53#define DEBUG_COND2(obj) (obj->isSelected())
57#define DEBUG_COND_ZIPPER (ego->isSelected())
63#define INVALID_TIME -1000
66#define JM_CROSSING_GAP_DEFAULT 10
69#define DIVERGENCE_MIN_WIDTH 2.5
94 if (foeConflictIndex >= 0) {
95 return foeExitLink->
myConflicts[foeConflictIndex].conflictSize;
106 return lengthBehindCrossing;
114 double length,
double foeVisibilityDistance,
bool keepClear,
158 const double dist = from.back().distanceTo2D(to.front());
164 myLateralShift = (from.back().distanceTo2D(to.front()) < dist) ? dist : -dist;
191 if (cc.from == foeFrom && cc.to == foeTo) {
202 const std::vector<MSLink*>& foeLinks,
203 const std::vector<MSLane*>& foeLanes,
204 MSLane* internalLaneBefore) {
214 for (
MSLane* foeLane : foeLanes) {
222 if (internalLaneBefore !=
nullptr) {
224 lane = internalLaneBefore;
236 for (
MSLane* foeLane : foeLanes) {
237 assert(foeLane->isInternal() || foeLane->isCrossing());
238 MSLink* viaLink = foeLane->getIncomingLanes().front().viaLink;
245#ifdef MSLink_DEBUG_CROSSING_POINTS
248 if (lane !=
nullptr) {
249 const bool beforeInternalJunction = lane->
getLinkCont()[0]->getViaLaneOrLane()->getEdge().isInternal();
273 const CustomConflict* rcc = foeLane->getEntryLink()->getCustomConflict(lane);
274 bool haveIntersection =
false;
275 if (rcc ==
nullptr) {
280 const bool foeIsSecondPart = foeLane->getLogicalPredecessorLane()->isInternal();
283 if (foeIsSecondPart) {
284 foeStartPos -= foeLane->getLogicalPredecessorLane()->getLength();
286 const double foeEndPos = foeStartPos + foeConflictSize;
287 haveIntersection = ((foeStartPos > 0 && foeStartPos < foeLane->getLength())
288 || (foeEndPos > 0 && foeEndPos < foeLane->
getLength()));
290 if (haveIntersection) {
295#ifdef MSLink_DEBUG_CROSSING_POINTS
296 std::cout <<
" " << lane->
getID() <<
" custom conflict with " << foeLane->getID() <<
" customReverse=" << (rcc !=
nullptr)
297 <<
" haveIntersection=" << haveIntersection
298 <<
" startPos=" << startPos <<
" conflictSize=" << conflictSize
299 <<
" lbc=" <<
myConflicts.back().lengthBehindCrossing
306 if (sameTarget && !beforeInternalJunction && !
contIntersect(lane, foeLane)) {
310 if (lane->
getShape().back().distanceTo2D(foeLane->getShape().back()) >= minDist) {
312 if (foeLane->getEntryLink()->isIndirect()) {
314#ifdef MSLink_DEBUG_CROSSING_POINTS
315 std::cout <<
" " << lane->
getID() <<
" dummy merge with indirect" << foeLane->getID() <<
"\n";
319#ifdef MSLink_DEBUG_CROSSING_POINTS
320 std::cout <<
" " << lane->
getID() <<
" dummy merge with " << foeLane->getID() <<
"\n";
327#ifdef MSLink_DEBUG_CROSSING_POINTS
329 <<
" " << lane->
getID()
330 <<
" merges with " << foeLane->getID()
331 <<
" nextLane " << lane->
getLinkCont()[0]->getViaLaneOrLane()->getID()
332 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
338#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
339 std::cout <<
" intersections1=" <<
toString(intersections1) <<
"\n";
341 bool haveIntersection =
true;
342 if (intersections1.size() == 0) {
344 haveIntersection =
false;
345 }
else if (intersections1.size() > 1) {
346 std::sort(intersections1.begin(), intersections1.end());
348 std::vector<double> intersections2 = foeLane->getShape().intersectsAtLengths2D(lane->
getShape());
349#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
350 std::cout <<
" intersections2=" <<
toString(intersections2) <<
"\n";
352 if (intersections2.size() == 0) {
353 intersections2.push_back(0);
354 }
else if (intersections2.size() > 1) {
355 std::sort(intersections2.begin(), intersections2.end());
357 double conflictSize = foeLane->getWidth();
359 if (haveIntersection) {
362 const double angle2 =
GeomHelper::naviDegree(foeLane->getShape().rotationAtOffset(intersections2.back()));
366 const double widthFactor = 1 /
MAX2(sin(
DEG2RAD(angleDiff)), 0.2) * 2 - 1;
368 conflictSize *= widthFactor;
371 intersections1.back() -= conflictSize / 2;
373 intersections1.back() =
MAX2(0.0, intersections1.back());
382 if (foeLane->getEdge().isCrossing()) {
388 lane->
getLength() - intersections1.back(),
389 conflictSize, flag));
391#ifdef MSLink_DEBUG_CROSSING_POINTS
393 <<
" intersection of " << lane->
getID()
395 <<
" with " << foeLane->getID()
396 <<
" totalLength=" << foeLane->getLength()
397 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
398 <<
" widthFactor=" <<
myConflicts.back().conflictSize / foeLane->getWidth()
408 const MSLane*
const sibling = link->getViaLane();
409 if (sibling != lane && sibling !=
nullptr) {
411 if (lane->
getShape().front().distanceTo2D(sibling->
getShape().front()) >= minDist) {
421 lbcLane = lane->
getLength() - distToDivergence;
429 const int replacedIndex = (int)(it -
myFoeLanes.begin());
435#ifdef MSLink_DEBUG_CROSSING_POINTS
436 std::cout <<
" adding same-origin foe" << sibling->
getID()
437 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
444 for (
int i = 0; i < (int)
myFoeLanes.size(); i++) {
448 for (
int i2 = 0; i2 < (int)foeExitLink->
myFoeLanes.size(); i2++) {
457#ifdef MSLink_DEBUG_CROSSING_POINTS
458 std::cout << lane->
getID() <<
" foeLane=" << foeLane->
getID() <<
" index=" << i <<
" foundIndex=" << foundIndex <<
"\n";
460 if (foundIndex < 0) {
472 const MSEdge* target = &(it->getLane()->getEdge());
476 if (target == myTarget) {
478#ifdef MSLink_DEBUG_CROSSING_POINTS
479 std::cout <<
" sublaneFoeLink (same target): " << it->getViaLaneOrLane()->
getID() <<
"\n";
484#ifdef MSLink_DEBUG_CROSSING_POINTS
485 std::cout <<
" sublaneFoeLink2 (other target: " << it->getViaLaneOrLane()->getID() <<
"\n";
527#ifdef MSLink_DEBUG_CROSSING_POINTS
528 std::cout <<
" recheck l1=" << item.first->getDescription() <<
" l2=" << item.second->getDescription() <<
"\n";
530 MSLink* link = item.first;
531 MSLink* foeExitLink = item.second;
534 int conflictIndex = -1;
535 for (
int i = 0; i < (int)link->
myFoeLanes.size(); i++) {
541 if (conflictIndex == -1) {
547 if (intersections1.size() == 0) {
548#ifdef MSLink_DEBUG_CROSSING_POINTS
549 std::cout <<
" no intersection\n";
554 const double conflictSize2 = lane->
getWidth() * widthFactor;
555 std::sort(intersections1.begin(), intersections1.end());
556 intersections1.back() -= conflictSize2 / 2;
557 intersections1.back() =
MAX2(0.0, intersections1.back());
560#ifdef MSLink_DEBUG_CROSSING_POINTS
561 std::cout <<
" ci=" << conflictIndex <<
" wf=" << widthFactor <<
" flag=" << ci.
flag <<
" flbc=" << foeExitLink->
myConflicts.back().lengthBehindCrossing <<
"\n";
569 double lbcSibling = 0;
583 lbcSibling += s[-1].distanceTo2D(s[-2]);
589 lbcLane += l[-1].distanceTo2D(l[-2]);
593#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
594 std::cout <<
" sameSource=" << sameSource <<
" minDist=" << minDist <<
" backDist=" << l.back().distanceTo2D(s.back()) <<
"\n";
596 if (l.back().distanceTo2D(s.back()) > minDist) {
603 std::vector<double> distances = l.
distances(s);
604#ifdef MSLink_DEBUG_CROSSING_POINTS
605 std::cout <<
" distances=" <<
toString(distances) <<
"\n";
607 assert(distances.size() == l.size() + s.size());
608 if (distances.back() > minDist && distances[l.size() - 1] > minDist) {
610 for (
int j = (
int)s.size() - 2; j >= 0; j--) {
611 const int i = j + (int)l.size();
612 const double segLength = s[j].distanceTo2D(s[j + 1]);
613 if (distances[i] > minDist) {
614 lbcSibling += segLength;
617 lbcSibling += segLength - (minDist - distances[i]) * segLength / (distances[i + 1] - distances[i]);
621 for (
int i = (
int)l.size() - 2; i >= 0; i--) {
622 const double segLength = l[i].distanceTo2D(l[i + 1]);
623 if (distances[i] > minDist) {
624 lbcLane += segLength;
627 lbcLane += segLength - (minDist - distances[i]) * segLength / (distances[i + 1] - distances[i]);
632 assert(lbcSibling >= -NUMERICAL_EPS);
633 assert(lbcLane >= -NUMERICAL_EPS);
635 const double distToDivergence1 = sibling->
getLength() - lbcSibling;
636 const double distToDivergence2 = lane->
getLength() - lbcLane;
637 const double distToDivergence =
MIN3(
638 MAX2(distToDivergence1, distToDivergence2),
640#ifdef MSLink_DEBUG_CROSSING_POINTS
641 std::cout <<
" distToDivergence=" << distToDivergence
642 <<
" distTD1=" << distToDivergence1
643 <<
" distTD2=" << distToDivergence2
644 <<
" length=" << length
645 <<
" sibLength=" << sibLength
648 return distToDivergence;
654 if (foe->
getLinkCont()[0]->getViaLane() !=
nullptr) {
656 return intersections.size() > 0;
664 const bool setRequest,
const double arrivalSpeedBraking,
const SUMOTime waitingTime,
double dist,
double latOffset) {
666#ifdef DEBUG_APPROACHING
670 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
676 arrivalSpeedBraking, waitingTime, dist, approaching->
getSpeed(), latOffset));
683#ifdef DEBUG_APPROACHING
687 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
705#ifdef DEBUG_APPROACHING
708 std::cout <<
"' Removing approaching vehicle '" << veh->
getID() <<
"'\nCurrently registered vehicles:" << std::endl;
710 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
724#ifdef DEBUG_APPROACHING
727 std::cout <<
"' Removing approaching person '" << person->
getID() <<
"'\nCurrently registered persons:" << std::endl;
729 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
756 const double leaveSpeed,
const double vehicleLength)
const {
763 double impatience,
double decel,
SUMOTime waitingTime,
double posLat,
765#ifdef MSLink_DEBUG_OPENED
780 assert(
myLane != foeLink->getLane());
781 for (
const auto& it : foeLink->myApproachingVehicles) {
785 ((posLat < foe->getLateralPositionOnLane() + it.second.latOffset &&
myLane->
getIndex() > foeLink->myLane->getIndex())
788 && (arrivalTime > it.second.arrivalTime
792 if (
blockedByFoe(foe, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
false,
793 impatience, decel, waitingTime, ego)) {
794#ifdef MSLink_DEBUG_OPENED
796 std::cout <<
SIMTIME <<
" blocked by " << foe->
getID() <<
" arrival=" << arrivalTime <<
" foeArrival=" << it.second.arrivalTime <<
"\n";
799 if (collectFoes ==
nullptr) {
800#ifdef MSLink_DEBUG_OPENED
802 std::cout <<
" link=" <<
getViaLaneOrLane()->
getID() <<
" blocked by sublaneFoe=" << foe->
getID() <<
" foeLink=" << foeLink->getViaLaneOrLane()->getID() <<
" posLat=" << posLat <<
"\n";
807 collectFoes->push_back(it.first);
818 for (
const auto& it : foeLink->myApproachingVehicles) {
828 if (
blockedByFoe(foe, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
false,
829 impatience, decel, waitingTime, ego)) {
830#ifdef MSLink_DEBUG_OPENED
832 std::cout <<
SIMTIME <<
" blocked by sublane foe " << foe->
getID() <<
" arrival=" << arrivalTime <<
" foeArrival=" << it.second.arrivalTime <<
"\n";
835 if (collectFoes ==
nullptr) {
836#ifdef MSLink_DEBUG_OPENED
838 std::cout <<
" link=" <<
getViaLaneOrLane()->
getID() <<
" blocked by sublaneFoe2=" << foe->
getID() <<
" foeLink=" << foeLink->getViaLaneOrLane()->getID() <<
" posLat=" << posLat <<
"\n";
843 collectFoes->push_back(it.first);
854 return collectFoes ==
nullptr || collectFoes->size() == 0;
863#ifdef MSLink_DEBUG_OPENED
873 for (
const MSLink*
const link : foeLinks) {
875 if (link->haveRed()) {
879#ifdef MSLink_DEBUG_OPENED
881 std::cout <<
SIMTIME <<
" foeLink=" << link->getViaLaneOrLane()->getID() <<
" numApproaching=" << link->getApproaching().size() <<
"\n";
882 if (link->getLane()->isCrossing()) {
883 std::cout <<
SIMTIME <<
" approachingPersons=" << (link->myApproachingPersons ==
nullptr ?
"NULL" :
toString(link->myApproachingPersons->size())) <<
"\n";
887 if (link->blockedAtTime(arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
myLane == link->getLane(),
888 impatience, decel, waitingTime, collectFoes, ego, lastWasContRed, dist)) {
892 if (collectFoes !=
nullptr && collectFoes->size() > 0) {
901 bool sameTargetLane,
double impatience,
double decel,
SUMOTime waitingTime,
904#ifdef MSLink_DEBUG_OPENED
909 std::stringstream stream;
911 <<
" foeVeh=" << it.first->getID() <<
" (below ignore speed)"
914 std::cout << stream.str();
925 &&
blockedByFoe(it.first, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed, sameTargetLane,
926 impatience, decel, waitingTime, ego)) {
927 if (collectFoes ==
nullptr) {
930 collectFoes->push_back(it.first);
941 && !((arrivalTime > it.second.leavingTime) || (leaveTime < it.second.arrivalTime))) {
944#ifdef MSLink_DEBUG_OPENED
946 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" conflict with person " << it.first->getID() <<
" aTime=" << arrivalTime <<
" foeATime=" << it.second.arrivalTime <<
" dist=" << dist <<
" bGap=" << cfm.brakeGap(ego->
getSpeed(), cfm.getMaxDecel(), 0) <<
"\n";
949 if (dist > cfm.brakeGap(ego->
getSpeed(), cfm.getMaxDecel(), 0)) {
950#ifdef MSLink_DEBUG_OPENED
952 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" blocked by person " << it.first->getID() <<
"\n";
955 if (collectFoes ==
nullptr) {
958 collectFoes->push_back(it.first);
970 SUMOTime arrivalTime,
SUMOTime leaveTime,
double arrivalSpeed,
double leaveSpeed,
971 bool sameTargetLane,
double impatience,
double decel,
SUMOTime waitingTime,
973#ifdef MSLink_DEBUG_OPENED
975 std::stringstream stream;
977 <<
" foeVeh=" << veh->
getID()
982 std::cout << stream.str();
989 assert(waitingTime > 0);
990#ifdef MSLink_DEBUG_OPENED
992 std::stringstream stream;
993 stream <<
" foeDist=" << avi.
dist
996 <<
" wait=" << waitingTime
998 std::cout << stream.str();
1003 if (waitingTime > avi.
waitingTime + actionDelta) {
1012 if (impatience > 0 && arrivalTime < avi.
arrivalTime) {
1013#ifdef MSLink_DEBUG_OPENED
1017 foeArrivalTime = (
SUMOTime)((1. - impatience) * (double)avi.
arrivalTime + impatience * (
double)fatb);
1018#ifdef MSLink_DEBUG_OPENED
1037#ifdef MSLink_DEBUG_OPENED
1039 std::stringstream stream;
1040 stream <<
" imp=" << impatience <<
" fAT2=" << foeArrivalTime <<
" fASb=" << foeArrivalSpeedBraking <<
" lA=" << lookAhead <<
" egoAT=" << arrivalTime <<
" egoLT=" << leaveTime <<
" egoLS=" << leaveSpeed <<
"\n";
1041 std::cout << stream.str();
1046 if (sameTargetLane && (arrivalTime - avi.
leavingTime < lookAhead
1049#ifdef MSLink_DEBUG_OPENED
1051 std::cout <<
" blocked (cannot follow)\n";
1056 }
else if (foeArrivalTime > leaveTime + lookAhead) {
1060#ifdef MSLink_DEBUG_OPENED
1062 std::cout <<
" blocked (cannot lead)\n";
1069#ifdef MSLink_DEBUG_OPENED
1071 std::cout <<
" blocked (hard conflict)\n";
1088 if (arrivalTime - arrivalTime %
DELTA_T == foeArrivalTime - foeArrivalTime %
DELTA_T) {
1090 return foeArrivalTime;
1092 if (arrivalTime %
DELTA_T > 0) {
1097 const double dt =
STEPS2TIME(foeArrivalTime - arrivalTime);
1098 const double d = dt * m;
1099 const double a = dt * d / 2;
1102 if (0.5 * v * v / m <= dist2) {
1104 std::cout <<
" dist=" << dist <<
" dist2=" << dist2 <<
" at=" <<
STEPS2TIME(arrivalTime) <<
" m=" << m <<
" d=" << d <<
" a=" << a <<
" canBrakeToStop\n";
1116 const double x = (sqrt(4 * (v - d) * (v - d) - 8 * m * a) * -0.5 - d + v) / m;
1118#ifdef MSLink_DEBUG_OPENED
1119 const double x2 = (sqrt(4 * (v - d) * (v - d) - 8 * m * a) * 0.5 - d + v) / m;
1121 std::cout <<
SIMTIME <<
" dist=" << dist <<
" dist2=" << dist2 <<
" at=" <<
STEPS2TIME(arrivalTime) <<
" m=" << m <<
" d=" << d <<
" v=" << v <<
" a=" << a <<
" x=" << x <<
" x2=" << x2 <<
"\n";
1124 fasb = v - (dt + x) * m;
1132 if (link->blockedAtTime(arrivalTime, leaveTime, speed, speed,
myLane == link->getLane(), 0, decel, 0)) {
1137 if (lane->getVehicleNumberWithPartials() > 0) {
1145std::pair<const SUMOVehicle*, const MSLink*>
1147 double closetDist = std::numeric_limits<double>::max();
1149 const MSLink* foeLink =
nullptr;
1151 for (
const auto& it : link->myApproachingVehicles) {
1154 return std::make_pair(
nullptr, wrapAround);
1155 }
else if (it.second.dist < closetDist) {
1156 closetDist = it.second.dist;
1157 if (it.second.willPass) {
1164 return std::make_pair(closest, foeLink);
1203 assert(pred2 !=
nullptr);
1205 assert(predLink !=
nullptr);
1229 assert(pred2 !=
nullptr);
1231 assert(predLink !=
nullptr);
1232 return predLink->
getState() == linkState;
1246 std::vector<std::pair<SUMOTime, const SUMOVehicle*> > toSort;
1248 toSort.push_back(std::make_pair(it.second.arrivalTime, it.first));
1250 std::sort(toSort.begin(), toSort.end());
1251 for (std::vector<std::pair<SUMOTime, const SUMOVehicle*> >::const_iterator it = toSort.begin(); it != toSort.end(); ++it) {
1274 while (lane !=
nullptr && lane->
isInternal()) {
1286 while (lane !=
nullptr && lane->
isInternal()) {
1301 double totalDist = 0.;
1302 bool foundCrossing =
false;
1303 while (via !=
nullptr) {
1309 foundCrossing =
true;
1316 if (foundCrossing) {
1327 for (foe_ix = 0; foe_ix != (int)
myFoeLanes.size(); ++foe_ix) {
1334#ifdef MSLink_DEBUG_CROSSING_POINTS
1341 if (dist == -10000.) {
1345#ifdef MSLink_DEBUG_CROSSING_POINTS
1347 <<
"' at distance " << dist <<
" (approach along '"
1394 const MSLink* link =
this;
1395 while (lane !=
nullptr) {
1405 const MSLink* link =
this;
1431 std::cout <<
SIMTIME <<
" getLeaderInfo link=" <<
getDescription() <<
" dist=" << dist <<
" isShadowLink=" << isShadowLink <<
"\n";
1439 std::cout <<
" ignore linkLeaders beyond red light\n";
1446 for (
int i = 0; i < (int)
myFoeLanes.size(); ++i) {
1450 double distToCrossing = dist -
myConflicts[i].getLengthBehindCrossing(
this);
1451 const double foeDistToCrossing = foeLane->
getLength() -
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink);
1454 const double crossingWidth = (sameTarget || sameSource) ? 0 :
myConflicts[i].conflictSize;
1455 const double foeCrossingWidth = (sameTarget || sameSource) ? 0 :
myConflicts[i].getFoeConflictSize(foeExitLink);
1460 std::cout <<
" distToCrossing=" << distToCrossing <<
" foeLane=" << foeLane->
getID() <<
" cWidth=" << crossingWidth
1462 <<
" lbc=" <<
myConflicts[i].getLengthBehindCrossing(
this)
1463 <<
" flbc=" <<
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink)
1464 <<
" cw=" << crossingWidth
1465 <<
" fcw=" << foeCrossingWidth
1466 <<
" contLane=" << contLane
1471 if (distToCrossing + crossingWidth < 0 && !sameTarget
1475 bool ignoreGreenCont =
false;
1476 bool foeIndirect =
false;
1481 if (entry !=
nullptr && entry->
haveGreen()
1482 && foeEntry !=
nullptr && foeEntry->
haveGreen()
1485 ignoreGreenCont =
true;
1490 std::cout <<
" ignore:noIntersection\n";
1504 const double leaderBackDist = foeDistToCrossing - leaderBack;
1505 const double l2 = ego !=
nullptr ? ego->
getLength() + 2 : 0;
1507 const bool pastTheCrossingPoint = leaderBackDist + foeCrossingWidth + sagitta < 0;
1511 const bool ignoreIndirectBicycleTurn = pastTheCrossingPoint && foeIsBicycleTurn;
1512 const bool cannotIgnore = ((contLane && !ignoreIndirectBicycleTurn) || sameTarget || sameSource) && ego !=
nullptr;
1513 const bool inTheWay = ((((!pastTheCrossingPoint && distToCrossing > 0) || (sameTarget && distToCrossing > leaderBackDist - leader->
getLength()))
1514 && enteredTheCrossingPoint
1522 std::cout <<
" candidate leader=" << leader->
getID()
1523 <<
" cannotIgnore=" << cannotIgnore
1524 <<
" fdtc=" << foeDistToCrossing
1525 <<
" lb=" << leaderBack
1526 <<
" lbd=" << leaderBackDist
1527 <<
" fcwidth=" << foeCrossingWidth
1529 <<
" sagitta=" << sagitta
1530 <<
" foePastCP=" << pastTheCrossingPoint
1531 <<
" foeEnteredCP=" << enteredTheCrossingPoint
1532 <<
" inTheWay=" << inTheWay
1533 <<
" willPass=" << willPass
1535 <<
" ignoreGreenCont=" << ignoreGreenCont
1536 <<
" foeIndirect=" << foeIndirect
1537 <<
" foeBikeTurn=" << foeIsBicycleTurn
1538 <<
" isOpposite=" << isOpposite <<
"\n";
1540 if (leader == ego) {
1544 if (!inTheWay && ignoreGreenCont) {
1546 std::cout <<
" ignoreGreenCont\n";
1552 && distToCrossing < -POSITION_EPS && !inTheWay
1555 std::cout <<
" ego entered conflict area\n";
1562 && leaderBack + leader->
getLength() < ego->getPositionOnLane() - ego->getLength()) {
1565 std::cout <<
" ego ahead of same-source foe\n";
1571 if ((!cannotIgnore || leader->
isStopped() || sameTarget)
1579 std::cout <<
" foe will not pass\n";
1594 && (!foeStrategicBlocked || sameInternalEdge)) {
1595 if (ego->getLane() == leader->
getLane()) {
1599 const double egoLatOffset = isShadowLink ? ego->getLatOffset(ego->getLaneChangeModel().getShadowLane()) : 0;
1600 const double posLat = ego->getLateralPositionOnLane() + egoLatOffset;
1602 if (foeLaneIsBidi) {
1604 posLatLeader = foeLane->
getWidth() - posLatLeader;
1606 const double latGap = (fabs(posLat - posLatLeader)
1611 <<
" sameSource=" << sameSource
1612 <<
" sameTarget=" << sameTarget
1613 <<
" foeLaneIsBidi=" << foeLaneIsBidi
1614 <<
" foeLane=" << foeLane->
getID()
1615 <<
" leader=" << leader->
getID()
1616 <<
" egoLane=" << ego->getLane()->getID()
1618 <<
" egoLat=" << posLat
1619 <<
" egoLatOffset=" << egoLatOffset
1620 <<
" leaderLat=" << posLatLeader
1621 <<
" leaderLatOffset=" << leader->
getLatOffset(foeLane)
1622 <<
" latGap=" << latGap
1623 <<
" maneuverDist=" << maneuverDist
1625 <<
" egoMaxSpeedLat=" << ego->getVehicleType().getMaxSpeedLat()
1636 if ((posLat > posLatLeader) == leaderFromRight) {
1639 std::cout <<
" ignored (same source) leaderFromRight=" << leaderFromRight <<
"\n";
1643 }
else if (sameTarget) {
1650 leaderFromRight = !leaderFromRight;
1652 if ((posLat > posLatLeader) == leaderFromRight
1656 && (ego->getLaneChangeModel().getSpeedLat() == 0
1657 || leaderFromRight == (ego->getLaneChangeModel().getSpeedLat() > latGap))) {
1659 std::cout <<
" ignored (different source) leaderFromRight=" << leaderFromRight <<
"\n";
1668 std::cout <<
" ignored oncoming bidi leader\n";
1678 bool fromLeft =
true;
1679 if (ego ==
nullptr) {
1682 gap = leaderBackDist;
1686 distToCrossing +=
myConflicts[i].conflictSize / 2;
1687 if (gap + foeCrossingWidth < 0) {
1694 fromLeft = foeDistToCrossing > 0.5 * foeLane->
getLength();
1695 }
else if ((contLane && !sameSource && !ignoreIndirectBicycleTurn) || isOpposite) {
1696 gap = -std::numeric_limits<double>::max();
1698 if (pastTheCrossingPoint && !sameTarget) {
1702 std::cout <<
" foePastCP ignored\n";
1706 double leaderBackDist2 = leaderBackDist;
1707 if (sameTarget && leaderBackDist2 < 0) {
1708 const double mismatch =
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink) -
myConflicts[i].getLengthBehindCrossing(
this);
1710 leaderBackDist2 += mismatch;
1714 std::cout <<
" distToCrossing=" << distToCrossing <<
" leaderBack=" << leaderBack
1715 <<
" backDist=" << leaderBackDist
1716 <<
" backDist2=" << leaderBackDist2
1720 gap = distToCrossing - ego->getVehicleType().getMinGap() - leaderBackDist2 - foeCrossingWidth;
1725 const bool stopAsap = ((leader->
isFrontOnLane(foeLane) ? cannotIgnore : (sameTarget || sameSource))
1726 || (ego !=
nullptr && ego->getVehicleType().getParameter().getJMParam(
SUMO_ATTR_JM_ADVANCE, 1.0) == 0.0));
1728 std::cout <<
" leader=" << leader->
getID() <<
" contLane=" << contLane <<
" cannotIgnore=" << cannotIgnore <<
" stopAsap=" << stopAsap <<
" gap=" << gap <<
"\n";
1737 result.emplace_back(leader, gap, stopAsap ? -1 : distToCrossing, llFlags, leader->
getLatOffset(foeLane));
1748 const double vehSideOffset = (foeDistToCrossing +
myLaneBefore->
getWidth() * 0.5 - vehWidth * 0.5
1754 result.emplace_back(
nullptr, -1, distToPeds);
1760 const double timeToEnterCrossing = distToCrossing /
MAX2(ego->
getSpeed(), 1.0);
1764 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" breaking for approaching person " << item.first->getID()
1768 result.emplace_back(
nullptr, -1, distToPeds);
1784 if (ego !=
nullptr) {
1792 const MSLane* foeLane = *it;
1796 if (leader == ego) {
1813 <<
" foeLane=" << foeLane->
getID()
1814 <<
" leader=" << leader->
getID()
1818 <<
" egoLat=" << posLat
1819 <<
" leaderLat=" << posLatLeader
1820 <<
" leaderLatOffset=" << leader->
getLatOffset(foeLane)
1822 <<
" foeIndex=" << foeLane->
getIndex()
1828 if ((posLat < posLatLeader && myInternalLaneBefore->
getIndex() > foeLane->
getIndex())
1831 std::cout <<
SIMTIME <<
" blocked by " << leader->
getID() <<
" (sublane split) foeLane=" << foeLane->
getID() <<
"\n";
1836 result.emplace_back(leader, gap, -1);
1852 double distToPeds = std::numeric_limits<double>::max();
1865#ifdef DEBUG_WALKINGAREA
1871 <<
" inFront=" << inFront
1872 <<
" dist=" << dist <<
"\n";
1875 if (dist < ego->getVehicleType().getWidth() / 2 || inFront) {
1878 if (oncomingFactor > 0) {
1880 const double timeToStop = sqrt(dist) / 2;
1881 const double pedDist = p->
getMaxSpeed() *
MAX2(timeToStop,
TS) * oncomingFactor;
1882 dist =
MAX2(0.0, dist - pedDist);
1883#ifdef DEBUG_WALKINGAREA
1885 std::cout <<
" timeToStop=" << timeToStop <<
" pedDist=" << pedDist <<
" factor=" << oncomingFactor <<
" dist2=" << dist <<
"\n";
1893 distToPeds =
MIN2(distToPeds, dist);
1894 if (collectBlockers !=
nullptr) {
1895 collectBlockers->push_back(p);
1899 if (distToPeds != std::numeric_limits<double>::max()) {
1901 result.emplace_back(
nullptr, -1, distToPeds);
1910#ifdef DEBUG_WALKINGAREA
1912 std::cout <<
" angleDiff=" <<
RAD2DEG(angleDiff) <<
"\n";
1915 if (angleDiff <
DEG2RAD(75)) {
1926#ifdef DEBUG_WALKINGAREA
1928 std::cout <<
" ped-angleDiff=" <<
RAD2DEG(angleDiff) <<
" res=" << cos(angleDiff) <<
"\n";
1931 if (angleDiff <=
DEG2RAD(90)) {
1933 return cos(angleDiff);
1943 const double dist = timeHorizon * p->
getMaxSpeed();
1945 const Position offset(cos(a) * dist, sin(a) * dist);
1952 if (direction == -1) {
1954 }
else if (direction == 1) {
1979 if (before !=
nullptr && after !=
nullptr) {
1981 if (link->getLane() == after) {
1999 throw ProcessError(
"Zipper junctions with more than two conflicting lanes are not supported (at junction '"
2007 <<
" dist=" << dist <<
" bGap=" << brakeGap <<
" ignoring foes (arrival in " <<
STEPS2TIME(arrivalTime - now) <<
")\n")
2013 <<
" egoAT=" << arrivalTime
2015 <<
" brakeGap=" << brakeGap
2016 <<
" vSafe=" << vSafe
2017 <<
" numFoes=" << foes->size()
2021 for (
const auto& item : *foes) {
2022 if (!item->isVehicle()) {
2039 <<
" ignoring foe=" << foe->
getID()
2041 <<
" foeDist=" << avi.
dist
2042 <<
" foeDist2=" << foeDist
2043 <<
" foeSpeed=" << avi.
speed
2045 <<
" deltaDist=" << foeDist - dist
2068 const double uEnd =
MIN2(uMax, uAccel);
2069 const double uAvg = (avi.
speed + uEnd) / 2;
2070 const double tf0 = foeDist /
MAX2(NUMERICAL_EPS, uAvg);
2071 const double tf =
MAX2(1.0, ceil((tf0) /
TS) *
TS);
2076 const double vEnd =
MIN3(vMax, vAccel,
MAX2(uEnd, vDecel));
2077 const double vAvg = (ego->
getSpeed() + vEnd) / 2;
2078 const double te0 = dist /
MAX2(NUMERICAL_EPS, vAvg);
2079 const double te =
MAX2(1.0, ceil((te0) /
TS) *
TS);
2086 const double deltaGap = gap + tf * uAvg - safeGap - vAvg * tf;
2087 const double a = 2 * deltaGap / (tf * tf);
2093 const double w =
MIN2(1.0, te / 10);
2095 const double vZipper =
MAX3(vFollow, ego->
getSpeed() -
ACCEL2SPEED(maxDecel), w * vSafeGap + (1 - w) * vFollow);
2097 vSafe =
MIN2(vSafe, vZipper);
2100 <<
" foeDist=" << foeDist
2101 <<
" foeSpeed=" << avi.
speed
2105 <<
" uAccel=" << uAccel
2109 <<
" safeGap=" << safeGap
2113 <<
" dg=" << deltaGap
2114 <<
" aSafeGap=" << a
2116 <<
" vAccel=" << vAccel
2117 <<
" vDecel=" << vDecel
2119 <<
" vSafeGap=" << vSafeGap
2120 <<
" vFollow=" << vFollow
2122 <<
" maxDecel=" << maxDecel
2123 <<
" vZipper=" << vZipper
2124 <<
" vSafe=" << vSafe
2135 followDist > leaderDist &&
2153 for (
const MSLink* link : cand->getLinkCont()) {
2164 return fabs(posLat2 - posLat) < (width + width2) / 2;
2185 if (
id == foe->
getID()) {
2199std::pair<const SUMOVehicle* const, const MSLink::ApproachingVehicleInformation>
2202 double minDist = std::numeric_limits<double>::max();
2205 if (apprIt->second.dist < minDist) {
2206 minDist = apprIt->second.dist;
#define JM_CROSSING_GAP_DEFAULT
#define DIVERGENCE_MIN_WIDTH
#define DEBUG_COND_ZIPPER
#define WRITE_WARNINGF(...)
#define WRITE_WARNING(msg)
std::string time2string(SUMOTime t, bool humanReadable)
convert SUMOTime to string (independently of global format setting)
const SVCPermissions SVCAll
all VClasses are allowed
@ SVC_BICYCLE
vehicle is a bicycle
const long long int VEHPARS_JUNCTIONMODEL_PARAMS_SET
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ PARTRIGHT
The link is a partial right direction.
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_STOP
This is an uncontrolled, minor link, has to stop.
@ LINKSTATE_TL_GREEN_MAJOR
The link has green light, may pass.
@ LINKSTATE_ZIPPER
This is an uncontrolled, zipper-merge link.
@ LINKSTATE_TL_OFF_BLINKING
The link is controlled by a tls which is off and blinks, has to brake.
@ LINKSTATE_TL_RED
The link has red light (must brake)
@ LINKSTATE_TL_GREEN_MINOR
The link has green light, has to brake.
@ LINKSTATE_TL_OFF_NOSIGNAL
The link is controlled by a tls which is off, not blinking, may pass.
@ SUMO_ATTR_JM_IGNORE_FOE_SPEED
@ SUMO_ATTR_JM_STOPLINE_CROSSING_GAP
@ SUMO_ATTR_JM_STOPSIGN_WAIT
@ SUMO_ATTR_JM_IGNORE_IDS
@ SUMO_ATTR_JM_IGNORE_TYPES
@ SUMO_ATTR_JM_ALLWAYSTOP_WAIT
@ SUMO_ATTR_JM_IGNORE_FOE_PROB
@ SUMO_ATTR_JM_CROSSING_GAP
@ SUMO_ATTR_JM_TIMEGAP_MINOR
bool gDebugFlag1
global utility flags for debugging
const double INVALID_DOUBLE
invalid double
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
#define DEBUGOUT(cond, msg)
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
static double naviDegree(const double angle)
static double angleDiff(const double angle1, const double angle2)
Returns the difference of the second angle to the first angle in radiants.
static double getMinAngleDiff(double angle1, double angle2)
Returns the minimum distance (clockwise/counter-clockwise) between both angles.
bool isStrategicBlocked() const
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
double getSpeedLat() const
return the lateral speed of the current lane change maneuver
virtual bool isSelected() const
whether this vehicle is selected in the GUI
double getLength() const
Returns the vehicle's length.
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool isStopped() const
Returns whether the vehicle is at a stop.
double estimateSpeedAfterDistance(const double dist, const double v, const double accel) const
double getEmergencyDecel() const
Get the vehicle type's maximal physically possible deceleration [m/s^2].
virtual double getSecureGap(const MSVehicle *const veh, const MSVehicle *const, const double speed, const double leaderSpeed, const double leaderMaxDecel) const
Returns the minimum gap to reserve if the leader is braking at maximum (>=0)
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0, const CalcReason usage=CalcReason::CURRENT) const =0
Computes the vehicle's follow speed (no dawdling)
A road/street connecting two junctions.
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
const MSJunction * getToJunction() const
const MSJunction * getFromJunction() const
bool isInternal() const
return whether this edge is an internal edge
static double gLateralResolution
static bool gComputeLC
whether the simulationLoop is in the lane changing phase
static bool gLefthand
Whether lefthand-drive is being simulated.
static SUMOTime gIgnoreJunctionBlocker
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
The base class for an intersection.
AnyVehicleIterator is a structure, which manages the iteration through all vehicles on the lane,...
Representation of a lane in the micro simulation.
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
const MSLane * getNormalSuccessorLane() const
get normal lane following this internal lane, for normal lanes, the lane itself is returned
AnyVehicleIterator anyVehiclesEnd() const
end iterator for iterating over all vehicles touching this lane in downstream direction
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
double getLength() const
Returns the lane's length.
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
int getIndex() const
Returns the lane's index.
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
double interpolateGeometryPosToLanePos(double geometryPos) const
AnyVehicleIterator anyVehiclesBegin() const
begin iterator for iterating over all vehicles touching this lane in downstream direction
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
virtual const PositionVector & getShape(bool) const
MSEdge & getEdge() const
Returns the lane's edge.
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
double getWidth() const
Returns the lane's width.
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
bool fromInternalLane() const
return whether the fromLane of this link is an internal lane
void writeApproaching(OutputDevice &od, const std::string fromLaneID) const
write information about all approaching vehicles to the given output device
double computeDistToDivergence(const MSLane *lane, const MSLane *sibling, double minDist, bool sameSource) const
compute point of divergence for geomatries with a common start or end
double getLengthBeforeCrossing(const MSLane *foeLane) const
Returns the internal length from the beginning of the link's internal lane before to the crossing wit...
const MSLane * getInternalLaneBefore() const
return myInternalLaneBefore (always 0 when compiled without internal lanes)
LinkState getState() const
Returns the current state of the link.
void setApproachingPerson(const MSPerson *approaching, const SUMOTime arrivalTime, const SUMOTime leaveTime)
Sets the information about an approaching person (only for a pedestrian crossing)
void checkWalkingAreaFoe(const MSVehicle *ego, const MSLane *foeLane, std::vector< const MSPerson * > *collectBlockers, LinkLeaders &result) const
check for persons on walkingarea in the path of ego vehicle
SUMOTime myMesoTLSPenalty
penalty time at tls for mesoscopic simulation
bool hasApproachingFoe(SUMOTime arrivalTime, SUMOTime leaveTime, double speed, double decel) const
Returns the information whether a vehicle is approaching on one of the link's foe streams.
double myDistToFoePedCrossing
distance from the stop line to the first pedestrian crossing or maxdouble
const bool myAmIndirect
whether this connection is an indirect turning movement
std::vector< MSLink * > mySublaneFoeLinks
double myGreenFraction
green fraction at tls for mesoscopic simulation
static const SUMOTime myLookaheadTime
ApproachInfos myApproachingVehicles
double myFoeVisibilityDistance
distance from which an approaching vehicle is able to see all relevant foes and may accelerate if the...
MSLink * computeParallelLink(int direction)
SVCPermissions myPermissions
who may drive on this link
int myIndex
The position within this respond.
bool myHasFoes
Whether any foe links exist.
const ApproachInfos & getApproaching() const
return all approaching vehicles
void setApproaching(const SUMOVehicle *approaching, const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const bool setRequest, const double arrivalSpeedBraking, const SUMOTime waitingTime, double dist, double latOffset)
Sets the information about an approaching vehicle.
const MSLane * myInternalLaneBefore
LinkState myState
The state of the link.
bool lastWasContState(LinkState linkState) const
whether this is a link past an internal junction where the entry to the junction currently has the gi...
void initParallelLinks()
initialize parallel links (to be called after all links are loaded)
void setTLState(LinkState state, SUMOTime t)
Sets the current tl-state.
static const SUMOTime myLookaheadTimeZipper
void removeApproachingPerson(const MSPerson *person)
removes the person from myApproachingPersons
MSLane * getLane() const
Returns the connected lane.
bool opened(SUMOTime arrivalTime, double arrivalSpeed, double leaveSpeed, double vehicleLength, double impatience, double decel, SUMOTime waitingTime, double posLat=0, BlockingFoes *collectFoes=nullptr, bool ignoreRed=false, const SUMOTrafficObject *ego=nullptr, double dist=-1) const
Returns the information whether the link may be passed.
std::vector< MSLink * > * myOffFoeLinks
bool isConflictEntryLink() const
return whether this link enters the conflict area (not a continuation link)
double myRadius
the turning radius for this link or doublemax for straight links
int getIndex() const
Returns the respond index (for visualization)
bool havePriority() const
Returns whether this link is a major link.
double myLength
The length of the link.
bool blockedByFoe(const SUMOVehicle *veh, const ApproachingVehicleInformation &avi, SUMOTime arrivalTime, SUMOTime leaveTime, double arrivalSpeed, double leaveSpeed, bool sameTargetLane, double impatience, double decel, SUMOTime waitingTime, const SUMOTrafficObject *ego) const
const LinkState myOffState
The state of the link when switching of traffic light control.
const LinkLeaders getLeaderInfo(const MSVehicle *ego, double dist, std::vector< const MSPerson * > *collectBlockers=0, bool isShadowLink=false) const
Returns all potential link leaders (vehicles on foeLanes) Valid during the planMove() phase.
static bool ignoreFoe(const SUMOTrafficObject *ego, const SUMOTrafficObject *foe)
std::map< const MSPerson *, ApproachingPersonInformation > PersonApproachInfos
bool isEntryLink() const
return whether the toLane of this link is an internal lane and fromLane is a normal lane
const MSLane * getLaneBefore() const
return the internalLaneBefore if it exists and the laneBefore otherwise
ApproachingVehicleInformation getApproaching(const SUMOVehicle *veh) const
const MSTrafficLightLogic * myLogic
the controlling logic or 0
@ CONFLICT_NO_INTERSECTION
@ CONFLICT_STOP_AT_INTERNAL_JUNCTION
static bool lateralOverlap(double posLat, double width, double posLat2, double width2)
check whether the given vehicle positions overlap laterally
std::vector< MSLink * > myFoeLinks
bool isInternalJunctionLink() const
return whether the fromLane and the toLane of this link are internal lanes
bool isExitLink() const
return whether the fromLane of this link is an internal lane and toLane is a normal lane
std::vector< const MSLane * > myFoeLanes
std::vector< LinkLeader > LinkLeaders
static std::set< std::pair< MSLink *, MSLink * > > myRecheck
links that need post processing after initialization (to deal with legacy networks)
void clearState()
Remove all approaching vehicles before quick-loading state.
MSLane * myLane
The lane behind the junction approached by this link.
static const double NO_INTERSECTION
LinkState getOffState() const
Returns the off-state for the link.
bool isInFront(const MSVehicle *ego, const PositionVector &egoPath, const Position &pPos) const
whether the given person is in front of the car
MSLane * getViaLane() const
Returns the following inner lane.
const int myTLIndex
the traffic light index
double getInternalLengthsAfter() const
Returns the cumulative length of all internal lanes after this link.
std::string getDescription() const
get string description for this link
static void recheckSetRequestInformation()
post-processing for legacy networks
bool hasFoes() const
Returns whether this link belongs to a junction where more than one edge is incoming.
bool blockedAtTime(SUMOTime arrivalTime, SUMOTime leaveTime, double arrivalSpeed, double leaveSpeed, bool sameTargetLane, double impatience, double decel, SUMOTime waitingTime, BlockingFoes *collectFoes=nullptr, const SUMOTrafficObject *ego=nullptr, bool lastWasContRed=false, double dist=-1) const
Returns the information whether this link is blocked Valid after the vehicles have set their requests...
LinkState myLastGreenState
The last green state of the link (minor or major)
static SUMOTime computeFoeArrivalTimeBraking(SUMOTime arrivalTime, const SUMOVehicle *foe, SUMOTime foeArrivalTime, double impatience, double dist, double &fasb)
compute arrival time if foe vehicle is braking for ego
double isOnComingPed(const MSVehicle *ego, const MSPerson *p) const
whether the given person is walking towards the car returned as a factor in [0, 1]
std::pair< const SUMOVehicle *const, const ApproachingVehicleInformation > getClosest() const
get the closest vehicle approaching this link
void updateDistToFoePedCrossing(double dist)
add information about another pedestrian crossing
MSJunction * myJunction
the junction to which this link belongs
const MSLink * getCorrespondingEntryLink() const
returns the corresponding entry link for exitLinks to a junction.
void setRequestInformation(int index, bool hasFoes, bool isCont, const std::vector< MSLink * > &foeLinks, const std::vector< MSLane * > &foeLanes, MSLane *internalLaneBefore=0)
Sets the request information.
void removeApproaching(const SUMOVehicle *veh)
removes the vehicle from myApproachingVehicles
bool contIntersect(const MSLane *lane, const MSLane *foe)
check if the lane intersects with a foe cont-lane
bool isExitLinkAfterInternalJunction() const
return whether the fromLane of this link is an internal lane and its incoming lane is also an interna...
LinkState getLastGreenState() const
Returns the last green state of the link.
std::pair< const SUMOVehicle *, const MSLink * > getFirstApproachingFoe(const MSLink *wrapAround) const
get the foe vehicle that is closest to the intersection or nullptr along with the foe link This funct...
std::vector< MSLink * > mySublaneFoeLinks2
MSLink * getParallelLink(int direction) const
return the link that is parallel to this lane or 0
MSLane * getViaLaneOrLane() const
return the via lane if it exists and the lane otherwise
void addCustomConflict(const MSLane *from, const MSLane *to, double startPos, double endPos)
const CustomConflict * getCustomConflict(const MSLane *foeLane) const
return CustomConflict with foeLane if it is defined
MSLane *const myInternalLane
The following junction-internal lane if used.
std::vector< const SUMOTrafficObject * > BlockingFoes
double myLateralShift
lateral shift to be applied when passing this link
std::vector< ConflictInfo > myConflicts
double getInternalLengthsBefore() const
Returns the cumulative length of all internal lanes before this link.
const MSLane * myWalkingAreaFoe
walkingArea that must be checked when entering the intersection
static bool couldBrakeForLeader(double followDist, double leaderDist, const MSVehicle *follow, const MSVehicle *leader)
whether follower could stay behind leader (possibly by braking)
std::vector< CustomConflict > myCustomConflicts
Position getFuturePosition(const MSPerson *p, double timeHorizon=1) const
return extrapolated position of the given person after the given time
const MSLane * myWalkingAreaFoeExit
walkingArea that must be checked when leaving the intersection
MSLane * myLaneBefore
The lane approaching this link.
@ LL_SAME_SOURCE
link leader is coming from the same (normal) lane
@ LL_SAME_TARGET
link leader is targeting the same outgoing lane
@ LL_IN_THE_WAY
vehicle is in the way
@ LL_FROM_LEFT
link leader is passing from left to right
SVCPermissions getPermissions() const
who may use this link
bool lastWasContMajor() const
whether this is a link past an internal junction which currently has priority
double getLengthsBeforeCrossing(const MSLane *foeLane) const
Returns the sum of the lengths along internal lanes following this link to the crossing with the give...
bool myHavePedestrianCrossingFoe
whether on of myFoeLanes is a crossing
SUMOTime myLastStateChange
The time of the last state change.
PersonApproachInfos * myApproachingPersons
LinkDirection myDirection
An abstract (hopefully human readable) definition of the link's direction.
const MSTrafficLightLogic * getTLLogic() const
Returns the TLS index.
bool checkContOff() const
figure out whether the cont status remains in effect when switching off the tls
const MSLink * getCorrespondingExitLink() const
returns the corresponding exit link for entryLinks to a junction.
static bool unsafeMergeSpeeds(double leaderSpeed, double followerSpeed, double leaderDecel, double followerDecel)
return whether the given vehicles may NOT merge safely
SUMOTime getLeaveTime(const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const double vehicleLength) const
return the expected time at which the given vehicle will clear the link
double getZipperSpeed(const MSVehicle *ego, const double dist, double vSafe, SUMOTime arrivalTime, const BlockingFoes *foes) const
return the speed at which ego vehicle must approach the zipper link
MSLink * getOppositeDirectionLink() const
return the link that is the opposite entry link to this one
MSLink(MSLane *predLane, MSLane *succLane, MSLane *via, LinkDirection dir, LinkState state, double length, double foeVisibilityDistance, bool keepClear, MSTrafficLightLogic *logic, int tlLinkIdx, bool indirect)
Constructor for simulation which uses internal lanes.
std::vector< MSLane * > mySublaneFoeLanes
LinkDirection getDirection() const
Returns the direction the vehicle passing this link take.
bool keepClear() const
whether the junction after this link must be kept clear
bool haveRed() const
Returns whether this link is blocked by a red (or redyellow) traffic light.
double getLength() const
Returns the length of this link.
void setTLLogic(const MSTrafficLightLogic *logic)
Sets the currently active tlLogic.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
bool hasPersons() const
Returns whether persons are simulated.
virtual MSTransportableControl & getPersonControl()
Returns the person control.
virtual bool blockedAtDist(const SUMOTrafficObject *ego, const MSLane *lane, double vehSide, double vehWidth, double oncomingGap, std::vector< const MSPerson * > *collectBlockers)
whether a pedestrian is blocking the crossing of lane for the given vehicle bondaries
static const double SAFETY_GAP
The parent class for traffic light logics.
MSPModel * getMovementModel()
Returns the default movement model for this kind of transportables.
virtual double getAngle() const
return the current angle of the transportable
Position getPosition(const double) const
Return current position (x/y, cartesian)
const MSVehicleType & getVehicleType() const
Returns the object's "vehicle" type.
double getMaxSpeed() const
Returns the maximum speed (the minimum of desired and physical maximum speed)
Representation of a vehicle in the micro simulation.
bool willStop() const
Returns whether the vehicle will stop on the current edge.
SUMOTime getLastActionTime() const
Returns the time of the vehicle's last action point.
bool isActive() const
Returns whether the current simulation step is an action point for the vehicle.
SUMOTime getWaitingTime(const bool accumulated=false) const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
MSAbstractLaneChangeModel & getLaneChangeModel()
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
const MSLane * getLane() const
Returns the lane the vehicle is on.
bool isBidiOn(const MSLane *lane) const
whether this vehicle is driving against lane
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
double getSpeed() const
Returns the vehicle's current speed.
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
bool ignoreRed(const MSLink *link, bool canBrake) const
decide whether a red (or yellow light) may be ignored
double getAngle() const
Returns the vehicle's direction in radians.
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
const std::string & getID() const
Returns the name of the vehicle type.
double getMinGap() const
Get the free space in front of vehicles of this class.
const MSCFModel & getCarFollowModel() const
Returns the vehicle type's car following model definition (const version)
double getLength() const
Get vehicle's length [m].
const SUMOVTypeParameter & getParameter() const
const std::string & getID() const
Returns the id.
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
OutputDevice & openTag(const std::string &xmlElement)
Opens an XML tag.
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
A point in 2D or 3D with translation and scaling methods.
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position (in radians bet...
double length2D() const
Returns the length.
double rotationAtOffset(double pos) const
Returns the rotation at the given length.
std::vector< double > intersectsAtLengths2D(const PositionVector &other) const
For all intersections between this vector and other, return the 2D-length of the subvector from this ...
double distance2D(const Position &p, bool perpendicular=false) const
closest 2D-distance to point p (or -1 if perpendicular is true and the point is beyond this vector)
std::vector< double > distances(const PositionVector &s, bool perpendicular=false) const
distances of all my points to s and all of s points to myself
void move2side(double amount, double maxExtension=100)
move position vector to side using certain amount
double angleAt2D(int pos) const
get angle in certain position of position vector (in radians between -M_PI and M_PI)
PositionVector reverse() const
reverse position vector
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
Representation of a vehicle, person, or container.
virtual const MSVehicleType & getVehicleType() const =0
Returns the object's "vehicle" type.
virtual double getSpeed() const =0
Returns the object's current speed.
virtual const SUMOVehicleParameter & getParameter() const =0
Returns the vehicle's parameter (including departure definition)
virtual SumoRNG * getRNG() const =0
Returns the associated RNG for this object.
virtual bool isSelected() const =0
whether this object is selected in the GUI
double getJMParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
Representation of a vehicle.
virtual double getLateralPositionOnLane() const =0
Get the vehicle's lateral position on the lane.
virtual SUMOTime getLastActionTime() const =0
virtual double getBrakeGap(bool delayed=false) const =0
get distance for coming to a stop (used for rerouting checks)
Structure representing possible vehicle parameter.
bool wasSet(long long int what) const
Returns whether the given parameter was set.
std::vector< std::string > getVector()
return vector of strings
pre-computed information for conflict points
double getLengthBehindCrossing(const MSLink *exitLink) const
double getFoeConflictSize(const MSLink *foeExitLink) const
int foeConflictIndex
the conflict from the perspective of the foe
double conflictSize
the length of the conflict space
double getFoeLengthBehindCrossing(const MSLink *foeExitLink) const
holds user defined conflict positions (must be interpreted for the correct exitLink)