneQ>::iterator it_lane = oldLanes.begin(); it_lane != oldLanes.end(); ++it_lane) {
5887 if ((*it_source)->getLinkCont()[0]->getLane() == (*it_lane).lane) {
5888 lanes.push_back(*it_lane);
5895 for (
int i = 0; i < (int)lanes.size(); ++i) {
5896 if (i + lanes[i].bestLaneOffset < 0) {
5897 lanes[i].bestLaneOffset = -i;
5899 if (i + lanes[i].bestLaneOffset >= (
int)lanes.size()) {
5900 lanes[i].bestLaneOffset = (int)lanes.size() - i - 1;
5902 assert(i + lanes[i].bestLaneOffset >= 0);
5903 assert(i + lanes[i].bestLaneOffset < (
int)lanes.size());
5904 if (lanes[i].bestContinuations[0] != 0) {
5906 lanes[i].bestContinuations.insert(lanes[i].bestContinuations.begin(), (
MSLane*)
nullptr);
5908 if (startLane->
getLinkCont()[0]->getLane() == lanes[i].lane) {
5911 assert(&(lanes[i].lane->getEdge()) == nextEdge);
5915#ifdef DEBUG_BESTLANES
5917 std::cout <<
" updated for internal\n";
5935 const MSLane* nextStopLane =
nullptr;
5936 double nextStopPos = 0;
5937 bool nextStopIsWaypoint =
false;
5940 nextStopLane = nextStop.
lane;
5945 nextStopEdge = nextStop.
edge;
5947 nextStopIsWaypoint = nextStop.
getSpeed() > 0;
5951 nextStopEdge = (
myRoute->end() - 1);
5955 if (nextStopEdge !=
myRoute->end()) {
5958 nextStopPos =
MAX2(POSITION_EPS,
MIN2((
double)nextStopPos, (
double)(nextStopLane->
getLength() - 2 * POSITION_EPS)));
5961 nextStopPos = (*nextStopEdge)->getLength();
5970 double seenLength = 0;
5971 bool progress =
true;
5975 std::vector<LaneQ> currentLanes;
5976 const std::vector<MSLane*>* allowed =
nullptr;
5977 const MSEdge* nextEdge =
nullptr;
5979 nextEdge = *(ce + 1);
5982 const std::vector<MSLane*>& lanes = (*ce)->getLanes();
5983 for (std::vector<MSLane*>::const_iterator i = lanes.begin(); i != lanes.end(); ++i) {
5992 q.
allowsContinuation = allowed ==
nullptr || std::find(allowed->begin(), allowed->end(), cl) != allowed->end();
5995 currentLanes.push_back(q);
5998 if (nextStopEdge == ce
6001 if (!nextStopLane->
isInternal() && !continueAfterStop) {
6005 for (std::vector<LaneQ>::iterator q = currentLanes.begin(); q != currentLanes.end(); ++q) {
6006 if (nextStopLane !=
nullptr && normalStopLane != (*q).lane) {
6007 (*q).allowsContinuation =
false;
6008 (*q).length = nextStopPos;
6009 (*q).currentLength = (*q).length;
6016 seenLength += currentLanes[0].lane->
getLength();
6018 progress &= (seen <= 4 || seenLength <
MAX2(maxBrakeDist, 3000.0));
6020 progress &= ce !=
myRoute->end();
6030 double bestLength = -1;
6032 int bestThisIndex = 0;
6033 int bestThisMaxIndex = 0;
6036 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
6037 if ((*j).length > bestLength) {
6038 bestLength = (*j).length;
6039 bestThisIndex = index;
6040 bestThisMaxIndex = index;
6041 }
else if ((*j).length == bestLength) {
6042 bestThisMaxIndex = index;
6046 bool requiredChangeRightForbidden =
false;
6047 int requireChangeToLeftForbidden = -1;
6048 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
6049 if ((*j).length < bestLength) {
6050 if (abs(bestThisIndex - index) < abs(bestThisMaxIndex - index)) {
6051 (*j).bestLaneOffset = bestThisIndex - index;
6053 (*j).bestLaneOffset = bestThisMaxIndex - index;
6055 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(
getVClass())
6056 || !(*j).lane->getParallelLane(-1,
false)->allowsVehicleClass(
getVClass())
6057 || requiredChangeRightForbidden)) {
6059 requiredChangeRightForbidden =
true;
6061 }
else if ((*j).bestLaneOffset > 0 && (!(*j).lane->allowsChangingLeft(
getVClass())
6062 || !(*j).lane->getParallelLane(1,
false)->allowsVehicleClass(
getVClass()))) {
6064 requireChangeToLeftForbidden = (*j).lane->getIndex();
6068 for (
int i = requireChangeToLeftForbidden; i >= 0; i--) {
6071#ifdef DEBUG_BESTLANES
6073 std::cout <<
" last edge=" << last.front().lane->getEdge().getID() <<
" (bestIndex=" << bestThisIndex <<
" bestMaxIndex=" << bestThisMaxIndex <<
"):\n";
6075 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
6076 std::cout <<
" lane=" << (*j).lane->getID() <<
" length=" << (*j).length <<
" bestOffset=" << (*j).bestLaneOffset <<
"\n";
6083 for (std::vector<std::vector<LaneQ> >::reverse_iterator i =
myBestLanes.rbegin() + 1; i !=
myBestLanes.rend(); ++i) {
6084 std::vector<LaneQ>& nextLanes = (*(i - 1));
6085 std::vector<LaneQ>& clanes = (*i);
6086 MSEdge*
const cE = &clanes[0].lane->getEdge();
6088 double bestConnectedLength = -1;
6089 double bestLength = -1;
6090 for (
const LaneQ& j : nextLanes) {
6091 if (j.lane->isApproachedFrom(cE) && bestConnectedLength < j.length) {
6092 bestConnectedLength = j.length;
6094 if (bestLength < j.length) {
6095 bestLength = j.length;
6099 int bestThisIndex = 0;
6100 int bestThisMaxIndex = 0;
6101 if (bestConnectedLength > 0) {
6103 for (
LaneQ& j : clanes) {
6104 const LaneQ* bestConnectedNext =
nullptr;
6105 if (j.allowsContinuation) {
6106 for (
const LaneQ& m : nextLanes) {
6107 if ((m.lane->allowsVehicleClass(
getVClass()) || m.lane->hadPermissionChanges())
6108 && m.lane->isApproachedFrom(cE, j.lane)) {
6110 bestConnectedNext = &m;
6114 if (bestConnectedNext !=
nullptr) {
6115 if (bestConnectedNext->
length == bestConnectedLength && abs(bestConnectedNext->
bestLaneOffset) < 2) {
6118 j.length += bestConnectedNext->
length;
6126 j.allowsContinuation =
false;
6128 if (clanes[bestThisIndex].length < j.length
6129 || (clanes[bestThisIndex].length == j.length && abs(clanes[bestThisIndex].bestLaneOffset) > abs(j.bestLaneOffset))
6130 || (clanes[bestThisIndex].length == j.length && abs(clanes[bestThisIndex].bestLaneOffset) == abs(j.bestLaneOffset) &&
6133 bestThisIndex = index;
6134 bestThisMaxIndex = index;
6135 }
else if (clanes[bestThisIndex].length == j.length
6136 && abs(clanes[bestThisIndex].bestLaneOffset) == abs(j.bestLaneOffset)
6138 bestThisMaxIndex = index;
6146 for (
const LaneQ& j : clanes) {
6148 if (overheadWireSegmentID !=
"") {
6149 bestThisIndex = index;
6150 bestThisMaxIndex = index;
6158 int bestNextIndex = 0;
6159 int bestDistToNeeded = (int) clanes.size();
6161 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6162 if ((*j).allowsContinuation) {
6164 for (std::vector<LaneQ>::const_iterator m = nextLanes.begin(); m != nextLanes.end(); ++m, ++nextIndex) {
6165 if ((*m).lane->isApproachedFrom(cE, (*j).lane)) {
6166 if (bestDistToNeeded > abs((*m).bestLaneOffset)) {
6167 bestDistToNeeded = abs((*m).bestLaneOffset);
6168 bestThisIndex = index;
6169 bestThisMaxIndex = index;
6170 bestNextIndex = nextIndex;
6176 clanes[bestThisIndex].length += nextLanes[bestNextIndex].length;
6177 copy(nextLanes[bestNextIndex].bestContinuations.begin(), nextLanes[bestNextIndex].bestContinuations.end(), back_inserter(clanes[bestThisIndex].bestContinuations));
6182 bool requiredChangeRightForbidden =
false;
6183 int requireChangeToLeftForbidden = -1;
6184 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6185 if ((*j).length < clanes[bestThisIndex].length
6186 || ((*j).length == clanes[bestThisIndex].length && abs((*j).bestLaneOffset) > abs(clanes[bestThisIndex].bestLaneOffset))
6189 if (abs(bestThisIndex - index) < abs(bestThisMaxIndex - index)) {
6190 (*j).bestLaneOffset = bestThisIndex - index;
6192 (*j).bestLaneOffset = bestThisMaxIndex - index;
6196 (*j).length = (*j).currentLength;
6198 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(
getVClass())
6199 || !(*j).lane->getParallelLane(-1,
false)->allowsVehicleClass(
getVClass())
6200 || requiredChangeRightForbidden)) {
6202 requiredChangeRightForbidden =
true;
6203 if ((*j).length == (*j).currentLength) {
6206 }
else if ((*j).bestLaneOffset > 0 && (!(*j).lane->allowsChangingLeft(
getVClass())
6207 || !(*j).lane->getParallelLane(1,
false)->allowsVehicleClass(
getVClass()))) {
6209 requireChangeToLeftForbidden = (*j).lane->getIndex();
6212 (*j).bestLaneOffset = 0;
6215 for (
int idx = requireChangeToLeftForbidden; idx >= 0; idx--) {
6216 if (clanes[idx].length == clanes[idx].currentLength) {
6217 clanes[idx].length = 0;
6225 if (overheadWireID !=
"") {
6226 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6227 (*j).bestLaneOffset = bestThisIndex - index;
6232#ifdef DEBUG_BESTLANES
6234 std::cout <<
" edge=" << cE->
getID() <<
" (bestIndex=" << bestThisIndex <<
" bestMaxIndex=" << bestThisMaxIndex <<
"):\n";
6235 std::vector<LaneQ>& laneQs = clanes;
6236 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
6237 std::cout <<
" lane=" << (*j).lane->getID() <<
" length=" << (*j).length <<
" bestOffset=" << (*j).bestLaneOffset <<
" allowCont=" << (*j).allowsContinuation <<
"\n";
6244#ifdef DEBUG_BESTLANES
6260 if (bestConnectedNext ==
nullptr) {
6287 if (conts.size() < 2) {
6290 const MSLink*
const link = conts[0]->getLinkTo(conts[1]);
6291 if (link !=
nullptr) {
6303 std::vector<LaneQ>& currLanes = *
myBestLanes.begin();
6304 std::vector<LaneQ>::iterator i;
6305 for (i = currLanes.begin(); i != currLanes.end(); ++i) {
6306 double nextOccupation = 0;
6307 for (std::vector<MSLane*>::const_iterator j = (*i).bestContinuations.begin() + 1; j != (*i).bestContinuations.end(); ++j) {
6308 nextOccupation += (*j)->getBruttoVehLenSum();
6310 (*i).nextOccupation = nextOccupation;
6311#ifdef DEBUG_BESTLANES
6313 std::cout <<
" lane=" << (*i).lane->getID() <<
" nextOccupation=" << nextOccupation <<
"\n";
6316 if ((*i).lane == startLane) {
6323const std::vector<MSLane*>&
6328 return (*myCurrentLaneInBestLanes).bestContinuations;
6332const std::vector<MSLane*>&
6344 if ((*i).lane == lane) {
6345 return (*i).bestContinuations;
6351const std::vector<const MSLane*>
6353 std::vector<const MSLane*> lanes;
6366 while (lane->
isInternal() && (distance > 0.)) {
6367 lanes.insert(lanes.end(), lane);
6369 lane = lane->
getLinkCont().front()->getViaLaneOrLane();
6373 if (contLanes.empty()) {
6376 auto contLanesIt = contLanes.begin();
6378 while (distance > 0.) {
6380 if (contLanesIt != contLanes.end()) {
6383 assert(l->
getEdge().
getID() == (*routeIt)->getLanes().front()->getEdge().getID());
6392 }
else if (routeIt !=
myRoute->end()) {
6394 l = (*routeIt)->getLanes().back();
6400 assert(l !=
nullptr);
6404 while ((internalLane !=
nullptr) && internalLane->
isInternal() && (distance > 0.)) {
6405 lanes.insert(lanes.end(), internalLane);
6407 internalLane = internalLane->
getLinkCont().front()->getViaLaneOrLane();
6409 if (distance <= 0.) {
6413 lanes.insert(lanes.end(), l);
6420const std::vector<const MSLane*>
6422 std::vector<const MSLane*> lanes;
6424 if (distance <= 0.) {
6436 while (lane->
isInternal() && (distance > 0.)) {
6437 lanes.insert(lanes.end(), lane);
6442 while (distance > 0.) {
6444 MSLane* l = (*routeIt)->getLanes().back();
6448 const MSLane* internalLane = internalEdge !=
nullptr ? internalEdge->
getLanes().front() :
nullptr;
6449 std::vector<const MSLane*> internalLanes;
6450 while ((internalLane !=
nullptr) && internalLane->
isInternal()) {
6451 internalLanes.insert(internalLanes.begin(), internalLane);
6452 internalLane = internalLane->
getLinkCont().front()->getViaLaneOrLane();
6454 for (
auto it = internalLanes.begin(); (it != internalLanes.end()) && (distance > 0.); ++it) {
6455 lanes.insert(lanes.end(), *it);
6456 distance -= (*it)->getLength();
6458 if (distance <= 0.) {
6462 lanes.insert(lanes.end(), l);
6467 if (routeIt !=
myRoute->begin()) {
6478const std::vector<MSLane*>
6481 std::vector<MSLane*> result;
6482 for (
const MSLane* lane : routeLanes) {
6484 if (opposite !=
nullptr) {
6485 result.push_back(opposite);
6499 return (*myCurrentLaneInBestLanes).bestLaneOffset;
6508 return (*myCurrentLaneInBestLanes).length;
6516 std::vector<MSVehicle::LaneQ>& preb =
myBestLanes.front();
6517 assert(laneIndex < (
int)preb.size());
6518 preb[laneIndex].occupation = density + preb[laneIndex].nextOccupation;
6529std::pair<const MSLane*, double>
6531 if (distance == 0) {
6536 for (
const MSLane* lane : lanes) {
6537 if (lane->getLength() > distance) {
6538 return std::make_pair(lane, distance);
6540 distance -= lane->getLength();
6542 return std::make_pair(
nullptr, -1);
6548 if (
isOnRoad() && destLane !=
nullptr) {
6551 return std::numeric_limits<double>::max();
6555std::pair<const MSVehicle* const, double>
6558 return std::make_pair(
static_cast<const MSVehicle*
>(
nullptr), -1);
6567 MSLane::VehCont::const_iterator it = std::find(vehs.begin(), vehs.end(),
this);
6568 if (it != vehs.end() && it + 1 != vehs.end()) {
6571 if (lead !=
nullptr) {
6572 std::pair<const MSVehicle* const, double> result(
6585std::pair<const MSVehicle* const, double>
6588 return std::make_pair(
static_cast<const MSVehicle*
>(
nullptr), -1);
6600 std::pair<const MSVehicle* const, double> leaderInfo =
getLeader(-1);
6601 if (leaderInfo.first ==
nullptr ||
getSpeed() == 0) {
6613 if (
myStops.front().triggered &&
myStops.front().numExpectedPerson > 0) {
6614 myStops.front().numExpectedPerson -= (int)
myStops.front().pars.awaitedPersons.count(transportable->
getID());
6617 if (
myStops.front().pars.containerTriggered &&
myStops.front().numExpectedContainer > 0) {
6618 myStops.front().numExpectedContainer -= (int)
myStops.front().pars.awaitedContainers.count(transportable->
getID());
6630 const bool blinkerManoeuvre = (((state &
LCA_SUBLANE) == 0) && (
6638 if ((state &
LCA_LEFT) != 0 && blinkerManoeuvre) {
6640 }
else if ((state &
LCA_RIGHT) != 0 && blinkerManoeuvre) {
6652 switch ((*link)->getDirection()) {
6669 && (
myStops.begin()->reached ||
6672 if (
myStops.begin()->lane->getIndex() > 0 &&
myStops.begin()->lane->getParallelLane(-1)->allowsVehicleClass(
getVClass())) {
6690 if (currentTime % 1000 == 0) {
6787 for (
int i = 0; i < (int)shadowFurther.size(); ++i) {
6789 if (shadowFurther[i] == lane) {
6836 for (
int i = 0; i < (int)shadowFurther.size(); ++i) {
6837 if (shadowFurther[i] == lane) {
6841 <<
" lane=" << lane->
getID()
6855 MSLane* targetLane = furtherTargets[i];
6856 if (targetLane == lane) {
6859#ifdef DEBUG_TARGET_LANE
6861 std::cout <<
" getLatOffset veh=" <<
getID()
6867 <<
" targetDir=" << targetDir
6868 <<
" latOffset=" << latOffset
6885 assert(offset == 0 || offset == 1 || offset == -1);
6886 assert(
myLane !=
nullptr);
6889 const double halfVehWidth = 0.5 * (
getWidth() + NUMERICAL_EPS);
6892 double leftLimit = halfCurrentLaneWidth - halfVehWidth - oppositeSign * latPos;
6893 double rightLimit = -halfCurrentLaneWidth + halfVehWidth - oppositeSign * latPos;
6894 double latLaneDist = 0;
6896 if (latPos + halfVehWidth > halfCurrentLaneWidth) {
6898 latLaneDist = halfCurrentLaneWidth - latPos - halfVehWidth;
6899 }
else if (latPos - halfVehWidth < -halfCurrentLaneWidth) {
6901 latLaneDist = -halfCurrentLaneWidth - latPos + halfVehWidth;
6903 latLaneDist *= oppositeSign;
6904 }
else if (offset == -1) {
6905 latLaneDist = rightLimit - (
getWidth() + NUMERICAL_EPS);
6906 }
else if (offset == 1) {
6907 latLaneDist = leftLimit + (
getWidth() + NUMERICAL_EPS);
6909#ifdef DEBUG_ACTIONSTEPS
6912 <<
" veh=" <<
getID()
6913 <<
" halfCurrentLaneWidth=" << halfCurrentLaneWidth
6914 <<
" halfVehWidth=" << halfVehWidth
6915 <<
" latPos=" << latPos
6916 <<
" latLaneDist=" << latLaneDist
6917 <<
" leftLimit=" << leftLimit
6918 <<
" rightLimit=" << rightLimit
6946 if (dpi.myLink !=
nullptr) {
6947 dpi.myLink->removeApproaching(
this);
6965 std::vector<MSLink*>::const_iterator link =
MSLane::succLinkSec(*
this, view, *lane, bestLaneConts);
6967 while (!lane->
isLinkEnd(link) && seen <= dist) {
6969 && (((*link)->getState() ==
LINKSTATE_ZIPPER && seen < (*link)->getFoeVisibilityDistance())
6970 || !(*link)->havePriority())) {
6974 if ((*di).myLink !=
nullptr) {
6975 const MSLane* diPredLane = (*di).myLink->getLaneBefore();
6976 if (diPredLane !=
nullptr) {
6987 const SUMOTime leaveTime = (*link)->getLeaveTime((*di).myArrivalTime, (*di).myArrivalSpeed,
6989 if ((*link)->hasApproachingFoe((*di).myArrivalTime, leaveTime, (*di).myArrivalSpeed,
getCarFollowModel().getMaxDecel())) {
6996 lane = (*link)->getViaLaneOrLane();
7012 centerLine.push_back(pos);
7021 centerLine.push_back(lane->getShape().back());
7033 backPos = pos +
Position(l * cos(a), l * sin(a));
7035 centerLine.push_back(backPos);
7068 result.push_back(line1[0]);
7069 result.push_back(line2[0]);
7070 result.push_back(line2[1]);
7071 result.push_back(line1[1]);
7074 result.push_back(line1[1]);
7075 result.push_back(line2[1]);
7076 result.push_back(line2[0]);
7077 result.push_back(line1[0]);
7089 if (&(*i)->getEdge() == edge) {
7115 if (destParkArea ==
nullptr) {
7117 errorMsg =
"Vehicle " +
getID() +
" is not driving to a parking area so it cannot be rerouted.";
7130 if (newParkingArea ==
nullptr) {
7131 errorMsg =
"Parking area ID " +
toString(parkingAreaID) +
" not found in the network.";
7144 if (!newDestination) {
7155 if (edgesFromPark.size() > 0) {
7156 edges.insert(edges.end(), edgesFromPark.begin() + 1, edgesFromPark.end());
7159 if (newDestination) {
7170 const bool onInit =
myLane ==
nullptr;
7183 const int numStops = (int)
myStops.size();
7228 if (stop.
busstop !=
nullptr) {
7257 rem.first->notifyStopEnded();
7269 myStopDist = std::numeric_limits<double>::max();
7368#ifdef DEBUG_IGNORE_RED
7373 if (ignoreRedTime < 0) {
7375 if (ignoreYellowTime > 0 && link->
haveYellow()) {
7379 return !canBrake || ignoreYellowTime > yellowDuration;
7389#ifdef DEBUG_IGNORE_RED
7393 <<
" ignoreRedTime=" << ignoreRedTime
7394 <<
" spentRed=" << redDuration
7395 <<
" canBrake=" << canBrake <<
"\n";
7399 return !canBrake || ignoreRedTime > redDuration;
7416 if (
id == foe->
getID()) {
7442 if (veh ==
nullptr) {
7469 assert(logic !=
nullptr);
7486#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7488 std::cout <<
" foeGap=" << foeGap <<
" foeBGap=" << foeBrakeGap <<
"\n";
7492 if (foeGap < foeBrakeGap) {
7501 response = foeEntry->
haveRed();
7516#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7519 <<
" foeLane=" << foeLane->
getID()
7521 <<
" linkIndex=" << link->
getIndex()
7522 <<
" foeLinkIndex=" << foeLink->
getIndex()
7525 <<
" response=" << response
7526 <<
" response2=" << response2
7534 }
else if (response && response2) {
7540 if (egoET == foeET) {
7544#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7546 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" equal ET " << egoET <<
" with foe " << veh->
getID()
7547 <<
" foeIsLeaderByID=" << (
getID() < veh->
getID()) <<
"\n";
7552#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7554 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" equal ET " << egoET <<
" with foe " << veh->
getID()
7564#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7566 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" egoET " << egoET <<
" with foe " << veh->
getID()
7567 <<
" foeET=" << foeET <<
" isLeader=" << (egoET > foeET) <<
"\n";
7570 return egoET > foeET;
7586 std::vector<std::string> internals;
7605 stop.write(out,
false);
7613 stop.writeParams(out);
7623 dev->saveState(out);
7631 throw ProcessError(
TL(
"Error: Invalid vehicles in state (may be a meso state)!"));
7656 while (pastStops > 0) {
7682 myStops.front().startedFromState =
true;
7691 SUMOTime arrivalTime,
double arrivalSpeed,
7692 double arrivalSpeedBraking,
7693 double dist,
double leaveSpeed) {
7696 arrivalTime, arrivalSpeed, arrivalSpeedBraking, dist, leaveSpeed));
7701std::shared_ptr<MSSimpleDriverState>
7717 if (prevAcceleration != std::numeric_limits<double>::min()) {
7777 return (myGUIIncrement);
7783 return (myManoeuvreType);
7801 myManoeuvreType = mType;
7816 if (abs(GUIAngle) < 0.1) {
7819 myManoeuvreVehicleID = veh->
getID();
7822 myManoeuvreStartTime = currentTime;
7824 myGUIIncrement = GUIAngle / (
STEPS2TIME(myManoeuvreCompleteTime - myManoeuvreStartTime) /
TS);
7828 std::cout <<
"ENTRY manoeuvre start: vehicle=" << veh->
getID() <<
" Manoeuvre Angle=" << manoeuverAngle <<
" Rotation angle=" <<
RAD2DEG(GUIAngle) <<
" Road Angle" <<
RAD2DEG(veh->
getAngle()) <<
" increment=" <<
RAD2DEG(myGUIIncrement) <<
" currentTime=" << currentTime <<
7829 " endTime=" << myManoeuvreCompleteTime <<
" manoeuvre time=" << myManoeuvreCompleteTime - currentTime <<
" parkArea=" << myManoeuvreStop << std::endl;
7855 if (abs(GUIAngle) < 0.1) {
7859 myManoeuvreVehicleID = veh->
getID();
7862 myManoeuvreStartTime = currentTime;
7864 myGUIIncrement = -GUIAngle / (
STEPS2TIME(myManoeuvreCompleteTime - myManoeuvreStartTime) /
TS);
7871 std::cout <<
"EXIT manoeuvre start: vehicle=" << veh->
getID() <<
" Manoeuvre Angle=" << manoeuverAngle <<
" increment=" <<
RAD2DEG(myGUIIncrement) <<
" currentTime=" << currentTime
7872 <<
" endTime=" << myManoeuvreCompleteTime <<
" manoeuvre time=" << myManoeuvreCompleteTime - currentTime <<
" parkArea=" << myManoeuvreStop << std::endl;
7890 if (configureEntryManoeuvre(veh)) {
7907 if (checkType != myManoeuvreType) {
7931std::pair<double, double>
7935 if (lane ==
nullptr) {
7946 travelTime += (*it)->getMinimumTravelTime(
this);
7947 dist += (*it)->getLength();
7952 dist += stopEdgeDist;
7959 const double d = dist;
7965 const double maxVD =
MAX2(c, ((sqrt(
MAX2(0.0, pow(2 * c * b, 2) + (4 * ((b * ((a * (2 * d * (b + a) + (vs * vs) - (c * c))) - (b * (c * c))))
7966 + pow((a * vs), 2))))) * 0.5) + (c * b)) / (b + a));
7970 double timeLossAccel = 0;
7971 double timeLossDecel = 0;
7972 double timeLossLength = 0;
7974 double v =
MIN2(maxVD, (*it)->getVehicleMaxSpeed(
this));
7976 if (edgeLength <= len && v0Stable && v0 < v) {
7977 const double lengthDist =
MIN2(len, edgeLength);
7978 const double dTL = lengthDist / v0 - lengthDist / v;
7980 timeLossLength += dTL;
7982 if (edgeLength > len) {
7983 const double dv = v - v0;
7986 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
7988 timeLossAccel += dTA;
7990 }
else if (dv < 0) {
7992 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
7994 timeLossDecel += dTD;
8003 const double dv = v - v0;
8006 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
8008 timeLossAccel += dTA;
8010 }
else if (dv < 0) {
8012 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
8014 timeLossDecel += dTD;
8016 const double result = travelTime + timeLossAccel + timeLossDecel + timeLossLength;
8019 return {
MAX2(0.0, result), dist};
8080 return nextInternal ? nextInternal : nextNormal;
8092 bool resultInternal;
8095 if (furtherIndex % 2 == 0) {
8096 routeIndex -= (furtherIndex + 0) / 2;
8097 resultInternal =
false;
8099 routeIndex -= (furtherIndex + 1) / 2;
8100 resultInternal =
false;
8103 if (furtherIndex % 2 != 0) {
8104 routeIndex -= (furtherIndex + 1) / 2;
8105 resultInternal =
false;
8107 routeIndex -= (furtherIndex + 2) / 2;
8108 resultInternal =
true;
8112 routeIndex -= furtherIndex;
8113 resultInternal =
false;
8116 if (routeIndex >= 0) {
8117 if (resultInternal) {
8120 for (
MSLink* link : cand->getLinkCont()) {
8121 if (link->getLane() == current) {
8122 if (link->getViaLane() !=
nullptr) {
8123 return link->getViaLane();
8125 return const_cast<MSLane*
>(link->getLaneBefore());
8131 return myRoute->getEdges()[routeIndex]->getLanes()[0];
std::vector< const MSEdge * > ConstMSEdgeVector
std::vector< MSEdge * > MSEdgeVector
std::pair< const MSVehicle *, double > CLeaderDist
std::pair< const MSPerson *, double > PersonDist
ConstMSEdgeVector::const_iterator MSRouteIterator
#define NUMERICAL_EPS_SPEED
#define STOPPING_PLACE_OFFSET
#define JUNCTION_BLOCKAGE_TIME
#define DIST_TO_STOPLINE_EXPECT_PRIORITY
#define WRITE_WARNINGF(...)
#define WRITE_WARNING(msg)
std::shared_ptr< const MSRoute > ConstMSRoutePtr
SUMOTime string2time(const std::string &r)
convert string to SUMOTime
std::string time2string(SUMOTime t, bool humanReadable)
convert SUMOTime to string (independently of global format setting)
bool isRailway(SVCPermissions permissions)
Returns whether an edge with the given permissions is a railway edge.
long long int SVCPermissions
bitset where each bit declares whether a certain SVC may use this edge/lane
@ RAIL_CARGO
render as a cargo train
@ PASSENGER_VAN
render as a van
@ PASSENGER
render as a passenger vehicle
@ RAIL_CAR
render as a (city) rail without locomotive
@ PASSENGER_HATCHBACK
render as a hatchback passenger vehicle ("Fliessheck")
@ BUS_FLEXIBLE
render as a flexible city bus
@ TRUCK_1TRAILER
render as a transport vehicle with one trailer
@ PASSENGER_SEDAN
render as a sedan passenger vehicle ("Stufenheck")
@ PASSENGER_WAGON
render as a wagon passenger vehicle ("Combi")
@ TRUCK_SEMITRAILER
render as a semi-trailer transport vehicle ("Sattelschlepper")
@ SVC_RAIL_CLASSES
classes which drive on tracks
@ SVC_EMERGENCY
public emergency vehicles
const long long int VEHPARS_FORCE_REROUTE
@ GIVEN
The lane is given.
@ GIVEN
The speed is given.
@ SPLIT_FRONT
depart position for a split vehicle is in front of the continuing vehicle
const long long int VEHPARS_CFMODEL_PARAMS_SET
@ GIVEN
The arrival lane is given.
@ GIVEN
The speed is given.
@ GIVEN
The arrival position is given.
const int STOP_STARTED_SET
@ SUMO_TAG_PARKING_AREA_REROUTE
entry for an alternative parking zone
@ SUMO_TAG_PARKING_AREA
A parking area.
@ SUMO_TAG_OVERHEAD_WIRE_SEGMENT
An overhead wire segment.
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ TURN
The link is a 180 degree turn.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ TURN_LEFTHAND
The link is a 180 degree turn (left-hand network)
@ PARTRIGHT
The link is a partial right direction.
@ NODIR
The link has no direction (is a dead end link)
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_EQUAL
This is an uncontrolled, right-before-left link.
@ LINKSTATE_ZIPPER
This is an uncontrolled, zipper-merge link.
@ LCA_KEEPRIGHT
The action is due to the default of keeping right "Rechtsfahrgebot".
@ LCA_BLOCKED
blocked in all directions
@ LCA_URGENT
The action is urgent (to be defined by lc-model)
@ LCA_STAY
Needs to stay on the current lane.
@ LCA_SUBLANE
used by the sublane model
@ LCA_WANTS_LANECHANGE_OR_STAY
lane can change or stay
@ LCA_COOPERATIVE
The action is done to help someone else.
@ LCA_OVERLAPPING
The vehicle is blocked being overlapping.
@ LCA_LEFT
Wants go to the left.
@ LCA_STRATEGIC
The action is needed to follow the route (navigational lc)
@ LCA_TRACI
The action is due to a TraCI request.
@ LCA_SPEEDGAIN
The action is due to the wish to be faster (tactical lc)
@ LCA_RIGHT
Wants go to the right.
@ SUMO_ATTR_JM_STOPLINE_CROSSING_GAP
@ SUMO_ATTR_JM_IGNORE_KEEPCLEAR_TIME
@ SUMO_ATTR_MAXIMUMPOWER
Maximum Power.
@ SUMO_ATTR_CF_IGNORE_IDS
@ SUMO_ATTR_JM_STOPLINE_GAP
@ SUMO_ATTR_JM_DRIVE_AFTER_RED_TIME
@ SUMO_ATTR_JM_DRIVE_AFTER_YELLOW_TIME
@ SUMO_ATTR_LCA_CONTRIGHT
@ SUMO_ATTR_CF_IGNORE_TYPES
@ SUMO_ATTR_JM_IGNORE_JUNCTION_FOE_PROB
@ SUMO_ATTR_STATE
The state of a link.
@ SUMO_ATTR_JM_DRIVE_RED_SPEED
int gPrecision
the precision for floating point outputs
bool gDebugFlag1
global utility flags for debugging
const double INVALID_DOUBLE
invalid double
const double SUMO_const_laneWidth
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
#define SOFT_ASSERT(expr)
define SOFT_ASSERT raise an assertion in debug mode everywhere except on the windows test server
double getDouble(SumoXMLAttr attr) const
void setDouble(SumoXMLAttr attr, double value)
Sets a parameter.
static double naviDegree(const double angle)
static double fromNaviDegree(const double angle)
Interface for lane-change models.
double getLaneChangeCompletion() const
Get the current lane change completion ratio.
MSLane * updateTargetLane()
bool hasBlueLight() const
const std::vector< double > & getShadowFurtherLanesPosLat() const
double getCommittedSpeed() const
virtual void resetSpeedLat()
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
int getLaneChangeDirection() const
return the direction of the current lane change maneuver
virtual void prepareStep()
void resetChanged()
reset the flag whether a vehicle already moved to false
MSLane * getShadowLane() const
Returns the lane the vehicle's shadow is on during continuous/sublane lane change.
virtual void saveState(OutputDevice &out) const
Save the state of the laneChangeModel.
void endLaneChangeManeuver(const MSMoveReminder::Notification reason=MSMoveReminder::NOTIFICATION_LANE_CHANGE)
void setNoShadowPartialOccupator(MSLane *lane)
MSLane * getTargetLane() const
Returns the lane the vehicle has committed to enter during a sublane lane change.
SUMOTime remainingTime() const
Compute the remaining time until LC completion.
void setShadowApproachingInformation(MSLink *link) const
set approach information for the shadow vehicle
static MSAbstractLaneChangeModel * build(LaneChangeModel lcm, MSVehicle &vehicle)
Factory method for instantiating new lane changing models.
void changedToOpposite()
called when a vehicle changes between lanes in opposite directions
int getShadowDirection() const
return the direction in which the current shadow lane lies
virtual void loadState(const SUMOSAXAttributes &attrs)
Loads the state of the laneChangeModel from the given attributes.
double calcAngleOffset()
return the angle offset during a continuous change maneuver
void setPreviousAngleOffset(const double angleOffset)
set the angle offset of the previous time step
const std::vector< MSLane * > & getFurtherTargetLanes() const
virtual void resetState()
double getAngleOffset() const
return the angle offset resulting from lane change and sigma
const std::vector< MSLane * > & getShadowFurtherLanes() const
bool isChangingLanes() const
return true if the vehicle currently performs a lane change maneuver
void removeShadowApproachingInformation() const
void setExtraImpatience(double value)
Sets routing behavior.
The base class for microscopic and mesoscopic vehicles.
double getMaxSpeed() const
Returns the maximum speed (the minimum of desired and technical maximum speed)
bool haveValidStopEdges(bool silent=false) const
check whether all stop.edge MSRouteIterators are valid and in order
virtual bool isSelected() const
whether this vehicle is selected in the GUI
std::list< MSStop > myStops
The vehicle's list of stops.
double getImpatience() const
Returns this vehicles impatience.
const std::vector< MSTransportable * > & getPersons() const
retrieve riding persons
virtual void initDevices()
const MSEdge * succEdge(int nSuccs) const
Returns the nSuccs'th successor of edge the vehicle is currently at.
void calculateArrivalParams(bool onInit)
(Re-)Calculates the arrival position and lane from the vehicle parameters
virtual double getArrivalPos() const
Returns this vehicle's desired arrivalPos for its current route (may change on reroute)
MSVehicleType * myType
This vehicle's type.
MoveReminderCont myMoveReminders
Currently relevant move reminders.
double myDepartPos
The real depart position.
const SUMOVehicleParameter & getParameter() const
Returns the vehicle's parameter (including departure definition)
void addReminder(MSMoveReminder *rem)
Adds a MoveReminder dynamically.
void replaceParameter(const SUMOVehicleParameter *newParameter)
replace the vehicle parameter (deleting the old one)
double getChosenSpeedFactor() const
Returns the precomputed factor by which the driver wants to be faster than the speed limit.
std::vector< MSVehicleDevice * > myDevices
The devices this vehicle has.
virtual void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
virtual bool replaceRoute(ConstMSRoutePtr route, const std::string &info, bool onInit=false, int offset=0, bool addRouteStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
MSVehicleType & getSingularType()
Replaces the current vehicle type with a new one used by this vehicle only.
virtual void replaceVehicleType(MSVehicleType *type)
Replaces the current vehicle type by the one given.
double getLength() const
Returns the vehicle's length.
bool isParking() const
Returns whether the vehicle is parking.
MSParkingArea * getCurrentParkingArea()
get the current parking area stop or nullptr
const MSEdge * getEdge() const
Returns the edge the vehicle is currently at.
int getPersonNumber() const
Returns the number of persons.
MSRouteIterator myCurrEdge
Iterator to current route-edge.
bool hasDeparted() const
Returns whether this vehicle has already departed.
ConstMSRoutePtr myRoute
This vehicle's route.
double getWidth() const
Returns the vehicle's width.
MSDevice_Transportable * myContainerDevice
The containers this vehicle may have.
const std::list< MSStop > & getStops() const
SUMOTime getDeparture() const
Returns this vehicle's real departure time.
double getWaitingSeconds() const
Returns the number of seconds waited (speed was lesser than 0.1m/s)
MSDevice_Transportable * myPersonDevice
The passengers this vehicle may have.
bool hasStops() const
Returns whether the vehicle has to stop somewhere.
virtual void activateReminders(const MSMoveReminder::Notification reason, const MSLane *enteredLane=0)
"Activates" all current move reminder
@ ROUTE_START_INVALID_LANE
@ ROUTE_START_INVALID_PERMISSIONS
void addStops(const bool ignoreStopErrors, MSRouteIterator *searchStart=nullptr, bool addRouteStops=true)
Adds stops to the built vehicle.
SUMOVehicleClass getVClass() const
Returns the vehicle's access class.
MSParkingArea * getNextParkingArea()
get the upcoming parking area stop or nullptr
int myArrivalLane
The destination lane where the vehicle stops.
SUMOTime myDeparture
The real departure time.
bool isStoppedTriggered() const
Returns whether the vehicle is on a triggered stop.
std::vector< SUMOVehicleParameter::Stop > myPastStops
The list of stops that the vehicle has already reached.
void onDepart()
Called when the vehicle is inserted into the network.
virtual bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
const MSRoute & getRoute() const
Returns the current route.
int getRoutePosition() const
return index of edge within route
bool replaceParkingArea(MSParkingArea *parkingArea, std::string &errorMsg)
replace the current parking area stop with a new stop with merge duration
static const SUMOTime NOT_YET_DEPARTED
bool myAmRegisteredAsWaiting
Whether this vehicle is registered as waiting for a person or container (for deadlock-recognition)
SUMOAbstractRouter< MSEdge, SUMOVehicle > & getRouterTT() const
EnergyParams * myEnergyParams
The emission parameters this vehicle may have.
const SUMOVehicleParameter * myParameter
This vehicle's parameter.
int myRouteValidity
status of the current vehicle route
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool isStopped() const
Returns whether the vehicle is at a stop.
MSDevice * getDevice(const std::type_info &type) const
Returns a device of the given type if it exists, nullptr otherwise.
int myNumberReroutes
The number of reroutings.
double myArrivalPos
The position on the destination lane where the vehicle stops.
virtual void saveState(OutputDevice &out)
Saves the (common) state of a vehicle.
double myOdometer
A simple odometer to keep track of the length of the route already driven.
int getContainerNumber() const
Returns the number of containers.
bool replaceRouteEdges(ConstMSEdgeVector &edges, double cost, double savings, const std::string &info, bool onInit=false, bool check=false, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given edges.
The car-following model abstraction.
double estimateSpeedAfterDistance(const double dist, const double v, const double accel) const
virtual double maxNextSpeed(double speed, const MSVehicle *const veh) const
Returns the maximum speed given the current speed.
virtual double minNextSpeedEmergency(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed after emergency braking, given the current speed (depends on the numerical ...
virtual VehicleVariables * createVehicleVariables() const
Returns model specific values which are stored inside a vehicle and must be used with casting.
double getEmergencyDecel() const
Get the vehicle type's maximal physically possible deceleration [m/s^2].
SUMOTime getStartupDelay() const
Get the vehicle type's startupDelay.
double getMinimalArrivalSpeed(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance.
virtual void setHeadwayTime(double headwayTime)
Sets a new value for desired headway [s].
virtual double freeSpeed(const MSVehicle *const veh, double speed, double seen, double maxSpeed, const bool onInsertion=false, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed without a leader.
virtual double minNextSpeed(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed given the current speed (depends on the numerical update scheme and its ste...
virtual double insertionFollowSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0) const
Computes the vehicle's safe speed (no dawdling) This method is used during the insertion stage....
SUMOTime getMinimalArrivalTime(double dist, double currentSpeed, double arrivalSpeed) const
Computes the minimal time needed to cover a distance given the desired speed at arrival.
virtual double finalizeSpeed(MSVehicle *const veh, double vPos) const
Applies interaction with stops and lane changing model influences. Called at most once per simulation...
@ FUTURE
the return value is used for calculating future speeds
@ CURRENT_WAIT
the return value is used for calculating junction stop speeds
double getApparentDecel() const
Get the vehicle type's apparent deceleration [m/s^2] (the one regarded by its followers.
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
virtual double maximumLaneSpeedCF(const MSVehicle *const veh, double maxSpeed, double maxSpeedLane) const
Returns the maximum velocity the CF-model wants to achieve in the next step.
double maximumSafeStopSpeed(double gap, double decel, double currentSpeed, bool onInsertion=false, double headway=-1, bool relaxEmergency=true) const
Returns the maximum next velocity for stopping within gap.
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
double getMinimalArrivalSpeedEuler(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance for Euler update.
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0, const CalcReason usage=CalcReason::CURRENT) const =0
Computes the vehicle's follow speed (no dawdling)
double stopSpeed(const MSVehicle *const veh, const double speed, double gap, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed for approaching a non-moving obstacle (no dawdling)
virtual double getHeadwayTime() const
Get the driver's desired headway [s].
The ToC Device controls transition of control between automated and manual driving.
std::shared_ptr< MSSimpleDriverState > getDriverState() const
return internal state
void update()
update internal state
A device which collects info on the vehicle trip (mainly on departure and arrival)
double consumption(SUMOVehicle &veh, double a, double newSpeed)
return energy consumption in Wh (power multiplied by TS)
double getParameterDouble(const std::string &key) const
void setConsum(const double consumption)
double acceleration(SUMOVehicle &veh, double power, double oldSpeed)
double getConsum() const
Get consum.
A device which collects info on current friction Coefficient on the road.
double getMeasuredFriction()
A device which collects info on the vehicle trip (mainly on departure and arrival)
A device which collects info on the vehicle trip (mainly on departure and arrival)
void cancelCurrentCustomers()
remove the persons the taxi is currently waiting for from reservations
bool notifyMove(SUMOTrafficObject &veh, double oldPos, double newPos, double newSpeed)
Checks whether the vehicle is at a stop and transportable action is needed.
bool anyLeavingAtStop(const MSStop &stop) const
void transferAtSplitOrJoin(MSBaseVehicle *otherVeh)
transfers transportables that want to continue in the other train part (without boarding/loading dela...
void checkCollisionForInactive(MSLane *l)
trigger collision checking for inactive lane
A road/street connecting two junctions.
static void clear()
Clears the dictionary.
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
const MSEdge * getOppositeEdge() const
Returns the opposite direction edge if on exists else a nullptr.
bool isFringe() const
return whether this edge is at the fringe of the network
const MSEdge * getNormalSuccessor() const
if this edge is an internal edge, return its first normal successor, otherwise the edge itself
const std::vector< MSLane * > * allowedLanes(const MSEdge &destination, SUMOVehicleClass vclass=SVC_IGNORING, bool ignoreTransientPermissions=false) const
Get the allowed lanes to reach the destination-edge.
const MSEdge * getBidiEdge() const
return opposite superposable/congruent edge, if it exist and 0 else
bool isNormal() const
return whether this edge is an internal edge
double getSpeedLimit() const
Returns the speed limit of the edge @caution The speed limit of the first lane is retured; should pro...
bool hasChangeProhibitions(SUMOVehicleClass svc, int index) const
return whether this edge prohibits changing for the given vClass when starting on the given lane inde...
const MSJunction * getToJunction() const
const MSJunction * getFromJunction() const
double getMinimumTravelTime(const SUMOVehicle *const veh) const
returns the minimum travel time for the given vehicle
bool isRoundabout() const
bool isInternal() const
return whether this edge is an internal edge
double getWidth() const
Returns the edges's width (sum over all lanes)
bool isVaporizing() const
Returns whether vehicles on this edge shall be vaporized.
void addWaiting(SUMOVehicle *vehicle) const
Adds a vehicle to the list of waiting vehicles.
const MSEdge * getInternalFollowingEdge(const MSEdge *followerAfterInternal, SUMOVehicleClass vClass) const
void removeWaiting(const SUMOVehicle *vehicle) const
Removes a vehicle from the list of waiting vehicles.
const MSEdgeVector & getSuccessors(SUMOVehicleClass vClass=SVC_IGNORING) const
Returns the following edges, restricted by vClass.
static bool gModelParkingManoeuver
whether parking simulation includes manoeuver time and any associated lane blocking
static bool gUseStopStarted
static SUMOTime gStartupWaitThreshold
The minimum waiting time before applying startupDelay.
static double gTLSYellowMinDecel
The minimum deceleration at a yellow traffic light (only overruled by emergencyDecel)
static double gLateralResolution
static bool gSemiImplicitEulerUpdate
static bool gLefthand
Whether lefthand-drive is being simulated.
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
static SUMOTime gLaneChangeDuration
static double gEmergencyDecelWarningThreshold
threshold for warning about strong deceleration
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
void add(SUMOVehicle *veh)
Adds a single vehicle for departure.
virtual const MSJunctionLogic * getLogic() const
virtual const MSLogicJunction::LinkBits & getResponseFor(int linkIndex) const
Returns the response for the given link.
Representation of a lane in the micro simulation.
std::vector< StopWatch< std::chrono::nanoseconds > > & getStopWatch()
const std::vector< MSMoveReminder * > & getMoveReminders() const
Return the list of this lane's move reminders.
std::pair< MSVehicle *const, double > getFollower(const MSVehicle *ego, double egoPos, double dist, MinorLinkMode mLinkMode) const
Find follower vehicle for the given ego vehicle (which may be on the opposite direction lane)
std::pair< const MSPerson *, double > nextBlocking(double minPos, double minRight, double maxLeft, double stopTime=0, bool bidi=false) const
This is just a wrapper around MSPModel::nextBlocking. You should always check using hasPedestrians be...
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
virtual MSVehicle * removeVehicle(MSVehicle *remVehicle, MSMoveReminder::Notification notification, bool notify=true)
int getVehicleNumber() const
Returns the number of vehicles on this lane (for which this lane is responsible)
MSVehicle * getFirstAnyVehicle() const
returns the first vehicle that is fully or partially on this lane
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
int getVehicleNumberWithPartials() const
Returns the number of vehicles on this lane (including partial occupators)
double getBruttoVehLenSum() const
Returns the sum of lengths of vehicles, including their minGaps, which were on the lane during the la...
static std::vector< MSLink * >::const_iterator succLinkSec(const SUMOVehicle &veh, int nRouteSuccs, const MSLane &succLinkSource, const std::vector< MSLane * > &conts)
void markRecalculateBruttoSum()
Set a flag to recalculate the brutto (including minGaps) occupancy of this lane (used if mingap is ch...
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
void forceVehicleInsertion(MSVehicle *veh, double pos, MSMoveReminder::Notification notification, double posLat=0)
Inserts the given vehicle at the given position.
double getVehicleStopOffset(const MSVehicle *veh) const
Returns vehicle class specific stopOffset for the vehicle.
double getSpeedLimit() const
Returns the lane's maximum allowed speed.
std::vector< MSVehicle * > VehCont
Container for vehicles.
const MSEdge * getNextNormal() const
Returns the lane's follower if it is an internal lane, the edge of the lane otherwise.
SVCPermissions getPermissions() const
Returns the vehicle class permissions for this lane.
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
MSLane * getCanonicalPredecessorLane() const
double getLength() const
Returns the lane's length.
double getMaximumBrakeDist() const
compute maximum braking distance on this lane
const MSLane * getInternalFollowingLane(const MSLane *const) const
returns the internal lane leading to the given lane or nullptr, if there is none
const MSLeaderInfo getLastVehicleInformation(const MSVehicle *ego, double latOffset, double minPos=0, bool allowCached=true) const
Returns the last vehicles on the lane.
bool isLinkEnd(std::vector< MSLink * >::const_iterator &i) const
bool allowsVehicleClass(SUMOVehicleClass vclass) const
virtual double setPartialOccupation(MSVehicle *v)
Sets the information about a vehicle lapping into this lane.
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
double getRightSideOnEdge() const
bool hasPedestrians() const
whether the lane has pedestrians on it
int getIndex() const
Returns the lane's index.
MSLane * getCanonicalSuccessorLane() const
double getOppositePos(double pos) const
return the corresponding position on the opposite lane
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
double getCenterOnEdge() const
MSVehicle * getLastAnyVehicle() const
returns the last vehicle that is fully or partially on this lane
virtual void resetPartialOccupation(MSVehicle *v)
Removes the information about a vehicle lapping into this lane.
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
virtual const VehCont & getVehiclesSecure() const
Returns the vehicles container; locks it for microsimulation.
virtual void releaseVehicles() const
Allows to use the container for microsimulation again.
bool mustCheckJunctionCollisions() const
whether this lane must check for junction collisions
double interpolateLanePosToGeometryPos(double lanePos) const
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
std::pair< MSVehicle *const, double > getLeaderOnConsecutive(double dist, double seen, double speed, const MSVehicle &veh, const std::vector< MSLane * > &bestLaneConts) const
Returns the immediate leader and the distance to him.
virtual const PositionVector & getShape(bool) const
MSLane * getParallelOpposite() const
return the opposite direction lane of this lanes edge or nullptr
MSEdge & getEdge() const
Returns the lane's edge.
double getSpaceTillLastStanding(const MSVehicle *ego, bool &foundStopped) const
return the empty space up to the last standing vehicle or the empty space on the whole lane if no veh...
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
MSLeaderDistanceInfo getFollowersOnConsecutive(const MSVehicle *ego, double backOffset, bool allSublanes, double searchDist=-1, MinorLinkMode mLinkMode=FOLLOW_ALWAYS) const
return the sublane followers with the largest missing rear gap among all predecessor lanes (within di...
double getWidth() const
Returns the lane's width.
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
MSVehicle * getFirstFullVehicle() const
returns the first vehicle for which this lane is responsible or 0
const Position geometryPositionAtOffset(double offset, double lateralOffset=0) const
static CollisionAction getCollisionAction()
saves leader/follower vehicles and their distances relative to an ego vehicle
virtual std::string toString() const
print a debugging representation
void fixOppositeGaps(bool isFollower)
subtract vehicle length from all gaps if the leader vehicle is driving in the opposite direction
virtual int addLeader(const MSVehicle *veh, double gap, double latOffset=0, int sublane=-1)
void setSublaneOffset(int offset)
set number of sublanes by which to shift positions
void removeOpposite(const MSLane *lane)
remove vehicles that are driving in the opposite direction (fully or partially) on the given lane
virtual int addLeader(const MSVehicle *veh, bool beyond, double latOffset=0.)
virtual std::string toString() const
print a debugging representation
virtual void clear()
discard all information
int getSublaneOffset() const
void getSubLanes(const MSVehicle *veh, double latOffset, int &rightmost, int &leftmost) const
bool fromInternalLane() const
return whether the fromLane of this link is an internal lane
bool isIndirect() const
whether this link is the start of an indirect turn
const MSLane * getInternalLaneBefore() const
return myInternalLaneBefore (always 0 when compiled without internal lanes)
LinkState getState() const
Returns the current state of the link.
MSJunction * getJunction() const
void setApproaching(const SUMOVehicle *approaching, const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const bool setRequest, const double arrivalSpeedBraking, const SUMOTime waitingTime, double dist, double latOffset)
Sets the information about an approaching vehicle.
SUMOTime getLastStateChange() const
MSLane * getLane() const
Returns the connected lane.
bool opened(SUMOTime arrivalTime, double arrivalSpeed, double leaveSpeed, double vehicleLength, double impatience, double decel, SUMOTime waitingTime, double posLat=0, BlockingFoes *collectFoes=nullptr, bool ignoreRed=false, const SUMOTrafficObject *ego=nullptr, double dist=-1) const
Returns the information whether the link may be passed.
bool isConflictEntryLink() const
return whether this link enters the conflict area (not a continuation link)
int getIndex() const
Returns the respond index (for visualization)
bool havePriority() const
Returns whether this link is a major link.
const LinkLeaders getLeaderInfo(const MSVehicle *ego, double dist, std::vector< const MSPerson * > *collectBlockers=0, bool isShadowLink=false) const
Returns all potential link leaders (vehicles on foeLanes) Valid during the planMove() phase.
bool isEntryLink() const
return whether the toLane of this link is an internal lane and fromLane is a normal lane
const MSLane * getLaneBefore() const
return the internalLaneBefore if it exists and the laneBefore otherwise
bool isInternalJunctionLink() const
return whether the fromLane and the toLane of this link are internal lanes
bool isExitLink() const
return whether the fromLane of this link is an internal lane and toLane is a normal lane
std::vector< LinkLeader > LinkLeaders
MSLane * getViaLane() const
Returns the following inner lane.
std::string getDescription() const
get string description for this link
bool hasFoes() const
Returns whether this link belongs to a junction where more than one edge is incoming.
const MSLink * getCorrespondingEntryLink() const
returns the corresponding entry link for exitLinks to a junction.
void removeApproaching(const SUMOVehicle *veh)
removes the vehicle from myApproachingVehicles
bool isExitLinkAfterInternalJunction() const
return whether the fromLane of this link is an internal lane and its incoming lane is also an interna...
MSLink * getParallelLink(int direction) const
return the link that is parallel to this lane or 0
MSLane * getViaLaneOrLane() const
return the via lane if it exists and the lane otherwise
std::vector< const SUMOTrafficObject * > BlockingFoes
double getLateralShift() const
return lateral shift that must be applied when passing this link
double getFoeVisibilityDistance() const
Returns the distance on the approaching lane from which an approaching vehicle is able to see all rel...
bool lastWasContMajor() const
whether this is a link past an internal junction which currently has priority
const MSTrafficLightLogic * getTLLogic() const
Returns the TLS index.
double getZipperSpeed(const MSVehicle *ego, const double dist, double vSafe, SUMOTime arrivalTime, const BlockingFoes *foes) const
return the speed at which ego vehicle must approach the zipper link
MSLink * getOppositeDirectionLink() const
return the link that is the opposite entry link to this one
LinkDirection getDirection() const
Returns the direction the vehicle passing this link take.
bool keepClear() const
whether the junction after this link must be kept clear
bool haveRed() const
Returns whether this link is blocked by a red (or redyellow) traffic light.
Something on a lane to be noticed about vehicle movement.
Notification
Definition of a vehicle state.
@ NOTIFICATION_TELEPORT_ARRIVED
The vehicle was teleported out of the net.
@ NOTIFICATION_PARKING_REROUTE
The vehicle needs another parking area.
@ NOTIFICATION_DEPARTED
The vehicle has departed (was inserted into the network)
@ NOTIFICATION_LANE_CHANGE
The vehicle changes lanes (micro only)
@ NOTIFICATION_VAPORIZED_VAPORIZER
The vehicle got vaporized with a vaporizer.
@ NOTIFICATION_JUNCTION
The vehicle arrived at a junction.
@ NOTIFICATION_PARKING
The vehicle starts or ends parking.
@ NOTIFICATION_VAPORIZED_COLLISION
The vehicle got removed by a collision.
@ NOTIFICATION_LOAD_STATE
The vehicle has been loaded from a state file.
@ NOTIFICATION_TELEPORT
The vehicle is being teleported.
@ NOTIFICATION_TELEPORT_CONTINUATION
The vehicle continues being teleported past an edge.
The simulated network and simulation perfomer.
void removeVehicleStateListener(VehicleStateListener *listener)
Removes a vehicle states listener.
VehicleState
Definition of a vehicle state.
@ STARTING_STOP
The vehicles starts to stop.
@ STARTING_PARKING
The vehicles starts to park.
@ STARTING_TELEPORT
The vehicle started to teleport.
@ ENDING_STOP
The vehicle ends to stop.
@ ARRIVED
The vehicle arrived at his destination (is deleted)
@ EMERGENCYSTOP
The vehicle had to brake harder than permitted.
@ MANEUVERING
Vehicle maneuvering either entering or exiting a parking space.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
virtual MSTransportableControl & getContainerControl()
Returns the container control.
std::string getStoppingPlaceID(const MSLane *lane, const double pos, const SumoXMLTag category) const
Returns the stop of the given category close to the given position.
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
static bool hasInstance()
Returns whether the network was already constructed.
MSStoppingPlace * getStoppingPlace(const std::string &id, const SumoXMLTag category) const
Returns the named stopping place of the given category.
void addVehicleStateListener(VehicleStateListener *listener)
Adds a vehicle states listener.
bool hasContainers() const
Returns whether containers are simulated.
void informVehicleStateListener(const SUMOVehicle *const vehicle, VehicleState to, const std::string &info="")
Informs all added listeners about a vehicle's state change.
bool hasPersons() const
Returns whether persons are simulated.
MSInsertionControl & getInsertionControl()
Returns the insertion control.
MSVehicleControl & getVehicleControl()
Returns the vehicle control.
virtual MSTransportableControl & getPersonControl()
Returns the person control.
MSEdgeControl & getEdgeControl()
Returns the edge control.
bool hasElevation() const
return whether the network contains elevation data
static const double SAFETY_GAP
A lane area vehicles can halt at.
void leaveFrom(SUMOVehicle *what)
Called if a vehicle leaves this stop.
int getCapacity() const
Returns the area capacity.
void enter(SUMOVehicle *veh)
Called if a vehicle enters this stop.
int getLotIndex(const SUMOVehicle *veh) const
compute lot for this vehicle
int getLastFreeLotAngle() const
Return the angle of myLastFreeLot - the next parking lot only expected to be called after we have est...
bool parkOnRoad() const
whether vehicles park on the road
int getOccupancyIncludingBlocked() const
Returns the area occupancy.
double getLastFreePosWithReservation(SUMOTime t, const SUMOVehicle &forVehicle, double brakePos)
Returns the last free position on this stop including reservations from the current lane and time ste...
double getLastFreeLotGUIAngle() const
Return the GUI angle of myLastFreeLot - the angle the GUI uses to rotate into the next parking lot as...
int getManoeuverAngle(const SUMOVehicle &forVehicle) const
Return the manoeuver angle of the lot where the vehicle is parked.
int getOccupancy() const
Returns the area occupancy.
double getGUIAngle(const SUMOVehicle &forVehicle) const
Return the GUI angle of the lot where the vehicle is parked.
void notifyApproach(const MSLink *link)
switch rail signal to active
static MSRailSignalControl & getInstance()
const ConstMSEdgeVector & getEdges() const
const MSEdge * getLastEdge() const
returns the destination edge
MSRouteIterator begin() const
Returns the begin of the list of edges to pass.
const MSLane * lane
The lane to stop at (microsim only)
bool triggered
whether an arriving person lets the vehicle continue
bool containerTriggered
whether an arriving container lets the vehicle continue
SUMOTime timeToLoadNextContainer
The time at which the vehicle is able to load another container.
MSStoppingPlace * containerstop
(Optional) container stop if one is assigned to the stop
double getSpeed() const
return speed for passing waypoint / skipping on-demand stop
bool joinTriggered
whether coupling another vehicle (train) the vehicle continue
bool isOpposite
whether this an opposite-direction stop
SUMOTime getMinDuration(SUMOTime time) const
return minimum stop duration when starting stop at time
int numExpectedContainer
The number of still expected containers.
bool reached
Information whether the stop has been reached.
MSRouteIterator edge
The edge in the route to stop at.
SUMOTime timeToBoardNextPerson
The time at which the vehicle is able to board another person.
bool skipOnDemand
whether the decision to skip this stop has been made
const MSEdge * getEdge() const
double getReachedThreshold() const
return startPos taking into account opposite stopping
SUMOTime endBoarding
the maximum time at which persons may board this vehicle
double getEndPos(const SUMOVehicle &veh) const
return halting position for upcoming stop;
int numExpectedPerson
The number of still expected persons.
MSParkingArea * parkingarea
(Optional) parkingArea if one is assigned to the stop
bool startedFromState
whether the 'started' value was loaded from simulaton state
MSStoppingPlace * chargingStation
(Optional) charging station if one is assigned to the stop
SUMOTime duration
The stopping duration.
SUMOTime getUntil() const
return until / ended time
const SUMOVehicleParameter::Stop pars
The stop parameter.
MSStoppingPlace * busstop
(Optional) bus stop if one is assigned to the stop
void stopStarted(const SUMOVehicle *veh, int numPersons, int numContainers, SUMOTime time)
void stopEnded(const SUMOVehicle *veh, const SUMOVehicleParameter::Stop &stop, const std::string &laneOrEdgeID, bool simEnd=false)
static MSStopOut * getInstance()
double getBeginLanePosition() const
Returns the begin position of this stop.
bool fits(double pos, const SUMOVehicle &veh) const
return whether the given vehicle fits at the given position
double getEndLanePosition() const
Returns the end position of this stop.
void enter(SUMOVehicle *veh, bool parking)
Called if a vehicle enters this stop.
const MSLane & getLane() const
Returns the lane this stop is located at.
void leaveFrom(SUMOVehicle *what)
Called if a vehicle leaves this stop.
bool hasAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle) const
check whether any transportables are waiting for the given vehicle
bool loadAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle, SUMOTime &timeToLoadNext, SUMOTime &stopDuration, MSTransportable *const force=nullptr)
load any applicable transportables Loads any person / container that is waiting on that edge for the ...
bool isPerson() const
Whether it is a person.
A static instance of this class in GapControlState deactivates gap control for vehicles whose referen...
void vehicleStateChanged(const SUMOVehicle *const vehicle, MSNet::VehicleState to, const std::string &info="")
Called if a vehicle changes its state.
Changes the wished vehicle speed / lanes.
void setLaneChangeMode(int value)
Sets lane changing behavior.
TraciLaneChangePriority myTraciLaneChangePriority
flags for determining the priority of traci lane change requests
bool getEmergencyBrakeRedLight() const
Returns whether red lights shall be a reason to brake.
SUMOTime getLaneTimeLineEnd()
void adaptLaneTimeLine(int indexShift)
Adapts lane timeline when moving to a new lane and the lane index changes.
void setRemoteControlled(Position xyPos, MSLane *l, double pos, double posLat, double angle, int edgeOffset, const ConstMSEdgeVector &route, SUMOTime t)
bool isRemoteAffected(SUMOTime t) const
int getSpeedMode() const
return the current speed mode
void deactivateGapController()
Deactivates the gap control.
void setSpeedMode(int speedMode)
Sets speed-constraining behaviors.
std::shared_ptr< GapControlState > myGapControlState
The gap control state.
bool considerSafeVelocity() const
Returns whether safe velocities shall be considered.
bool myConsiderMaxDeceleration
Whether the maximum deceleration shall be regarded.
void setLaneTimeLine(const std::vector< std::pair< SUMOTime, int > > &laneTimeLine)
Sets a new lane timeline.
bool myRespectJunctionLeaderPriority
Whether the junction priority rules are respected (within)
void setOriginalSpeed(double speed)
Stores the originally longitudinal speed.
double myOriginalSpeed
The velocity before influence.
double implicitDeltaPosRemote(const MSVehicle *veh)
return the change in longitudinal position that is implicit in the new remote position
double implicitSpeedRemote(const MSVehicle *veh, double oldSpeed)
return the speed that is implicit in the new remote position
void postProcessRemoteControl(MSVehicle *v)
update position from remote control
double gapControlSpeed(SUMOTime currentTime, const SUMOVehicle *veh, double speed, double vSafe, double vMin, double vMax)
Applies gap control logic on the speed.
void setSublaneChange(double latDist)
Sets a new sublane-change request.
double getOriginalSpeed() const
Returns the originally longitudinal speed to use.
SUMOTime myLastRemoteAccess
bool getRespectJunctionLeaderPriority() const
Returns whether junction priority rules within the junction shall be respected (concerns vehicles wit...
LaneChangeMode myStrategicLC
lane changing which is necessary to follow the current route
LaneChangeMode mySpeedGainLC
lane changing to travel with higher speed
void init()
Static initalization.
LaneChangeMode mySublaneLC
changing to the prefered lateral alignment
bool getRespectJunctionPriority() const
Returns whether junction priority rules shall be respected (concerns approaching vehicles outside the...
static void cleanup()
Static cleanup.
int getLaneChangeMode() const
return the current lane change mode
SUMOTime getLaneTimeLineDuration()
double influenceSpeed(SUMOTime currentTime, double speed, double vSafe, double vMin, double vMax)
Applies stored velocity information on the speed to use.
double changeRequestRemainingSeconds(const SUMOTime currentTime) const
Return the remaining number of seconds of the current laneTimeLine assuming one exists.
bool myConsiderSafeVelocity
Whether the safe velocity shall be regarded.
bool mySpeedAdaptationStarted
Whether influencing the speed has already started.
void setSignals(int signals)
double myLatDist
The requested lateral change.
bool myEmergencyBrakeRedLight
Whether red lights are a reason to brake.
LaneChangeMode myRightDriveLC
changing to the rightmost lane
void setSpeedTimeLine(const std::vector< std::pair< SUMOTime, double > > &speedTimeLine)
Sets a new velocity timeline.
void updateRemoteControlRoute(MSVehicle *v)
update route if provided by remote control
SUMOTime getLastAccessTimeStep() const
bool myConsiderMaxAcceleration
Whether the maximum acceleration shall be regarded.
LaneChangeMode myCooperativeLC
lane changing with the intent to help other vehicles
bool isRemoteControlled() const
bool myRespectJunctionPriority
Whether the junction priority rules are respected (approaching)
int influenceChangeDecision(const SUMOTime currentTime, const MSEdge ¤tEdge, const int currentLaneIndex, int state)
Applies stored LaneChangeMode information and laneTimeLine.
void activateGapController(double originalTau, double newTimeHeadway, double newSpaceHeadway, double duration, double changeRate, double maxDecel, MSVehicle *refVeh=nullptr)
Activates the gap control with the given parameters,.
Container for manouevering time associated with stopping.
SUMOTime myManoeuvreCompleteTime
Time at which this manoeuvre should complete.
MSVehicle::ManoeuvreType getManoeuvreType() const
Accessor (get) for manoeuvre type.
std::string myManoeuvreStop
The name of the stop associated with the Manoeuvre - for debug output.
bool manoeuvreIsComplete() const
Check if any manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureExitManoeuvre(MSVehicle *veh)
Setup the myManoeuvre for exiting (Sets completion time and manoeuvre type)
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
Accessor (set) for manoeuvre type.
Manoeuvre & operator=(const Manoeuvre &manoeuvre)
Assignment operator.
ManoeuvreType myManoeuvreType
Manoeuvre type - currently entry, exit or none.
double getGUIIncrement() const
Accessor for GUI rotation step when parking (radians)
SUMOTime myManoeuvreStartTime
Time at which the Manoeuvre for this stop started.
bool operator!=(const Manoeuvre &manoeuvre)
Operator !=.
bool entryManoeuvreIsComplete(MSVehicle *veh)
Configure an entry manoeuvre if nothing is configured - otherwise check if complete.
bool manoeuvreIsComplete(const ManoeuvreType checkType) const
Check if specific manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureEntryManoeuvre(MSVehicle *veh)
Setup the entry manoeuvre for this vehicle (Sets completion time and manoeuvre type)
Container that holds the vehicles driving state (position+speed).
double myPosLat
the stored lateral position
State(double pos, double speed, double posLat, double backPos, double previousSpeed)
Constructor.
double myPreviousSpeed
the speed at the begin of the previous time step
double myPos
the stored position
bool operator!=(const State &state)
Operator !=.
double mySpeed
the stored speed (should be >=0 at any time)
State & operator=(const State &state)
Assignment operator.
double pos() const
Position of this state.
double myBackPos
the stored back position
void passTime(SUMOTime dt, bool waiting)
const std::string getState() const
SUMOTime cumulatedWaitingTime(SUMOTime memory=-1) const
void setState(const std::string &state)
WaitingTimeCollector(SUMOTime memory=MSGlobals::gWaitingTimeMemory)
Constructor.
void registerEmergencyStop()
register emergency stop
SUMOVehicle * getVehicle(const std::string &id) const
Returns the vehicle with the given id.
void registerStopEnded()
register emergency stop
void registerEmergencyBraking()
register emergency stop
void removeVType(const MSVehicleType *vehType)
void registerOneWaiting()
increases the count of vehicles waiting for a transport to allow recognition of person / container re...
void unregisterOneWaiting()
decreases the count of vehicles waiting for a transport to allow recognition of person / container re...
void registerStopStarted()
register emergency stop
Abstract in-vehicle device.
Representation of a vehicle in the micro simulation.
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
accessor function to myManoeuvre equivalent
TraciLaneChangePriority
modes for prioritizing traci lane change requests
double getRightSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
bool wasRemoteControlled(SUMOTime lookBack=DELTA_T) const
Returns the information whether the vehicle is fully controlled via TraCI within the lookBack time.
void processLinkApproaches(double &vSafe, double &vSafeMin, double &vSafeMinDist)
This method iterates through the driveprocess items for the vehicle and adapts the given in/out param...
const MSLane * getPreviousLane(const MSLane *current, int &furtherIndex) const
void checkLinkLeader(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest, bool isShadowLink=false) const
checks for link leaders on the given link
void checkRewindLinkLanes(const double lengthsInFront, DriveItemVector &lfLinks) const
runs heuristic for keeping the intersection clear in case of downstream jamming
bool willStop() const
Returns whether the vehicle will stop on the current edge.
bool hasDriverState() const
Whether this vehicle is equipped with a MSDriverState.
static int nextLinkPriority(const std::vector< MSLane * > &conts)
get a numerical value for the priority of the upcoming link
double getTimeGapOnLane() const
Returns the time gap in seconds to the leader of the vehicle on the same lane.
void updateBestLanes(bool forceRebuild=false, const MSLane *startLane=0)
computes the best lanes to use in order to continue the route
bool myAmIdling
Whether the vehicle is trying to enter the network (eg after parking so engine is running)
SUMOTime myWaitingTime
The time the vehicle waits (is not faster than 0.1m/s) in seconds.
double getStopDelay() const
Returns the public transport stop delay in seconds.
double computeAngle() const
compute the current vehicle angle
double myTimeLoss
the time loss in seconds due to driving with less than maximum speed
SUMOTime myLastActionTime
Action offset (actions are taken at time myActionOffset + N*getActionStepLength()) Initialized to 0,...
ConstMSEdgeVector::const_iterator getRerouteOrigin() const
Returns the starting point for reroutes (usually the current edge)
bool hasArrivedInternal(bool oppositeTransformed=true) const
Returns whether this vehicle has already arived (reached the arrivalPosition on its final edge) metho...
double getFriction() const
Returns the current friction on the road as perceived by the friction device.
bool ignoreFoe(const SUMOTrafficObject *foe) const
decide whether a given foe object may be ignored
void boardTransportables(MSStop &stop)
board persons and load transportables at the given stop
const std::vector< const MSLane * > getUpcomingLanesUntil(double distance) const
Returns the upcoming (best followed by default 0) sequence of lanes to continue the route starting at...
bool isOnRoad() const
Returns the information whether the vehicle is on a road (is simulated)
void adaptLaneEntering2MoveReminder(const MSLane &enteredLane)
Adapts the vehicle's entering of a new lane.
void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
SUMOTime myJunctionConflictEntryTime
double getLeftSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
PositionVector getBoundingPoly(double offset=0) const
get bounding polygon
void setTentativeLaneAndPosition(MSLane *lane, double pos, double posLat=0)
set tentative lane and position during insertion to ensure that all cfmodels work (some of them requi...
bool brakeForOverlap(const MSLink *link, const MSLane *lane) const
handle with transitions
void workOnMoveReminders(double oldPos, double newPos, double newSpeed)
Processes active move reminder.
bool isStoppedOnLane() const
double getDistanceToPosition(double destPos, const MSLane *destLane) const
bool brokeDown() const
Returns how long the vehicle has been stopped already due to lack of energy.
double myAcceleration
The current acceleration after dawdling in m/s.
void registerInsertionApproach(MSLink *link, double dist)
register approach on insertion
void cleanupFurtherLanes()
remove vehicle from further lanes (on leaving the network)
void adaptToLeaders(const MSLeaderInfo &ahead, double latOffset, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass) const
const MSLane * getBackLane() const
Returns the lane the where the rear of the object is currently at.
void enterLaneAtInsertion(MSLane *enteredLane, double pos, double speed, double posLat, MSMoveReminder::Notification notification)
Update when the vehicle enters a new lane in the emit step.
double getBackPositionOnLane() const
Get the vehicle's position relative to its current lane.
void setPreviousSpeed(double prevSpeed, double prevAcceleration)
Sets the influenced previous speed.
SUMOTime getArrivalTime(SUMOTime t, double seen, double v, double arrivalSpeed) const
double getAccumulatedWaitingSeconds() const
Returns the number of seconds waited (speed was lesser than 0.1m/s) within the last millisecs.
SUMOTime getWaitingTime(const bool accumulated=false) const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
virtual ~MSVehicle()
Destructor.
void processLaneAdvances(std::vector< MSLane * > &passedLanes, std::string &emergencyReason)
This method checks if the vehicle has advanced over one or several lanes along its route and triggers...
MSAbstractLaneChangeModel & getLaneChangeModel()
void setEmergencyBlueLight(SUMOTime currentTime)
sets the blue flashing light for emergency vehicles
bool isActionStep(SUMOTime t) const
Returns whether the next simulation step will be an action point for the vehicle.
MSAbstractLaneChangeModel * myLaneChangeModel
Position getPositionAlongBestLanes(double offset) const
Return the (x,y)-position, which the vehicle would reach if it continued along its best continuation ...
bool hasValidRouteStart(std::string &msg)
checks wether the vehicle can depart on the first edge
double getLeftSideOnLane() const
Get the lateral position of the vehicles left side on the lane:
std::vector< MSLane * > myFurtherLanes
The information into which lanes the vehicle laps into.
bool signalSet(int which) const
Returns whether the given signal is on.
MSCFModel::VehicleVariables * myCFVariables
The per vehicle variables of the car following model.
bool betterContinuation(const LaneQ *bestConnectedNext, const LaneQ &m) const
comparison between different continuations from the same lane
bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
void checkLinkLeaderCurrentAndParallel(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest) const
checks for link leaders of the current link as well as the parallel link (if there is one)
void planMoveInternal(const SUMOTime t, MSLeaderInfo ahead, DriveItemVector &lfLinks, double &myStopDist, std::pair< double, const MSLink * > &myNextTurn) const
std::pair< double, const MSLink * > myNextTurn
the upcoming turn for the vehicle
double getDistanceToLeaveJunction() const
get the distance from the start of this lane to the start of the next normal lane (or 0 if this lane ...
int influenceChangeDecision(int state)
allow TraCI to influence a lane change decision
double getMaxSpeedOnLane() const
Returns the maximal speed for the vehicle on its current lane (including speed factor and deviation,...
bool isRemoteControlled() const
Returns the information whether the vehicle is fully controlled via TraCI.
bool myAmOnNet
Whether the vehicle is on the network (not parking, teleported, vaporized, or arrived)
void enterLaneAtMove(MSLane *enteredLane, bool onTeleporting=false)
Update when the vehicle enters a new lane in the move step.
void adaptBestLanesOccupation(int laneIndex, double density)
update occupation from MSLaneChanger
std::pair< double, double > estimateTimeToNextStop() const
return time (s) and distance to the next stop
double accelThresholdForWaiting() const
maximum acceleration to consider a vehicle as 'waiting' at low speed
void setAngle(double angle, bool straightenFurther=false)
Set a custom vehicle angle in rad, optionally updates furtherLanePosLat.
std::vector< LaneQ >::iterator myCurrentLaneInBestLanes
double getDeltaPos(const double accel) const
calculates the distance covered in the next integration step given an acceleration and assuming the c...
const MSLane * myLastBestLanesInternalLane
void updateOccupancyAndCurrentBestLane(const MSLane *startLane)
updates LaneQ::nextOccupation and myCurrentLaneInBestLanes
const std::vector< MSLane * > getUpstreamOppositeLanes() const
Returns the sequence of opposite lanes corresponding to past lanes.
WaitingTimeCollector myWaitingTimeCollector
void setRemoteState(Position xyPos)
sets position outside the road network
void fixPosition()
repair errors in vehicle position after changing between internal edges
double getAcceleration() const
Returns the vehicle's acceleration in m/s (this is computed as the last step's mean acceleration in c...
double getSpeedWithoutTraciInfluence() const
Returns the uninfluenced velocity.
PositionVector getBoundingBox(double offset=0) const
get bounding rectangle
ManoeuvreType
flag identifying which, if any, manoeuvre is in progress
@ MANOEUVRE_ENTRY
Manoeuvre into stopping place.
@ MANOEUVRE_NONE
not manouevring
@ MANOEUVRE_EXIT
Manoeuvre out of stopping place.
const MSEdge * getNextEdgePtr() const
returns the next edge (possibly an internal edge)
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
void setBrakingSignals(double vNext)
sets the braking lights on/off
const std::vector< MSLane * > & getBestLanesContinuation() const
Returns the best sequence of lanes to continue the route starting at myLane.
const MSEdge * myLastBestLanesEdge
bool ignoreCollision() const
whether this vehicle is except from collision checks
Influencer * myInfluencer
An instance of a velocity/lane influencing instance; built in "getInfluencer".
void saveState(OutputDevice &out)
Saves the states of a vehicle.
void onRemovalFromNet(const MSMoveReminder::Notification reason)
Called when the vehicle is removed from the network.
void planMove(const SUMOTime t, const MSLeaderInfo &ahead, const double lengthsInFront)
Compute safe velocities for the upcoming lanes based on positions and speeds from the last time step....
bool resumeFromStopping()
int getBestLaneOffset() const
void adaptToJunctionLeader(const std::pair< const MSVehicle *, double > leaderInfo, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass, double distToCrossing=-1) const
double lateralDistanceToLane(const int offset) const
Get the minimal lateral distance required to move fully onto the lane at given offset.
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
void leaveLaneBack(const MSMoveReminder::Notification reason, const MSLane *leftLane)
Update of reminders if vehicle back leaves a lane during (during forward movement.
void resetActionOffset(const SUMOTime timeUntilNextAction=0)
Resets the action offset for the vehicle.
std::vector< DriveProcessItem > DriveItemVector
Container for used Links/visited Lanes during planMove() and executeMove.
void interpolateLateralZ(Position &pos, double offset, double posLat) const
perform lateral z interpolation in elevated networks
void setBlinkerInformation()
sets the blue flashing light for emergency vehicles
const MSEdge * getCurrentEdge() const
Returns the edge the vehicle is currently at (possibly an internal edge or nullptr)
void adaptToLeaderDistance(const MSLeaderDistanceInfo &ahead, double latOffset, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
DriveItemVector::iterator myNextDriveItem
iterator pointing to the next item in myLFLinkLanes
void leaveLane(const MSMoveReminder::Notification reason, const MSLane *approachedLane=0)
Update of members if vehicle leaves a new lane in the lane change step or at arrival.
bool isIdling() const
Returns whether a sim vehicle is waiting to enter a lane (after parking has completed)
std::shared_ptr< MSSimpleDriverState > getDriverState() const
Returns the vehicle driver's state.
void removeApproachingInformation(const DriveItemVector &lfLinks) const
unregister approach from all upcoming links
void replaceVehicleType(MSVehicleType *type)
Replaces the current vehicle type by the one given.
SUMOTime myJunctionEntryTimeNeverYield
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
bool rerouteParkingArea(const std::string &parkingAreaID, std::string &errorMsg)
bool hasArrived() const
Returns whether this vehicle has already arived (reached the arrivalPosition on its final edge)
void switchOffSignal(int signal)
Switches the given signal off.
void updateState(double vNext)
updates the vehicles state, given a next value for its speed. This value can be negative in case of t...
double getStopArrivalDelay() const
Returns the estimated public transport stop arrival delay in seconds.
int mySignals
State of things of the vehicle that can be on or off.
bool setExitManoeuvre()
accessor function to myManoeuvre equivalent
bool isOppositeLane(const MSLane *lane) const
whether the give lane is reverse direction of the current route or not
double myStopDist
distance to the next stop or doubleMax if there is none
Signalling
Some boolean values which describe the state of some vehicle parts.
@ VEH_SIGNAL_BLINKER_RIGHT
Right blinker lights are switched on.
@ VEH_SIGNAL_BRAKELIGHT
The brake lights are on.
@ VEH_SIGNAL_EMERGENCY_BLUE
A blue emergency light is on.
@ VEH_SIGNAL_BLINKER_LEFT
Left blinker lights are switched on.
SUMOTime getActionStepLength() const
Returns the vehicle's action step length in millisecs, i.e. the interval between two action points.
bool myHaveToWaitOnNextLink
SUMOTime collisionStopTime() const
Returns the remaining time a vehicle needs to stop due to a collision. A negative value indicates tha...
const std::vector< const MSLane * > getPastLanesUntil(double distance) const
Returns the sequence of past lanes (right-most on edge) based on the route starting at the current la...
double getBestLaneDist() const
returns the distance that can be driven without lane change
std::pair< const MSVehicle *const, double > getLeader(double dist=0) const
Returns the leader of the vehicle looking for a fixed distance.
double slowDownForSchedule(double vMinComfortable) const
optionally return an upper bound on speed to stay within the schedule
bool executeMove()
Executes planned vehicle movements with regards to right-of-way.
const MSLane * getLane() const
Returns the lane the vehicle is on.
std::pair< const MSVehicle *const, double > getFollower(double dist=0) const
Returns the follower of the vehicle looking for a fixed distance.
ChangeRequest
Requests set via TraCI.
@ REQUEST_HOLD
vehicle want's to keep the current lane
@ REQUEST_LEFT
vehicle want's to change to left lane
@ REQUEST_NONE
vehicle doesn't want to change
@ REQUEST_RIGHT
vehicle want's to change to right lane
bool isLeader(const MSLink *link, const MSVehicle *veh, const double gap) const
whether the given vehicle must be followed at the given junction
void computeFurtherLanes(MSLane *enteredLane, double pos, bool collision=false)
updates myFurtherLanes on lane insertion or after collision
MSLane * getMutableLane() const
Returns the lane the vehicle is on Non const version indicates that something volatile is going on.
std::pair< const MSLane *, double > getLanePosAfterDist(double distance) const
return lane and position along bestlanes at the given distance
SUMOTime myCollisionImmunity
amount of time for which the vehicle is immune from collisions
bool passingMinor() const
decide whether the vehicle is passing a minor link or has comitted to do so
void updateWaitingTime(double vNext)
Updates the vehicle's waiting time counters (accumulated and consecutive)
void enterLaneAtLaneChange(MSLane *enteredLane)
Update when the vehicle enters a new lane in the laneChange step.
BaseInfluencer & getBaseInfluencer()
Returns the velocity/lane influencer.
Influencer & getInfluencer()
bool isBidiOn(const MSLane *lane) const
whether this vehicle is driving against lane
double getRightSideOnLane() const
Get the lateral position of the vehicles right side on the lane:
bool unsafeLinkAhead(const MSLane *lane) const
whether the vehicle may safely move to the given lane with regard to upcoming links
double getCurrentApparentDecel() const
get apparent deceleration based on vType parameters and current acceleration
double updateFurtherLanes(std::vector< MSLane * > &furtherLanes, std::vector< double > &furtherLanesPosLat, const std::vector< MSLane * > &passedLanes)
update a vector of further lanes and return the new backPos
DriveItemVector myLFLinkLanesPrev
planned speeds from the previous step for un-registering from junctions after the new container is fi...
std::vector< std::vector< LaneQ > > myBestLanes
void setActionStepLength(double actionStepLength, bool resetActionOffset=true)
Sets the action steplength of the vehicle.
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
double getSlope() const
Returns the slope of the road at vehicle's position in degrees.
bool myActionStep
The flag myActionStep indicates whether the current time step is an action point for the vehicle.
const Position getBackPosition() const
void loadState(const SUMOSAXAttributes &attrs, const SUMOTime offset)
Loads the state of this vehicle from the given description.
SUMOTime myTimeSinceStartup
duration of driving (speed > SUMO_const_haltingSpeed) after the last halting episode
double getSpeed() const
Returns the vehicle's current speed.
void setApproachingForAllLinks(const SUMOTime t)
Register junction approaches for all link items in the current plan.
SUMOTime remainingStopDuration() const
Returns the remaining stop duration for a stopped vehicle or 0.
bool keepStopping(bool afterProcessing=false) const
Returns whether the vehicle is stopped and must continue to do so.
void workOnIdleReminders()
cycle through vehicle devices invoking notifyIdle
static std::vector< MSLane * > myEmptyLaneVector
Position myCachedPosition
bool replaceRoute(ConstMSRoutePtr route, const std::string &info, bool onInit=false, int offset=0, bool addStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
MSVehicle::ManoeuvreType getManoeuvreType() const
accessor function to myManoeuvre equivalent
double checkReversal(bool &canReverse, double speedThreshold=SUMO_const_haltingSpeed, double seen=0) const
void updateLaneBruttoSum()
Update the lane brutto occupancy after a change in minGap.
void removePassedDriveItems()
Erase passed drive items from myLFLinkLanes (and unregister approaching information for corresponding...
const std::vector< MSLane * > & getFurtherLanes() const
const std::vector< LaneQ > & getBestLanes() const
Returns the description of best lanes to use in order to continue the route.
std::vector< double > myFurtherLanesPosLat
lateral positions on further lanes
bool checkActionStep(const SUMOTime t)
Returns whether the vehicle is supposed to take action in the current simulation step Updates myActio...
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
Position validatePosition(Position result, double offset=0) const
ensure that a vehicle-relative position is not invalid
void loadPreviousApproaching(MSLink *link, bool setRequest, SUMOTime arrivalTime, double arrivalSpeed, double arrivalSpeedBraking, double dist, double leaveSpeed)
bool keepClear(const MSLink *link) const
decide whether the given link must be kept clear
bool manoeuvreIsComplete() const
accessor function to myManoeuvre equivalent
double processNextStop(double currentVelocity)
Processes stops, returns the velocity needed to reach the stop.
double myAngle
the angle in radians (
bool ignoreRed(const MSLink *link, bool canBrake) const
decide whether a red (or yellow light) may be ignored
double getPositionOnLane() const
Get the vehicle's position along the lane.
void updateTimeLoss(double vNext)
Updates the vehicle's time loss.
MSDevice_DriverState * myDriverState
This vehicle's driver state.
bool joinTrainPart(MSVehicle *veh)
try joining the given vehicle to the rear of this one (to resolve joinTriggered)
MSLane * myLane
The lane the vehicle is on.
bool onFurtherEdge(const MSEdge *edge) const
whether this vehicle has its back (and no its front) on the given edge
double processTraCISpeedControl(double vSafe, double vNext)
Check for speed advices from the traci client and adjust the speed vNext in the current (euler) / aft...
double getLateralOverlap() const
return the amount by which the vehicle extends laterally outside it's primary lane
double getAngle() const
Returns the vehicle's direction in radians.
bool handleCollisionStop(MSStop &stop, const double distToStop)
bool hasInfluencer() const
whether the vehicle is individually influenced (via TraCI or special parameters)
MSDevice_Friction * myFrictionDevice
This vehicle's friction perception.
double getPreviousSpeed() const
Returns the vehicle's speed before the previous time step.
MSVehicle()
invalidated default constructor
bool joinTrainPartFront(MSVehicle *veh)
try joining the given vehicle to the front of this one (to resolve joinTriggered)
void updateActionOffset(const SUMOTime oldActionStepLength, const SUMOTime newActionStepLength)
Process an updated action step length value (only affects the vehicle's action offset,...
double getBrakeGap(bool delayed=false) const
get distance for coming to a stop (used for rerouting checks)
void executeFractionalMove(double dist)
move vehicle forward by the given distance during insertion
LaneChangeMode
modes for resolving conflicts between external control (traci) and vehicle control over lane changing...
virtual void drawOutsideNetwork(bool)
register vehicle for drawing while outside the network
void adaptToOncomingLeader(const std::pair< const MSVehicle *, double > leaderInfo, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
State myState
This Vehicles driving state (pos and speed)
double getCenterOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
void adaptToLeader(const std::pair< const MSVehicle *, double > leaderInfo, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
void switchOnSignal(int signal)
Switches the given signal on.
static bool overlap(const MSVehicle *veh1, const MSVehicle *veh2)
void updateParkingState()
update state while parking
DriveItemVector myLFLinkLanes
container for the planned speeds in the current step
void updateDriveItems()
Check whether the drive items (myLFLinkLanes) are up to date, and update them if required.
SUMOTime myJunctionEntryTime
time at which the current junction was entered
static MSVehicleTransfer * getInstance()
Returns the instance of this object.
void remove(MSVehicle *veh)
Remove a vehicle from this transfer object.
The car-following model and parameter.
double getLengthWithGap() const
Get vehicle's length including the minimum gap [m].
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
double getMaxSpeed() const
Get vehicle's (technical) maximum speed [m/s].
const std::string & getID() const
Returns the name of the vehicle type.
double getMinGap() const
Get the free space in front of vehicles of this class.
LaneChangeModel getLaneChangeModel() const
void setLength(const double &length)
Set a new value for this type's length.
SUMOTime getExitManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning exit time for a specific manoeuver angle.
const MSCFModel & getCarFollowModel() const
Returns the vehicle type's car following model definition (const version)
bool isVehicleSpecific() const
Returns whether this type belongs to a single vehicle only (was modified)
void setActionStepLength(const SUMOTime actionStepLength, bool resetActionOffset)
Set a new value for this type's action step length.
double getLength() const
Get vehicle's length [m].
SUMOVehicleShape getGuiShape() const
Get this vehicle type's shape.
SUMOTime getEntryManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning entry time for a specific manoeuver angle.
const SUMOVTypeParameter & getParameter() const
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
const std::string & getID() const
Returns the id.
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
bool hasParameter(const std::string &key) const
Returns whether the parameter is set.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
void writeParams(OutputDevice &device) const
write Params in the given outputdevice
A point in 2D or 3D with translation and scaling methods.
double slopeTo2D(const Position &other) const
returns the slope of the vector pointing from here to the other position (in radians between -M_PI an...
static const Position INVALID
used to indicate that a position is valid
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
void setz(double z)
set position z
double z() const
Returns the z-position.
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position (in radians bet...
double length2D() const
Returns the length.
void append(const PositionVector &v, double sameThreshold=2.0)
double rotationAtOffset(double pos) const
Returns the rotation at the given length.
Position positionAtOffset(double pos, double lateralOffset=0) const
Returns the position at the given length.
void move2side(double amount, double maxExtension=100)
move position vector to side using certain amount
double slopeDegreeAtOffset(double pos) const
Returns the slope at the given length.
void extrapolate2D(const double val, const bool onlyFirst=false)
extrapolate position vector in two dimensions (Z is ignored)
void scaleRelative(double factor)
enlarges/shrinks the polygon by a factor based at the centroid
PositionVector reverse() const
reverse position vector
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
virtual bool compute(const E *from, const E *to, const V *const vehicle, SUMOTime msTime, std::vector< const E * > &into, bool silent=false)=0
Builds the route between the given edges using the minimum effort at the given time The definition of...
virtual double recomputeCosts(const std::vector< const E * > &edges, const V *const v, SUMOTime msTime, double *lengthp=nullptr) const
Encapsulated SAX-Attributes.
virtual std::string getString(int id, bool *isPresent=nullptr) const =0
Returns the string-value of the named (by its enum-value) attribute.
virtual bool hasAttribute(int id) const =0
Returns the information whether the named (by its enum-value) attribute is within the current list.
double getFloat(int id) const
Returns the double-value of the named (by its enum-value) attribute.
Representation of a vehicle, person, or container.
virtual const MSVehicleType & getVehicleType() const =0
Returns the object's "vehicle" type.
virtual double getSpeed() const =0
Returns the object's current speed.
double speedFactorPremature
the possible speed reduction when a train is ahead of schedule
double getLCParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
double getJMParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
Representation of a vehicle.
Definition of vehicle stop (position and duration)
SUMOTime started
the time at which this stop was reached
ParkingType parking
whether the vehicle is removed from the net while stopping
SUMOTime extension
The maximum time extension for boarding / loading.
std::string split
the id of the vehicle (train portion) that splits of upon reaching this stop
double startPos
The stopping position start.
std::string line
the new line id of the trip within a cyclical public transport route
double posLat
the lateral offset when stopping
bool onDemand
whether the stop may be skipped
std::string join
the id of the vehicle (train portion) to which this vehicle shall be joined
SUMOTime until
The time at which the vehicle may continue its journey.
SUMOTime ended
the time at which this stop was ended
double endPos
The stopping position end.
SUMOTime waitUntil
The earliest pickup time for a taxi stop.
std::string tripId
id of the trip within a cyclical public transport route
bool collision
Whether this stop was triggered by a collision.
SUMOTime arrival
The (expected) time at which the vehicle reaches the stop.
SUMOTime duration
The stopping duration.
Structure representing possible vehicle parameter.
int departLane
(optional) The lane the vehicle shall depart from (index in edge)
ArrivalSpeedDefinition arrivalSpeedProcedure
Information how the vehicle's end speed shall be chosen.
double departSpeed
(optional) The initial speed of the vehicle
std::vector< std::string > via
List of the via-edges the vehicle must visit.
ArrivalLaneDefinition arrivalLaneProcedure
Information how the vehicle shall choose the lane to arrive on.
long long int parametersSet
Information for the router which parameter were set, TraCI may modify this (when changing color)
DepartLaneDefinition departLaneProcedure
Information how the vehicle shall choose the lane to depart from.
bool wasSet(long long int what) const
Returns whether the given parameter was set.
DepartSpeedDefinition departSpeedProcedure
Information how the vehicle's initial speed shall be chosen.
double arrivalPos
(optional) The position the vehicle shall arrive on
ArrivalPosDefinition arrivalPosProcedure
Information how the vehicle shall choose the arrival position.
double arrivalSpeed
(optional) The final speed of the vehicle (not used yet)
int arrivalEdge
(optional) The final edge within the route of the vehicle
DepartPosDefinition departPosProcedure
Information how the vehicle shall choose the departure position.
static SUMOTime processActionStepLength(double given)
Checks and converts given value for the action step length from seconds to miliseconds assuring it be...
std::vector< std::string > getVector()
return vector of strings
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
Drive process items represent bounds on the safe velocity corresponding to the upcoming links.
void adaptStopSpeed(const double v)
double getLeaveSpeed() const
void adaptLeaveSpeed(const double v)
static std::map< const MSVehicle *, GapControlState * > refVehMap
stores reference vehicles currently in use by a gapController
static GapControlVehStateListener * myVehStateListener
void activate(double tauOriginal, double tauTarget, double additionalGap, double duration, double changeRate, double maxDecel, const MSVehicle *refVeh)
Start gap control with given params.
static void cleanup()
Static cleanup (removes vehicle state listener)
virtual ~GapControlState()
void deactivate()
Stop gap control.
static void init()
Static initalization (adds vehicle state listener)
A structure representing the best lanes for continuing the current route starting at 'lane'.
double length
The overall length which may be driven when using this lane without a lane change.
bool allowsContinuation
Whether this lane allows to continue the drive.
double nextOccupation
As occupation, but without the first lane.
std::vector< MSLane * > bestContinuations
MSLane * lane
The described lane.
double currentLength
The length which may be driven on this lane.
int bestLaneOffset
The (signed) number of lanes to be crossed to get to the lane which allows to continue the drive.
double occupation
The overall vehicle sum on consecutive lanes which can be passed without a lane change.