111#define DEBUG_COND (isSelected())
113#define DEBUG_COND2(obj) (obj->isSelected())
118#define STOPPING_PLACE_OFFSET 0.5
120#define CRLL_LOOK_AHEAD 5
122#define JUNCTION_BLOCKAGE_TIME 5
125#define DIST_TO_STOPLINE_EXPECT_PRIORITY 1.0
127#define NUMERICAL_EPS_SPEED (0.1 * NUMERICAL_EPS * TS)
165 return (myPos != state.
myPos ||
175 myPos(pos), mySpeed(speed), myPosLat(posLat), myBackPos(backPos), myPreviousSpeed(previousSpeed), myLastCoveredDist(
SPEED2DIST(speed)) {}
187 assert(memorySpan <= myMemorySize);
188 if (memorySpan == -1) {
189 memorySpan = myMemorySize;
192 for (
const auto& interval : myWaitingIntervals) {
193 if (interval.second >= memorySpan) {
194 if (interval.first >= memorySpan) {
197 totalWaitingTime += memorySpan - interval.first;
200 totalWaitingTime += interval.second - interval.first;
203 return totalWaitingTime;
209 auto i = myWaitingIntervals.begin();
210 const auto end = myWaitingIntervals.end();
211 const bool startNewInterval = i == end || (i->first != 0);
214 if (i->first >= myMemorySize) {
222 auto d = std::distance(i, end);
224 myWaitingIntervals.pop_back();
230 }
else if (!startNewInterval) {
231 myWaitingIntervals.begin()->first = 0;
233 myWaitingIntervals.push_front(std::make_pair(0, dt));
241 std::ostringstream state;
242 state << myMemorySize <<
" " << myWaitingIntervals.size();
243 for (
const auto& interval : myWaitingIntervals) {
244 state <<
" " << interval.first <<
" " << interval.second;
252 std::istringstream is(state);
255 is >> myMemorySize >> numIntervals;
256 while (numIntervals-- > 0) {
258 myWaitingIntervals.emplace_back(begin, end);
277 if (GapControlState::refVehMap.find(msVeh) != end(GapControlState::refVehMap)) {
279 GapControlState::refVehMap[msVeh]->deactivate();
289std::map<const MSVehicle*, MSVehicle::Influencer::GapControlState*>
295 tauOriginal(-1), tauCurrent(-1), tauTarget(-1), addGapCurrent(-1), addGapTarget(-1),
296 remainingDuration(-1), changeRate(-1), maxDecel(-1), referenceVeh(nullptr), active(false), gapAttained(false), prevLeader(nullptr),
297 lastUpdate(-1), timeHeadwayIncrement(0.0), spaceHeadwayIncrement(0.0) {}
307 if (myVehStateListener ==
nullptr) {
313 WRITE_ERROR(
"MSVehicle::Influencer::GapControlState::init(): No MSNet instance found!")
319 if (myVehStateListener !=
nullptr) {
321 delete myVehStateListener;
322 myVehStateListener =
nullptr;
333 tauOriginal = tauOrig;
334 tauCurrent = tauOrig;
337 addGapTarget = additionalGap;
338 remainingDuration = dur;
341 referenceVeh = refVeh;
344 prevLeader =
nullptr;
346 timeHeadwayIncrement = changeRate *
TS * (tauTarget - tauOriginal);
347 spaceHeadwayIncrement = changeRate *
TS * addGapTarget;
349 if (referenceVeh !=
nullptr) {
359 if (referenceVeh !=
nullptr) {
362 referenceVeh =
nullptr;
397 GapControlState::init();
402 GapControlState::cleanup();
407 mySpeedAdaptationStarted =
true;
408 mySpeedTimeLine = speedTimeLine;
413 if (myGapControlState ==
nullptr) {
414 myGapControlState = std::make_shared<GapControlState>();
417 myGapControlState->activate(originalTau, newTimeHeadway, newSpaceHeadway, duration, changeRate, maxDecel, refVeh);
422 if (myGapControlState !=
nullptr && myGapControlState->active) {
423 myGapControlState->deactivate();
429 myLaneTimeLine = laneTimeLine;
435 for (
auto& item : myLaneTimeLine) {
436 item.second += indexShift;
448 return (1 * myConsiderSafeVelocity +
449 2 * myConsiderMaxAcceleration +
450 4 * myConsiderMaxDeceleration +
451 8 * myRespectJunctionPriority +
452 16 * myEmergencyBrakeRedLight +
453 32 * !myRespectJunctionLeaderPriority +
454 64 * !myConsiderSpeedLimit
461 return (1 * myStrategicLC +
462 4 * myCooperativeLC +
464 64 * myRightDriveLC +
465 256 * myTraciLaneChangePriority +
472 for (std::vector<std::pair<SUMOTime, int>>::iterator i = myLaneTimeLine.begin(); i != myLaneTimeLine.end(); ++i) {
476 duration -= i->first;
484 if (!myLaneTimeLine.empty()) {
485 return myLaneTimeLine.back().first;
495 while (mySpeedTimeLine.size() == 1 || (mySpeedTimeLine.size() > 1 && currentTime > mySpeedTimeLine[1].first)) {
496 mySpeedTimeLine.erase(mySpeedTimeLine.begin());
499 if (!(mySpeedTimeLine.size() < 2 || currentTime < mySpeedTimeLine[0].first)) {
501 if (!mySpeedAdaptationStarted) {
502 mySpeedTimeLine[0].second = speed;
503 mySpeedAdaptationStarted =
true;
506 const double td =
MIN2(1.0,
STEPS2TIME(currentTime - mySpeedTimeLine[0].first) /
MAX2(
TS,
STEPS2TIME(mySpeedTimeLine[1].first - mySpeedTimeLine[0].first)));
508 speed = mySpeedTimeLine[0].second - (mySpeedTimeLine[0].second - mySpeedTimeLine[1].second) * td;
509 if (myConsiderSafeVelocity) {
510 speed =
MIN2(speed, vSafe);
512 if (myConsiderMaxAcceleration) {
513 speed =
MIN2(speed, vMax);
515 if (myConsiderMaxDeceleration) {
516 speed =
MAX2(speed, vMin);
526 std::cout << currentTime <<
" Influencer::gapControlSpeed(): speed=" << speed
527 <<
", vSafe=" << vSafe
533 double gapControlSpeed = speed;
534 if (myGapControlState !=
nullptr && myGapControlState->active) {
536 const double currentSpeed = veh->
getSpeed();
538 assert(msVeh !=
nullptr);
539 const double desiredTargetTimeSpacing = myGapControlState->tauTarget * currentSpeed;
540 std::pair<const MSVehicle*, double> leaderInfo;
541 if (myGapControlState->referenceVeh ==
nullptr) {
544 leaderInfo = msVeh->
getLeader(
MAX2(desiredTargetTimeSpacing, myGapControlState->addGapCurrent) +
MAX2(brakeGap, 20.0));
547 std::cout <<
" --- no refVeh; myGapControlState->addGapCurrent: " << myGapControlState->addGapCurrent <<
", brakeGap: " << brakeGap <<
" in simstep: " <<
SIMSTEP << std::endl;
552 const MSVehicle* leader = myGapControlState->referenceVeh;
560 if (dist < -100000) {
562 std::cout <<
" Ego and reference vehicle are not in CF relation..." << std::endl;
564 std::cout <<
" Reference vehicle is behind ego..." << std::endl;
571 const double fakeDist =
MAX2(0.0, leaderInfo.second - myGapControlState->addGapCurrent);
574 const double desiredCurrentSpacing = myGapControlState->tauCurrent * currentSpeed;
575 std::cout <<
" Gap control active:"
576 <<
" currentSpeed=" << currentSpeed
577 <<
", desiredTargetTimeSpacing=" << desiredTargetTimeSpacing
578 <<
", desiredCurrentSpacing=" << desiredCurrentSpacing
579 <<
", leader=" << (leaderInfo.first ==
nullptr ?
"NULL" : leaderInfo.first->getID())
580 <<
", dist=" << leaderInfo.second
581 <<
", fakeDist=" << fakeDist
582 <<
",\n tauOriginal=" << myGapControlState->tauOriginal
583 <<
", tauTarget=" << myGapControlState->tauTarget
584 <<
", tauCurrent=" << myGapControlState->tauCurrent
588 if (leaderInfo.first !=
nullptr) {
589 if (myGapControlState->prevLeader !=
nullptr && myGapControlState->prevLeader != leaderInfo.first) {
593 myGapControlState->prevLeader = leaderInfo.first;
599 gapControlSpeed =
MIN2(gapControlSpeed,
600 cfm->
followSpeed(msVeh, currentSpeed, fakeDist, leaderInfo.first->
getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first));
604 std::cout <<
" -> gapControlSpeed=" << gapControlSpeed;
605 if (myGapControlState->maxDecel > 0) {
606 std::cout <<
", with maxDecel bound: " <<
MAX2(gapControlSpeed, currentSpeed -
TS * myGapControlState->maxDecel);
608 std::cout << std::endl;
611 if (myGapControlState->maxDecel > 0) {
612 gapControlSpeed =
MAX2(gapControlSpeed, currentSpeed -
TS * myGapControlState->maxDecel);
619 if (myGapControlState->lastUpdate < currentTime) {
622 std::cout <<
" Updating GapControlState." << std::endl;
625 if (myGapControlState->tauCurrent == myGapControlState->tauTarget && myGapControlState->addGapCurrent == myGapControlState->addGapTarget) {
626 if (!myGapControlState->gapAttained) {
628 myGapControlState->gapAttained = leaderInfo.first ==
nullptr || leaderInfo.second >
MAX2(desiredTargetTimeSpacing, myGapControlState->addGapTarget) - POSITION_EPS;
631 if (myGapControlState->gapAttained) {
632 std::cout <<
" Target gap was established." << std::endl;
638 myGapControlState->remainingDuration -=
TS;
641 std::cout <<
" Gap control remaining duration: " << myGapControlState->remainingDuration << std::endl;
644 if (myGapControlState->remainingDuration <= 0) {
647 std::cout <<
" Gap control duration expired, deactivating control." << std::endl;
651 myGapControlState->deactivate();
656 myGapControlState->tauCurrent =
MIN2(myGapControlState->tauCurrent + myGapControlState->timeHeadwayIncrement, myGapControlState->tauTarget);
657 myGapControlState->addGapCurrent =
MIN2(myGapControlState->addGapCurrent + myGapControlState->spaceHeadwayIncrement, myGapControlState->addGapTarget);
660 if (myConsiderSafeVelocity) {
661 gapControlSpeed =
MIN2(gapControlSpeed, vSafe);
663 if (myConsiderMaxAcceleration) {
664 gapControlSpeed =
MIN2(gapControlSpeed, vMax);
666 if (myConsiderMaxDeceleration) {
667 gapControlSpeed =
MAX2(gapControlSpeed, vMin);
669 return MIN2(speed, gapControlSpeed);
677 return myOriginalSpeed;
682 myOriginalSpeed = speed;
689 while (myLaneTimeLine.size() == 1 || (myLaneTimeLine.size() > 1 && currentTime > myLaneTimeLine[1].first)) {
690 myLaneTimeLine.erase(myLaneTimeLine.begin());
694 if (myLaneTimeLine.size() >= 2 && currentTime >= myLaneTimeLine[0].first) {
695 const int destinationLaneIndex = myLaneTimeLine[1].second;
696 if (destinationLaneIndex < (
int)currentEdge.
getLanes().size()) {
697 if (currentLaneIndex > destinationLaneIndex) {
699 }
else if (currentLaneIndex < destinationLaneIndex) {
704 }
else if (currentEdge.
getLanes().back()->getOpposite() !=
nullptr) {
713 if ((state &
LCA_TRACI) != 0 && myLatDist != 0) {
722 mode = myStrategicLC;
724 mode = myCooperativeLC;
726 mode = mySpeedGainLC;
728 mode = myRightDriveLC;
738 state &= ~LCA_WANTS_LANECHANGE_OR_STAY;
739 state &= ~LCA_URGENT;
742 state &= ~LCA_CHANGE_REASONS |
LCA_TRACI;
750 state &= ~LCA_WANTS_LANECHANGE_OR_STAY;
751 state &= ~LCA_URGENT;
771 switch (changeRequest) {
787 assert(myLaneTimeLine.size() >= 2);
788 assert(currentTime >= myLaneTimeLine[0].first);
789 return STEPS2TIME(myLaneTimeLine[1].first - currentTime);
795 myConsiderSafeVelocity = ((speedMode & 1) != 0);
796 myConsiderMaxAcceleration = ((speedMode & 2) != 0);
797 myConsiderMaxDeceleration = ((speedMode & 4) != 0);
798 myRespectJunctionPriority = ((speedMode & 8) != 0);
799 myEmergencyBrakeRedLight = ((speedMode & 16) != 0);
800 myRespectJunctionLeaderPriority = ((speedMode & 32) == 0);
801 myConsiderSpeedLimit = ((speedMode & 64) == 0);
818 myRemoteXYPos = xyPos;
821 myRemotePosLat = posLat;
822 myRemoteAngle = angle;
823 myRemoteEdgeOffset = edgeOffset;
824 myRemoteRoute = route;
825 myLastRemoteAccess = t;
837 return myLastRemoteAccess >= t -
TIME2STEPS(10);
843 if (myRemoteRoute.size() != 0 && myRemoteRoute != v->
getRoute().
getEdges()) {
846#ifdef DEBUG_REMOTECONTROL
859 const bool wasOnRoad = v->
isOnRoad();
860 const bool withinLane = myRemoteLane !=
nullptr && fabs(myRemotePosLat) < 0.5 * (myRemoteLane->getWidth() + v->
getVehicleType().
getWidth());
861 const bool keepLane = wasOnRoad && v->
getLane() == myRemoteLane;
862 if (v->
isOnRoad() && !(keepLane && withinLane)) {
863 if (myRemoteLane !=
nullptr && &v->
getLane()->
getEdge() == &myRemoteLane->getEdge()) {
870 if (myRemoteRoute.size() != 0 && myRemoteRoute != v->
getRoute().
getEdges()) {
872#ifdef DEBUG_REMOTECONTROL
873 std::cout <<
SIMSTEP <<
" postProcessRemoteControl veh=" << v->
getID()
877 <<
" newRoute=" <<
toString(myRemoteRoute)
878 <<
" newRouteEdge=" << myRemoteRoute[myRemoteEdgeOffset]->getID()
884 myRemoteRoute.clear();
887 if (myRemoteLane !=
nullptr && myRemotePos > myRemoteLane->getLength()) {
888 myRemotePos = myRemoteLane->getLength();
890 if (myRemoteLane !=
nullptr && withinLane) {
896 if (needFurtherUpdate) {
906 myRemoteLane->forceVehicleInsertion(v, myRemotePos, notify, myRemotePosLat);
913 myRemoteLane->requireCollisionCheck();
941 if (myRemoteLane !=
nullptr) {
947 if (distAlongRoute != std::numeric_limits<double>::max()) {
948 dist = distAlongRoute;
952 const double minSpeed = myConsiderMaxDeceleration ?
954 const double maxSpeed = (myRemoteLane !=
nullptr
955 ? myRemoteLane->getVehicleMaxSpeed(veh)
966 if (myRemoteLane ==
nullptr) {
976 if (dist == std::numeric_limits<double>::max()) {
980 WRITE_WARNINGF(
TL(
"Vehicle '%' moved by TraCI from % to % (dist %) with implied speed of % (exceeding maximum speed %). time=%."),
1042 further->resetPartialOccupation(
this);
1043 if (further->getBidiLane() !=
nullptr
1044 && (!
isRailway(
getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
1045 further->getBidiLane()->resetPartialOccupation(
this);
1062#ifdef DEBUG_ACTIONSTEPS
1064 std::cout <<
SIMTIME <<
" Removing vehicle '" <<
getID() <<
"' (reason: " <<
toString(reason) <<
")" << std::endl;
1089 if (!(*myCurrEdge)->isTazConnector()) {
1091 if ((*myCurrEdge)->getDepartLane(*
this) ==
nullptr) {
1092 msg =
"Invalid departlane definition for vehicle '" +
getID() +
"'.";
1101 if ((*myCurrEdge)->allowedLanes(
getVClass()) ==
nullptr) {
1102 msg =
"Vehicle '" +
getID() +
"' is not allowed to depart on any lane of edge '" + (*myCurrEdge)->
getID() +
"'.";
1108 msg =
"Departure speed for vehicle '" +
getID() +
"' is too high for the vehicle type '" +
myType->
getID() +
"'.";
1139 updateBestLanes(
true, onInit ? (*myCurrEdge)->getLanes().front() : 0);
1142 myStopDist = std::numeric_limits<double>::max();
1160 if (!rem->first->notifyMove(*
this, oldPos + rem->second, newPos + rem->second,
MAX2(0., newSpeed))) {
1162 if (myTraceMoveReminders) {
1163 traceMoveReminder(
"notifyMove", rem->first, rem->second,
false);
1169 if (myTraceMoveReminders) {
1170 traceMoveReminder(
"notifyMove", rem->first, rem->second,
true);
1189 rem.first->notifyIdle(*
this);
1194 rem->notifyIdle(*
this);
1205 rem.second += oldLaneLength;
1209 if (myTraceMoveReminders) {
1210 traceMoveReminder(
"adaptedPos", rem.first, rem.second,
true);
1224 return getStops().begin()->parkingarea->getVehicleSlope(*
this);
1262 if (
myStops.begin()->parkingarea !=
nullptr) {
1263 return myStops.begin()->parkingarea->getVehiclePosition(*
this);
1273 if (offset == 0. && !changingLanes) {
1296 double relOffset = fabs(posLat) / centerDist;
1297 double newZ = (1 - relOffset) * pos.
z() + relOffset * shadowPos.
z();
1308 return MAX2(0.0, result);
1326 auto nextBestLane = bestLanes.begin();
1331 bool success =
true;
1333 while (offset > 0) {
1338 lane = lane->
getLinkCont()[0]->getViaLaneOrLane();
1340 if (lane ==
nullptr) {
1350 while (nextBestLane != bestLanes.end() && *nextBestLane ==
nullptr) {
1355 assert(lane == *nextBestLane);
1359 assert(nextBestLane == bestLanes.end() || *nextBestLane != 0);
1360 if (nextBestLane == bestLanes.end()) {
1365 assert(link !=
nullptr);
1396 int furtherIndex = 0;
1405 offset += lastLength;
1415ConstMSEdgeVector::const_iterator
1436 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
" setAngle(" << angle <<
") straightenFurther=" << straightenFurther << std::endl;
1445 if (link !=
nullptr) {
1460 const bool newActionStepLength = actionStepLengthMillisecs != previousActionStepLength;
1461 if (newActionStepLength) {
1491 if (
myStops.begin()->parkingarea !=
nullptr) {
1492 return myStops.begin()->parkingarea->getVehicleAngle(*
this);
1529 double result = (p1 != p2 ? p2.
angleTo2D(p1) :
1596 ||
myStops.front().pars.breakDown || (
myStops.front().getSpeed() > 0
1608 return myStops.front().duration;
1636 return currentVelocity;
1641 std::cout <<
"\nPROCESS_NEXT_STOP\n" <<
SIMTIME <<
" vehicle '" <<
getID() <<
"'" << std::endl;
1652 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' reached stop.\n"
1686 if (taxiDevice !=
nullptr) {
1690 return currentVelocity;
1696 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' resumes from stopping." << std::endl;
1720 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' registers as waiting for person." << std::endl;
1735 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' registers as waiting for container." << std::endl;
1758 return currentVelocity;
1774 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' hasn't reached next stop." << std::endl;
1784 if (noExits && noEntries) {
1793 bool fitsOnStoppingPlace =
true;
1795 if (stop.
busstop !=
nullptr) {
1805 fitsOnStoppingPlace =
false;
1809 if (rem->isParkingRerouter()) {
1813 if (
myStops.empty() ||
myStops.front().parkingarea != oldParkingArea) {
1815 return currentVelocity;
1818 fitsOnStoppingPlace =
false;
1820 fitsOnStoppingPlace =
false;
1828 std::cout <<
" pos=" <<
myState.
pos() <<
" speed=" << currentVelocity <<
" targetPos=" << targetPos <<
" fits=" << fitsOnStoppingPlace
1829 <<
" reachedThresh=" << reachedThreshold
1847 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' reached next stop." << std::endl;
1872 if (stop.
busstop !=
nullptr) {
1898 if (splitVeh ==
nullptr) {
1929 return currentVelocity;
1952 bool unregister =
false;
1982 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' unregisters as waiting for transportable." << std::endl;
1997 myStops.begin()->joinTriggered =
false;
2016 double skippedLaneLengths = 0;
2031 std::string warn =
TL(
"Cannot join vehicle '%' to vehicle '%' due to incompatible routes. time=%.");
2038 std::string warn =
TL(
"Cannot join vehicle '%' to vehicle '%' due to incompatible routes. time=%.");
2051 myStops.begin()->joinTriggered =
false;
2088 if (timeSinceLastAction == 0) {
2090 timeSinceLastAction = oldActionStepLength;
2092 if (timeSinceLastAction >= newActionStepLength) {
2096 SUMOTime timeUntilNextAction = newActionStepLength - timeSinceLastAction;
2105#ifdef DEBUG_PLAN_MOVE
2111 <<
" veh=" <<
getID()
2126#ifdef DEBUG_ACTIONSTEPS
2128 std::cout <<
STEPS2TIME(t) <<
" vehicle '" <<
getID() <<
"' skips action." << std::endl;
2136#ifdef DEBUG_ACTIONSTEPS
2138 std::cout <<
STEPS2TIME(t) <<
" vehicle = '" <<
getID() <<
"' takes action." << std::endl;
2146#ifdef DEBUG_PLAN_MOVE
2148 DriveItemVector::iterator i;
2151 <<
" vPass=" << (*i).myVLinkPass
2152 <<
" vWait=" << (*i).myVLinkWait
2153 <<
" linkLane=" << ((*i).myLink == 0 ?
"NULL" : (*i).myLink->getViaLaneOrLane()->getID())
2154 <<
" request=" << (*i).mySetRequest
2183 const bool result = (
overlap > POSITION_EPS
2198#ifdef DEBUG_PLAN_MOVE
2213 newStopDist = std::numeric_limits<double>::max();
2223 double lateralShift = 0;
2227 laneMaxV =
MIN2(laneMaxV, l->getVehicleMaxSpeed(
this, maxVD));
2228#ifdef DEBUG_PLAN_MOVE
2230 std::cout <<
" laneMaxV=" << laneMaxV <<
" lane=" << l->getID() <<
"\n";
2236 laneMaxV =
MAX2(laneMaxV, vMinComfortable);
2238 laneMaxV = std::numeric_limits<double>::max();
2252 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" speedBeforeTraci=" << v;
2258 std::cout <<
" influencedSpeed=" << v;
2264 std::cout <<
" gapControlSpeed=" << v <<
"\n";
2272#ifdef DEBUG_PLAN_MOVE
2274 std::cout <<
" dist=" << dist <<
" bestLaneConts=" <<
toString(bestLaneConts)
2275 <<
"\n maxV=" << maxV <<
" laneMaxV=" << laneMaxV <<
" v=" << v <<
"\n";
2278 assert(bestLaneConts.size() > 0);
2279 bool hadNonInternal =
false;
2282 nextTurn.first = seen;
2283 nextTurn.second =
nullptr;
2285 double seenNonInternal = 0;
2290 bool slowedDownForMinor =
false;
2291 double mustSeeBeforeReversal = 0;
2296 bool foundRailSignal = !
isRail();
2297 bool planningToStop =
false;
2298#ifdef PARALLEL_STOPWATCH
2304 if (v > vMinComfortable &&
hasStops() &&
myStops.front().pars.arrival >= 0 && sfp > 0
2306 && !
myStops.front().reached) {
2308 v =
MIN2(v, vSlowDown);
2310 auto stopIt =
myStops.begin();
2321 const double gapOffset = leaderLane ==
myLane ? 0 : seen - leaderLane->
getLength();
2327 if (cand.first != 0) {
2328 if ((cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() != leaderLane)
2329 || (!cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() == leaderLane)) {
2331 oppositeLeaders.
addLeader(cand.first, cand.second + gapOffset -
getVehicleType().getMinGap() + cand.first->getVehicleType().
getMinGap() - cand.first->getVehicleType().getLength());
2334 const bool assumeStopped = cand.first->isStopped() || cand.first->getWaitingSeconds() > 1;
2335 const double predMaxDist = cand.first->getSpeed() + (assumeStopped ? 0 : cand.first->getCarFollowModel().getMaxAccel()) * minTimeToLeaveLane;
2336 if (cand.second >= 0 && (cand.second - v * minTimeToLeaveLane - predMaxDist < 0 || assumeStopped)) {
2342#ifdef DEBUG_PLAN_MOVE
2344 std::cout <<
" leaderLane=" << leaderLane->
getID() <<
" gapOffset=" << gapOffset <<
" minTimeToLeaveLane=" << minTimeToLeaveLane
2345 <<
" cands=" << cands.
toString() <<
" oppositeLeaders=" << oppositeLeaders.
toString() <<
"\n";
2353 const bool outsideLeft = leftOL > lane->
getWidth();
2354#ifdef DEBUG_PLAN_MOVE
2356 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" lane=" << lane->
getID() <<
" rightOL=" << rightOL <<
" leftOL=" << leftOL <<
"\n";
2359 if (rightOL < 0 || outsideLeft) {
2363 int sublaneOffset = 0;
2370#ifdef DEBUG_PLAN_MOVE
2372 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" lane=" << lane->
getID() <<
" sublaneOffset=" << sublaneOffset <<
" outsideLeft=" << outsideLeft <<
"\n";
2377 && ((!outsideLeft && cand->getLeftSideOnEdge() < 0)
2378 || (outsideLeft && cand->getLeftSideOnEdge() > lane->
getEdge().
getWidth()))) {
2380#ifdef DEBUG_PLAN_MOVE
2382 std::cout <<
" outsideLeader=" << cand->getID() <<
" ahead=" << outsideLeaders.
toString() <<
"\n";
2389 adaptToLeaders(outsideLeaders, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2393 adaptToLeaders(ahead, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2395 if (lastLink !=
nullptr) {
2398#ifdef DEBUG_PLAN_MOVE
2400 std::cout <<
"\nv = " << v <<
"\n";
2408 if (shadowLane !=
nullptr
2422#ifdef DEBUG_PLAN_MOVE
2424 std::cout <<
SIMTIME <<
" opposite veh=" <<
getID() <<
" shadowLane=" << shadowLane->
getID() <<
" latOffset=" << latOffset <<
" shadowLeaders=" << shadowLeaders.
toString() <<
"\n";
2432 adaptToLeaders(shadowLeaders, latOffset, seen - turningDifference, lastLink, shadowLane, v, vLinkPass);
2437 const double latOffset = 0;
2438#ifdef DEBUG_PLAN_MOVE
2440 std::cout <<
SIMTIME <<
" opposite shadows veh=" <<
getID() <<
" shadowLane=" << shadowLane->
getID()
2441 <<
" latOffset=" << latOffset <<
" shadowLeaders=" << shadowLeaders.
toString() <<
"\n";
2445#ifdef DEBUG_PLAN_MOVE
2447 std::cout <<
" shadowLeadersFixed=" << shadowLeaders.
toString() <<
"\n";
2456 const double relativePos = lane->
getLength() - seen;
2457#ifdef DEBUG_PLAN_MOVE
2459 std::cout <<
SIMTIME <<
" adapt to pedestrians on lane=" << lane->
getID() <<
" relPos=" << relativePos <<
"\n";
2465 if (leader.first != 0) {
2467 v =
MIN2(v, stopSpeed);
2468#ifdef DEBUG_PLAN_MOVE
2470 std::cout <<
SIMTIME <<
" pedLeader=" << leader.first->getID() <<
" dist=" << leader.second <<
" v=" << v <<
"\n";
2479 const double relativePos = seen;
2480#ifdef DEBUG_PLAN_MOVE
2482 std::cout <<
SIMTIME <<
" adapt to pedestrians on lane=" << lane->
getID() <<
" relPos=" << relativePos <<
"\n";
2489 if (leader.first != 0) {
2491 v =
MIN2(v, stopSpeed);
2492#ifdef DEBUG_PLAN_MOVE
2494 std::cout <<
SIMTIME <<
" pedLeader=" << leader.first->getID() <<
" dist=" << leader.second <<
" v=" << v <<
"\n";
2506 bool foundRealStop =
false;
2507 while (stopIt !=
myStops.end()
2508 && ((&stopIt->lane->getEdge() == &lane->
getEdge())
2509 || (stopIt->isOpposite && stopIt->lane->getEdge().getOppositeEdge() == &lane->
getEdge()))
2512 double stopDist = std::numeric_limits<double>::max();
2513 const MSStop& stop = *stopIt;
2514 const bool isFirstStop = stopIt ==
myStops.begin();
2518 bool isWaypoint = stop.
getSpeed() > 0;
2519 double endPos = stop.
getEndPos(*
this) + NUMERICAL_EPS;
2524 }
else if (isWaypoint && !stop.
reached) {
2527 stopDist = seen + endPos - lane->
getLength();
2530 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" stopDist=" << stopDist <<
" stopLane=" << stop.
lane->
getID() <<
" stopEndPos=" << endPos <<
"\n";
2534 double stopSpeed = laneMaxV;
2536 bool waypointWithStop =
false;
2549 if (stop.
getUntil() > t + time2end) {
2551 double distToEnd = stopDist;
2556 waypointWithStop =
true;
2562 stopDist = std::numeric_limits<double>::max();
2569 if (lastLink !=
nullptr) {
2575 if (lastLink !=
nullptr) {
2579 v =
MIN2(v, stopSpeed);
2581 std::vector<MSLink*>::const_iterator exitLink =
MSLane::succLinkSec(*
this, view + 1, *lane, bestLaneConts);
2583 bool dummySetRequest;
2584 double dummyVLinkWait;
2588#ifdef DEBUG_PLAN_MOVE
2590 std::cout <<
"\n" <<
SIMTIME <<
" next stop: distance = " << stopDist <<
" requires stopSpeed = " << stopSpeed <<
"\n";
2595 newStopDist = stopDist;
2599 planningToStop =
true;
2601 lfLinks.emplace_back(v, stopDist);
2602 foundRealStop =
true;
2609 if (foundRealStop) {
2615 std::vector<MSLink*>::const_iterator link =
MSLane::succLinkSec(*
this, view + 1, *lane, bestLaneConts);
2618 const int currentIndex = lane->
getIndex();
2619 const MSLane* bestJump =
nullptr;
2621 if (preb.allowsContinuation &&
2622 (bestJump ==
nullptr
2623 || abs(currentIndex - preb.lane->getIndex()) < abs(currentIndex - bestJump->
getIndex()))) {
2624 bestJump = preb.lane;
2627 if (bestJump !=
nullptr) {
2629 for (
auto cand_it = bestJump->
getLinkCont().begin(); cand_it != bestJump->
getLinkCont().end(); cand_it++) {
2630 if (&(*cand_it)->getLane()->getEdge() == nextEdge) {
2639 if (!encounteredTurn) {
2647 nextTurn.first = seen;
2648 nextTurn.second = *link;
2649 encounteredTurn =
true;
2650#ifdef DEBUG_NEXT_TURN
2653 <<
" at " << nextTurn.first <<
"m." << std::endl;
2668 const double va =
MAX2(NUMERICAL_EPS, cfModel.
freeSpeed(
this,
getSpeed(), distToArrival, arrivalSpeed));
2670 if (lastLink !=
nullptr) {
2679 || (opposite && (*link)->getViaLaneOrLane()->getParallelOpposite() ==
nullptr
2682 if (lastLink !=
nullptr) {
2690#ifdef DEBUG_PLAN_MOVE
2692 std::cout <<
" braking for link end lane=" << lane->
getID() <<
" seen=" << seen
2698 lfLinks.emplace_back(v, seen);
2702 lateralShift += (*link)->getLateralShift();
2703 const bool yellowOrRed = (*link)->haveRed() || (*link)->haveYellow();
2712 double laneStopOffset;
2717 const bool canBrakeBeforeLaneEnd = seen >= brakeDist;
2721 laneStopOffset = majorStopOffset;
2722 }
else if ((*link)->havePriority()) {
2724 laneStopOffset =
MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, majorStopOffset);
2728#ifdef DEBUG_PLAN_MOVE
2730 std::cout <<
" minorStopOffset=" << minorStopOffset <<
" distToFoePedCrossing=" << (*link)->getDistToFoePedCrossing() <<
"\n";
2739 laneStopOffset =
MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, minorStopOffset);
2741#ifdef DEBUG_PLAN_MOVE
2743 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" desired stopOffset on lane '" << lane->
getID() <<
"' is " << laneStopOffset <<
"\n";
2746 if (canBrakeBeforeLaneEnd) {
2748 laneStopOffset =
MIN2(laneStopOffset, seen - brakeDist);
2750 laneStopOffset =
MAX2(POSITION_EPS, laneStopOffset);
2751 double stopDist =
MAX2(0., seen - laneStopOffset);
2755 stopDist = std::numeric_limits<double>::max();
2757 if (newStopDist != std::numeric_limits<double>::max()) {
2758 stopDist =
MAX2(stopDist, newStopDist);
2760#ifdef DEBUG_PLAN_MOVE
2762 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" effective stopOffset on lane '" << lane->
getID()
2763 <<
"' is " << laneStopOffset <<
" (-> stopDist=" << stopDist <<
")" << std::endl;
2773 mustSeeBeforeReversal = 2 * seen +
getLength();
2775 v =
MIN2(v, vMustReverse);
2778 foundRailSignal |= ((*link)->getTLLogic() !=
nullptr
2783 bool canReverseEventually =
false;
2784 const double vReverse =
checkReversal(canReverseEventually, laneMaxV, seen);
2785 v =
MIN2(v, vReverse);
2786#ifdef DEBUG_PLAN_MOVE
2788 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" canReverseEventually=" << canReverseEventually <<
" v=" << v <<
"\n";
2801 assert(timeRemaining != 0);
2804 (seen - POSITION_EPS) / timeRemaining);
2805#ifdef DEBUG_PLAN_MOVE
2807 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" slowing down to finish continuous change before"
2808 <<
" link=" << (*link)->getViaLaneOrLane()->getID()
2809 <<
" timeRemaining=" << timeRemaining
2822 const bool abortRequestAfterMinor = slowedDownForMinor && (*link)->getInternalLaneBefore() ==
nullptr;
2824 bool setRequest = (v >
NUMERICAL_EPS_SPEED && !abortRequestAfterMinor) || (leavingCurrentIntersection);
2827 double vLinkWait =
MIN2(v, stopSpeed);
2828#ifdef DEBUG_PLAN_MOVE
2831 <<
" stopDist=" << stopDist
2832 <<
" stopDecel=" << stopDecel
2833 <<
" vLinkWait=" << vLinkWait
2834 <<
" brakeDist=" << brakeDist
2836 <<
" leaveIntersection=" << leavingCurrentIntersection
2837 <<
" setRequest=" << setRequest
2846 if (yellowOrRed && canBrakeBeforeStopLine && !
ignoreRed(*link, canBrakeBeforeStopLine) && seen >= mustSeeBeforeReversal) {
2853 lfLinks.push_back(
DriveProcessItem(*link, v, vLinkWait,
false, arrivalTime, vLinkWait, 0, seen, -1));
2864#ifdef DEBUG_PLAN_MOVE
2866 <<
" ignoreRed spent=" <<
STEPS2TIME(t - (*link)->getLastStateChange())
2867 <<
" redSpeed=" << redSpeed
2876 if (lastLink !=
nullptr) {
2879 double arrivalSpeed = vLinkPass;
2885 const double visibilityDistance = (*link)->getFoeVisibilityDistance();
2886 const double determinedFoePresence = seen <= visibilityDistance;
2891#ifdef DEBUG_PLAN_MOVE
2893 std::cout <<
" approaching link=" << (*link)->getViaLaneOrLane()->getID() <<
" prio=" << (*link)->havePriority() <<
" seen=" << seen <<
" visibilityDistance=" << visibilityDistance <<
" brakeDist=" << brakeDist <<
"\n";
2897 const bool couldBrakeForMinor = !(*link)->havePriority() && brakeDist < seen && !(*link)->lastWasContMajor();
2898 if (couldBrakeForMinor && !determinedFoePresence) {
2903 arrivalSpeed =
MIN2(vLinkPass, maxArrivalSpeed);
2904 slowedDownForMinor =
true;
2905#ifdef DEBUG_PLAN_MOVE
2907 std::cout <<
" slowedDownForMinor maxSpeedAtVisDist=" << maxSpeedAtVisibilityDist <<
" maxArrivalSpeed=" << maxArrivalSpeed <<
" arrivalSpeed=" << arrivalSpeed <<
"\n";
2913 std::pair<const SUMOVehicle*, const MSLink*> blocker = (*link)->getFirstApproachingFoe(*link);
2916 while (blocker.second !=
nullptr && blocker.second != *link && n > 0) {
2917 blocker = blocker.second->getFirstApproachingFoe(*link);
2925 if (blocker.second == *link) {
2935 if (couldBrakeForMinor && determinedFoePresence && (*link)->getLane()->getEdge().isRoundabout()) {
2936 const bool wasOpened = (*link)->opened(arrivalTime, arrivalSpeed, arrivalSpeed,
2940 nullptr,
false,
this);
2942 slowedDownForMinor =
true;
2944#ifdef DEBUG_PLAN_MOVE
2946 std::cout <<
" slowedDownForMinor at roundabout=" << (!wasOpened) <<
"\n";
2953 double arrivalSpeedBraking = 0;
2954 const double bGap = cfModel.
brakeGap(v);
2955 if (seen < bGap && !
isStopped() && !planningToStop) {
2960 arrivalSpeedBraking =
MIN2(arrivalSpeedBraking, arrivalSpeed);
2969 const double estimatedLeaveSpeed =
MIN2((*link)->getViaLaneOrLane()->getVehicleMaxSpeed(
this, maxVD),
2972 arrivalTime, arrivalSpeed,
2973 arrivalSpeedBraking,
2974 seen, estimatedLeaveSpeed));
2975 if ((*link)->getViaLane() ==
nullptr) {
2976 hadNonInternal =
true;
2979#ifdef DEBUG_PLAN_MOVE
2981 std::cout <<
" checkAbort setRequest=" << setRequest <<
" v=" << v <<
" seen=" << seen <<
" dist=" << dist
2982 <<
" seenNonInternal=" << seenNonInternal
2983 <<
" seenInternal=" << seenInternal <<
" length=" << vehicleLength <<
"\n";
2987 if ((!setRequest || v <= 0 || seen > dist) && hadNonInternal && seenNonInternal >
MAX2(vehicleLength *
CRLL_LOOK_AHEAD, vehicleLength + seenInternal) && foundRailSignal) {
2991 lane = (*link)->getViaLaneOrLane();
2994 laneMaxV = std::numeric_limits<double>::max();
3002#ifdef DEBUG_PLAN_MOVE
3004 std::cout <<
" laneMaxV=" << laneMaxV <<
" freeSpeed=" << va <<
" v=" << v <<
"\n";
3014 if (leaderLane ==
nullptr) {
3021 lastLink = &lfLinks.back();
3030#ifdef PARALLEL_STOPWATCH
3054 const double s = timeDist.second;
3061 const double radicand = 4 * t * t * b * b - 8 * s * b;
3062 const double x = radicand >= 0 ? t * b - sqrt(radicand) * 0.5 : vSlowDownMin;
3063 double vSlowDown = x < vSlowDownMin ? vSlowDownMin : x;
3064#ifdef DEBUG_PLAN_MOVE
3066 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" ad=" << arrivalDelay <<
" t=" << t <<
" vsm=" << vSlowDownMin
3067 <<
" r=" << radicand <<
" vs=" << vSlowDown <<
"\n";
3101 const MSLane*
const lane,
double& v,
double& vLinkPass)
const {
3104 ahead.
getSubLanes(
this, latOffset, rightmost, leftmost);
3105#ifdef DEBUG_PLAN_MOVE
3107 <<
"\nADAPT_TO_LEADERS\nveh=" <<
getID()
3108 <<
" lane=" << lane->
getID()
3109 <<
" latOffset=" << latOffset
3110 <<
" rm=" << rightmost
3111 <<
" lm=" << leftmost
3126 for (
int sublane = rightmost; sublane <= leftmost; ++sublane) {
3128 if (pred !=
nullptr && pred !=
this) {
3131 double gap = (lastLink ==
nullptr
3134 bool oncoming =
false;
3138 gap = (lastLink ==
nullptr
3143 gap = (lastLink ==
nullptr
3152#ifdef DEBUG_PLAN_MOVE
3154 std::cout <<
" fixedGap=" << gap <<
" predMaxDist=" << predMaxDist <<
"\n";
3164#ifdef DEBUG_PLAN_MOVE
3166 std::cout <<
" pred=" << pred->
getID() <<
" predLane=" << pred->
getLane()->
getID() <<
" predPos=" << pred->
getPositionOnLane() <<
" gap=" << gap <<
" predBack=" << predBack <<
" seen=" << seen <<
" lane=" << lane->
getID() <<
" myLane=" <<
myLane->
getID() <<
" lastLink=" << (lastLink ==
nullptr ?
"NULL" : lastLink->
myLink->
getDescription()) <<
" oncoming=" << oncoming <<
"\n";
3169 if (oncoming && gap >= 0) {
3172 adaptToLeader(std::make_pair(pred, gap), seen, lastLink, v, vLinkPass);
3182 double& v,
double& vLinkPass)
const {
3185 ahead.
getSubLanes(
this, latOffset, rightmost, leftmost);
3186#ifdef DEBUG_PLAN_MOVE
3188 <<
"\nADAPT_TO_LEADERS_DISTANCE\nveh=" <<
getID()
3189 <<
" latOffset=" << latOffset
3190 <<
" rm=" << rightmost
3191 <<
" lm=" << leftmost
3195 for (
int sublane = rightmost; sublane <= leftmost; ++sublane) {
3198 if (pred !=
nullptr && pred !=
this) {
3199#ifdef DEBUG_PLAN_MOVE
3201 std::cout <<
" pred=" << pred->
getID() <<
" predLane=" << pred->
getLane()->
getID() <<
" predPos=" << pred->
getPositionOnLane() <<
" gap=" << predDist.second <<
"\n";
3214 double& v,
double& vLinkPass)
const {
3215 if (leaderInfo.first != 0) {
3217#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3219 std::cout <<
" foe ignored\n";
3225 double vsafeLeader = 0;
3227 vsafeLeader = -std::numeric_limits<double>::max();
3229 bool backOnRoute =
true;
3230 if (leaderInfo.second < 0 && lastLink !=
nullptr && lastLink->
myLink !=
nullptr) {
3231 backOnRoute =
false;
3236 if (leaderInfo.first->getBackLane() == current) {
3240 if (lane == current) {
3243 if (leaderInfo.first->getBackLane() == lane) {
3248#ifdef DEBUG_PLAN_MOVE
3250 std::cout <<
SIMTIME <<
" current=" << current->
getID() <<
" leaderBackLane=" << leaderInfo.first->getBackLane()->getID() <<
" backOnRoute=" << backOnRoute <<
"\n";
3254 double stopDist = seen - current->
getLength() - POSITION_EPS;
3263 vsafeLeader = cfModel.
followSpeed(
this,
getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3265 if (lastLink !=
nullptr) {
3268#ifdef DEBUG_PLAN_MOVE
3270 std::cout <<
" vlinkpass=" << lastLink->
myVLinkPass <<
" futureVSafe=" << futureVSafe <<
"\n";
3274 v =
MIN2(v, vsafeLeader);
3275 vLinkPass =
MIN2(vLinkPass, vsafeLeader);
3276#ifdef DEBUG_PLAN_MOVE
3280 <<
" veh=" <<
getID()
3281 <<
" lead=" << leaderInfo.first->getID()
3282 <<
" leadSpeed=" << leaderInfo.first->getSpeed()
3283 <<
" gap=" << leaderInfo.second
3284 <<
" leadLane=" << leaderInfo.first->getLane()->getID()
3285 <<
" predPos=" << leaderInfo.first->getPositionOnLane()
3288 <<
" vSafeLeader=" << vsafeLeader
3289 <<
" vLinkPass=" << vLinkPass
3299 const MSLane*
const lane,
double& v,
double& vLinkPass,
3300 double distToCrossing)
const {
3301 if (leaderInfo.first != 0) {
3303#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3305 std::cout <<
" junction foe ignored\n";
3311 double vsafeLeader = 0;
3313 vsafeLeader = -std::numeric_limits<double>::max();
3315 if (leaderInfo.second >= 0) {
3317 vsafeLeader = cfModel.
followSpeed(
this,
getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3320 vsafeLeader = cfModel.
insertionFollowSpeed(
this,
getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3322 }
else if (leaderInfo.first !=
this) {
3326#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3328 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" stopping before junction: lane=" << lane->
getID() <<
" seen=" << seen
3330 <<
" stopDist=" << seen - lane->
getLength() - POSITION_EPS
3331 <<
" vsafeLeader=" << vsafeLeader
3332 <<
" distToCrossing=" << distToCrossing
3337 if (distToCrossing >= 0) {
3340 if (leaderInfo.first ==
this) {
3342 const double vStopCrossing = cfModel.
stopSpeed(
this,
getSpeed(), distToCrossing);
3343 vsafeLeader = vStopCrossing;
3344#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3346 std::cout <<
" breaking for pedestrian distToCrossing=" << distToCrossing <<
" vStopCrossing=" << vStopCrossing <<
"\n";
3349 if (lastLink !=
nullptr) {
3352 }
else if (leaderInfo.second == -std::numeric_limits<double>::max()) {
3354#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3356 std::cout <<
" stop at crossing point for critical leader vStop=" << vStop <<
"\n";
3359 vsafeLeader =
MAX2(vsafeLeader, vStop);
3361 const double leaderDistToCrossing = distToCrossing - leaderInfo.second;
3369 vsafeLeader =
MAX2(vsafeLeader,
MIN2(v2, vStop));
3370#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3372 std::cout <<
" driving up to the crossing point (distToCrossing=" << distToCrossing <<
")"
3373 <<
" leaderPastCPTime=" << leaderPastCPTime
3374 <<
" vFinal=" << vFinal
3376 <<
" vStop=" << vStop
3377 <<
" vsafeLeader=" << vsafeLeader <<
"\n";
3382 if (lastLink !=
nullptr) {
3385 v =
MIN2(v, vsafeLeader);
3386 vLinkPass =
MIN2(vLinkPass, vsafeLeader);
3387#ifdef DEBUG_PLAN_MOVE
3391 <<
" veh=" <<
getID()
3392 <<
" lead=" << leaderInfo.first->getID()
3393 <<
" leadSpeed=" << leaderInfo.first->getSpeed()
3394 <<
" gap=" << leaderInfo.second
3395 <<
" leadLane=" << leaderInfo.first->getLane()->getID()
3396 <<
" predPos=" << leaderInfo.first->getPositionOnLane()
3398 <<
" lane=" << lane->
getID()
3400 <<
" dTC=" << distToCrossing
3402 <<
" vSafeLeader=" << vsafeLeader
3403 <<
" vLinkPass=" << vLinkPass
3413 double& v,
double& vLinkPass)
const {
3414 if (leaderInfo.first != 0) {
3416#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3418 std::cout <<
" oncoming foe ignored\n";
3424 const MSVehicle* lead = leaderInfo.first;
3429 const double gapSum = leaderBrakeGap + egoBrakeGap;
3433 double gap = leaderInfo.second;
3434 if (egoExit + leaderExit < gap) {
3435 gap -= egoExit + leaderExit;
3440 const double freeGap =
MAX2(0.0, gap - gapSum);
3441 const double splitGap =
MIN2(gap, gapSum);
3443 const double gapRatio = gapSum > 0 ? egoBrakeGap / gapSum : 0.5;
3444 const double vsafeLeader = cfModel.
stopSpeed(
this,
getSpeed(), splitGap * gapRatio + egoExit + 0.5 * freeGap);
3445 if (lastLink !=
nullptr) {
3448#ifdef DEBUG_PLAN_MOVE
3450 std::cout <<
" vlinkpass=" << lastLink->
myVLinkPass <<
" futureVSafe=" << futureVSafe <<
"\n";
3454 v =
MIN2(v, vsafeLeader);
3455 vLinkPass =
MIN2(vLinkPass, vsafeLeader);
3456#ifdef DEBUG_PLAN_MOVE
3460 <<
" veh=" <<
getID()
3461 <<
" oncomingLead=" << lead->
getID()
3462 <<
" leadSpeed=" << lead->
getSpeed()
3463 <<
" gap=" << leaderInfo.second
3465 <<
" gapRatio=" << gapRatio
3470 <<
" vSafeLeader=" << vsafeLeader
3471 <<
" vLinkPass=" << vLinkPass
3480 DriveProcessItem*
const lastLink,
double& v,
double& vLinkPass,
double& vLinkWait,
bool& setRequest)
const {
3483 checkLinkLeader(link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
3486 if (parallelLink !=
nullptr) {
3487 checkLinkLeader(parallelLink, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest,
true);
3496 DriveProcessItem*
const lastLink,
double& v,
double& vLinkPass,
double& vLinkWait,
bool& setRequest,
3497 bool isShadowLink)
const {
3498#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3504#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3509 for (MSLink::LinkLeaders::const_iterator it = linkLeaders.begin(); it != linkLeaders.end(); ++it) {
3511 const MSVehicle* leader = (*it).vehAndGap.first;
3512 if (leader ==
nullptr) {
3514#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3516 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is blocked on link to " << link->
getViaLaneOrLane()->
getID() <<
" by pedestrian. dist=" << it->distToCrossing <<
"\n";
3521#ifdef DEBUG_PLAN_MOVE
3523 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is ignoring pedestrian (jmIgnoreJunctionFoeProb)\n";
3528 adaptToJunctionLeader(std::make_pair(
this, -1), seen, lastLink, lane, v, vLinkPass, it->distToCrossing);
3532#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3534 std::cout <<
" aborting request\n";
3538 }
else if (
isLeader(link, leader, (*it).vehAndGap.second) || (*it).inTheWay()) {
3541#ifdef DEBUG_PLAN_MOVE
3543 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" is ignoring linkLeader=" << leader->
getID() <<
" (jmIgnoreJunctionFoeProb)\n";
3554 linkLeadersAhead.
addLeader(leader,
false, 0);
3558#ifdef DEBUG_PLAN_MOVE
3562 <<
" isShadowLink=" << isShadowLink
3563 <<
" lane=" << lane->
getID()
3564 <<
" foe=" << leader->
getID()
3566 <<
" latOffset=" << latOffset
3568 <<
" linkLeadersAhead=" << linkLeadersAhead.
toString()
3573#ifdef DEBUG_PLAN_MOVE
3575 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" linkLeader=" << leader->
getID() <<
" gap=" << it->vehAndGap.second
3584 if (lastLink !=
nullptr) {
3598#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3600 std::cout <<
" aborting request\n";
3607#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3609 std::cout <<
" aborting previous request\n";
3615#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3618 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" ignoring leader " << leader->
getID() <<
" gap=" << (*it).vehAndGap.second <<
" dtC=" << (*it).distToCrossing
3628 vLinkWait =
MIN2(vLinkWait, v);
3658 double vSafeZipper = std::numeric_limits<double>::max();
3661 bool canBrakeVSafeMin =
false;
3666 MSLink*
const link = dpi.myLink;
3668#ifdef DEBUG_EXEC_MOVE
3672 <<
" veh=" <<
getID()
3674 <<
" req=" << dpi.mySetRequest
3675 <<
" vP=" << dpi.myVLinkPass
3676 <<
" vW=" << dpi.myVLinkWait
3677 <<
" d=" << dpi.myDistance
3684 if (link !=
nullptr && dpi.mySetRequest) {
3693 const bool ignoreRedLink =
ignoreRed(link, canBrake) || beyondStopLine;
3694 if (yellow && canBrake && !ignoreRedLink) {
3695 vSafe = dpi.myVLinkWait;
3697#ifdef DEBUG_CHECKREWINDLINKLANES
3699 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (yellow)\n";
3706 bool opened = (yellow || influencerPrio
3707 || link->
opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3713 ignoreRedLink,
this, dpi.myDistance));
3716 if (parallelLink !=
nullptr) {
3719 opened = yellow || influencerPrio || (opened && parallelLink->
opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3723 ignoreRedLink,
this, dpi.myDistance));
3724#ifdef DEBUG_EXEC_MOVE
3727 <<
" veh=" <<
getID()
3731 <<
" opened=" << opened
3738#ifdef DEBUG_EXEC_MOVE
3741 <<
" opened=" << opened
3742 <<
" influencerPrio=" << influencerPrio
3745 <<
" isCont=" << link->
isCont()
3746 <<
" ignoreRed=" << ignoreRedLink
3751 bool determinedFoePresence = dpi.myDistance <= visibilityDistance;
3753 if (!determinedFoePresence && (canBrake || !yellow)) {
3754 vSafe = dpi.myVLinkWait;
3756#ifdef DEBUG_CHECKREWINDLINKLANES
3758 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (minor)\n";
3774 vSafeMinDist = dpi.myDistance;
3780 canBrakeVSafeMin = canBrake;
3781#ifdef DEBUG_EXEC_MOVE
3783 std::cout <<
" vSafeMin=" << vSafeMin <<
" vSafeMinDist=" << vSafeMinDist <<
" canBrake=" << canBrake <<
"\n";
3790 vSafe = dpi.myVLinkPass;
3794#ifdef DEBUG_CHECKREWINDLINKLANES
3796 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (very slow)\n";
3804 vSafeZipper =
MIN2(vSafeZipper,
3805 link->
getZipperSpeed(
this, dpi.myDistance, dpi.myVLinkPass, dpi.myArrivalTime, &collectFoes));
3806 }
else if (!canBrake
3811#ifdef DEBUG_EXEC_MOVE
3813 std::cout <<
SIMTIME <<
" too fast to brake for closed link\n";
3816 vSafe = dpi.myVLinkPass;
3818 vSafe = dpi.myVLinkWait;
3820#ifdef DEBUG_CHECKREWINDLINKLANES
3822 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (closed)\n";
3825#ifdef DEBUG_EXEC_MOVE
3836#ifdef DEBUG_EXEC_MOVE
3838 std::cout <<
SIMTIME <<
" resetting junctionEntryTime at junction '" << link->
getJunction()->
getID() <<
"' beause of non-request exitLink\n";
3845 vSafe = dpi.myVLinkWait;
3848#ifdef DEBUG_CHECKREWINDLINKLANES
3850 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (no request, braking) vSafe=" << vSafe <<
"\n";
3855#ifdef DEBUG_CHECKREWINDLINKLANES
3857 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (no request, stopping)\n";
3892#ifdef DEBUG_EXEC_MOVE
3894 std::cout <<
"vSafeMin Problem? vSafe=" << vSafe <<
" vSafeMin=" << vSafeMin <<
" vSafeMinDist=" << vSafeMinDist << std::endl;
3897 if (canBrakeVSafeMin && vSafe <
getSpeed()) {
3903#ifdef DEBUG_CHECKREWINDLINKLANES
3905 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" haveToWait (vSafe=" << vSafe <<
" < vSafeMin=" << vSafeMin <<
")\n";
3923 vSafe =
MIN2(vSafe, vSafeZipper);
3933 std::cout <<
SIMTIME <<
" MSVehicle::processTraCISpeedControl() for vehicle '" <<
getID() <<
"'"
3934 <<
" vSafe=" << vSafe <<
" (init)vNext=" << vNext <<
" keepStopping=" <<
keepStopping();
3943 vMin =
MAX2(0., vMin);
3952 std::cout <<
" (processed)vNext=" << vNext << std::endl;
3962#ifdef DEBUG_ACTIONSTEPS
3964 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" removePassedDriveItems()\n"
3965 <<
" Current items: ";
3967 if (j.myLink == 0) {
3968 std::cout <<
"\n Stop at distance " << j.myDistance;
3970 const MSLane* to = j.myLink->getViaLaneOrLane();
3971 const MSLane* from = j.myLink->getLaneBefore();
3972 std::cout <<
"\n Link at distance " << j.myDistance <<
": '"
3973 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
3976 std::cout <<
"\n myNextDriveItem: ";
3983 std::cout <<
"\n Link at distance " <<
myNextDriveItem->myDistance <<
": '"
3984 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
3987 std::cout << std::endl;
3991#ifdef DEBUG_ACTIONSTEPS
3993 std::cout <<
" Removing item: ";
3994 if (j->myLink == 0) {
3995 std::cout <<
"Stop at distance " << j->myDistance;
3997 const MSLane* to = j->myLink->getViaLaneOrLane();
3998 const MSLane* from = j->myLink->getLaneBefore();
3999 std::cout <<
"Link at distance " << j->myDistance <<
": '"
4000 << (from == 0 ?
"NONE" : from->
getID()) <<
"' -> '" << (to == 0 ?
"NONE" : to->
getID()) <<
"'";
4002 std::cout << std::endl;
4005 if (j->myLink !=
nullptr) {
4006 j->myLink->removeApproaching(
this);
4016#ifdef DEBUG_ACTIONSTEPS
4018 std::cout <<
SIMTIME <<
" updateDriveItems(), veh='" <<
getID() <<
"' (lane: '" <<
getLane()->
getID() <<
"')\nCurrent drive items:" << std::endl;
4021 <<
" vPass=" << dpi.myVLinkPass
4022 <<
" vWait=" << dpi.myVLinkWait
4023 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
4024 <<
" request=" << dpi.mySetRequest
4027 std::cout <<
" myNextDriveItem's linked lane: " << (
myNextDriveItem->myLink == 0 ?
"NULL" :
myNextDriveItem->myLink->getViaLaneOrLane()->getID()) << std::endl;
4034 const MSLink* nextPlannedLink =
nullptr;
4037 while (i !=
myLFLinkLanes.end() && nextPlannedLink ==
nullptr) {
4038 nextPlannedLink = i->myLink;
4042 if (nextPlannedLink ==
nullptr) {
4044#ifdef DEBUG_ACTIONSTEPS
4046 std::cout <<
"Found no link-related drive item." << std::endl;
4054#ifdef DEBUG_ACTIONSTEPS
4056 std::cout <<
"Continuing on planned lane sequence, no update required." << std::endl;
4078#ifdef DEBUG_ACTIONSTEPS
4080 std::cout <<
"Changed lane. Drive items will be updated along the current lane continuation." << std::endl;
4092 MSLink* newLink =
nullptr;
4094 if (driveItemIt->myLink ==
nullptr) {
4104#ifdef DEBUG_ACTIONSTEPS
4106 std::cout <<
"Reached end of the new continuation sequence. Erasing leftover link-items." << std::endl;
4110 if (driveItemIt->myLink ==
nullptr) {
4121 const MSLane*
const target = *bestLaneIt;
4125 if (link->getLane() == target) {
4131 if (newLink == driveItemIt->myLink) {
4133#ifdef DEBUG_ACTIONSTEPS
4135 std::cout <<
"Old and new continuation sequences merge at link\n"
4137 <<
"\nNo update beyond merge required." << std::endl;
4143#ifdef DEBUG_ACTIONSTEPS
4145 std::cout <<
"lane=" << lane->
getID() <<
"\nUpdating link\n '" << driveItemIt->myLink->getLaneBefore()->getID() <<
"'->'" << driveItemIt->myLink->getViaLaneOrLane()->getID() <<
"'"
4149 newLink->
setApproaching(
this, driveItemIt->myLink->getApproaching(
this));
4150 driveItemIt->myLink->removeApproaching(
this);
4151 driveItemIt->myLink = newLink;
4158#ifdef DEBUG_ACTIONSTEPS
4160 std::cout <<
"Updated drive items:" << std::endl;
4163 <<
" vPass=" << dpi.myVLinkPass
4164 <<
" vWait=" << dpi.myVLinkWait
4165 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
4166 <<
" request=" << dpi.mySetRequest
4183 brakelightsOn =
true;
4224#ifdef DEBUG_REVERSE_BIDI
4228 <<
" speedThreshold=" << speedThreshold
4230 <<
" isRail=" <<
isRail()
4236 <<
" stopOk=" << stopOk
4255 if (remainingRoute < neededFutureRoute) {
4256#ifdef DEBUG_REVERSE_BIDI
4268#ifdef DEBUG_REVERSE_BIDI
4279 const double stopPos =
myStops.front().getEndPos(*
this);
4282 if (newPos > stopPos) {
4283#ifdef DEBUG_REVERSE_BIDI
4288 if (seen >
MAX2(brakeDist, 1.0)) {
4291#ifdef DEBUG_REVERSE_BIDI
4293 std::cout <<
" train is too long, skipping stop at " << stopPos <<
" cannot be avoided\n";
4307 if (!further->getEdge().isInternal()) {
4308 if (further->getEdge().getBidiEdge() != *(
myCurrEdge + view)) {
4309#ifdef DEBUG_REVERSE_BIDI
4311 std::cout <<
" noBidi view=" << view <<
" further=" << further->
getID() <<
" furtherBidi=" <<
Named::getIDSecure(further->getEdge().getBidiEdge()) <<
" future=" << (*(
myCurrEdge + view))->getID() <<
"\n";
4318 if (toNext ==
nullptr) {
4323#ifdef DEBUG_REVERSE_BIDI
4325 std::cout <<
" do not reverse on a red signal\n";
4333 const double stopPos =
myStops.front().getEndPos(*
this);
4335 if (newPos > stopPos) {
4336#ifdef DEBUG_REVERSE_BIDI
4338 std::cout <<
" reversal would go past stop on further-opposite lane " << further->getBidiLane()->getID() <<
"\n";
4341 if (seen >
MAX2(brakeDist, 1.0)) {
4345#ifdef DEBUG_REVERSE_BIDI
4347 std::cout <<
" train is too long, skipping stop at " << stopPos <<
" cannot be avoided\n";
4358#ifdef DEBUG_REVERSE_BIDI
4360 std::cout <<
SIMTIME <<
" seen=" << seen <<
" vReverseOK=" << vMinComfortable <<
"\n";
4364 return vMinComfortable;
4373 passedLanes.push_back(*i);
4375 if (passedLanes.size() == 0 || passedLanes.back() !=
myLane) {
4376 passedLanes.push_back(
myLane);
4379 bool reverseTrain =
false;
4387#ifdef DEBUG_REVERSE_BIDI
4412 if (link !=
nullptr) {
4418 emergencyReason =
" because it must reverse direction";
4419 approachedLane =
nullptr;
4435 if (link->
haveRed() && !
ignoreRed(link,
false) && !beyondStopLine && !reverseTrain) {
4436 emergencyReason =
" because of a red traffic light";
4440 if (reverseTrain && approachedLane->
isInternal()) {
4448 }
else if (reverseTrain) {
4449 approachedLane = (*(
myCurrEdge + 1))->getLanes()[0];
4457 emergencyReason =
" because there is no connection to the next edge";
4458 approachedLane =
nullptr;
4461 if (approachedLane !=
myLane && approachedLane !=
nullptr) {
4482#ifdef DEBUG_PLAN_MOVE_LEADERINFO
4498 WRITE_WARNING(
"Vehicle '" +
getID() +
"' could not finish continuous lane change (turn lane) time=" +
4507 passedLanes.push_back(approachedLane);
4512#ifdef DEBUG_ACTIONSTEPS
4514 std::cout <<
"Updated drive items:" << std::endl;
4517 <<
" vPass=" << (*i).myVLinkPass
4518 <<
" vWait=" << (*i).myVLinkWait
4519 <<
" linkLane=" << ((*i).myLink == 0 ?
"NULL" : (*i).myLink->getViaLaneOrLane()->getID())
4520 <<
" request=" << (*i).mySetRequest
4537#ifdef DEBUG_EXEC_MOVE
4539 std::cout <<
"\nEXECUTE_MOVE\n"
4541 <<
" veh=" <<
getID()
4549 double vSafe = std::numeric_limits<double>::max();
4551 double vSafeMin = -std::numeric_limits<double>::max();
4554 double vSafeMinDist = 0;
4559#ifdef DEBUG_ACTIONSTEPS
4561 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"'\n"
4562 " vsafe from processLinkApproaches(): vsafe " << vSafe << std::endl;
4568#ifdef DEBUG_ACTIONSTEPS
4570 std::cout <<
SIMTIME <<
" vehicle '" <<
getID() <<
"' skips processLinkApproaches()\n"
4572 <<
"speed: " <<
getSpeed() <<
" -> " << vSafe << std::endl;
4586 double vNext = vSafe;
4605 vNext =
MAX2(vNext, vSafeMin);
4614#ifdef DEBUG_EXEC_MOVE
4616 std::cout <<
SIMTIME <<
" finalizeSpeed vSafe=" << vSafe <<
" vSafeMin=" << (vSafeMin == -std::numeric_limits<double>::max() ?
"-Inf" :
toString(vSafeMin))
4617 <<
" vNext=" << vNext <<
" (i.e. accel=" <<
SPEED2ACCEL(vNext -
getSpeed()) <<
")" << std::endl;
4634 vNext =
MAX2(vNext, 0.);
4644 if (elecHybridOfVehicle !=
nullptr) {
4646 elecHybridOfVehicle->
setConsum(elecHybridOfVehicle->
consumption(*
this, (vNext - this->getSpeed()) /
TS, vNext));
4650 if (elecHybridOfVehicle->
getConsum() /
TS > maxPower) {
4655 vNext =
MAX2(vNext, 0.);
4657 elecHybridOfVehicle->
setConsum(elecHybridOfVehicle->
consumption(*
this, (vNext - this->getSpeed()) /
TS, vNext));
4675 std::vector<MSLane*> passedLanes;
4679 std::string emergencyReason;
4687 if (emergencyReason ==
"") {
4688 emergencyReason =
TL(
" for unknown reasons");
4690 WRITE_WARNINGF(
TL(
"Vehicle '%' performs emergency stop at the end of lane '%'% (decel=%, offset=%), time=%."),
4701 passedLanes.clear();
4703#ifdef DEBUG_ACTIONSTEPS
4705 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
"' updates further lanes." << std::endl;
4709 if (passedLanes.size() > 1 &&
isRail()) {
4710 for (
auto pi = passedLanes.rbegin(); pi != passedLanes.rend(); ++pi) {
4742#ifdef DEBUG_ACTIONSTEPS
4744 std::cout <<
SIMTIME <<
" veh '" <<
getID() <<
"' skips LCM->prepareStep()." << std::endl;
4752#ifdef DEBUG_EXEC_MOVE
4760 MSLane* newOpposite =
nullptr;
4762 if (newOppositeEdge !=
nullptr) {
4764#ifdef DEBUG_EXEC_MOVE
4766 std::cout <<
SIMTIME <<
" newOppositeEdge=" << newOppositeEdge->
getID() <<
" oldLaneOffset=" << oldLaneOffset <<
" leftMost=" << newOppositeEdge->
getNumLanes() - 1 <<
" newOpposite=" <<
Named::getIDSecure(newOpposite) <<
"\n";
4770 if (newOpposite ==
nullptr) {
4773 WRITE_WARNINGF(
TL(
"Unexpected end of opposite lane for vehicle '%' at lane '%', time=%."),
4780 if (oldOpposite !=
nullptr) {
4793 oldLane = oldLaneMaybeOpposite;
4801 return myLane != oldLane;
4812 for (
int i = 0; i < (int)lanes.size(); i++) {
4814 if (i + 1 < (
int)lanes.size()) {
4815 const MSLane*
const to = lanes[i + 1];
4817 for (
MSLink*
const l : lanes[i]->getLinkCont()) {
4818 if ((internal && l->getViaLane() == to) || (!internal && l->getLane() == to)) {
4827 std::vector<MSLane*> passedLanes;
4829 if (lanes.size() > 1) {
4832 std::string emergencyReason;
4834#ifdef DEBUG_EXTRAPOLATE_DEPARTPOS
4836 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" executeFractionalMove dist=" << dist
4837 <<
" passedLanes=" <<
toString(passedLanes) <<
" lanes=" <<
toString(lanes)
4845 if (lanes.size() > 1) {
4849 std::cout <<
SIMTIME <<
" leaveLane \n";
4852 (*i)->resetPartialOccupation(
this);
4877#ifdef DEBUG_EXEC_MOVE
4879 std::cout <<
SIMTIME <<
" updateState() for veh '" <<
getID() <<
"': deltaPos=" << deltaPos
4884 if (decelPlus > 0) {
4888 decelPlus += 2 * NUMERICAL_EPS;
4891 WRITE_WARNINGF(
TL(
"Vehicle '%' performs emergency braking on lane '%' with decel=%, wished=%, severity=%, time=%."),
4928 dev->notifyParking();
4953 const std::vector<MSLane*>& passedLanes) {
4954#ifdef DEBUG_SETFURTHER
4956 <<
" updateFurtherLanes oldFurther=" <<
toString(furtherLanes)
4957 <<
" oldFurtherPosLat=" <<
toString(furtherLanesPosLat)
4958 <<
" passed=" <<
toString(passedLanes)
4961 for (
MSLane* further : furtherLanes) {
4963 if (further->getBidiLane() !=
nullptr
4964 && (!
isRailway(
getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
4965 further->getBidiLane()->resetPartialOccupation(
this);
4969 std::vector<MSLane*> newFurther;
4970 std::vector<double> newFurtherPosLat;
4973 if (passedLanes.size() > 1) {
4975 std::vector<MSLane*>::const_iterator fi = furtherLanes.begin();
4976 std::vector<double>::const_iterator fpi = furtherLanesPosLat.begin();
4977 for (
auto pi = passedLanes.rbegin() + 1; pi != passedLanes.rend() && backPosOnPreviousLane < 0; ++pi) {
4980 newFurther.push_back(further);
4986 if (fi != furtherLanes.end() && further == *fi) {
4988 newFurtherPosLat.push_back(*fpi);
4996 if (newFurtherPosLat.size() == 0) {
5003 newFurtherPosLat.push_back(newFurtherPosLat.back());
5006#ifdef DEBUG_SETFURTHER
5008 std::cout <<
SIMTIME <<
" updateFurtherLanes \n"
5009 <<
" further lane '" << further->
getID() <<
"' backPosOnPreviousLane=" << backPosOnPreviousLane
5014 furtherLanes = newFurther;
5015 furtherLanesPosLat = newFurtherPosLat;
5017 furtherLanes.clear();
5018 furtherLanesPosLat.clear();
5020#ifdef DEBUG_SETFURTHER
5022 <<
" newFurther=" <<
toString(furtherLanes)
5023 <<
" newFurtherPosLat=" <<
toString(furtherLanesPosLat)
5024 <<
" newBackPos=" << backPosOnPreviousLane
5027 return backPosOnPreviousLane;
5036 <<
" getBackPositionOnLane veh=" <<
getID()
5038 <<
" cbgP=" << calledByGetPosition
5093 leftLength -= (*i)->getLength();
5106 leftLength -= (*i)->getLength();
5117 auto j = furtherTargetLanes.begin();
5118 while (leftLength > 0 && j != furtherTargetLanes.end()) {
5119 leftLength -= (*i)->getLength();
5150 double seenSpace = -lengthsInFront;
5151#ifdef DEBUG_CHECKREWINDLINKLANES
5153 std::cout <<
"\nCHECK_REWIND_LINKLANES\n" <<
" veh=" <<
getID() <<
" lengthsInFront=" << lengthsInFront <<
"\n";
5156 bool foundStopped =
false;
5159 for (
int i = 0; i < (int)lfLinks.size(); ++i) {
5162#ifdef DEBUG_CHECKREWINDLINKLANES
5165 <<
" foundStopped=" << foundStopped;
5167 if (item.
myLink ==
nullptr || foundStopped) {
5168 if (!foundStopped) {
5173#ifdef DEBUG_CHECKREWINDLINKLANES
5182 if (approachedLane !=
nullptr) {
5185 if (approachedLane ==
myLane) {
5192#ifdef DEBUG_CHECKREWINDLINKLANES
5194 <<
" approached=" << approachedLane->
getID()
5197 <<
" seenSpace=" << seenSpace
5199 <<
" lengthsInFront=" << lengthsInFront
5206 if (last ==
nullptr || last ==
this) {
5209 seenSpace += approachedLane->
getLength();
5212#ifdef DEBUG_CHECKREWINDLINKLANES
5218 bool foundStopped2 =
false;
5224 const double oncomingBGap = oncomingVeh->
getBrakeGap(
true);
5227 const double spaceTillOncoming = oncomingGap - oncomingBGap - oncomingMove;
5228 spaceTillLastStanding =
MIN2(spaceTillLastStanding, spaceTillOncoming);
5230 foundStopped =
true;
5232#ifdef DEBUG_CHECKREWINDLINKLANES
5234 std::cout <<
" oVeh=" << oncomingVeh->
getID()
5235 <<
" oGap=" << oncomingGap
5236 <<
" bGap=" << oncomingBGap
5237 <<
" mGap=" << oncomingMove
5238 <<
" sto=" << spaceTillOncoming;
5243 seenSpace += spaceTillLastStanding;
5244 if (foundStopped2) {
5245 foundStopped =
true;
5250 foundStopped =
true;
5253#ifdef DEBUG_CHECKREWINDLINKLANES
5255 <<
" approached=" << approachedLane->
getID()
5256 <<
" last=" << last->
getID()
5263 <<
" stls=" << spaceTillLastStanding
5265 <<
" seenSpace=" << seenSpace
5266 <<
" foundStopped=" << foundStopped
5267 <<
" foundStopped2=" << foundStopped2
5274 for (
int i = ((
int)lfLinks.size() - 1); i > 0; --i) {
5278 const bool opened = (item.
myLink !=
nullptr
5279 && (canLeaveJunction || (
5290#ifdef DEBUG_CHECKREWINDLINKLANES
5293 <<
" canLeave=" << canLeaveJunction
5294 <<
" opened=" << opened
5295 <<
" allowsContinuation=" << allowsContinuation
5296 <<
" foundStopped=" << foundStopped
5299 if (!opened && item.
myLink !=
nullptr) {
5300 foundStopped =
true;
5304 allowsContinuation =
true;
5308 if (allowsContinuation) {
5310#ifdef DEBUG_CHECKREWINDLINKLANES
5320 int removalBegin = -1;
5321 for (
int i = 0; foundStopped && i < (int)lfLinks.size() && removalBegin < 0; ++i) {
5324 if (item.
myLink ==
nullptr) {
5335#ifdef DEBUG_CHECKREWINDLINKLANES
5338 <<
" veh=" <<
getID()
5341 <<
" leftSpace=" << leftSpace
5344 if (leftSpace < 0/* && item.myLink->willHaveBlockedFoe()*/) {
5345 double impatienceCorrection = 0;
5352 if (leftSpace < -impatienceCorrection / 10. &&
keepClear(item.
myLink)) {
5361 while (removalBegin < (
int)(lfLinks.size())) {
5363 if (dpi.
myLink ==
nullptr) {
5367#ifdef DEBUG_CHECKREWINDLINKLANES
5372 if (dpi.
myDistance >= brakeGap + POSITION_EPS) {
5374 if (!dpi.
myLink->
isExitLink() || !lfLinks[removalBegin - 1].mySetRequest) {
5392 if (dpi.myLink !=
nullptr) {
5396 dpi.myLink->setApproaching(
this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
5402 if (dpi.myLink !=
nullptr && dpi.myLink->getTLLogic() !=
nullptr && dpi.myLink->getTLLogic()->getLogicType() ==
TrafficLightType::RAIL_SIGNAL) {
5410 if (dpi.myLink !=
nullptr) {
5416 if (parallelLink !=
nullptr) {
5418 parallelLink->
setApproaching(
this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
5419 dpi.mySetRequest, dpi.myArrivalSpeedBraking,
getWaitingTimeFor(dpi.myLink), dpi.myDistance,
5426#ifdef DEBUG_PLAN_MOVE
5429 <<
" veh=" <<
getID()
5430 <<
" after checkRewindLinkLanes\n";
5433 <<
" vPass=" << dpi.myVLinkPass
5434 <<
" vWait=" << dpi.myVLinkWait
5435 <<
" linkLane=" << (dpi.myLink == 0 ?
"NULL" : dpi.myLink->getViaLaneOrLane()->getID())
5436 <<
" request=" << dpi.mySetRequest
5437 <<
" atime=" << dpi.myArrivalTime
5483 if (!onTeleporting) {
5488 assert(oldLane !=
nullptr);
5490 if (link !=
nullptr) {
5535 int deleteFurther = 0;
5536#ifdef DEBUG_SETFURTHER
5547 if (lane !=
nullptr) {
5550#ifdef DEBUG_SETFURTHER
5552 std::cout <<
" enterLaneAtLaneChange i=" << i <<
" lane=" <<
Named::getIDSecure(lane) <<
" leftLength=" << leftLength <<
"\n";
5555 if (leftLength > 0) {
5556 if (lane !=
nullptr) {
5572#ifdef DEBUG_SETFURTHER
5585#ifdef DEBUG_SETFURTHER
5600 if (deleteFurther > 0) {
5601#ifdef DEBUG_SETFURTHER
5603 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" shortening myFurtherLanes by " << deleteFurther <<
"\n";
5609#ifdef DEBUG_SETFURTHER
5624 MSLane* clane = enteredLane;
5626 while (leftLength > 0) {
5630 const MSEdge* fromRouteEdge =
myRoute->getEdges()[routeIndex];
5634 if (ili.lane->getEdge().getNormalBefore() == fromRouteEdge) {
5660#ifdef DEBUG_SETFURTHER
5668#ifdef DEBUG_SETFURTHER
5670 std::cout <<
SIMTIME <<
" opposite: resetPartialOccupation " << further->getID() <<
" \n";
5673 further->resetPartialOccupation(
this);
5674 if (further->getBidiLane() !=
nullptr
5675 && (!
isRailway(
getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5676 further->getBidiLane()->resetPartialOccupation(
this);
5712 &&
myStops.front().pars.endPos < pos) {
5734 if (further->mustCheckJunctionCollisions()) {
5745 if (rem->first->notifyLeave(*
this,
myState.
myPos + rem->second, reason, approachedLane)) {
5747 if (myTraceMoveReminders) {
5748 traceMoveReminder(
"notifyLeave", rem->first, rem->second,
true);
5754 if (myTraceMoveReminders) {
5755 traceMoveReminder(
"notifyLeave", rem->first, rem->second,
false);
5777 std::cout <<
SIMTIME <<
" leaveLane \n";
5780 further->resetPartialOccupation(
this);
5781 if (further->getBidiLane() !=
nullptr
5782 && (!
isRailway(
getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5783 further->getBidiLane()->resetPartialOccupation(
this);
5794 myStopDist = std::numeric_limits<double>::max();
5801 if (
myStops.front().getSpeed() <= 0) {
5818 if (stop.
busstop !=
nullptr) {
5834 myStopDist = std::numeric_limits<double>::max();
5843 if (rem->first->notifyLeaveBack(*
this, reason, leftLane)) {
5845 if (myTraceMoveReminders) {
5846 traceMoveReminder(
"notifyLeaveBack", rem->first, rem->second,
true);
5852 if (myTraceMoveReminders) {
5853 traceMoveReminder(
"notifyLeaveBack", rem->first, rem->second,
false);
5859#ifdef DEBUG_MOVEREMINDERS
5861 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" myReminders:";
5863 std::cout << rem.first->getDescription() <<
" ";
5889const std::vector<MSVehicle::LaneQ>&
5897#ifdef DEBUG_BESTLANES
5902 if (startLane ==
nullptr) {
5905 assert(startLane != 0);
5913 assert(startLane != 0);
5914#ifdef DEBUG_BESTLANES
5916 std::cout <<
" startLaneIsOpposite newStartLane=" << startLane->
getID() <<
"\n";
5927#ifdef DEBUG_BESTLANES
5929 std::cout <<
" only updateOccupancyAndCurrentBestLane\n";
5940#ifdef DEBUG_BESTLANES
5942 std::cout <<
" nothing to do on internal\n";
5952 std::vector<LaneQ>& lanes = *it;
5953 assert(lanes.size() > 0);
5954 if (&(lanes[0].lane->getEdge()) == nextEdge) {
5956 std::vector<LaneQ> oldLanes = lanes;
5958 const std::vector<MSLane*>& sourceLanes = startLane->
getEdge().
getLanes();
5959 for (std::vector<MSLane*>::const_iterator it_source = sourceLanes.begin(); it_source != sourceLanes.end(); ++it_source) {
5960 for (std::vector<LaneQ>::iterator it_lane = oldLanes.begin(); it_lane != oldLanes.end(); ++it_lane) {
5961 if ((*it_source)->getLinkCont()[0]->getLane() == (*it_lane).lane) {
5962 lanes.push_back(*it_lane);
5969 for (
int i = 0; i < (int)lanes.size(); ++i) {
5970 if (i + lanes[i].bestLaneOffset < 0) {
5971 lanes[i].bestLaneOffset = -i;
5973 if (i + lanes[i].bestLaneOffset >= (
int)lanes.size()) {
5974 lanes[i].bestLaneOffset = (int)lanes.size() - i - 1;
5976 assert(i + lanes[i].bestLaneOffset >= 0);
5977 assert(i + lanes[i].bestLaneOffset < (
int)lanes.size());
5978 if (lanes[i].bestContinuations[0] != 0) {
5980 lanes[i].bestContinuations.insert(lanes[i].bestContinuations.begin(), (
MSLane*)
nullptr);
5982 if (startLane->
getLinkCont()[0]->getLane() == lanes[i].lane) {
5985 assert(&(lanes[i].lane->getEdge()) == nextEdge);
5989#ifdef DEBUG_BESTLANES
5991 std::cout <<
" updated for internal\n";
6009 const MSLane* nextStopLane =
nullptr;
6010 double nextStopPos = 0;
6011 bool nextStopIsWaypoint =
false;
6014 nextStopLane = nextStop.
lane;
6019 nextStopEdge = nextStop.
edge;
6021 nextStopIsWaypoint = nextStop.
getSpeed() > 0;
6025 nextStopEdge = (
myRoute->end() - 1);
6029 if (nextStopEdge !=
myRoute->end()) {
6032 nextStopPos =
MAX2(POSITION_EPS,
MIN2((
double)nextStopPos, (
double)(nextStopLane->
getLength() - 2 * POSITION_EPS)));
6035 nextStopPos = (*nextStopEdge)->getLength();
6044 double seenLength = 0;
6045 bool progress =
true;
6050 std::vector<LaneQ> currentLanes;
6051 const std::vector<MSLane*>* allowed =
nullptr;
6052 const MSEdge* nextEdge =
nullptr;
6054 nextEdge = *(ce + 1);
6057 const std::vector<MSLane*>& lanes = (*ce)->getLanes();
6058 for (std::vector<MSLane*>::const_iterator i = lanes.begin(); i != lanes.end(); ++i) {
6067 q.
allowsContinuation = allowed ==
nullptr || std::find(allowed->begin(), allowed->end(), cl) != allowed->end();
6070 currentLanes.push_back(q);
6073 if (nextStopEdge == ce
6076 if (!nextStopLane->
isInternal() && !continueAfterStop) {
6080 for (std::vector<LaneQ>::iterator q = currentLanes.begin(); q != currentLanes.end(); ++q) {
6081 if (nextStopLane !=
nullptr && normalStopLane != (*q).lane) {
6082 (*q).allowsContinuation =
false;
6083 (*q).length = nextStopPos;
6084 (*q).currentLength = (*q).length;
6091 seenLength += currentLanes[0].lane->
getLength();
6093 if (lookahead >= 0) {
6094 progress &= (seen <= 2 || seenLength < lookahead);
6096 progress &= (seen <= 4 || seenLength <
MAX2(maxBrakeDist, 3000.0));
6099 progress &= ce !=
myRoute->end();
6109 double bestLength = -1;
6111 int bestThisIndex = 0;
6112 int bestThisMaxIndex = 0;
6115 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
6116 if ((*j).length > bestLength) {
6117 bestLength = (*j).length;
6118 bestThisIndex = index;
6119 bestThisMaxIndex = index;
6120 }
else if ((*j).length == bestLength) {
6121 bestThisMaxIndex = index;
6125 bool requiredChangeRightForbidden =
false;
6126 int requireChangeToLeftForbidden = -1;
6127 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
6128 if ((*j).length < bestLength) {
6129 if (abs(bestThisIndex - index) < abs(bestThisMaxIndex - index)) {
6130 (*j).bestLaneOffset = bestThisIndex - index;
6132 (*j).bestLaneOffset = bestThisMaxIndex - index;
6134 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(
getVClass())
6135 || !(*j).lane->getParallelLane(-1,
false)->allowsVehicleClass(
getVClass())
6136 || requiredChangeRightForbidden)) {
6138 requiredChangeRightForbidden =
true;
6140 }
else if ((*j).bestLaneOffset > 0 && (!(*j).lane->allowsChangingLeft(
getVClass())
6141 || !(*j).lane->getParallelLane(1,
false)->allowsVehicleClass(
getVClass()))) {
6143 requireChangeToLeftForbidden = (*j).lane->getIndex();
6147 for (
int i = requireChangeToLeftForbidden; i >= 0; i--) {
6148 if (last[i].bestLaneOffset > 0) {
6152#ifdef DEBUG_BESTLANES
6154 std::cout <<
" last edge=" << last.front().lane->getEdge().getID() <<
" (bestIndex=" << bestThisIndex <<
" bestMaxIndex=" << bestThisMaxIndex <<
"):\n";
6156 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
6157 std::cout <<
" lane=" << (*j).lane->getID() <<
" length=" << (*j).length <<
" bestOffset=" << (*j).bestLaneOffset <<
"\n";
6164 for (std::vector<std::vector<LaneQ> >::reverse_iterator i =
myBestLanes.rbegin() + 1; i !=
myBestLanes.rend(); ++i) {
6165 std::vector<LaneQ>& nextLanes = (*(i - 1));
6166 std::vector<LaneQ>& clanes = (*i);
6167 MSEdge*
const cE = &clanes[0].lane->getEdge();
6169 double bestConnectedLength = -1;
6170 double bestLength = -1;
6171 for (
const LaneQ& j : nextLanes) {
6172 if (j.lane->isApproachedFrom(cE) && bestConnectedLength < j.length) {
6173 bestConnectedLength = j.length;
6175 if (bestLength < j.length) {
6176 bestLength = j.length;
6180 int bestThisIndex = 0;
6181 int bestThisMaxIndex = 0;
6182 if (bestConnectedLength > 0) {
6184 for (
LaneQ& j : clanes) {
6185 const LaneQ* bestConnectedNext =
nullptr;
6186 if (j.allowsContinuation) {
6187 for (
const LaneQ& m : nextLanes) {
6188 if ((m.lane->allowsVehicleClass(
getVClass()) || m.lane->hadPermissionChanges())
6189 && m.lane->isApproachedFrom(cE, j.lane)) {
6191 bestConnectedNext = &m;
6195 if (bestConnectedNext !=
nullptr) {
6196 if (bestConnectedNext->
length == bestConnectedLength && abs(bestConnectedNext->
bestLaneOffset) < 2) {
6199 j.length += bestConnectedNext->
length;
6207 j.allowsContinuation =
false;
6209 if (clanes[bestThisIndex].length < j.length
6210 || (clanes[bestThisIndex].length == j.length && abs(clanes[bestThisIndex].bestLaneOffset) > abs(j.bestLaneOffset))
6211 || (clanes[bestThisIndex].length == j.length && abs(clanes[bestThisIndex].bestLaneOffset) == abs(j.bestLaneOffset) &&
6214 bestThisIndex = index;
6215 bestThisMaxIndex = index;
6216 }
else if (clanes[bestThisIndex].length == j.length
6217 && abs(clanes[bestThisIndex].bestLaneOffset) == abs(j.bestLaneOffset)
6219 bestThisMaxIndex = index;
6227 for (
const LaneQ& j : clanes) {
6229 if (overheadWireSegmentID !=
"") {
6230 bestThisIndex = index;
6231 bestThisMaxIndex = index;
6239 int bestNextIndex = 0;
6240 int bestDistToNeeded = (int) clanes.size();
6242 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6243 if ((*j).allowsContinuation) {
6245 for (std::vector<LaneQ>::const_iterator m = nextLanes.begin(); m != nextLanes.end(); ++m, ++nextIndex) {
6246 if ((*m).lane->isApproachedFrom(cE, (*j).lane)) {
6247 if (bestDistToNeeded > abs((*m).bestLaneOffset)) {
6248 bestDistToNeeded = abs((*m).bestLaneOffset);
6249 bestThisIndex = index;
6250 bestThisMaxIndex = index;
6251 bestNextIndex = nextIndex;
6257 clanes[bestThisIndex].length += nextLanes[bestNextIndex].length;
6258 copy(nextLanes[bestNextIndex].bestContinuations.begin(), nextLanes[bestNextIndex].bestContinuations.end(), back_inserter(clanes[bestThisIndex].bestContinuations));
6263 bool requiredChangeRightForbidden =
false;
6264 int requireChangeToLeftForbidden = -1;
6265 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6266 if ((*j).length < clanes[bestThisIndex].length
6267 || ((*j).length == clanes[bestThisIndex].length && abs((*j).bestLaneOffset) > abs(clanes[bestThisIndex].bestLaneOffset))
6270 if (abs(bestThisIndex - index) < abs(bestThisMaxIndex - index)) {
6271 (*j).bestLaneOffset = bestThisIndex - index;
6273 (*j).bestLaneOffset = bestThisMaxIndex - index;
6277 (*j).length = (*j).currentLength;
6279 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(
getVClass())
6280 || !(*j).lane->getParallelLane(-1,
false)->allowsVehicleClass(
getVClass())
6281 || requiredChangeRightForbidden)) {
6283 requiredChangeRightForbidden =
true;
6284 if ((*j).length == (*j).currentLength) {
6287 }
else if ((*j).bestLaneOffset > 0 && (!(*j).lane->allowsChangingLeft(
getVClass())
6288 || !(*j).lane->getParallelLane(1,
false)->allowsVehicleClass(
getVClass()))) {
6290 requireChangeToLeftForbidden = (*j).lane->getIndex();
6293 (*j).bestLaneOffset = 0;
6296 for (
int idx = requireChangeToLeftForbidden; idx >= 0; idx--) {
6297 if (clanes[idx].length == clanes[idx].currentLength) {
6298 clanes[idx].length = 0;
6306 if (overheadWireID !=
"") {
6307 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6308 (*j).bestLaneOffset = bestThisIndex - index;
6313#ifdef DEBUG_BESTLANES
6315 std::cout <<
" edge=" << cE->
getID() <<
" (bestIndex=" << bestThisIndex <<
" bestMaxIndex=" << bestThisMaxIndex <<
"):\n";
6316 std::vector<LaneQ>& laneQs = clanes;
6317 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
6318 std::cout <<
" lane=" << (*j).lane->getID() <<
" length=" << (*j).length <<
" bestOffset=" << (*j).bestLaneOffset <<
" allowCont=" << (*j).allowsContinuation <<
"\n";
6325#ifdef DEBUG_BESTLANES
6341 if (bestConnectedNext ==
nullptr) {
6368 if (conts.size() < 2) {
6371 const MSLink*
const link = conts[0]->getLinkTo(conts[1]);
6372 if (link !=
nullptr) {
6384 std::vector<LaneQ>& currLanes = *
myBestLanes.begin();
6385 std::vector<LaneQ>::iterator i;
6386 for (i = currLanes.begin(); i != currLanes.end(); ++i) {
6387 double nextOccupation = 0;
6388 for (std::vector<MSLane*>::const_iterator j = (*i).bestContinuations.begin() + 1; j != (*i).bestContinuations.end(); ++j) {
6389 nextOccupation += (*j)->getBruttoVehLenSum();
6391 (*i).nextOccupation = nextOccupation;
6392#ifdef DEBUG_BESTLANES
6394 std::cout <<
" lane=" << (*i).lane->getID() <<
" nextOccupation=" << nextOccupation <<
"\n";
6397 if ((*i).lane == startLane) {
6404const std::vector<MSLane*>&
6409 return (*myCurrentLaneInBestLanes).bestContinuations;
6413const std::vector<MSLane*>&
6425 if ((*i).lane == lane) {
6426 return (*i).bestContinuations;
6432const std::vector<const MSLane*>
6434 std::vector<const MSLane*> lanes;
6447 while (lane->
isInternal() && (distance > 0.)) {
6448 lanes.insert(lanes.end(), lane);
6450 lane = lane->
getLinkCont().front()->getViaLaneOrLane();
6454 if (contLanes.empty()) {
6457 auto contLanesIt = contLanes.begin();
6459 while (distance > 0.) {
6461 if (contLanesIt != contLanes.end()) {
6464 assert(l->
getEdge().
getID() == (*routeIt)->getLanes().front()->getEdge().getID());
6473 }
else if (routeIt !=
myRoute->end()) {
6475 l = (*routeIt)->getLanes().back();
6481 assert(l !=
nullptr);
6485 while ((internalLane !=
nullptr) && internalLane->
isInternal() && (distance > 0.)) {
6486 lanes.insert(lanes.end(), internalLane);
6488 internalLane = internalLane->
getLinkCont().front()->getViaLaneOrLane();
6490 if (distance <= 0.) {
6494 lanes.insert(lanes.end(), l);
6501const std::vector<const MSLane*>
6503 std::vector<const MSLane*> lanes;
6505 if (distance <= 0.) {
6517 while (lane->
isInternal() && (distance > 0.)) {
6518 lanes.insert(lanes.end(), lane);
6523 while (distance > 0.) {
6525 MSLane* l = (*routeIt)->getLanes().back();
6529 const MSLane* internalLane = internalEdge !=
nullptr ? internalEdge->
getLanes().front() :
nullptr;
6530 std::vector<const MSLane*> internalLanes;
6531 while ((internalLane !=
nullptr) && internalLane->
isInternal()) {
6532 internalLanes.insert(internalLanes.begin(), internalLane);
6533 internalLane = internalLane->
getLinkCont().front()->getViaLaneOrLane();
6535 for (
auto it = internalLanes.begin(); (it != internalLanes.end()) && (distance > 0.); ++it) {
6536 lanes.insert(lanes.end(), *it);
6537 distance -= (*it)->getLength();
6539 if (distance <= 0.) {
6543 lanes.insert(lanes.end(), l);
6548 if (routeIt !=
myRoute->begin()) {
6559const std::vector<MSLane*>
6562 std::vector<MSLane*> result;
6563 for (
const MSLane* lane : routeLanes) {
6565 if (opposite !=
nullptr) {
6566 result.push_back(opposite);
6580 return (*myCurrentLaneInBestLanes).bestLaneOffset;
6589 return (*myCurrentLaneInBestLanes).length;
6597 std::vector<MSVehicle::LaneQ>& preb =
myBestLanes.front();
6598 assert(laneIndex < (
int)preb.size());
6599 preb[laneIndex].occupation = density + preb[laneIndex].nextOccupation;
6610std::pair<const MSLane*, double>
6612 if (distance == 0) {
6617 for (
const MSLane* lane : lanes) {
6618 if (lane->getLength() > distance) {
6619 return std::make_pair(lane, distance);
6621 distance -= lane->getLength();
6623 return std::make_pair(
nullptr, -1);
6629 if (
isOnRoad() && destLane !=
nullptr) {
6632 return std::numeric_limits<double>::max();
6636std::pair<const MSVehicle* const, double>
6639 return std::make_pair(
static_cast<const MSVehicle*
>(
nullptr), -1);
6648 MSLane::VehCont::const_iterator it = std::find(vehs.begin(), vehs.end(),
this);
6649 if (it != vehs.end() && it + 1 != vehs.end()) {
6652 if (lead !=
nullptr) {
6653 std::pair<const MSVehicle* const, double> result(
6666std::pair<const MSVehicle* const, double>
6669 return std::make_pair(
static_cast<const MSVehicle*
>(
nullptr), -1);
6681 std::pair<const MSVehicle* const, double> leaderInfo =
getLeader(-1);
6682 if (leaderInfo.first ==
nullptr ||
getSpeed() == 0) {
6694 if (
myStops.front().triggered &&
myStops.front().numExpectedPerson > 0) {
6695 myStops.front().numExpectedPerson -= (int)
myStops.front().pars.awaitedPersons.count(transportable->
getID());
6698 if (
myStops.front().pars.containerTriggered &&
myStops.front().numExpectedContainer > 0) {
6699 myStops.front().numExpectedContainer -= (int)
myStops.front().pars.awaitedContainers.count(transportable->
getID());
6711 const bool blinkerManoeuvre = (((state &
LCA_SUBLANE) == 0) && (
6719 if ((state &
LCA_LEFT) != 0 && blinkerManoeuvre) {
6721 }
else if ((state &
LCA_RIGHT) != 0 && blinkerManoeuvre) {
6733 switch ((*link)->getDirection()) {
6750 && (
myStops.begin()->reached ||
6753 if (
myStops.begin()->lane->getIndex() > 0 &&
myStops.begin()->lane->getParallelLane(-1)->allowsVehicleClass(
getVClass())) {
6771 if (currentTime % 1000 == 0) {
6868 for (
int i = 0; i < (int)shadowFurther.size(); ++i) {
6870 if (shadowFurther[i] == lane) {
6917 for (
int i = 0; i < (int)shadowFurther.size(); ++i) {
6918 if (shadowFurther[i] == lane) {
6922 <<
" lane=" << lane->
getID()
6936 MSLane* targetLane = furtherTargets[i];
6937 if (targetLane == lane) {
6940#ifdef DEBUG_TARGET_LANE
6942 std::cout <<
" getLatOffset veh=" <<
getID()
6948 <<
" targetDir=" << targetDir
6949 <<
" latOffset=" << latOffset
6966 assert(offset == 0 || offset == 1 || offset == -1);
6967 assert(
myLane !=
nullptr);
6970 const double halfVehWidth = 0.5 * (
getWidth() + NUMERICAL_EPS);
6973 double leftLimit = halfCurrentLaneWidth - halfVehWidth - oppositeSign * latPos;
6974 double rightLimit = -halfCurrentLaneWidth + halfVehWidth - oppositeSign * latPos;
6975 double latLaneDist = 0;
6977 if (latPos + halfVehWidth > halfCurrentLaneWidth) {
6979 latLaneDist = halfCurrentLaneWidth - latPos - halfVehWidth;
6980 }
else if (latPos - halfVehWidth < -halfCurrentLaneWidth) {
6982 latLaneDist = -halfCurrentLaneWidth - latPos + halfVehWidth;
6984 latLaneDist *= oppositeSign;
6985 }
else if (offset == -1) {
6986 latLaneDist = rightLimit - (
getWidth() + NUMERICAL_EPS);
6987 }
else if (offset == 1) {
6988 latLaneDist = leftLimit + (
getWidth() + NUMERICAL_EPS);
6990#ifdef DEBUG_ACTIONSTEPS
6993 <<
" veh=" <<
getID()
6994 <<
" halfCurrentLaneWidth=" << halfCurrentLaneWidth
6995 <<
" halfVehWidth=" << halfVehWidth
6996 <<
" latPos=" << latPos
6997 <<
" latLaneDist=" << latLaneDist
6998 <<
" leftLimit=" << leftLimit
6999 <<
" rightLimit=" << rightLimit
7027 if (dpi.myLink !=
nullptr) {
7028 dpi.myLink->removeApproaching(
this);
7046 std::vector<MSLink*>::const_iterator link =
MSLane::succLinkSec(*
this, view, *lane, bestLaneConts);
7048 while (!lane->
isLinkEnd(link) && seen <= dist) {
7050 && (((*link)->getState() ==
LINKSTATE_ZIPPER && seen < (*link)->getFoeVisibilityDistance())
7051 || !(*link)->havePriority()))
7056 if ((*di).myLink !=
nullptr) {
7057 const MSLane* diPredLane = (*di).myLink->getLaneBefore();
7058 if (diPredLane !=
nullptr) {
7069 const SUMOTime leaveTime = (*link)->getLeaveTime((*di).myArrivalTime, (*di).myArrivalSpeed,
7082 lane = (*link)->getViaLaneOrLane();
7098 centerLine.push_back(pos);
7107 centerLine.push_back(lane->getShape().back());
7119 backPos = pos +
Position(l * cos(a), l * sin(a));
7121 centerLine.push_back(backPos);
7154 result.push_back(line1[0]);
7155 result.push_back(line2[0]);
7156 result.push_back(line2[1]);
7157 result.push_back(line1[1]);
7160 result.push_back(line1[1]);
7161 result.push_back(line2[1]);
7162 result.push_back(line2[0]);
7163 result.push_back(line1[0]);
7175 if (&(*i)->getEdge() == edge) {
7201 if (destParkArea ==
nullptr) {
7203 errorMsg =
"Vehicle " +
getID() +
" is not driving to a parking area so it cannot be rerouted.";
7216 if (newParkingArea ==
nullptr) {
7217 errorMsg =
"Parking area ID " +
toString(parkingAreaID) +
" not found in the network.";
7230 if (!newDestination) {
7241 if (edgesFromPark.size() > 0) {
7242 edges.insert(edges.end(), edgesFromPark.begin() + 1, edgesFromPark.end());
7245 if (newDestination) {
7256 const bool onInit =
myLane ==
nullptr;
7269 const int numStops = (int)
myStops.size();
7314 if (stop.
busstop !=
nullptr) {
7343 rem.first->notifyStopEnded();
7355 myStopDist = std::numeric_limits<double>::max();
7454#ifdef DEBUG_IGNORE_RED
7459 if (ignoreRedTime < 0) {
7461 if (ignoreYellowTime > 0 && link->
haveYellow()) {
7465 return !canBrake || ignoreYellowTime > yellowDuration;
7475#ifdef DEBUG_IGNORE_RED
7479 <<
" ignoreRedTime=" << ignoreRedTime
7480 <<
" spentRed=" << redDuration
7481 <<
" canBrake=" << canBrake <<
"\n";
7485 return !canBrake || ignoreRedTime > redDuration;
7502 if (
id == foe->
getID()) {
7528 if (veh ==
nullptr) {
7555 assert(logic !=
nullptr);
7572#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7574 std::cout <<
" foeGap=" << foeGap <<
" foeBGap=" << foeBrakeGap <<
"\n";
7578 if (foeGap < foeBrakeGap) {
7602#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7605 <<
" foeLane=" << foeLane->
getID()
7607 <<
" linkIndex=" << link->
getIndex()
7608 <<
" foeLinkIndex=" << foeLink->
getIndex()
7611 <<
" response=" << response
7612 <<
" response2=" << response2
7620 }
else if (response && response2) {
7626 if (egoET == foeET) {
7630#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7632 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" equal ET " << egoET <<
" with foe " << veh->
getID()
7633 <<
" foeIsLeaderByID=" << (
getID() < veh->
getID()) <<
"\n";
7638#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7640 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" equal ET " << egoET <<
" with foe " << veh->
getID()
7650#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7652 std::cout <<
SIMTIME <<
" veh=" <<
getID() <<
" egoET " << egoET <<
" with foe " << veh->
getID()
7653 <<
" foeET=" << foeET <<
" isLeader=" << (egoET > foeET) <<
"\n";
7656 return egoET > foeET;
7672 std::vector<std::string> internals;
7691 stop.write(out,
false);
7699 stop.writeParams(out);
7709 dev->saveState(out);
7717 throw ProcessError(
TL(
"Error: Invalid vehicles in state (may be a meso state)!"));
7746 while (pastStops > 0) {
7757 myLane = (*myCurrEdge)->getLanes()[0];
7774 myStops.front().startedFromState =
true;
7783 SUMOTime arrivalTime,
double arrivalSpeed,
7784 double arrivalSpeedBraking,
7785 double dist,
double leaveSpeed) {
7788 arrivalTime, arrivalSpeed, arrivalSpeedBraking, dist, leaveSpeed));
7793std::shared_ptr<MSSimpleDriverState>
7809 if (prevAcceleration != std::numeric_limits<double>::min()) {
7869 return (myGUIIncrement);
7875 return (myManoeuvreType);
7893 myManoeuvreType = mType;
7908 if (abs(GUIAngle) < 0.1) {
7911 myManoeuvreVehicleID = veh->
getID();
7914 myManoeuvreStartTime = currentTime;
7916 myGUIIncrement = GUIAngle / (
STEPS2TIME(myManoeuvreCompleteTime - myManoeuvreStartTime) /
TS);
7920 std::cout <<
"ENTRY manoeuvre start: vehicle=" << veh->
getID() <<
" Manoeuvre Angle=" << manoeuverAngle <<
" Rotation angle=" <<
RAD2DEG(GUIAngle) <<
" Road Angle" <<
RAD2DEG(veh->
getAngle()) <<
" increment=" <<
RAD2DEG(myGUIIncrement) <<
" currentTime=" << currentTime <<
7921 " endTime=" << myManoeuvreCompleteTime <<
" manoeuvre time=" << myManoeuvreCompleteTime - currentTime <<
" parkArea=" << myManoeuvreStop << std::endl;
7947 if (abs(GUIAngle) < 0.1) {
7951 myManoeuvreVehicleID = veh->
getID();
7954 myManoeuvreStartTime = currentTime;
7956 myGUIIncrement = -GUIAngle / (
STEPS2TIME(myManoeuvreCompleteTime - myManoeuvreStartTime) /
TS);
7963 std::cout <<
"EXIT manoeuvre start: vehicle=" << veh->
getID() <<
" Manoeuvre Angle=" << manoeuverAngle <<
" increment=" <<
RAD2DEG(myGUIIncrement) <<
" currentTime=" << currentTime
7964 <<
" endTime=" << myManoeuvreCompleteTime <<
" manoeuvre time=" << myManoeuvreCompleteTime - currentTime <<
" parkArea=" << myManoeuvreStop << std::endl;
7982 if (configureEntryManoeuvre(veh)) {
7999 if (checkType != myManoeuvreType) {
8023std::pair<double, double>
8027 if (lane ==
nullptr) {
8038 travelTime += (*it)->getMinimumTravelTime(
this);
8039 dist += (*it)->getLength();
8044 dist += stopEdgeDist;
8051 const double d = dist;
8057 const double maxVD =
MAX2(c, ((sqrt(
MAX2(0.0, pow(2 * c * b, 2) + (4 * ((b * ((a * (2 * d * (b + a) + (vs * vs) - (c * c))) - (b * (c * c))))
8058 + pow((a * vs), 2))))) * 0.5) + (c * b)) / (b + a));
8062 double timeLossAccel = 0;
8063 double timeLossDecel = 0;
8064 double timeLossLength = 0;
8066 double v =
MIN2(maxVD, (*it)->getVehicleMaxSpeed(
this));
8068 if (edgeLength <= len && v0Stable && v0 < v) {
8069 const double lengthDist =
MIN2(len, edgeLength);
8070 const double dTL = lengthDist / v0 - lengthDist / v;
8072 timeLossLength += dTL;
8074 if (edgeLength > len) {
8075 const double dv = v - v0;
8078 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
8080 timeLossAccel += dTA;
8082 }
else if (dv < 0) {
8084 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
8086 timeLossDecel += dTD;
8095 const double dv = v - v0;
8098 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
8100 timeLossAccel += dTA;
8102 }
else if (dv < 0) {
8104 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
8106 timeLossDecel += dTD;
8108 const double result = travelTime + timeLossAccel + timeLossDecel + timeLossLength;
8111 return {
MAX2(0.0, result), dist};
8172 return nextInternal ? nextInternal : nextNormal;
8184 bool resultInternal;
8187 if (furtherIndex % 2 == 0) {
8188 routeIndex -= (furtherIndex + 0) / 2;
8189 resultInternal =
false;
8191 routeIndex -= (furtherIndex + 1) / 2;
8192 resultInternal =
false;
8195 if (furtherIndex % 2 != 0) {
8196 routeIndex -= (furtherIndex + 1) / 2;
8197 resultInternal =
false;
8199 routeIndex -= (furtherIndex + 2) / 2;
8200 resultInternal =
true;
8204 routeIndex -= furtherIndex;
8205 resultInternal =
false;
8208 if (routeIndex >= 0) {
8209 if (resultInternal) {
8212 for (
MSLink* link : cand->getLinkCont()) {
8213 if (link->getLane() == current) {
8214 if (link->getViaLane() !=
nullptr) {
8215 return link->getViaLane();
8217 return const_cast<MSLane*
>(link->getLaneBefore());
8223 return myRoute->getEdges()[routeIndex]->getLanes()[0];
8239 bool diverged =
false;
8243 if (dpi.myLink !=
nullptr) {
8245 const MSEdge* next = route[ri + 1];
8246 if (&dpi.myLink->getLane()->getEdge() != next) {
8249 if (dpi.myLink->getViaLane() ==
nullptr) {
8255 dpi.myLink->removeApproaching(
this);
std::vector< const MSEdge * > ConstMSEdgeVector
std::vector< MSEdge * > MSEdgeVector
std::pair< const MSVehicle *, double > CLeaderDist
std::pair< const MSPerson *, double > PersonDist
ConstMSEdgeVector::const_iterator MSRouteIterator
#define NUMERICAL_EPS_SPEED
#define STOPPING_PLACE_OFFSET
#define JUNCTION_BLOCKAGE_TIME
#define DIST_TO_STOPLINE_EXPECT_PRIORITY
#define WRITE_WARNINGF(...)
#define WRITE_WARNING(msg)
std::shared_ptr< const MSRoute > ConstMSRoutePtr
SUMOTime string2time(const std::string &r)
convert string to SUMOTime
std::string time2string(SUMOTime t, bool humanReadable)
convert SUMOTime to string (independently of global format setting)
bool isRailway(SVCPermissions permissions)
Returns whether an edge with the given permissions is a (exclusive) railway edge.
@ RAIL_CARGO
render as a cargo train
@ PASSENGER_VAN
render as a van
@ PASSENGER
render as a passenger vehicle
@ RAIL_CAR
render as a (city) rail without locomotive
@ PASSENGER_HATCHBACK
render as a hatchback passenger vehicle ("Fliessheck")
@ BUS_FLEXIBLE
render as a flexible city bus
@ TRUCK_1TRAILER
render as a transport vehicle with one trailer
@ PASSENGER_SEDAN
render as a sedan passenger vehicle ("Stufenheck")
@ PASSENGER_WAGON
render as a wagon passenger vehicle ("Combi")
@ TRUCK_SEMITRAILER
render as a semi-trailer transport vehicle ("Sattelschlepper")
@ SVC_RAIL_CLASSES
classes which drive on tracks
@ SVC_EMERGENCY
public emergency vehicles
const long long int VEHPARS_FORCE_REROUTE
@ GIVEN
The lane is given.
@ GIVEN
The speed is given.
@ SPLIT_FRONT
depart position for a split vehicle is in front of the continuing vehicle
const long long int VEHPARS_CFMODEL_PARAMS_SET
@ GIVEN
The arrival lane is given.
@ GIVEN
The speed is given.
@ GIVEN
The arrival position is given.
const int STOP_STARTED_SET
@ SUMO_TAG_PARKING_AREA_REROUTE
entry for an alternative parking zone
@ SUMO_TAG_PARKING_AREA
A parking area.
@ SUMO_TAG_OVERHEAD_WIRE_SEGMENT
An overhead wire segment.
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ TURN
The link is a 180 degree turn.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ TURN_LEFTHAND
The link is a 180 degree turn (left-hand network)
@ PARTRIGHT
The link is a partial right direction.
@ NODIR
The link has no direction (is a dead end link)
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_EQUAL
This is an uncontrolled, right-before-left link.
@ LINKSTATE_ZIPPER
This is an uncontrolled, zipper-merge link.
@ LCA_KEEPRIGHT
The action is due to the default of keeping right "Rechtsfahrgebot".
@ LCA_BLOCKED
blocked in all directions
@ LCA_URGENT
The action is urgent (to be defined by lc-model)
@ LCA_STAY
Needs to stay on the current lane.
@ LCA_SUBLANE
used by the sublane model
@ LCA_WANTS_LANECHANGE_OR_STAY
lane can change or stay
@ LCA_COOPERATIVE
The action is done to help someone else.
@ LCA_OVERLAPPING
The vehicle is blocked being overlapping.
@ LCA_LEFT
Wants go to the left.
@ LCA_STRATEGIC
The action is needed to follow the route (navigational lc)
@ LCA_TRACI
The action is due to a TraCI request.
@ LCA_SPEEDGAIN
The action is due to the wish to be faster (tactical lc)
@ LCA_RIGHT
Wants go to the right.
@ SUMO_ATTR_JM_STOPLINE_GAP_MINOR
@ SUMO_ATTR_JM_STOPLINE_CROSSING_GAP
@ SUMO_ATTR_JM_IGNORE_KEEPCLEAR_TIME
@ SUMO_ATTR_MAXIMUMPOWER
Maximum Power.
@ SUMO_ATTR_CF_IGNORE_IDS
@ SUMO_ATTR_JM_STOPLINE_GAP
@ SUMO_ATTR_JM_DRIVE_AFTER_RED_TIME
@ SUMO_ATTR_JM_DRIVE_AFTER_YELLOW_TIME
@ SUMO_ATTR_LCA_CONTRIGHT
@ SUMO_ATTR_CF_IGNORE_TYPES
@ SUMO_ATTR_ARRIVALPOS_RANDOMIZED
@ SUMO_ATTR_JM_IGNORE_JUNCTION_FOE_PROB
@ SUMO_ATTR_STATE
The state of a link.
@ SUMO_ATTR_JM_DRIVE_RED_SPEED
int gPrecision
the precision for floating point outputs
bool gDebugFlag1
global utility flags for debugging
const double INVALID_DOUBLE
invalid double
const double SUMO_const_laneWidth
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
#define SOFT_ASSERT(expr)
define SOFT_ASSERT raise an assertion in debug mode everywhere except on the windows test server
double getDoubleOptional(SumoXMLAttr attr, const double def) const
Returns the value for a given key with an optional default. SUMO_ATTR_MASS and SUMO_ATTR_FRONTSURFACE...
void setDynamicValues(const SUMOTime stopDuration, const bool parking, const SUMOTime waitingTime, const double angle)
Sets the values which change possibly in every simulation step and are relevant for emsssion calculat...
static double naviDegree(const double angle)
static double fromNaviDegree(const double angle)
Interface for lane-change models.
double getLaneChangeCompletion() const
Get the current lane change completion ratio.
MSLane * updateTargetLane()
bool hasBlueLight() const
const std::vector< double > & getShadowFurtherLanesPosLat() const
double getCommittedSpeed() const
virtual void resetSpeedLat()
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
int getLaneChangeDirection() const
return the direction of the current lane change maneuver
virtual void prepareStep()
void resetChanged()
reset the flag whether a vehicle already moved to false
MSLane * getShadowLane() const
Returns the lane the vehicle's shadow is on during continuous/sublane lane change.
virtual void saveState(OutputDevice &out) const
Save the state of the laneChangeModel.
void endLaneChangeManeuver(const MSMoveReminder::Notification reason=MSMoveReminder::NOTIFICATION_LANE_CHANGE)
void setNoShadowPartialOccupator(MSLane *lane)
MSLane * getTargetLane() const
Returns the lane the vehicle has committed to enter during a sublane lane change.
double getStrategicLookahead() const
SUMOTime remainingTime() const
Compute the remaining time until LC completion.
void setShadowApproachingInformation(MSLink *link) const
set approach information for the shadow vehicle
double getCooperativeHelpSpeed(const MSLane *lane, double distToLaneEnd) const
return speed for helping a vehicle that is blocked from changing
static MSAbstractLaneChangeModel * build(LaneChangeModel lcm, MSVehicle &vehicle)
Factory method for instantiating new lane changing models.
void changedToOpposite()
called when a vehicle changes between lanes in opposite directions
int getShadowDirection() const
return the direction in which the current shadow lane lies
virtual void loadState(const SUMOSAXAttributes &attrs)
Loads the state of the laneChangeModel from the given attributes.
double calcAngleOffset()
return the angle offset during a continuous change maneuver
void setPreviousAngleOffset(const double angleOffset)
set the angle offset of the previous time step
const std::vector< MSLane * > & getFurtherTargetLanes() const
virtual void resetState()
double getAngleOffset() const
return the angle offset resulting from lane change and sigma
const std::vector< MSLane * > & getShadowFurtherLanes() const
bool isChangingLanes() const
return true if the vehicle currently performs a lane change maneuver
void removeShadowApproachingInformation() const
void setExtraImpatience(double value)
Sets routing behavior.
The base class for microscopic and mesoscopic vehicles.
double getMaxSpeed() const
Returns the maximum speed (the minimum of desired and technical maximum speed)
bool haveValidStopEdges(bool silent=false) const
check whether all stop.edge MSRouteIterators are valid and in order
virtual bool isSelected() const
whether this vehicle is selected in the GUI
std::list< MSStop > myStops
The vehicle's list of stops.
double getImpatience() const
Returns this vehicles impatience.
const std::vector< MSTransportable * > & getPersons() const
retrieve riding persons
virtual void initDevices()
const MSEdge * succEdge(int nSuccs) const
Returns the nSuccs'th successor of edge the vehicle is currently at.
void calculateArrivalParams(bool onInit)
(Re-)Calculates the arrival position and lane from the vehicle parameters
virtual double getArrivalPos() const
Returns this vehicle's desired arrivalPos for its current route (may change on reroute)
MoveReminderCont myMoveReminders
Currently relevant move reminders.
double myDepartPos
The real depart position.
const SUMOVehicleParameter & getParameter() const
Returns the vehicle's parameter (including departure definition)
void replaceParameter(const SUMOVehicleParameter *newParameter)
replace the vehicle parameter (deleting the old one)
double getChosenSpeedFactor() const
Returns the precomputed factor by which the driver wants to be faster than the speed limit.
std::vector< MSVehicleDevice * > myDevices
The devices this vehicle has.
virtual void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
const SUMOVehicleParameter::Stop * getNextStopParameter() const
return parameters for the next stop (SUMOVehicle Interface)
virtual bool replaceRoute(ConstMSRoutePtr route, const std::string &info, bool onInit=false, int offset=0, bool addRouteStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
MSVehicleType & getSingularType()
Replaces the current vehicle type with a new one used by this vehicle only.
const MSVehicleType * myType
This vehicle's type.
double getLength() const
Returns the vehicle's length.
bool isParking() const
Returns whether the vehicle is parking.
MSParkingArea * getCurrentParkingArea()
get the current parking area stop or nullptr
const MSEdge * getEdge() const
Returns the edge the vehicle is currently at.
int getPersonNumber() const
Returns the number of persons.
MSRouteIterator myCurrEdge
Iterator to current route-edge.
StopParVector myPastStops
The list of stops that the vehicle has already reached.
bool hasDeparted() const
Returns whether this vehicle has already departed.
ConstMSRoutePtr myRoute
This vehicle's route.
double getWidth() const
Returns the vehicle's width.
MSDevice_Transportable * myContainerDevice
The containers this vehicle may have.
const std::list< MSStop > & getStops() const
double getDesiredMaxSpeed() const
void addReminder(MSMoveReminder *rem, double pos=0)
Adds a MoveReminder dynamically.
SUMOTime getDeparture() const
Returns this vehicle's real departure time.
EnergyParams * getEmissionParameters() const
retrieve parameters for the energy consumption model
MSDevice_Transportable * myPersonDevice
The passengers this vehicle may have.
bool hasStops() const
Returns whether the vehicle has to stop somewhere.
virtual void activateReminders(const MSMoveReminder::Notification reason, const MSLane *enteredLane=0)
"Activates" all current move reminder
const MSStop & getNextStop() const
@ ROUTE_START_INVALID_LANE
@ ROUTE_START_INVALID_PERMISSIONS
void addStops(const bool ignoreStopErrors, MSRouteIterator *searchStart=nullptr, bool addRouteStops=true)
Adds stops to the built vehicle.
SUMOVehicleClass getVClass() const
Returns the vehicle's access class.
MSParkingArea * getNextParkingArea()
get the upcoming parking area stop or nullptr
int myArrivalLane
The destination lane where the vehicle stops.
SUMOTime myDeparture
The real departure time.
bool isStoppedTriggered() const
Returns whether the vehicle is on a triggered stop.
void onDepart()
Called when the vehicle is inserted into the network.
virtual bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
const MSRoute & getRoute() const
Returns the current route.
int getRoutePosition() const
return index of edge within route
bool replaceParkingArea(MSParkingArea *parkingArea, std::string &errorMsg)
replace the current parking area stop with a new stop with merge duration
static const SUMOTime NOT_YET_DEPARTED
bool myAmRegisteredAsWaiting
Whether this vehicle is registered as waiting for a person or container (for deadlock-recognition)
SUMOAbstractRouter< MSEdge, SUMOVehicle > & getRouterTT() const
EnergyParams * myEnergyParams
The emission parameters this vehicle may have.
const SUMOVehicleParameter * myParameter
This vehicle's parameter.
int myRouteValidity
status of the current vehicle route
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool isStopped() const
Returns whether the vehicle is at a stop.
MSDevice * getDevice(const std::type_info &type) const
Returns a device of the given type if it exists, nullptr otherwise.
int myNumberReroutes
The number of reroutings.
double myArrivalPos
The position on the destination lane where the vehicle stops.
virtual void saveState(OutputDevice &out)
Saves the (common) state of a vehicle.
virtual void replaceVehicleType(const MSVehicleType *type)
Replaces the current vehicle type by the one given.
double myOdometer
A simple odometer to keep track of the length of the route already driven.
int getContainerNumber() const
Returns the number of containers.
bool replaceRouteEdges(ConstMSEdgeVector &edges, double cost, double savings, const std::string &info, bool onInit=false, bool check=false, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given edges.
The car-following model abstraction.
double estimateSpeedAfterDistance(const double dist, const double v, const double accel) const
virtual double maxNextSpeed(double speed, const MSVehicle *const veh) const
Returns the maximum speed given the current speed.
virtual double minNextSpeedEmergency(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed after emergency braking, given the current speed (depends on the numerical ...
virtual VehicleVariables * createVehicleVariables() const
Returns model specific values which are stored inside a vehicle and must be used with casting.
double getEmergencyDecel() const
Get the vehicle type's maximal physically possible deceleration [m/s^2].
SUMOTime getStartupDelay() const
Get the vehicle type's startupDelay.
double getMinimalArrivalSpeed(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance.
virtual void setHeadwayTime(double headwayTime)
Sets a new value for desired headway [s].
virtual double freeSpeed(const MSVehicle *const veh, double speed, double seen, double maxSpeed, const bool onInsertion=false, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed without a leader.
virtual double minNextSpeed(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed given the current speed (depends on the numerical update scheme and its ste...
virtual double insertionFollowSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0) const
Computes the vehicle's safe speed (no dawdling) This method is used during the insertion stage....
SUMOTime getMinimalArrivalTime(double dist, double currentSpeed, double arrivalSpeed) const
Computes the minimal time needed to cover a distance given the desired speed at arrival.
virtual double finalizeSpeed(MSVehicle *const veh, double vPos) const
Applies interaction with stops and lane changing model influences. Called at most once per simulation...
@ FUTURE
the return value is used for calculating future speeds
@ CURRENT_WAIT
the return value is used for calculating junction stop speeds
double getApparentDecel() const
Get the vehicle type's apparent deceleration [m/s^2] (the one regarded by its followers.
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
virtual double maximumLaneSpeedCF(const MSVehicle *const veh, double maxSpeed, double maxSpeedLane) const
Returns the maximum velocity the CF-model wants to achieve in the next step.
double maximumSafeStopSpeed(double gap, double decel, double currentSpeed, bool onInsertion=false, double headway=-1, bool relaxEmergency=true) const
Returns the maximum next velocity for stopping within gap.
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
double getMinimalArrivalSpeedEuler(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance for Euler update.
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0, const CalcReason usage=CalcReason::CURRENT) const =0
Computes the vehicle's follow speed (no dawdling)
double stopSpeed(const MSVehicle *const veh, const double speed, double gap, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed for approaching a non-moving obstacle (no dawdling)
virtual double getHeadwayTime() const
Get the driver's desired headway [s].
The ToC Device controls transition of control between automated and manual driving.
std::shared_ptr< MSSimpleDriverState > getDriverState() const
return internal state
void update()
update internal state
A device which collects info on the vehicle trip (mainly on departure and arrival)
double consumption(SUMOVehicle &veh, double a, double newSpeed)
return energy consumption in Wh (power multiplied by TS)
void setConsum(const double consumption)
double acceleration(SUMOVehicle &veh, double power, double oldSpeed)
double getConsum() const
Get consum.
A device which collects info on current friction Coefficient on the road.
double getMeasuredFriction()
A device which collects info on the vehicle trip (mainly on departure and arrival)
A device which collects info on the vehicle trip (mainly on departure and arrival)
void cancelCurrentCustomers()
remove the persons the taxi is currently waiting for from reservations
bool notifyMove(SUMOTrafficObject &veh, double oldPos, double newPos, double newSpeed)
Checks whether the vehicle is at a stop and transportable action is needed.
bool anyLeavingAtStop(const MSStop &stop) const
void transferAtSplitOrJoin(MSBaseVehicle *otherVeh)
transfers transportables that want to continue in the other train part (without boarding/loading dela...
void checkCollisionForInactive(MSLane *l)
trigger collision checking for inactive lane
A road/street connecting two junctions.
static void clear()
Clears the dictionary.
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
const MSEdge * getOppositeEdge() const
Returns the opposite direction edge if on exists else a nullptr.
bool isFringe() const
return whether this edge is at the fringe of the network
const MSEdge * getNormalSuccessor() const
if this edge is an internal edge, return its first normal successor, otherwise the edge itself
const std::vector< MSLane * > * allowedLanes(const MSEdge &destination, SUMOVehicleClass vclass=SVC_IGNORING, bool ignoreTransientPermissions=false) const
Get the allowed lanes to reach the destination-edge.
const MSEdge * getBidiEdge() const
return opposite superposable/congruent edge, if it exist and 0 else
bool isNormal() const
return whether this edge is an internal edge
double getSpeedLimit() const
Returns the speed limit of the edge @caution The speed limit of the first lane is retured; should pro...
bool hasChangeProhibitions(SUMOVehicleClass svc, int index) const
return whether this edge prohibits changing for the given vClass when starting on the given lane inde...
bool hasLaneChanger() const
const MSJunction * getToJunction() const
const MSJunction * getFromJunction() const
double getMinimumTravelTime(const SUMOVehicle *const veh) const
returns the minimum travel time for the given vehicle
bool isRoundabout() const
bool isInternal() const
return whether this edge is an internal edge
double getWidth() const
Returns the edges's width (sum over all lanes)
bool isVaporizing() const
Returns whether vehicles on this edge shall be vaporized.
void addWaiting(SUMOVehicle *vehicle) const
Adds a vehicle to the list of waiting vehicles.
const MSEdge * getInternalFollowingEdge(const MSEdge *followerAfterInternal, SUMOVehicleClass vClass) const
void removeWaiting(const SUMOVehicle *vehicle) const
Removes a vehicle from the list of waiting vehicles.
const MSEdgeVector & getSuccessors(SUMOVehicleClass vClass=SVC_IGNORING) const
Returns the following edges, restricted by vClass.
static bool gModelParkingManoeuver
whether parking simulation includes manoeuver time and any associated lane blocking
static bool gUseStopStarted
static SUMOTime gStartupWaitThreshold
The minimum waiting time before applying startupDelay.
static double gTLSYellowMinDecel
The minimum deceleration at a yellow traffic light (only overruled by emergencyDecel)
static double gLateralResolution
static bool gSemiImplicitEulerUpdate
static bool gLefthand
Whether lefthand-drive is being simulated.
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
static SUMOTime gLaneChangeDuration
static double gEmergencyDecelWarningThreshold
threshold for warning about strong deceleration
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
void add(SUMOVehicle *veh)
Adds a single vehicle for departure.
virtual const MSJunctionLogic * getLogic() const
virtual const MSLogicJunction::LinkBits & getResponseFor(int linkIndex) const
Returns the response for the given link.
Representation of a lane in the micro simulation.
std::vector< StopWatch< std::chrono::nanoseconds > > & getStopWatch()
const std::vector< MSMoveReminder * > & getMoveReminders() const
Return the list of this lane's move reminders.
std::pair< MSVehicle *const, double > getFollower(const MSVehicle *ego, double egoPos, double dist, MinorLinkMode mLinkMode) const
Find follower vehicle for the given ego vehicle (which may be on the opposite direction lane)
std::pair< const MSPerson *, double > nextBlocking(double minPos, double minRight, double maxLeft, double stopTime=0, bool bidi=false) const
This is just a wrapper around MSPModel::nextBlocking. You should always check using hasPedestrians be...
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
virtual MSVehicle * removeVehicle(MSVehicle *remVehicle, MSMoveReminder::Notification notification, bool notify=true)
int getVehicleNumber() const
Returns the number of vehicles on this lane (for which this lane is responsible)
MSVehicle * getFirstAnyVehicle() const
returns the first vehicle that is fully or partially on this lane
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
int getVehicleNumberWithPartials() const
Returns the number of vehicles on this lane (including partial occupators)
double getBruttoVehLenSum() const
Returns the sum of lengths of vehicles, including their minGaps, which were on the lane during the la...
static std::vector< MSLink * >::const_iterator succLinkSec(const SUMOVehicle &veh, int nRouteSuccs, const MSLane &succLinkSource, const std::vector< MSLane * > &conts)
void markRecalculateBruttoSum()
Set a flag to recalculate the brutto (including minGaps) occupancy of this lane (used if mingap is ch...
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
void forceVehicleInsertion(MSVehicle *veh, double pos, MSMoveReminder::Notification notification, double posLat=0)
Inserts the given vehicle at the given position.
double getVehicleStopOffset(const MSVehicle *veh) const
Returns vehicle class specific stopOffset for the vehicle.
double getSpeedLimit() const
Returns the lane's maximum allowed speed.
std::vector< MSVehicle * > VehCont
Container for vehicles.
const MSEdge * getNextNormal() const
Returns the lane's follower if it is an internal lane, the edge of the lane otherwise.
SVCPermissions getPermissions() const
Returns the vehicle class permissions for this lane.
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
MSLane * getCanonicalPredecessorLane() const
double getLength() const
Returns the lane's length.
double getMaximumBrakeDist() const
compute maximum braking distance on this lane
const MSLane * getInternalFollowingLane(const MSLane *const) const
returns the internal lane leading to the given lane or nullptr, if there is none
const MSLeaderInfo getLastVehicleInformation(const MSVehicle *ego, double latOffset, double minPos=0, bool allowCached=true) const
Returns the last vehicles on the lane.
std::pair< MSVehicle *const, double > getLeaderOnConsecutive(double dist, double seen, double speed, const MSVehicle &veh, const std::vector< MSLane * > &bestLaneConts, bool considerCrossingFoes=true) const
Returns the immediate leader and the distance to him.
bool isLinkEnd(std::vector< MSLink * >::const_iterator &i) const
bool allowsVehicleClass(SUMOVehicleClass vclass) const
virtual double setPartialOccupation(MSVehicle *v)
Sets the information about a vehicle lapping into this lane.
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
double getRightSideOnEdge() const
bool hasPedestrians() const
whether the lane has pedestrians on it
int getIndex() const
Returns the lane's index.
MSLane * getCanonicalSuccessorLane() const
double getOppositePos(double pos) const
return the corresponding position on the opposite lane
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
double getCenterOnEdge() const
MSVehicle * getLastAnyVehicle() const
returns the last vehicle that is fully or partially on this lane
virtual void resetPartialOccupation(MSVehicle *v)
Removes the information about a vehicle lapping into this lane.
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
virtual const VehCont & getVehiclesSecure() const
Returns the vehicles container; locks it for microsimulation.
virtual void releaseVehicles() const
Allows to use the container for microsimulation again.
bool mustCheckJunctionCollisions() const
whether this lane must check for junction collisions
double interpolateLanePosToGeometryPos(double lanePos) const
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
virtual const PositionVector & getShape(bool) const
MSLane * getParallelOpposite() const
return the opposite direction lane of this lanes edge or nullptr
MSEdge & getEdge() const
Returns the lane's edge.
double getSpaceTillLastStanding(const MSVehicle *ego, bool &foundStopped) const
return the empty space up to the last standing vehicle or the empty space on the whole lane if no veh...
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
MSLeaderDistanceInfo getFollowersOnConsecutive(const MSVehicle *ego, double backOffset, bool allSublanes, double searchDist=-1, MinorLinkMode mLinkMode=FOLLOW_ALWAYS) const
return the sublane followers with the largest missing rear gap among all predecessor lanes (within di...
double getWidth() const
Returns the lane's width.
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
MSVehicle * getFirstFullVehicle() const
returns the first vehicle for which this lane is responsible or 0
const Position geometryPositionAtOffset(double offset, double lateralOffset=0) const
static CollisionAction getCollisionAction()
saves leader/follower vehicles and their distances relative to an ego vehicle
virtual std::string toString() const
print a debugging representation
void fixOppositeGaps(bool isFollower)
subtract vehicle length from all gaps if the leader vehicle is driving in the opposite direction
virtual int addLeader(const MSVehicle *veh, double gap, double latOffset=0, int sublane=-1)
void setSublaneOffset(int offset)
set number of sublanes by which to shift positions
void removeOpposite(const MSLane *lane)
remove vehicles that are driving in the opposite direction (fully or partially) on the given lane
virtual int addLeader(const MSVehicle *veh, bool beyond, double latOffset=0.)
virtual std::string toString() const
print a debugging representation
virtual void clear()
discard all information
int getSublaneOffset() const
void getSubLanes(const MSVehicle *veh, double latOffset, int &rightmost, int &leftmost) const
bool fromInternalLane() const
return whether the fromLane of this link is an internal lane
bool isIndirect() const
whether this link is the start of an indirect turn
const MSLane * getInternalLaneBefore() const
return myInternalLaneBefore (always 0 when compiled without internal lanes)
LinkState getState() const
Returns the current state of the link.
bool hasApproachingFoe(SUMOTime arrivalTime, SUMOTime leaveTime, double speed, double decel) const
Returns the information whether a vehicle is approaching on one of the link's foe streams.
MSJunction * getJunction() const
void setApproaching(const SUMOVehicle *approaching, const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const bool setRequest, const double arrivalSpeedBraking, const SUMOTime waitingTime, double dist, double latOffset)
Sets the information about an approaching vehicle.
SUMOTime getLastStateChange() const
MSLane * getLane() const
Returns the connected lane.
bool opened(SUMOTime arrivalTime, double arrivalSpeed, double leaveSpeed, double vehicleLength, double impatience, double decel, SUMOTime waitingTime, double posLat=0, BlockingFoes *collectFoes=nullptr, bool ignoreRed=false, const SUMOTrafficObject *ego=nullptr, double dist=-1) const
Returns the information whether the link may be passed.
bool isConflictEntryLink() const
return whether this link enters the conflict area (not a continuation link)
int getIndex() const
Returns the respond index (for visualization)
bool havePriority() const
Returns whether this link is a major link.
const LinkLeaders getLeaderInfo(const MSVehicle *ego, double dist, std::vector< const MSPerson * > *collectBlockers=0, bool isShadowLink=false) const
Returns all potential link leaders (vehicles on foeLanes) Valid during the planMove() phase.
bool isEntryLink() const
return whether the toLane of this link is an internal lane and fromLane is a normal lane
const MSLane * getLaneBefore() const
return the internalLaneBefore if it exists and the laneBefore otherwise
bool isInternalJunctionLink() const
return whether the fromLane and the toLane of this link are internal lanes
bool isExitLink() const
return whether the fromLane of this link is an internal lane and toLane is a normal lane
std::vector< LinkLeader > LinkLeaders
MSLane * getViaLane() const
Returns the following inner lane.
std::string getDescription() const
get string description for this link
bool hasFoes() const
Returns whether this link belongs to a junction where more than one edge is incoming.
const MSLink * getCorrespondingEntryLink() const
returns the corresponding entry link for exitLinks to a junction.
void removeApproaching(const SUMOVehicle *veh)
removes the vehicle from myApproachingVehicles
bool isExitLinkAfterInternalJunction() const
return whether the fromLane of this link is an internal lane and its incoming lane is also an interna...
MSLink * getParallelLink(int direction) const
return the link that is parallel to this lane or 0
MSLane * getViaLaneOrLane() const
return the via lane if it exists and the lane otherwise
std::vector< const SUMOTrafficObject * > BlockingFoes
double getLateralShift() const
return lateral shift that must be applied when passing this link
double getFoeVisibilityDistance() const
Returns the distance on the approaching lane from which an approaching vehicle is able to see all rel...
bool lastWasContMajor() const
whether this is a link past an internal junction which currently has priority
const MSTrafficLightLogic * getTLLogic() const
Returns the TLS index.
double getZipperSpeed(const MSVehicle *ego, const double dist, double vSafe, SUMOTime arrivalTime, const BlockingFoes *foes) const
return the speed at which ego vehicle must approach the zipper link
MSLink * getOppositeDirectionLink() const
return the link that is the opposite entry link to this one
LinkDirection getDirection() const
Returns the direction the vehicle passing this link take.
bool keepClear() const
whether the junction after this link must be kept clear
bool haveRed() const
Returns whether this link is blocked by a red (or redyellow) traffic light.
Something on a lane to be noticed about vehicle movement.
Notification
Definition of a vehicle state.
@ NOTIFICATION_TELEPORT_ARRIVED
The vehicle was teleported out of the net.
@ NOTIFICATION_PARKING_REROUTE
The vehicle needs another parking area.
@ NOTIFICATION_DEPARTED
The vehicle has departed (was inserted into the network)
@ NOTIFICATION_LANE_CHANGE
The vehicle changes lanes (micro only)
@ NOTIFICATION_VAPORIZED_VAPORIZER
The vehicle got vaporized with a vaporizer.
@ NOTIFICATION_JUNCTION
The vehicle arrived at a junction.
@ NOTIFICATION_PARKING
The vehicle starts or ends parking.
@ NOTIFICATION_VAPORIZED_COLLISION
The vehicle got removed by a collision.
@ NOTIFICATION_LOAD_STATE
The vehicle has been loaded from a state file.
@ NOTIFICATION_TELEPORT
The vehicle is being teleported.
@ NOTIFICATION_TELEPORT_CONTINUATION
The vehicle continues being teleported past an edge.
The simulated network and simulation perfomer.
void removeVehicleStateListener(VehicleStateListener *listener)
Removes a vehicle states listener.
VehicleState
Definition of a vehicle state.
@ STARTING_STOP
The vehicles starts to stop.
@ STARTING_PARKING
The vehicles starts to park.
@ STARTING_TELEPORT
The vehicle started to teleport.
@ ENDING_STOP
The vehicle ends to stop.
@ ARRIVED
The vehicle arrived at his destination (is deleted)
@ EMERGENCYSTOP
The vehicle had to brake harder than permitted.
@ MANEUVERING
Vehicle maneuvering either entering or exiting a parking space.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
virtual MSTransportableControl & getContainerControl()
Returns the container control.
std::string getStoppingPlaceID(const MSLane *lane, const double pos, const SumoXMLTag category) const
Returns the stop of the given category close to the given position.
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
static bool hasInstance()
Returns whether the network was already constructed.
MSStoppingPlace * getStoppingPlace(const std::string &id, const SumoXMLTag category) const
Returns the named stopping place of the given category.
void addVehicleStateListener(VehicleStateListener *listener)
Adds a vehicle states listener.
bool hasContainers() const
Returns whether containers are simulated.
void informVehicleStateListener(const SUMOVehicle *const vehicle, VehicleState to, const std::string &info="")
Informs all added listeners about a vehicle's state change.
bool hasPersons() const
Returns whether persons are simulated.
MSInsertionControl & getInsertionControl()
Returns the insertion control.
MSVehicleControl & getVehicleControl()
Returns the vehicle control.
virtual MSTransportableControl & getPersonControl()
Returns the person control.
MSEdgeControl & getEdgeControl()
Returns the edge control.
bool hasElevation() const
return whether the network contains elevation data
static const double SAFETY_GAP
A lane area vehicles can halt at.
int getOccupancyIncludingReservations(const SUMOVehicle *forVehicle) const
void leaveFrom(SUMOVehicle *what)
Called if a vehicle leaves this stop.
int getCapacity() const
Returns the area capacity.
void enter(SUMOVehicle *veh)
Called if a vehicle enters this stop.
int getLotIndex(const SUMOVehicle *veh) const
compute lot for this vehicle
int getLastFreeLotAngle() const
Return the angle of myLastFreeLot - the next parking lot only expected to be called after we have est...
bool parkOnRoad() const
whether vehicles park on the road
double getLastFreePosWithReservation(SUMOTime t, const SUMOVehicle &forVehicle, double brakePos)
Returns the last free position on this stop including reservations from the current lane and time ste...
double getLastFreeLotGUIAngle() const
Return the GUI angle of myLastFreeLot - the angle the GUI uses to rotate into the next parking lot as...
int getManoeuverAngle(const SUMOVehicle &forVehicle) const
Return the manoeuver angle of the lot where the vehicle is parked.
int getOccupancy() const
Returns the area occupancy.
double getGUIAngle(const SUMOVehicle &forVehicle) const
Return the GUI angle of the lot where the vehicle is parked.
void notifyApproach(const MSLink *link)
switch rail signal to active
static MSRailSignalControl & getInstance()
const ConstMSEdgeVector & getEdges() const
const MSEdge * getLastEdge() const
returns the destination edge
MSRouteIterator begin() const
Returns the begin of the list of edges to pass.
const MSLane * lane
The lane to stop at (microsim only)
bool triggered
whether an arriving person lets the vehicle continue
bool containerTriggered
whether an arriving container lets the vehicle continue
SUMOTime timeToLoadNextContainer
The time at which the vehicle is able to load another container.
MSStoppingPlace * containerstop
(Optional) container stop if one is assigned to the stop
double getSpeed() const
return speed for passing waypoint / skipping on-demand stop
bool joinTriggered
whether coupling another vehicle (train) the vehicle continue
bool isOpposite
whether this an opposite-direction stop
SUMOTime getMinDuration(SUMOTime time) const
return minimum stop duration when starting stop at time
int numExpectedContainer
The number of still expected containers.
bool reached
Information whether the stop has been reached.
MSRouteIterator edge
The edge in the route to stop at.
SUMOTime timeToBoardNextPerson
The time at which the vehicle is able to board another person.
bool skipOnDemand
whether the decision to skip this stop has been made
const MSEdge * getEdge() const
double getReachedThreshold() const
return startPos taking into account opposite stopping
SUMOTime endBoarding
the maximum time at which persons may board this vehicle
double getEndPos(const SUMOVehicle &veh) const
return halting position for upcoming stop;
int numExpectedPerson
The number of still expected persons.
MSParkingArea * parkingarea
(Optional) parkingArea if one is assigned to the stop
bool startedFromState
whether the 'started' value was loaded from simulaton state
MSStoppingPlace * chargingStation
(Optional) charging station if one is assigned to the stop
SUMOTime duration
The stopping duration.
SUMOTime getUntil() const
return until / ended time
const SUMOVehicleParameter::Stop pars
The stop parameter.
MSStoppingPlace * busstop
(Optional) bus stop if one is assigned to the stop
void stopBlocked(const SUMOVehicle *veh, SUMOTime time)
void stopNotStarted(const SUMOVehicle *veh)
void stopStarted(const SUMOVehicle *veh, int numPersons, int numContainers, SUMOTime time)
void stopEnded(const SUMOVehicle *veh, const SUMOVehicleParameter::Stop &stop, const std::string &laneOrEdgeID, bool simEnd=false)
static MSStopOut * getInstance()
double getBeginLanePosition() const
Returns the begin position of this stop.
bool fits(double pos, const SUMOVehicle &veh) const
return whether the given vehicle fits at the given position
double getEndLanePosition() const
Returns the end position of this stop.
void enter(SUMOVehicle *veh, bool parking)
Called if a vehicle enters this stop.
const MSLane & getLane() const
Returns the lane this stop is located at.
void leaveFrom(SUMOVehicle *what)
Called if a vehicle leaves this stop.
bool hasAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle) const
check whether any transportables are waiting for the given vehicle
bool loadAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle, SUMOTime &timeToLoadNext, SUMOTime &stopDuration, MSTransportable *const force=nullptr)
load any applicable transportables Loads any person / container that is waiting on that edge for the ...
bool isPerson() const
Whether it is a person.
A static instance of this class in GapControlState deactivates gap control for vehicles whose referen...
void vehicleStateChanged(const SUMOVehicle *const vehicle, MSNet::VehicleState to, const std::string &info="")
Called if a vehicle changes its state.
Changes the wished vehicle speed / lanes.
void setLaneChangeMode(int value)
Sets lane changing behavior.
TraciLaneChangePriority myTraciLaneChangePriority
flags for determining the priority of traci lane change requests
bool getEmergencyBrakeRedLight() const
Returns whether red lights shall be a reason to brake.
SUMOTime getLaneTimeLineEnd()
void adaptLaneTimeLine(int indexShift)
Adapts lane timeline when moving to a new lane and the lane index changes.
void setRemoteControlled(Position xyPos, MSLane *l, double pos, double posLat, double angle, int edgeOffset, const ConstMSEdgeVector &route, SUMOTime t)
bool isRemoteAffected(SUMOTime t) const
int getSpeedMode() const
return the current speed mode
void deactivateGapController()
Deactivates the gap control.
void setSpeedMode(int speedMode)
Sets speed-constraining behaviors.
std::shared_ptr< GapControlState > myGapControlState
The gap control state.
bool myConsiderMaxDeceleration
Whether the maximum deceleration shall be regarded.
void setLaneTimeLine(const std::vector< std::pair< SUMOTime, int > > &laneTimeLine)
Sets a new lane timeline.
bool myRespectJunctionLeaderPriority
Whether the junction priority rules are respected (within)
void setOriginalSpeed(double speed)
Stores the originally longitudinal speed.
double myOriginalSpeed
The velocity before influence.
bool myConsiderSpeedLimit
Whether the speed limit shall be regarded.
double implicitDeltaPosRemote(const MSVehicle *veh)
return the change in longitudinal position that is implicit in the new remote position
double implicitSpeedRemote(const MSVehicle *veh, double oldSpeed)
return the speed that is implicit in the new remote position
void postProcessRemoteControl(MSVehicle *v)
update position from remote control
double gapControlSpeed(SUMOTime currentTime, const SUMOVehicle *veh, double speed, double vSafe, double vMin, double vMax)
Applies gap control logic on the speed.
void setSublaneChange(double latDist)
Sets a new sublane-change request.
double getOriginalSpeed() const
Returns the originally longitudinal speed to use.
SUMOTime myLastRemoteAccess
bool getRespectJunctionLeaderPriority() const
Returns whether junction priority rules within the junction shall be respected (concerns vehicles wit...
LaneChangeMode myStrategicLC
lane changing which is necessary to follow the current route
LaneChangeMode mySpeedGainLC
lane changing to travel with higher speed
void init()
Static initalization.
LaneChangeMode mySublaneLC
changing to the prefered lateral alignment
bool getRespectJunctionPriority() const
Returns whether junction priority rules shall be respected (concerns approaching vehicles outside the...
static void cleanup()
Static cleanup.
int getLaneChangeMode() const
return the current lane change mode
SUMOTime getLaneTimeLineDuration()
double influenceSpeed(SUMOTime currentTime, double speed, double vSafe, double vMin, double vMax)
Applies stored velocity information on the speed to use.
double changeRequestRemainingSeconds(const SUMOTime currentTime) const
Return the remaining number of seconds of the current laneTimeLine assuming one exists.
bool myConsiderSafeVelocity
Whether the safe velocity shall be regarded.
bool mySpeedAdaptationStarted
Whether influencing the speed has already started.
void setSignals(int signals)
double myLatDist
The requested lateral change.
bool considerSpeedLimit() const
Returns whether speed limits shall be considered.
bool myEmergencyBrakeRedLight
Whether red lights are a reason to brake.
LaneChangeMode myRightDriveLC
changing to the rightmost lane
void setSpeedTimeLine(const std::vector< std::pair< SUMOTime, double > > &speedTimeLine)
Sets a new velocity timeline.
void updateRemoteControlRoute(MSVehicle *v)
update route if provided by remote control
SUMOTime getLastAccessTimeStep() const
bool myConsiderMaxAcceleration
Whether the maximum acceleration shall be regarded.
LaneChangeMode myCooperativeLC
lane changing with the intent to help other vehicles
bool isRemoteControlled() const
bool myRespectJunctionPriority
Whether the junction priority rules are respected (approaching)
int influenceChangeDecision(const SUMOTime currentTime, const MSEdge ¤tEdge, const int currentLaneIndex, int state)
Applies stored LaneChangeMode information and laneTimeLine.
void activateGapController(double originalTau, double newTimeHeadway, double newSpaceHeadway, double duration, double changeRate, double maxDecel, MSVehicle *refVeh=nullptr)
Activates the gap control with the given parameters,.
Container for manouevering time associated with stopping.
SUMOTime myManoeuvreCompleteTime
Time at which this manoeuvre should complete.
MSVehicle::ManoeuvreType getManoeuvreType() const
Accessor (get) for manoeuvre type.
std::string myManoeuvreStop
The name of the stop associated with the Manoeuvre - for debug output.
bool manoeuvreIsComplete() const
Check if any manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureExitManoeuvre(MSVehicle *veh)
Setup the myManoeuvre for exiting (Sets completion time and manoeuvre type)
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
Accessor (set) for manoeuvre type.
Manoeuvre & operator=(const Manoeuvre &manoeuvre)
Assignment operator.
ManoeuvreType myManoeuvreType
Manoeuvre type - currently entry, exit or none.
double getGUIIncrement() const
Accessor for GUI rotation step when parking (radians)
SUMOTime myManoeuvreStartTime
Time at which the Manoeuvre for this stop started.
bool operator!=(const Manoeuvre &manoeuvre)
Operator !=.
bool entryManoeuvreIsComplete(MSVehicle *veh)
Configure an entry manoeuvre if nothing is configured - otherwise check if complete.
bool manoeuvreIsComplete(const ManoeuvreType checkType) const
Check if specific manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureEntryManoeuvre(MSVehicle *veh)
Setup the entry manoeuvre for this vehicle (Sets completion time and manoeuvre type)
Container that holds the vehicles driving state (position+speed).
double myPosLat
the stored lateral position
State(double pos, double speed, double posLat, double backPos, double previousSpeed)
Constructor.
double myPreviousSpeed
the speed at the begin of the previous time step
double myPos
the stored position
bool operator!=(const State &state)
Operator !=.
double mySpeed
the stored speed (should be >=0 at any time)
State & operator=(const State &state)
Assignment operator.
double pos() const
Position of this state.
double myBackPos
the stored back position
void passTime(SUMOTime dt, bool waiting)
const std::string getState() const
SUMOTime cumulatedWaitingTime(SUMOTime memory=-1) const
void setState(const std::string &state)
WaitingTimeCollector(SUMOTime memory=MSGlobals::gWaitingTimeMemory)
Constructor.
void registerEmergencyStop()
register emergency stop
SUMOVehicle * getVehicle(const std::string &id) const
Returns the vehicle with the given id.
void registerStopEnded()
register emergency stop
void registerEmergencyBraking()
register emergency stop
void removeVType(const MSVehicleType *vehType)
void registerOneWaiting()
increases the count of vehicles waiting for a transport to allow recognition of person / container re...
void unregisterOneWaiting()
decreases the count of vehicles waiting for a transport to allow recognition of person / container re...
void registerStopStarted()
register emergency stop
Abstract in-vehicle device.
Representation of a vehicle in the micro simulation.
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
accessor function to myManoeuvre equivalent
TraciLaneChangePriority
modes for prioritizing traci lane change requests
double getRightSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
bool wasRemoteControlled(SUMOTime lookBack=DELTA_T) const
Returns the information whether the vehicle is fully controlled via TraCI within the lookBack time.
void processLinkApproaches(double &vSafe, double &vSafeMin, double &vSafeMinDist)
This method iterates through the driveprocess items for the vehicle and adapts the given in/out param...
const MSLane * getPreviousLane(const MSLane *current, int &furtherIndex) const
void checkLinkLeader(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest, bool isShadowLink=false) const
checks for link leaders on the given link
void checkRewindLinkLanes(const double lengthsInFront, DriveItemVector &lfLinks) const
runs heuristic for keeping the intersection clear in case of downstream jamming
bool willStop() const
Returns whether the vehicle will stop on the current edge.
bool hasDriverState() const
Whether this vehicle is equipped with a MSDriverState.
static int nextLinkPriority(const std::vector< MSLane * > &conts)
get a numerical value for the priority of the upcoming link
double getTimeGapOnLane() const
Returns the time gap in seconds to the leader of the vehicle on the same lane.
void updateBestLanes(bool forceRebuild=false, const MSLane *startLane=0)
computes the best lanes to use in order to continue the route
bool myAmIdling
Whether the vehicle is trying to enter the network (eg after parking so engine is running)
SUMOTime myWaitingTime
The time the vehicle waits (is not faster than 0.1m/s) in seconds.
double getStopDelay() const
Returns the public transport stop delay in seconds.
double computeAngle() const
compute the current vehicle angle
double myTimeLoss
the time loss in seconds due to driving with less than maximum speed
SUMOTime myLastActionTime
Action offset (actions are taken at time myActionOffset + N*getActionStepLength()) Initialized to 0,...
ConstMSEdgeVector::const_iterator getRerouteOrigin() const
Returns the starting point for reroutes (usually the current edge)
bool hasArrivedInternal(bool oppositeTransformed=true) const
Returns whether this vehicle has already arived (reached the arrivalPosition on its final edge) metho...
double getFriction() const
Returns the current friction on the road as perceived by the friction device.
bool ignoreFoe(const SUMOTrafficObject *foe) const
decide whether a given foe object may be ignored
void boardTransportables(MSStop &stop)
board persons and load transportables at the given stop
const std::vector< const MSLane * > getUpcomingLanesUntil(double distance) const
Returns the upcoming (best followed by default 0) sequence of lanes to continue the route starting at...
bool isOnRoad() const
Returns the information whether the vehicle is on a road (is simulated)
void adaptLaneEntering2MoveReminder(const MSLane &enteredLane)
Adapts the vehicle's entering of a new lane.
void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
SUMOTime myJunctionConflictEntryTime
double getLeftSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
PositionVector getBoundingPoly(double offset=0) const
get bounding polygon
void setTentativeLaneAndPosition(MSLane *lane, double pos, double posLat=0)
set tentative lane and position during insertion to ensure that all cfmodels work (some of them requi...
bool brakeForOverlap(const MSLink *link, const MSLane *lane) const
handle with transitions
void workOnMoveReminders(double oldPos, double newPos, double newSpeed)
Processes active move reminder.
bool isStoppedOnLane() const
double getDistanceToPosition(double destPos, const MSLane *destLane) const
bool brokeDown() const
Returns how long the vehicle has been stopped already due to lack of energy.
double myAcceleration
The current acceleration after dawdling in m/s.
void registerInsertionApproach(MSLink *link, double dist)
register approach on insertion
void cleanupFurtherLanes()
remove vehicle from further lanes (on leaving the network)
void adaptToLeaders(const MSLeaderInfo &ahead, double latOffset, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass) const
const MSLane * getBackLane() const
Returns the lane the where the rear of the object is currently at.
void enterLaneAtInsertion(MSLane *enteredLane, double pos, double speed, double posLat, MSMoveReminder::Notification notification)
Update when the vehicle enters a new lane in the emit step.
double getBackPositionOnLane() const
Get the vehicle's position relative to its current lane.
void setPreviousSpeed(double prevSpeed, double prevAcceleration)
Sets the influenced previous speed.
SUMOTime getArrivalTime(SUMOTime t, double seen, double v, double arrivalSpeed) const
double getAccumulatedWaitingSeconds() const
Returns the number of seconds waited (speed was lesser than 0.1m/s) within the last millisecs.
SUMOTime getWaitingTime(const bool accumulated=false) const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
virtual ~MSVehicle()
Destructor.
void processLaneAdvances(std::vector< MSLane * > &passedLanes, std::string &emergencyReason)
This method checks if the vehicle has advanced over one or several lanes along its route and triggers...
MSAbstractLaneChangeModel & getLaneChangeModel()
void setEmergencyBlueLight(SUMOTime currentTime)
sets the blue flashing light for emergency vehicles
bool isActionStep(SUMOTime t) const
Returns whether the next simulation step will be an action point for the vehicle.
MSAbstractLaneChangeModel * myLaneChangeModel
Position getPositionAlongBestLanes(double offset) const
Return the (x,y)-position, which the vehicle would reach if it continued along its best continuation ...
bool hasValidRouteStart(std::string &msg)
checks wether the vehicle can depart on the first edge
double getLeftSideOnLane() const
Get the lateral position of the vehicles left side on the lane:
std::vector< MSLane * > myFurtherLanes
The information into which lanes the vehicle laps into.
bool signalSet(int which) const
Returns whether the given signal is on.
MSCFModel::VehicleVariables * myCFVariables
The per vehicle variables of the car following model.
bool betterContinuation(const LaneQ *bestConnectedNext, const LaneQ &m) const
comparison between different continuations from the same lane
bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
void checkLinkLeaderCurrentAndParallel(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest) const
checks for link leaders of the current link as well as the parallel link (if there is one)
void planMoveInternal(const SUMOTime t, MSLeaderInfo ahead, DriveItemVector &lfLinks, double &myStopDist, std::pair< double, const MSLink * > &myNextTurn) const
std::pair< double, const MSLink * > myNextTurn
the upcoming turn for the vehicle
double getDistanceToLeaveJunction() const
get the distance from the start of this lane to the start of the next normal lane (or 0 if this lane ...
int influenceChangeDecision(int state)
allow TraCI to influence a lane change decision
double getMaxSpeedOnLane() const
Returns the maximal speed for the vehicle on its current lane (including speed factor and deviation,...
bool isRemoteControlled() const
Returns the information whether the vehicle is fully controlled via TraCI.
bool myAmOnNet
Whether the vehicle is on the network (not parking, teleported, vaporized, or arrived)
void enterLaneAtMove(MSLane *enteredLane, bool onTeleporting=false)
Update when the vehicle enters a new lane in the move step.
void adaptBestLanesOccupation(int laneIndex, double density)
update occupation from MSLaneChanger
std::pair< double, double > estimateTimeToNextStop() const
return time (s) and distance to the next stop
double accelThresholdForWaiting() const
maximum acceleration to consider a vehicle as 'waiting' at low speed
void setAngle(double angle, bool straightenFurther=false)
Set a custom vehicle angle in rad, optionally updates furtherLanePosLat.
std::vector< LaneQ >::iterator myCurrentLaneInBestLanes
void setApproachingForAllLinks()
Register junction approaches for all link items in the current plan.
double getDeltaPos(const double accel) const
calculates the distance covered in the next integration step given an acceleration and assuming the c...
const MSLane * myLastBestLanesInternalLane
void updateOccupancyAndCurrentBestLane(const MSLane *startLane)
updates LaneQ::nextOccupation and myCurrentLaneInBestLanes
const std::vector< MSLane * > getUpstreamOppositeLanes() const
Returns the sequence of opposite lanes corresponding to past lanes.
WaitingTimeCollector myWaitingTimeCollector
void setRemoteState(Position xyPos)
sets position outside the road network
void fixPosition()
repair errors in vehicle position after changing between internal edges
double getAcceleration() const
Returns the vehicle's acceleration in m/s (this is computed as the last step's mean acceleration in c...
double getSpeedWithoutTraciInfluence() const
Returns the uninfluenced velocity.
PositionVector getBoundingBox(double offset=0) const
get bounding rectangle
ManoeuvreType
flag identifying which, if any, manoeuvre is in progress
@ MANOEUVRE_ENTRY
Manoeuvre into stopping place.
@ MANOEUVRE_NONE
not manouevring
@ MANOEUVRE_EXIT
Manoeuvre out of stopping place.
const MSEdge * getNextEdgePtr() const
returns the next edge (possibly an internal edge)
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
void setBrakingSignals(double vNext)
sets the braking lights on/off
const std::vector< MSLane * > & getBestLanesContinuation() const
Returns the best sequence of lanes to continue the route starting at myLane.
const MSEdge * myLastBestLanesEdge
bool ignoreCollision() const
whether this vehicle is except from collision checks
Influencer * myInfluencer
An instance of a velocity/lane influencing instance; built in "getInfluencer".
void saveState(OutputDevice &out)
Saves the states of a vehicle.
void onRemovalFromNet(const MSMoveReminder::Notification reason)
Called when the vehicle is removed from the network.
void planMove(const SUMOTime t, const MSLeaderInfo &ahead, const double lengthsInFront)
Compute safe velocities for the upcoming lanes based on positions and speeds from the last time step....
bool resumeFromStopping()
int getBestLaneOffset() const
void adaptToJunctionLeader(const std::pair< const MSVehicle *, double > leaderInfo, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass, double distToCrossing=-1) const
double lateralDistanceToLane(const int offset) const
Get the minimal lateral distance required to move fully onto the lane at given offset.
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
void leaveLaneBack(const MSMoveReminder::Notification reason, const MSLane *leftLane)
Update of reminders if vehicle back leaves a lane during (during forward movement.
void resetActionOffset(const SUMOTime timeUntilNextAction=0)
Resets the action offset for the vehicle.
std::vector< DriveProcessItem > DriveItemVector
Container for used Links/visited Lanes during planMove() and executeMove.
void interpolateLateralZ(Position &pos, double offset, double posLat) const
perform lateral z interpolation in elevated networks
void setBlinkerInformation()
sets the blue flashing light for emergency vehicles
const MSEdge * getCurrentEdge() const
Returns the edge the vehicle is currently at (possibly an internal edge or nullptr)
void adaptToLeaderDistance(const MSLeaderDistanceInfo &ahead, double latOffset, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
DriveItemVector::iterator myNextDriveItem
iterator pointing to the next item in myLFLinkLanes
bool unsafeLinkAhead(const MSLane *lane, double zipperDist) const
whether the vehicle may safely move to the given lane with regard to upcoming links
void leaveLane(const MSMoveReminder::Notification reason, const MSLane *approachedLane=0)
Update of members if vehicle leaves a new lane in the lane change step or at arrival.
const MSLink * myHaveStoppedFor
bool isIdling() const
Returns whether a sim vehicle is waiting to enter a lane (after parking has completed)
std::shared_ptr< MSSimpleDriverState > getDriverState() const
Returns the vehicle driver's state.
void removeApproachingInformation(const DriveItemVector &lfLinks) const
unregister approach from all upcoming links
SUMOTime myJunctionEntryTimeNeverYield
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
bool rerouteParkingArea(const std::string &parkingAreaID, std::string &errorMsg)
bool hasArrived() const
Returns whether this vehicle has already arrived (reached the arrivalPosition on its final edge)
void switchOffSignal(int signal)
Switches the given signal off.
double getStopArrivalDelay() const
Returns the estimated public transport stop arrival delay in seconds.
int mySignals
State of things of the vehicle that can be on or off.
bool setExitManoeuvre()
accessor function to myManoeuvre equivalent
bool isOppositeLane(const MSLane *lane) const
whether the give lane is reverse direction of the current route or not
double myStopDist
distance to the next stop or doubleMax if there is none
Signalling
Some boolean values which describe the state of some vehicle parts.
@ VEH_SIGNAL_BLINKER_RIGHT
Right blinker lights are switched on.
@ VEH_SIGNAL_BRAKELIGHT
The brake lights are on.
@ VEH_SIGNAL_EMERGENCY_BLUE
A blue emergency light is on.
@ VEH_SIGNAL_BLINKER_LEFT
Left blinker lights are switched on.
SUMOTime getActionStepLength() const
Returns the vehicle's action step length in millisecs, i.e. the interval between two action points.
bool myHaveToWaitOnNextLink
SUMOTime collisionStopTime() const
Returns the remaining time a vehicle needs to stop due to a collision. A negative value indicates tha...
const std::vector< const MSLane * > getPastLanesUntil(double distance) const
Returns the sequence of past lanes (right-most on edge) based on the route starting at the current la...
double getBestLaneDist() const
returns the distance that can be driven without lane change
void replaceVehicleType(const MSVehicleType *type)
Replaces the current vehicle type by the one given.
void updateState(double vNext, bool parking=false)
updates the vehicles state, given a next value for its speed. This value can be negative in case of t...
double slowDownForSchedule(double vMinComfortable) const
optionally return an upper bound on speed to stay within the schedule
bool executeMove()
Executes planned vehicle movements with regards to right-of-way.
const MSLane * getLane() const
Returns the lane the vehicle is on.
std::pair< const MSVehicle *const, double > getFollower(double dist=0) const
Returns the follower of the vehicle looking for a fixed distance.
SUMOTime getWaitingTimeFor(const MSLink *link) const
getWaitingTime, but taking into account having stopped for a stop-link
ChangeRequest
Requests set via TraCI.
@ REQUEST_HOLD
vehicle want's to keep the current lane
@ REQUEST_LEFT
vehicle want's to change to left lane
@ REQUEST_NONE
vehicle doesn't want to change
@ REQUEST_RIGHT
vehicle want's to change to right lane
bool isLeader(const MSLink *link, const MSVehicle *veh, const double gap) const
whether the given vehicle must be followed at the given junction
void resetApproachOnReroute()
reset rail signal approach information
void computeFurtherLanes(MSLane *enteredLane, double pos, bool collision=false)
updates myFurtherLanes on lane insertion or after collision
MSLane * getMutableLane() const
Returns the lane the vehicle is on Non const version indicates that something volatile is going on.
std::pair< const MSLane *, double > getLanePosAfterDist(double distance) const
return lane and position along bestlanes at the given distance
SUMOTime myCollisionImmunity
amount of time for which the vehicle is immune from collisions
bool passingMinor() const
decide whether the vehicle is passing a minor link or has comitted to do so
void updateWaitingTime(double vNext)
Updates the vehicle's waiting time counters (accumulated and consecutive)
void enterLaneAtLaneChange(MSLane *enteredLane)
Update when the vehicle enters a new lane in the laneChange step.
BaseInfluencer & getBaseInfluencer()
Returns the velocity/lane influencer.
Influencer & getInfluencer()
bool isBidiOn(const MSLane *lane) const
whether this vehicle is driving against lane
double getRightSideOnLane() const
Get the lateral position of the vehicles right side on the lane:
double getCurrentApparentDecel() const
get apparent deceleration based on vType parameters and current acceleration
double updateFurtherLanes(std::vector< MSLane * > &furtherLanes, std::vector< double > &furtherLanesPosLat, const std::vector< MSLane * > &passedLanes)
update a vector of further lanes and return the new backPos
DriveItemVector myLFLinkLanesPrev
planned speeds from the previous step for un-registering from junctions after the new container is fi...
std::vector< std::vector< LaneQ > > myBestLanes
void setActionStepLength(double actionStepLength, bool resetActionOffset=true)
Sets the action steplength of the vehicle.
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
double getSlope() const
Returns the slope of the road at vehicle's position in degrees.
bool myActionStep
The flag myActionStep indicates whether the current time step is an action point for the vehicle.
const Position getBackPosition() const
void loadState(const SUMOSAXAttributes &attrs, const SUMOTime offset)
Loads the state of this vehicle from the given description.
SUMOTime myTimeSinceStartup
duration of driving (speed > SUMO_const_haltingSpeed) after the last halting episode
double getSpeed() const
Returns the vehicle's current speed.
SUMOTime remainingStopDuration() const
Returns the remaining stop duration for a stopped vehicle or 0.
bool keepStopping(bool afterProcessing=false) const
Returns whether the vehicle is stopped and must continue to do so.
void workOnIdleReminders()
cycle through vehicle devices invoking notifyIdle
static std::vector< MSLane * > myEmptyLaneVector
Position myCachedPosition
bool replaceRoute(ConstMSRoutePtr route, const std::string &info, bool onInit=false, int offset=0, bool addStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
MSVehicle::ManoeuvreType getManoeuvreType() const
accessor function to myManoeuvre equivalent
double checkReversal(bool &canReverse, double speedThreshold=SUMO_const_haltingSpeed, double seen=0) const
void updateLaneBruttoSum()
Update the lane brutto occupancy after a change in minGap.
void removePassedDriveItems()
Erase passed drive items from myLFLinkLanes (and unregister approaching information for corresponding...
const std::vector< MSLane * > & getFurtherLanes() const
const std::vector< LaneQ > & getBestLanes() const
Returns the description of best lanes to use in order to continue the route.
std::vector< double > myFurtherLanesPosLat
lateral positions on further lanes
bool checkActionStep(const SUMOTime t)
Returns whether the vehicle is supposed to take action in the current simulation step Updates myActio...
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
Position validatePosition(Position result, double offset=0) const
ensure that a vehicle-relative position is not invalid
void loadPreviousApproaching(MSLink *link, bool setRequest, SUMOTime arrivalTime, double arrivalSpeed, double arrivalSpeedBraking, double dist, double leaveSpeed)
bool keepClear(const MSLink *link) const
decide whether the given link must be kept clear
bool manoeuvreIsComplete() const
accessor function to myManoeuvre equivalent
double processNextStop(double currentVelocity)
Processes stops, returns the velocity needed to reach the stop.
double myAngle
the angle in radians (
bool ignoreRed(const MSLink *link, bool canBrake) const
decide whether a red (or yellow light) may be ignored
double getPositionOnLane() const
Get the vehicle's position along the lane.
void updateTimeLoss(double vNext)
Updates the vehicle's time loss.
MSDevice_DriverState * myDriverState
This vehicle's driver state.
bool joinTrainPart(MSVehicle *veh)
try joining the given vehicle to the rear of this one (to resolve joinTriggered)
MSLane * myLane
The lane the vehicle is on.
bool onFurtherEdge(const MSEdge *edge) const
whether this vehicle has its back (and no its front) on the given edge
double processTraCISpeedControl(double vSafe, double vNext)
Check for speed advices from the traci client and adjust the speed vNext in the current (euler) / aft...
double getLateralOverlap() const
return the amount by which the vehicle extends laterally outside it's primary lane
double getAngle() const
Returns the vehicle's direction in radians.
bool handleCollisionStop(MSStop &stop, const double distToStop)
bool hasInfluencer() const
whether the vehicle is individually influenced (via TraCI or special parameters)
MSDevice_Friction * myFrictionDevice
This vehicle's friction perception.
double getPreviousSpeed() const
Returns the vehicle's speed before the previous time step.
MSVehicle()
invalidated default constructor
bool joinTrainPartFront(MSVehicle *veh)
try joining the given vehicle to the front of this one (to resolve joinTriggered)
void updateActionOffset(const SUMOTime oldActionStepLength, const SUMOTime newActionStepLength)
Process an updated action step length value (only affects the vehicle's action offset,...
double getBrakeGap(bool delayed=false) const
get distance for coming to a stop (used for rerouting checks)
std::pair< const MSVehicle *const, double > getLeader(double dist=0, bool considerFoes=true) const
Returns the leader of the vehicle looking for a fixed distance.
void executeFractionalMove(double dist)
move vehicle forward by the given distance during insertion
LaneChangeMode
modes for resolving conflicts between external control (traci) and vehicle control over lane changing...
virtual void drawOutsideNetwork(bool)
register vehicle for drawing while outside the network
void adaptToOncomingLeader(const std::pair< const MSVehicle *, double > leaderInfo, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
State myState
This Vehicles driving state (pos and speed)
double getCenterOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
void adaptToLeader(const std::pair< const MSVehicle *, double > leaderInfo, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
void switchOnSignal(int signal)
Switches the given signal on.
static bool overlap(const MSVehicle *veh1, const MSVehicle *veh2)
void updateParkingState()
update state while parking
DriveItemVector myLFLinkLanes
container for the planned speeds in the current step
void updateDriveItems()
Check whether the drive items (myLFLinkLanes) are up to date, and update them if required.
SUMOTime myJunctionEntryTime
time at which the current junction was entered
static MSVehicleTransfer * getInstance()
Returns the instance of this object.
void remove(MSVehicle *veh)
Remove a vehicle from this transfer object.
The car-following model and parameter.
double getLengthWithGap() const
Get vehicle's length including the minimum gap [m].
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
double getMaxSpeed() const
Get vehicle's (technical) maximum speed [m/s].
const std::string & getID() const
Returns the name of the vehicle type.
double getMinGap() const
Get the free space in front of vehicles of this class.
LaneChangeModel getLaneChangeModel() const
void setLength(const double &length)
Set a new value for this type's length.
SUMOTime getExitManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning exit time for a specific manoeuver angle.
const MSCFModel & getCarFollowModel() const
Returns the vehicle type's car following model definition (const version)
bool isVehicleSpecific() const
Returns whether this type belongs to a single vehicle only (was modified)
void setActionStepLength(const SUMOTime actionStepLength, bool resetActionOffset)
Set a new value for this type's action step length.
double getLength() const
Get vehicle's length [m].
SUMOVehicleShape getGuiShape() const
Get this vehicle type's shape.
SUMOTime getEntryManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning entry time for a specific manoeuver angle.
const SUMOVTypeParameter & getParameter() const
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
const std::string & getID() const
Returns the id.
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
bool hasParameter(const std::string &key) const
Returns whether the parameter is set.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
void writeParams(OutputDevice &device) const
write Params in the given outputdevice
A point in 2D or 3D with translation and scaling methods.
double slopeTo2D(const Position &other) const
returns the slope of the vector pointing from here to the other position (in radians between -M_PI an...
static const Position INVALID
used to indicate that a position is valid
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
void setz(double z)
set position z
double z() const
Returns the z-position.
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position (in radians bet...
double length2D() const
Returns the length.
void append(const PositionVector &v, double sameThreshold=2.0)
double rotationAtOffset(double pos) const
Returns the rotation at the given length.
Position positionAtOffset(double pos, double lateralOffset=0) const
Returns the position at the given length.
void move2side(double amount, double maxExtension=100)
move position vector to side using certain amount
double slopeDegreeAtOffset(double pos) const
Returns the slope at the given length.
void extrapolate2D(const double val, const bool onlyFirst=false)
extrapolate position vector in two dimensions (Z is ignored)
void scaleRelative(double factor)
enlarges/shrinks the polygon by a factor based at the centroid
PositionVector reverse() const
reverse position vector
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
virtual bool compute(const E *from, const E *to, const V *const vehicle, SUMOTime msTime, std::vector< const E * > &into, bool silent=false)=0
Builds the route between the given edges using the minimum effort at the given time The definition of...
virtual double recomputeCosts(const std::vector< const E * > &edges, const V *const v, SUMOTime msTime, double *lengthp=nullptr) const
Encapsulated SAX-Attributes.
virtual std::string getString(int id, bool *isPresent=nullptr) const =0
Returns the string-value of the named (by its enum-value) attribute.
T get(int attr, const char *objectid, bool &ok, bool report=true) const
Tries to read given attribute assuming it is an int.
virtual bool hasAttribute(int id) const =0
Returns the information whether the named (by its enum-value) attribute is within the current list.
double getFloat(int id) const
Returns the double-value of the named (by its enum-value) attribute.
Representation of a vehicle, person, or container.
virtual const MSVehicleType & getVehicleType() const =0
Returns the object's "vehicle" type.
virtual double getSpeed() const =0
Returns the object's current speed.
double locomotiveLength
the length of the locomotive
double speedFactorPremature
the possible speed reduction when a train is ahead of schedule
double getLCParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
double getJMParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
Representation of a vehicle.
Definition of vehicle stop (position and duration)
SUMOTime started
the time at which this stop was reached
ParkingType parking
whether the vehicle is removed from the net while stopping
SUMOTime extension
The maximum time extension for boarding / loading.
std::string split
the id of the vehicle (train portion) that splits of upon reaching this stop
double startPos
The stopping position start.
std::string line
the new line id of the trip within a cyclical public transport route
double posLat
the lateral offset when stopping
bool onDemand
whether the stop may be skipped
std::string join
the id of the vehicle (train portion) to which this vehicle shall be joined
SUMOTime until
The time at which the vehicle may continue its journey.
SUMOTime ended
the time at which this stop was ended
double endPos
The stopping position end.
SUMOTime waitUntil
The earliest pickup time for a taxi stop.
std::string tripId
id of the trip within a cyclical public transport route
bool collision
Whether this stop was triggered by a collision.
SUMOTime arrival
The (expected) time at which the vehicle reaches the stop.
SUMOTime duration
The stopping duration.
Structure representing possible vehicle parameter.
int departLane
(optional) The lane the vehicle shall depart from (index in edge)
ArrivalSpeedDefinition arrivalSpeedProcedure
Information how the vehicle's end speed shall be chosen.
double departSpeed
(optional) The initial speed of the vehicle
std::vector< std::string > via
List of the via-edges the vehicle must visit.
ArrivalLaneDefinition arrivalLaneProcedure
Information how the vehicle shall choose the lane to arrive on.
long long int parametersSet
Information for the router which parameter were set, TraCI may modify this (when changing color)
DepartLaneDefinition departLaneProcedure
Information how the vehicle shall choose the lane to depart from.
bool wasSet(long long int what) const
Returns whether the given parameter was set.
DepartSpeedDefinition departSpeedProcedure
Information how the vehicle's initial speed shall be chosen.
double arrivalPos
(optional) The position the vehicle shall arrive on
ArrivalPosDefinition arrivalPosProcedure
Information how the vehicle shall choose the arrival position.
double arrivalSpeed
(optional) The final speed of the vehicle (not used yet)
int arrivalEdge
(optional) The final edge within the route of the vehicle
DepartPosDefinition departPosProcedure
Information how the vehicle shall choose the departure position.
static SUMOTime processActionStepLength(double given)
Checks and converts given value for the action step length from seconds to miliseconds assuring it be...
std::vector< std::string > getVector()
return vector of strings
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
Drive process items represent bounds on the safe velocity corresponding to the upcoming links.
void adaptStopSpeed(const double v)
double getLeaveSpeed() const
void adaptLeaveSpeed(const double v)
static std::map< const MSVehicle *, GapControlState * > refVehMap
stores reference vehicles currently in use by a gapController
static GapControlVehStateListener * myVehStateListener
void activate(double tauOriginal, double tauTarget, double additionalGap, double duration, double changeRate, double maxDecel, const MSVehicle *refVeh)
Start gap control with given params.
static void cleanup()
Static cleanup (removes vehicle state listener)
virtual ~GapControlState()
void deactivate()
Stop gap control.
static void init()
Static initalization (adds vehicle state listener)
A structure representing the best lanes for continuing the current route starting at 'lane'.
double length
The overall length which may be driven when using this lane without a lane change.
bool allowsContinuation
Whether this lane allows to continue the drive.
double nextOccupation
As occupation, but without the first lane.
std::vector< MSLane * > bestContinuations
MSLane * lane
The described lane.
double currentLength
The length which may be driven on this lane.
int bestLaneOffset
The (signed) number of lanes to be crossed to get to the lane which allows to continue the drive.
double occupation
The overall vehicle sum on consecutive lanes which can be passed without a lane change.