Eclipse SUMO - Simulation of Urban MObility
Loading...
Searching...
No Matches
NWWriter_SUMO.cpp
Go to the documentation of this file.
1/****************************************************************************/
2// Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
3// Copyright (C) 2001-2025 German Aerospace Center (DLR) and others.
4// This program and the accompanying materials are made available under the
5// terms of the Eclipse Public License 2.0 which is available at
6// https://www.eclipse.org/legal/epl-2.0/
7// This Source Code may also be made available under the following Secondary
8// Licenses when the conditions for such availability set forth in the Eclipse
9// Public License 2.0 are satisfied: GNU General Public License, version 2
10// or later which is available at
11// https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
12// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
13/****************************************************************************/
21// Exporter writing networks using the SUMO format
22/****************************************************************************/
23#include <config.h>
24#include <cmath>
25#include <algorithm>
34#include <netbuild/NBEdge.h>
35#include <netbuild/NBEdgeCont.h>
36#include <netbuild/NBNode.h>
37#include <netbuild/NBNodeCont.h>
40#include <netbuild/NBDistrict.h>
41#include <netbuild/NBHelpers.h>
42#include "NWFrame.h"
43#include "NWWriter_SUMO.h"
44
45
46//#define DEBUG_OPPOSITE_INTERNAL
47
48// ===========================================================================
49// method definitions
50// ===========================================================================
51// ---------------------------------------------------------------------------
52// static methods
53// ---------------------------------------------------------------------------
54void
56 // check whether a sumo net-file shall be generated
57 if (!oc.isSet("output-file")) {
58 return;
59 }
60 OutputDevice& device = OutputDevice::getDevice(oc.getString("output-file"));
61 std::map<SumoXMLAttr, std::string> attrs;
63 if (oc.getBool("lefthand") != oc.getBool("flip-y-axis")) {
64 attrs[SUMO_ATTR_LEFTHAND] = "true";
65 } else if (oc.getBool("lefthand")) {
66 // network was flipped, correct written link directions
68 OptionsCont::getOptions().set("lefthand", "false");
69 }
70 LaneSpreadFunction defaultSpread = SUMOXMLDefinitions::LaneSpreadFunctions.get(oc.getString("default.spreadtype"));
71 const int cornerDetail = oc.getInt("junctions.corner-detail");
72 if (cornerDetail > 0) {
73 attrs[SUMO_ATTR_CORNERDETAIL] = toString(cornerDetail);
74 }
75 if (!oc.isDefault("junctions.internal-link-detail")) {
76 attrs[SUMO_ATTR_LINKDETAIL] = toString(oc.getInt("junctions.internal-link-detail"));
77 }
78 if (oc.getBool("rectangular-lane-cut")) {
79 attrs[SUMO_ATTR_RECTANGULAR_LANE_CUT] = "true";
80 }
81 if (oc.getBool("crossings.guess") || oc.getBool("walkingareas")) {
82 attrs[SUMO_ATTR_WALKINGAREAS] = "true";
83 }
84 if (oc.getFloat("junctions.limit-turn-speed") > 0) {
85 attrs[SUMO_ATTR_LIMIT_TURN_SPEED] = toString(oc.getFloat("junctions.limit-turn-speed"));
86 }
87 if (!oc.isDefault("check-lane-foes.all")) {
88 attrs[SUMO_ATTR_CHECKLANEFOES_ALL] = toString(oc.getBool("check-lane-foes.all"));
89 }
90 if (!oc.isDefault("check-lane-foes.roundabout")) {
91 attrs[SUMO_ATTR_CHECKLANEFOES_ROUNDABOUT] = toString(oc.getBool("check-lane-foes.roundabout"));
92 }
93 if (!oc.isDefault("tls.ignore-internal-junction-jam")) {
94 attrs[SUMO_ATTR_TLS_IGNORE_INTERNAL_JUNCTION_JAM] = toString(oc.getBool("tls.ignore-internal-junction-jam"));
95 }
96 if (defaultSpread != LaneSpreadFunction::RIGHT) {
97 attrs[SUMO_ATTR_SPREADTYPE] = oc.getString("default.spreadtype");
98 }
99 if (oc.exists("geometry.avoid-overlap") && !oc.getBool("geometry.avoid-overlap")) {
100 attrs[SUMO_ATTR_AVOID_OVERLAP] = toString(oc.getBool("geometry.avoid-overlap"));
101 }
102 if (oc.exists("junctions.higher-speed") && oc.getBool("junctions.higher-speed")) {
103 attrs[SUMO_ATTR_HIGHER_SPEED] = toString(oc.getBool("junctions.higher-speed"));
104 }
105 if (oc.exists("internal-junctions.vehicle-width") && !oc.isDefault("internal-junctions.vehicle-width")) {
106 attrs[SUMO_ATTR_INTERNAL_JUNCTIONS_VEHICLE_WIDTH] = toString(oc.getFloat("internal-junctions.vehicle-width"));
107 }
108 if (!oc.isDefault("junctions.minimal-shape")) {
109 attrs[SUMO_ATTR_JUNCTIONS_MINIMAL_SHAPE] = toString(oc.getBool("junctions.minimal-shape"));
110 }
111 if (!oc.isDefault("junctions.endpoint-shape")) {
112 attrs[SUMO_ATTR_JUNCTIONS_ENDPOINT_SHAPE] = toString(oc.getBool("junctions.endpoint-shape"));
113 }
114 device.writeXMLHeader("net", "net_file.xsd", attrs); // street names may contain non-ascii chars
115 device.lf();
116 // get involved container
117 const NBNodeCont& nc = nb.getNodeCont();
118 const NBEdgeCont& ec = nb.getEdgeCont();
119 const NBDistrictCont& dc = nb.getDistrictCont();
120
121 // write network offsets and projection
123
124 // write edge types and restrictions
125 std::set<std::string> usedTypes = ec.getUsedTypes();
126 nb.getTypeCont().writeEdgeTypes(device, usedTypes);
127
128 // write inner lanes
129 if (!oc.getBool("no-internal-links")) {
130 bool hadAny = false;
131 for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
132 hadAny |= writeInternalEdges(device, ec, *(*i).second);
133 }
134 if (hadAny) {
135 device.lf();
136 }
137 }
138
139 // write edges with lanes and connected edges
140 bool noNames = !oc.getBool("output.street-names");
141 for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
142 writeEdge(device, *(*i).second, noNames, defaultSpread);
143 }
144 device.lf();
145
146 // write tls logics
148
149 // write the nodes (junctions)
150 for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
151 writeJunction(device, *(*i).second);
152 }
153 device.lf();
154 const bool includeInternal = !oc.getBool("no-internal-links");
155 if (includeInternal) {
156 // ... internal nodes if not unwanted
157 bool hadAny = false;
158 for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
159 hadAny |= writeInternalNodes(device, *(*i).second);
160 }
161 if (hadAny) {
162 device.lf();
163 }
164 }
165
166 // write the successors of lanes
167 int numConnections = 0;
168 for (std::map<std::string, NBEdge*>::const_iterator it_edge = ec.begin(); it_edge != ec.end(); it_edge++) {
169 NBEdge* from = it_edge->second;
170 const std::vector<NBEdge::Connection>& connections = from->getConnections();
171 numConnections += (int)connections.size();
172 for (const NBEdge::Connection& con : connections) {
173 writeConnection(device, *from, con, includeInternal);
174 }
175 }
176 if (numConnections > 0) {
177 device.lf();
178 }
179 if (includeInternal) {
180 // ... internal successors if not unwanted
181 bool hadAny = false;
182 for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
183 hadAny |= writeInternalConnections(device, *(*i).second);
184 }
185 if (hadAny) {
186 device.lf();
187 }
188 }
189 for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
190 NBNode* node = (*i).second;
191 // write connections from pedestrian crossings
192 std::vector<NBNode::Crossing*> crossings = node->getCrossings();
193 for (auto c : crossings) {
194 NWWriter_SUMO::writeInternalConnection(device, c->id, c->nextWalkingArea, 0, 0, "", LinkDirection::STRAIGHT, c->tlID, c->tlLinkIndex2);
195 }
196 // write connections from pedestrian walking areas
197 for (const NBNode::WalkingArea& wa : node->getWalkingAreas()) {
198 for (const std::string& cID : wa.nextCrossings) {
199 const NBNode::Crossing& nextCrossing = *node->getCrossing(cID);
200 // connection to next crossing (may be tls-controlled)
202 device.writeAttr(SUMO_ATTR_FROM, wa.id);
203 device.writeAttr(SUMO_ATTR_TO, cID);
205 device.writeAttr(SUMO_ATTR_TO_LANE, 0);
206 if (nextCrossing.tlID != "") {
207 device.writeAttr(SUMO_ATTR_TLID, nextCrossing.tlID);
208 assert(nextCrossing.tlLinkIndex >= 0);
209 device.writeAttr(SUMO_ATTR_TLLINKINDEX, nextCrossing.tlLinkIndex);
210 }
213 device.closeTag();
214 }
215 // optional connections from/to sidewalk
216 std::string edgeID;
217 int laneIndex;
218 for (const std::string& sw : wa.nextSidewalks) {
219 NBHelpers::interpretLaneID(sw, edgeID, laneIndex);
220 NWWriter_SUMO::writeInternalConnection(device, wa.id, edgeID, 0, laneIndex, "");
221 }
222 for (const std::string& sw : wa.prevSidewalks) {
223 NBHelpers::interpretLaneID(sw, edgeID, laneIndex);
224 NWWriter_SUMO::writeInternalConnection(device, edgeID, wa.id, laneIndex, 0, "");
225 }
226 }
227 }
228
229 // write loaded prohibitions
230 for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
231 writeProhibitions(device, i->second->getProhibitions());
232 }
233
234 // write roundabout information
235 writeRoundabouts(device, ec.getRoundabouts(), ec);
236
237 // write the districts
238 if (dc.size() != 0 && oc.isDefault("taz-output")) {
239 WRITE_WARNING(TL("Embedding TAZ-data inside the network is deprecated. Use option --taz-output instead"));
240 for (std::map<std::string, NBDistrict*>::const_iterator i = dc.begin(); i != dc.end(); i++) {
241 writeDistrict(device, *(*i).second);
242 }
243 device.lf();
244 }
245 device.close();
246}
247
248
249std::string
250NWWriter_SUMO::getOppositeInternalID(const NBEdgeCont& ec, const NBEdge* from, const NBEdge::Connection& con, double& oppositeLength) {
251 const NBEdge::Lane& succ = con.toEdge->getLanes()[con.toLane];
252 const NBEdge::Lane& pred = from->getLanes()[con.fromLane];
253 const bool lefthand = OptionsCont::getOptions().getBool("lefthand");
254 if (succ.oppositeID != "" && succ.oppositeID != "-" && pred.oppositeID != "" && pred.oppositeID != "-") {
255#ifdef DEBUG_OPPOSITE_INTERNAL
256 std::cout << "getOppositeInternalID con=" << con.getDescription(from) << " (" << con.getInternalLaneID() << ")\n";
257#endif
258 // find the connection that connects succ.oppositeID to pred.oppositeID
259 const NBEdge* succOpp = ec.retrieve(succ.oppositeID.substr(0, succ.oppositeID.rfind("_")));
260 const NBEdge* predOpp = ec.retrieve(pred.oppositeID.substr(0, pred.oppositeID.rfind("_")));
261 assert(succOpp != 0);
262 assert(predOpp != 0);
263 const std::vector<NBEdge::Connection>& connections = succOpp->getConnections();
264 for (std::vector<NBEdge::Connection>::const_iterator it_c = connections.begin(); it_c != connections.end(); it_c++) {
265 const NBEdge::Connection& conOpp = *it_c;
266 if (succOpp != from // turnaround
267 && predOpp == conOpp.toEdge
268 && succOpp->getLaneID(conOpp.fromLane) == succ.oppositeID
269 && predOpp->getLaneID(conOpp.toLane) == pred.oppositeID
270 && from->getToNode()->getDirection(from, con.toEdge, lefthand) == LinkDirection::STRAIGHT
271 && from->getToNode()->getDirection(succOpp, predOpp, lefthand) == LinkDirection::STRAIGHT
272 ) {
273#ifdef DEBUG_OPPOSITE_INTERNAL
274 std::cout << " found " << conOpp.getInternalLaneID() << "\n";
275#endif
276 oppositeLength = conOpp.length;
277 return conOpp.getInternalLaneID();
278 } else {
279 /*
280 #ifdef DEBUG_OPPOSITE_INTERNAL
281 std::cout << " rejected " << conOpp.getInternalLaneID()
282 << "\n succ.oppositeID=" << succ.oppositeID
283 << "\n succOppLane=" << succOpp->getLaneID(conOpp.fromLane)
284 << "\n pred.oppositeID=" << pred.oppositeID
285 << "\n predOppLane=" << predOpp->getLaneID(conOpp.toLane)
286 << "\n predOpp=" << predOpp->getID()
287 << "\n conOppTo=" << conOpp.toEdge->getID()
288 << "\n len1=" << con.shape.length()
289 << "\n len2=" << conOpp.shape.length()
290 << "\n";
291 #endif
292 */
293 }
294 }
295 return "";
296 } else {
297 return "";
298 }
299}
300
301
302bool
304 bool ret = false;
305 const EdgeVector& incoming = n.getIncomingEdges();
306 // first pass: determine opposite internal edges and average their length
307 std::map<std::string, std::string> oppositeLaneID;
308 std::map<std::string, double> oppositeLengths;
309 for (NBEdge* e : incoming) {
310 for (const NBEdge::Connection& c : e->getConnections()) {
311 double oppositeLength = 0;
312 const std::string op = getOppositeInternalID(ec, e, c, oppositeLength);
313 oppositeLaneID[c.getInternalLaneID()] = op;
314 if (op != "") {
315 oppositeLengths[c.id] = oppositeLength;
316 }
317 }
318 }
319 if (oppositeLengths.size() > 0) {
320 for (NBEdge* e : incoming) {
321 for (NBEdge::Connection& c : e->getConnections()) {
322 if (oppositeLengths.count(c.id) > 0) {
323 c.length = (c.length + oppositeLengths[c.id]) / 2;
324 }
325 }
326 }
327 }
328
329 for (NBEdge* e : incoming) {
330 const std::vector<NBEdge::Connection>& elv = e->getConnections();
331 if (elv.size() > 0) {
332 bool haveVia = false;
333 std::string edgeID = "";
334 double bidiLength = -1;
335 // second pass: write non-via edges
336 for (const NBEdge::Connection& k : elv) {
337 if (k.toEdge == nullptr) {
338 assert(false); // should never happen. tell me when it does
339 continue;
340 }
341 if (edgeID != k.id) {
342 if (edgeID != "") {
343 // close the previous edge
344 into.closeTag();
345 }
346 edgeID = k.id;
348 into.writeAttr(SUMO_ATTR_ID, edgeID);
350 if (k.edgeType != "") {
351 into.writeAttr(SUMO_ATTR_TYPE, k.edgeType);
352 }
353 bidiLength = -1;
354 if (e->getBidiEdge() && k.toEdge->getBidiEdge() &&
355 e != k.toEdge->getTurnDestination(true)) {
356 const std::string bidiEdge = getInternalBidi(e, k, bidiLength);
357 if (bidiEdge != "") {
358 into.writeAttr(SUMO_ATTR_BIDI, bidiEdge);
359 }
360 }
361 // open a new edge
362 }
363 // to avoid changing to an internal lane which has a successor
364 // with the wrong permissions we need to inherit them from the successor
365 const NBEdge::Lane& successor = k.toEdge->getLanes()[k.toLane];
366 SVCPermissions permissions = (k.permissions != SVC_UNSPECIFIED) ? k.permissions : (
367 successor.permissions & e->getPermissions(k.fromLane));
368 SVCPermissions changeLeft = k.changeLeft != SVC_UNSPECIFIED ? k.changeLeft : SVCAll;
369 SVCPermissions changeRight = k.changeRight != SVC_UNSPECIFIED ? k.changeRight : SVCAll;
370 const double width = e->getInternalLaneWidth(n, k, successor, false);
371 const double length = bidiLength > 0 ? bidiLength : k.length;
372 writeLane(into, k.getInternalLaneID(), k.vmax, k.friction,
373 permissions, successor.preferred,
374 changeLeft, changeRight,
376 StopOffset(), width, k.shape, &k,
377 length, k.internalLaneIndex, oppositeLaneID[k.getInternalLaneID()], "");
378 haveVia = haveVia || k.haveVia;
379 }
380 ret = true;
381 into.closeTag(); // close the last edge
382 // third pass: write via edges
383 if (haveVia) {
384 std::string viaEdgeID = "";
385 for (const NBEdge::Connection& k : elv) {
386 if (!k.haveVia) {
387 continue;
388 }
389 if (k.toEdge == nullptr) {
390 assert(false); // should never happen. tell me when it does
391 continue;
392 }
393 if (viaEdgeID != k.viaID) {
394 if (viaEdgeID != "") {
395 // close the previous edge
396 into.closeTag();
397 }
398 viaEdgeID = k.viaID;
399 // open a new edge
401 into.writeAttr(SUMO_ATTR_ID, viaEdgeID);
403 if (k.edgeType != "") {
404 into.writeAttr(SUMO_ATTR_TYPE, k.edgeType);
405 }
406 }
407 const NBEdge::Lane& successor = k.toEdge->getLanes()[k.toLane];
408 SVCPermissions permissions = (k.permissions != SVC_UNSPECIFIED) ? k.permissions : (
409 successor.permissions & e->getPermissions(k.fromLane));
410 const double width = e->getInternalLaneWidth(n, k, successor, true);
411 writeLane(into, k.getInternalViaLaneID(), k.vmax, k.friction, permissions, successor.preferred,
412 SVCAll, SVCAll, // #XXX todo
414 StopOffset(), width, k.viaShape, &k,
415 MAX2(k.viaLength, POSITION_EPS), // microsim needs positive length
416 0, "", "");
417 }
418 into.closeTag();
419 }
420 }
421 }
422 // write pedestrian crossings
423 const double crossingSpeed = OptionsCont::getOptions().getFloat("default.crossing-speed");
424 for (auto c : n.getCrossings()) {
426 into.writeAttr(SUMO_ATTR_ID, c->id);
428 into.writeAttr(SUMO_ATTR_CROSSING_EDGES, c->edges);
429 writeLane(into, c->id + "_0", crossingSpeed, NBEdge::UNSPECIFIED_FRICTION, SVC_PEDESTRIAN, 0, SVCAll, SVCAll,
431 StopOffset(), c->width, c->shape, c,
432 MAX2(c->shape.length(), POSITION_EPS), 0, "", "", false, c->customShape.size() != 0, c->outlineShape);
433 into.closeTag();
434 }
435 // write pedestrian walking areas
436 const double walkingareaSpeed = OptionsCont::getOptions().getFloat("default.walkingarea-speed");
437 const std::vector<NBNode::WalkingArea>& WalkingAreas = n.getWalkingAreas();
438 for (std::vector<NBNode::WalkingArea>::const_iterator it = WalkingAreas.begin(); it != WalkingAreas.end(); it++) {
439 const NBNode::WalkingArea& wa = *it;
441 into.writeAttr(SUMO_ATTR_ID, wa.id);
443 writeLane(into, wa.id + "_0", walkingareaSpeed, NBEdge::UNSPECIFIED_FRICTION, SVC_PEDESTRIAN, 0, SVCAll, SVCAll,
445 StopOffset(), wa.width, wa.shape, nullptr, wa.length, 0, "", "", false, wa.hasCustomShape);
446 into.closeTag();
447 }
448 return ret;
449}
450
451
452std::string
453NWWriter_SUMO::getInternalBidi(const NBEdge* e, const NBEdge::Connection& k, double& length) {
454 const NBEdge* fromBidi = e->getTurnDestination(true);
455 const NBEdge* toBidi = k.toEdge->getTurnDestination(true);
456 const std::vector<NBEdge::Connection> cons = toBidi->getConnectionsFromLane(-1, fromBidi, -1);
457 if (cons.size() > 0) {
458 if (e->getNumLanes() == 1 && k.toEdge->getNumLanes() == 1 && fromBidi->getNumLanes() == 1 && toBidi->getNumLanes() == 1) {
459 length = (k.length + cons.back().length) / 2;
460 return cons.back().id;
461 }
462 // do a more careful check in case there are parallel internal edges
463 // note: k is the first connection with the new id
464 for (const NBEdge::Connection& c : e->getConnections()) {
465 if (c.id == k.id) {
466 PositionVector rShape = c.shape.reverse();
467 for (const NBEdge::Connection& k2 : cons) {
468 if (k2.shape.almostSame(rShape, POSITION_EPS)) {
469 length = (c.length + k2.length) / 2;
470 return k2.id;
471 }
472 }
473 }
474 }
475 } else {
476 WRITE_WARNINGF(TL("Could not find bidi-connection for edge '%'"), k.id)
477 }
478 return "";
479}
480
481void
482NWWriter_SUMO::writeEdge(OutputDevice& into, const NBEdge& e, bool noNames, LaneSpreadFunction defaultSpread) {
483 // write the edge's begin
487 if (!noNames && e.getStreetName() != "") {
489 }
491 if (e.getTypeID() != "") {
493 }
494 if (e.isMacroscopicConnector()) {
496 }
497 // write the spread type if not default ("right")
498 if (e.getLaneSpreadFunction() != defaultSpread) {
500 }
501 if (e.hasLoadedLength()) {
503 }
504 if (!e.hasDefaultGeometry()) {
506 }
507 if (e.getEdgeStopOffset().isDefined()) {
509 }
510 if (e.getBidiEdge()) {
512 }
513 if (e.getDistance() != 0) {
515 }
516
517 // write the lanes
518 const std::vector<NBEdge::Lane>& lanes = e.getLanes();
519
520 double length = e.getFinalLength();
521 if (e.getBidiEdge() != nullptr) {
522 length = (length + e.getBidiEdge()->getFinalLength()) / 2;
523 }
524 double startOffset = e.isBidiRail() ? e.getTurnDestination(true)->getEndOffset() : 0;
525 for (int i = 0; i < (int) lanes.size(); i++) {
526 const NBEdge::Lane& l = lanes[i];
527 StopOffset stopOffset;
528 if (l.laneStopOffset != e.getEdgeStopOffset()) {
529 stopOffset = l.laneStopOffset;
530 }
531 writeLane(into, e.getLaneID(i), l.speed, l.friction,
534 startOffset, l.endOffset,
535 stopOffset, l.width, l.shape, &l,
536 length, i, l.oppositeID, l.type, l.accelRamp, l.customShape.size() > 0);
537 }
538 // close the edge
539 e.writeParams(into);
540 into.closeTag();
541}
542
543
544void
545NWWriter_SUMO::writeLane(OutputDevice& into, const std::string& lID,
546 double speed, double friction,
547 SVCPermissions permissions, SVCPermissions preferred,
548 SVCPermissions changeLeft, SVCPermissions changeRight,
549 double startOffset, double endOffset,
550 const StopOffset& stopOffset, double width, PositionVector shape,
551 const Parameterised* params, double length, int index,
552 const std::string& oppositeID,
553 const std::string& type,
554 bool accelRamp, bool customShape,
555 const PositionVector& outlineShape) {
556 // output the lane's attributes
558 // the first lane of an edge will be the depart lane
559 into.writeAttr(SUMO_ATTR_INDEX, index);
560 // write the list of allowed/disallowed vehicle classes
561 if (permissions != SVC_UNSPECIFIED) {
562 writePermissions(into, permissions);
563 }
564 writePreferences(into, preferred);
565 // some further information
566 into.writeAttr(SUMO_ATTR_SPEED, MAX2(0.0, speed));
567 if (friction != NBEdge::UNSPECIFIED_FRICTION) {
568 into.writeAttr(SUMO_ATTR_FRICTION, friction);
569 }
570 into.writeAttr(SUMO_ATTR_LENGTH, length);
571 if (endOffset != NBEdge::UNSPECIFIED_OFFSET) {
572 into.writeAttr(SUMO_ATTR_ENDOFFSET, endOffset);
573 }
574 if (width != NBEdge::UNSPECIFIED_WIDTH) {
575 into.writeAttr(SUMO_ATTR_WIDTH, width);
576 }
577 if (accelRamp) {
578 into.writeAttr<bool>(SUMO_ATTR_ACCELERATION, accelRamp);
579 }
580 if (customShape) {
582 }
583 if (endOffset > 0 || startOffset > 0) {
584 startOffset = MIN2(startOffset, shape.length() - POSITION_EPS);
585 endOffset = MIN2(endOffset, shape.length() - startOffset - POSITION_EPS);
586 assert(startOffset + endOffset < shape.length());
587 shape = shape.getSubpart(startOffset, shape.length() - endOffset);
588 }
589 into.writeAttr(SUMO_ATTR_SHAPE, shape);
590 if (type != "") {
591 into.writeAttr(SUMO_ATTR_TYPE, type);
592 }
593 if (changeLeft != SVC_UNSPECIFIED && changeLeft != SVCAll && changeLeft != SVC_IGNORING) {
595 }
596 if (changeRight != SVC_UNSPECIFIED && changeRight != SVCAll && changeRight != SVC_IGNORING) {
598 }
599 if (stopOffset.isDefined()) {
600 writeStopOffsets(into, stopOffset);
601 }
602 if (outlineShape.size() != 0) {
603 into.writeAttr(SUMO_ATTR_OUTLINESHAPE, outlineShape);
604 }
605
606 if (oppositeID != "" && oppositeID != "-") {
608 into.writeAttr(SUMO_ATTR_LANE, oppositeID);
609 into.closeTag();
610 }
611
612 if (params != nullptr) {
613 params->writeParams(into);
614 }
615
616 into.closeTag();
617}
618
619
620void
622 // write the attributes
626 // write the incoming lanes
627 std::vector<std::string> incLanes;
628 const std::vector<NBEdge*>& incoming = n.getIncomingEdges();
629 for (std::vector<NBEdge*>::const_iterator i = incoming.begin(); i != incoming.end(); ++i) {
630 int noLanes = (*i)->getNumLanes();
631 for (int j = 0; j < noLanes; j++) {
632 incLanes.push_back((*i)->getLaneID(j));
633 }
634 }
635 std::vector<NBNode::Crossing*> crossings = n.getCrossings();
636 std::set<std::string> prevWAs;
637 // avoid duplicates
638 for (auto c : crossings) {
639 if (prevWAs.count(c->prevWalkingArea) == 0) {
640 incLanes.push_back(c->prevWalkingArea + "_0");
641 prevWAs.insert(c->prevWalkingArea);
642 }
643 }
644 into.writeAttr(SUMO_ATTR_INCLANES, incLanes);
645 // write the internal lanes
646 std::vector<std::string> intLanes;
647 if (!OptionsCont::getOptions().getBool("no-internal-links")) {
648 for (EdgeVector::const_iterator i = incoming.begin(); i != incoming.end(); i++) {
649 const std::vector<NBEdge::Connection>& elv = (*i)->getConnections();
650 for (std::vector<NBEdge::Connection>::const_iterator k = elv.begin(); k != elv.end(); ++k) {
651 if ((*k).toEdge == nullptr) {
652 continue;
653 }
654 if (!(*k).haveVia) {
655 intLanes.push_back((*k).getInternalLaneID());
656 } else {
657 intLanes.push_back((*k).getInternalViaLaneID());
658 }
659 }
660 }
661 }
663 for (auto c : crossings) {
664 intLanes.push_back(c->id + "_0");
665 }
666 }
667 into.writeAttr(SUMO_ATTR_INTLANES, intLanes);
668 // close writing
670 // write optional radius
673 }
674 // specify whether a custom shape was used
675 if (n.hasCustomShape()) {
677 }
680 }
682 into.writeAttr<std::string>(SUMO_ATTR_FRINGE, toString(n.getFringeType()));
683 }
684 if (n.getName() != "") {
686 }
688 // write right-of-way logics
689 n.writeLogic(into);
690 }
691 n.writeParams(into);
692 into.closeTag();
693}
694
695
696bool
698 bool ret = false;
699 const std::vector<NBEdge*>& incoming = n.getIncomingEdges();
700 // build the list of internal lane ids
701 std::vector<std::string> internalLaneIDs;
702 std::map<std::string, std::string> viaIDs;
703 for (const NBEdge* in : incoming) {
704 for (const auto& con : in->getConnections()) {
705 if (con.toEdge != nullptr) {
706 internalLaneIDs.push_back(con.getInternalLaneID());
707 if (con.viaID != "") {
708 viaIDs[con.getInternalLaneID()] = (con.getInternalViaLaneID());
709 }
710 }
711 }
712 }
713 for (auto c : n.getCrossings()) {
714 internalLaneIDs.push_back(c->id + "_0");
715 }
716 // write the internal nodes
717 for (const NBEdge* in : incoming) {
718 for (const auto& con : in->getConnections()) {
719 if (con.toEdge == nullptr || !con.haveVia) {
720 continue;
721 }
722 Position pos = con.shape[-1];
723 into.openTag(SUMO_TAG_JUNCTION).writeAttr(SUMO_ATTR_ID, con.getInternalViaLaneID());
726 std::string incLanes = con.getInternalLaneID();
727 std::vector<std::string> foeIDs;
728 for (std::string incLane : con.foeIncomingLanes) {
729 if (incLane[0] == ':') {
730 // intersecting left turns
731 const int index = StringUtils::toInt(incLane.substr(1));
732 incLane = internalLaneIDs[index];
733 if (viaIDs[incLane] != "") {
734 foeIDs.push_back(viaIDs[incLane]);
735 }
736 }
737 incLanes += " " + incLane;
738 }
739 into.writeAttr(SUMO_ATTR_INCLANES, incLanes);
740 const std::vector<int>& foes = con.foeInternalLinks;
741 for (int foe : foes) {
742 foeIDs.push_back(internalLaneIDs[foe]);
743 }
744 into.writeAttr(SUMO_ATTR_INTLANES, joinToString(foeIDs, " "));
745 into.closeTag();
746 ret = true;
747 }
748 }
749 return ret;
750}
751
752
753void
755 bool includeInternal, ConnectionStyle style, bool geoAccuracy) {
756 assert(c.toEdge != 0);
758 into.writeAttr(SUMO_ATTR_FROM, from.getID());
762 if (style != TLL) {
763 if (c.mayDefinitelyPass) {
765 }
766 if (c.keepClear == KEEPCLEAR_FALSE) {
767 into.writeAttr<bool>(SUMO_ATTR_KEEP_CLEAR, false);
768 }
771 }
772 if (c.permissions != SVC_UNSPECIFIED) {
774 }
777 }
780 }
783 }
786 }
787 if (c.customShape.size() != 0) {
788 if (geoAccuracy) {
790 }
792 if (geoAccuracy) {
793 into.setPrecision();
794 }
795 }
796 if (c.uncontrolled != false) {
798 }
799 if (c.indirectLeft != false) {
801 }
802 if (c.edgeType != "") {
804 }
805 }
806 if (style != PLAIN) {
807 if (includeInternal) {
809 }
810 // set information about the controlling tl if any
811 if (c.tlID != "") {
814 if (c.tlLinkIndex2 >= 0) {
816 }
817 }
818 }
819 if (style != TLL) {
820 if (style == SUMONET) {
821 // write the direction information
822 LinkDirection dir = from.getToNode()->getDirection(&from, c.toEdge, OptionsCont::getOptions().getBool("lefthand"));
823 assert(dir != LinkDirection::NODIR);
824 into.writeAttr(SUMO_ATTR_DIR, toString(dir));
825 // write the state information
826 const LinkState linkState = from.getToNode()->getLinkState(
827 &from, c.toEdge, c.fromLane, c.toLane, c.mayDefinitelyPass, c.tlID);
828 into.writeAttr(SUMO_ATTR_STATE, linkState);
829 if (linkState == LINKSTATE_MINOR
832 const double visibilityDistance = OptionsCont::getOptions().getFloat("roundabouts.visibility-distance");
833 if (visibilityDistance != NBEdge::UNSPECIFIED_VISIBILITY_DISTANCE) {
834 into.writeAttr(SUMO_ATTR_VISIBILITY_DISTANCE, visibilityDistance);
835 }
836 }
837 }
840 }
841 }
842 c.writeParams(into);
843 into.closeTag();
844}
845
846
847bool
849 bool ret = false;
850 const bool lefthand = OptionsCont::getOptions().getBool("lefthand");
851 for (const NBEdge* const from : n.getIncomingEdges()) {
852 for (const NBEdge::Connection& c : from->getConnections()) {
853 LinkDirection dir = n.getDirection(from, c.toEdge, lefthand);
854 assert(c.toEdge != 0);
855 if (c.haveVia) {
856 // internal split with optional signal
857 std::string tlID = "";
858 int linkIndex2 = NBConnection::InvalidTlIndex;
859 if (c.tlLinkIndex2 != NBConnection::InvalidTlIndex) {
860 linkIndex2 = c.tlLinkIndex2;
861 tlID = c.tlID;
862 }
863 writeInternalConnection(into, c.id, c.toEdge->getID(), c.internalLaneIndex, c.toLane, c.getInternalViaLaneID(), dir, tlID, linkIndex2, false, c.visibility);
864 writeInternalConnection(into, c.viaID, c.toEdge->getID(), c.internalViaLaneIndex, c.toLane, "", dir, "", NBConnection::InvalidTlIndex,
865 n.brakeForCrossingOnExit(c.toEdge, dir, c.indirectLeft));
866 } else {
867 // no internal split
868 writeInternalConnection(into, c.id, c.toEdge->getID(), c.internalLaneIndex, c.toLane, "", dir);
869 }
870 ret = true;
871 }
872 }
873 return ret;
874}
875
876
877void
879 const std::string& from, const std::string& to,
880 int fromLane, int toLane, const std::string& via,
881 LinkDirection dir,
882 const std::string& tlID, int linkIndex,
883 bool minor,
884 double visibility) {
886 into.writeAttr(SUMO_ATTR_FROM, from);
887 into.writeAttr(SUMO_ATTR_TO, to);
888 into.writeAttr(SUMO_ATTR_FROM_LANE, fromLane);
889 into.writeAttr(SUMO_ATTR_TO_LANE, toLane);
890 if (via != "") {
891 into.writeAttr(SUMO_ATTR_VIA, via);
892 }
893 if (tlID != "" && linkIndex != NBConnection::InvalidTlIndex) {
894 // used for the reverse direction of pedestrian crossings
895 into.writeAttr(SUMO_ATTR_TLID, tlID);
896 into.writeAttr(SUMO_ATTR_TLLINKINDEX, linkIndex);
897 }
898 into.writeAttr(SUMO_ATTR_DIR, dir);
899 into.writeAttr(SUMO_ATTR_STATE, ((via != "" || minor) ? "m" : "M"));
900 if (visibility != NBEdge::UNSPECIFIED_VISIBILITY_DISTANCE) {
902 }
903 into.closeTag();
904}
905
906
907void
908NWWriter_SUMO::writeRoundabouts(OutputDevice& into, const std::set<EdgeSet>& roundabouts,
909 const NBEdgeCont& ec) {
910 // make output deterministic
911 std::vector<std::vector<std::string> > edgeIDs;
912 for (std::set<EdgeSet>::const_iterator i = roundabouts.begin(); i != roundabouts.end(); ++i) {
913 std::vector<std::string> tEdgeIDs;
914 for (EdgeSet::const_iterator j = (*i).begin(); j != (*i).end(); ++j) {
915 // the edges may have been erased from NBEdgeCont but their pointers are still valid
916 // we verify their existance in writeRoundabout()
917 tEdgeIDs.push_back((*j)->getID());
918 }
919 std::sort(tEdgeIDs.begin(), tEdgeIDs.end());
920 edgeIDs.push_back(tEdgeIDs);
921 }
922 std::sort(edgeIDs.begin(), edgeIDs.end());
923 // write
924 for (std::vector<std::vector<std::string> >::const_iterator i = edgeIDs.begin(); i != edgeIDs.end(); ++i) {
925 writeRoundabout(into, *i, ec);
926 }
927 if (roundabouts.size() != 0) {
928 into.lf();
929 }
930}
931
932
933void
934NWWriter_SUMO::writeRoundabout(OutputDevice& into, const std::vector<std::string>& edgeIDs,
935 const NBEdgeCont& ec) {
936 std::vector<std::string> validEdgeIDs;
937 std::vector<std::string> invalidEdgeIDs;
938 std::vector<std::string> nodeIDs;
939 for (std::vector<std::string>::const_iterator i = edgeIDs.begin(); i != edgeIDs.end(); ++i) {
940 const NBEdge* edge = ec.retrieve(*i);
941 if (edge != nullptr) {
942 nodeIDs.push_back(edge->getToNode()->getID());
943 validEdgeIDs.push_back(edge->getID());
944 } else {
945 invalidEdgeIDs.push_back(*i);
946 }
947 }
948 std::sort(nodeIDs.begin(), nodeIDs.end());
949 if (validEdgeIDs.size() > 0) {
951 into.writeAttr(SUMO_ATTR_NODES, joinToString(nodeIDs, " "));
952 into.writeAttr(SUMO_ATTR_EDGES, joinToString(validEdgeIDs, " "));
953 into.closeTag();
954 if (invalidEdgeIDs.size() > 0) {
955 WRITE_WARNING("Writing incomplete roundabout. Edges: '"
956 + joinToString(invalidEdgeIDs, " ") + "' no longer exist'");
957 }
958 }
959}
960
961
962void
964 std::vector<double> sourceW = d.getSourceWeights();
966 std::vector<double> sinkW = d.getSinkWeights();
968 // write the head and the id of the district
970 if (d.getShape().size() > 0) {
972 }
973 // write all sources
974 const std::vector<NBEdge*>& sources = d.getSourceEdges();
975 for (int i = 0; i < (int)sources.size(); i++) {
976 // write the head and the id of the source
977 into.openTag(SUMO_TAG_TAZSOURCE).writeAttr(SUMO_ATTR_ID, sources[i]->getID()).writeAttr(SUMO_ATTR_WEIGHT, sourceW[i]);
978 into.closeTag();
979 }
980 // write all sinks
981 const std::vector<NBEdge*>& sinks = d.getSinkEdges();
982 for (int i = 0; i < (int)sinks.size(); i++) {
983 // write the head and the id of the sink
984 into.openTag(SUMO_TAG_TAZSINK).writeAttr(SUMO_ATTR_ID, sinks[i]->getID()).writeAttr(SUMO_ATTR_WEIGHT, sinkW[i]);
985 into.closeTag();
986 }
987 // write the tail
988 into.closeTag();
989}
990
991
992std::string
994 double time = STEPS2TIME(steps);
995 if (time == std::floor(time)) {
996 return toString(int(time));
997 } else {
998 return toString(time);
999 }
1000}
1001
1002void
1004 for (NBConnectionProhibits::const_iterator j = prohibitions.begin(); j != prohibitions.end(); j++) {
1005 NBConnection prohibited = (*j).first;
1006 const NBConnectionVector& prohibiting = (*j).second;
1007 for (NBConnectionVector::const_iterator k = prohibiting.begin(); k != prohibiting.end(); k++) {
1008 NBConnection prohibitor = *k;
1012 into.closeTag();
1013 }
1014 }
1015}
1016
1017
1018std::string
1020 return c.getFrom()->getID() + "->" + c.getTo()->getID();
1021}
1022
1023
1024void
1026 std::vector<NBTrafficLightLogic*> logics = tllCont.getComputed();
1027 for (NBTrafficLightLogic* logic : logics) {
1028 writeTrafficLight(into, logic);
1029 // only raise warnings on write instead of on compute (to avoid cluttering netedit)
1030 NBTrafficLightDefinition* def = tllCont.getDefinition(logic->getID(), logic->getProgramID());
1031 assert(def != nullptr);
1032 def->finalChecks();
1033 }
1034 if (logics.size() > 0) {
1035 into.lf();
1036 }
1037}
1038
1039
1040void
1043 into.writeAttr(SUMO_ATTR_ID, logic->getID());
1044 into.writeAttr(SUMO_ATTR_TYPE, logic->getType());
1046 into.writeAttr(SUMO_ATTR_OFFSET, logic->getOffset() == SUMOTime_MAX ? "begin" : writeSUMOTime(logic->getOffset()));
1047 // write the phases
1048 const bool varPhaseLength = logic->getType() != TrafficLightType::STATIC;
1049 for (const NBTrafficLightLogic::PhaseDefinition& phase : logic->getPhases()) {
1050 into.openTag(SUMO_TAG_PHASE);
1051 into.writeAttr(SUMO_ATTR_DURATION, writeSUMOTime(phase.duration));
1052 if (phase.duration < TIME2STEPS(10)) {
1053 into.writePadding(" ");
1054 }
1055 into.writeAttr(SUMO_ATTR_STATE, phase.state);
1056 if (varPhaseLength) {
1058 into.writeAttr(SUMO_ATTR_MINDURATION, writeSUMOTime(phase.minDur));
1059 }
1061 into.writeAttr(SUMO_ATTR_MAXDURATION, writeSUMOTime(phase.maxDur));
1062 }
1063 if (phase.earliestEnd != NBTrafficLightDefinition::UNSPECIFIED_DURATION) {
1064 into.writeAttr(SUMO_ATTR_EARLIEST_END, writeSUMOTime(phase.earliestEnd));
1065 }
1066 if (phase.latestEnd != NBTrafficLightDefinition::UNSPECIFIED_DURATION) {
1067 into.writeAttr(SUMO_ATTR_LATEST_END, writeSUMOTime(phase.latestEnd));
1068 }
1069 // NEMA attributes
1072 }
1074 into.writeAttr(SUMO_ATTR_YELLOW, writeSUMOTime(phase.yellow));
1075 }
1077 into.writeAttr(SUMO_ATTR_RED, writeSUMOTime(phase.red));
1078 }
1079 }
1080 if (phase.name != "") {
1082 }
1083 if (phase.next.size() > 0) {
1084 into.writeAttr(SUMO_ATTR_NEXT, phase.next);
1085 }
1086 into.closeTag();
1087 }
1088 // write params
1089 logic->writeParams(into);
1090 into.closeTag();
1091}
1092
1093
1094void
1096 if (stopOffset.isDefined()) {
1097 const std::string ss_vclasses = getVehicleClassNames(stopOffset.getPermissions());
1098 if (ss_vclasses.length() == 0) {
1099 // This stopOffset would have no effect...
1100 return;
1101 }
1103 const std::string ss_exceptions = getVehicleClassNames(~stopOffset.getPermissions());
1104 if (ss_vclasses.length() <= ss_exceptions.length()) {
1105 into.writeAttr(SUMO_ATTR_VCLASSES, ss_vclasses);
1106 } else {
1107 if (ss_exceptions.length() == 0) {
1108 into.writeAttr(SUMO_ATTR_VCLASSES, "all");
1109 } else {
1110 into.writeAttr(SUMO_ATTR_EXCEPTIONS, ss_exceptions);
1111 }
1112 }
1113 into.writeAttr(SUMO_ATTR_VALUE, stopOffset.getOffset());
1114 into.closeTag();
1115 }
1116}
1117
1118
1119/****************************************************************************/
long long int SUMOTime
Definition GUI.h:36
#define WRITE_WARNINGF(...)
Definition MsgHandler.h:288
#define WRITE_WARNING(msg)
Definition MsgHandler.h:287
#define TL(string)
Definition MsgHandler.h:305
std::map< NBConnection, NBConnectionVector > NBConnectionProhibits
Definition of a container for connection block dependencies Includes a list of all connections which ...
std::vector< NBConnection > NBConnectionVector
Definition of a connection vector.
std::vector< NBEdge * > EdgeVector
container for (sorted) edges
Definition NBCont.h:42
@ KEEPCLEAR_FALSE
Definition NBCont.h:59
#define STEPS2TIME(x)
Definition SUMOTime.h:55
#define SUMOTime_MAX
Definition SUMOTime.h:34
#define TIME2STEPS(x)
Definition SUMOTime.h:57
const SVCPermissions SVCAll
all VClasses are allowed
const SVCPermissions SVC_UNSPECIFIED
permissions not specified
const std::string & getVehicleClassNames(SVCPermissions permissions, bool expand)
Returns the ids of the given classes, divided using a ' '.
void writePermissions(OutputDevice &into, SVCPermissions permissions)
writes allowed disallowed attributes if needed;
void writePreferences(OutputDevice &into, SVCPermissions preferred)
writes allowed disallowed attributes if needed;
long long int SVCPermissions
bitset where each bit declares whether a certain SVC may use this edge/lane
@ SVC_IGNORING
vehicles ignoring classes
@ SVC_PEDESTRIAN
pedestrian
@ SUMO_TAG_PHASE
a single phase description
@ SUMO_TAG_STOPOFFSET
Information on vClass specific stop offsets at lane end.
@ SUMO_TAG_TAZ
a traffic assignment zone
@ SUMO_TAG_TAZSINK
a sink within a district (connection road)
@ SUMO_TAG_PROHIBITION
prohibition of circulation between two edges
@ SUMO_TAG_CONNECTION
connectioon between two lanes
@ SUMO_TAG_ROUNDABOUT
roundabout defined in junction
@ SUMO_TAG_TLLOGIC
a traffic light logic
@ SUMO_TAG_JUNCTION
begin/end of the description of a junction
@ SUMO_TAG_LANE
begin/end of the description of a single lane
@ SUMO_TAG_TAZSOURCE
a source within a district (connection road)
@ SUMO_TAG_NEIGH
begin/end of the description of a neighboring lane
@ SUMO_TAG_EDGE
begin/end of the description of an edge
LaneSpreadFunction
Numbers representing special SUMO-XML-attribute values Information how the edge's lateral offset shal...
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ STRAIGHT
The link is a straight direction.
@ NODIR
The link has no direction (is a dead end link)
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_MAJOR
This is an uncontrolled, major link, may pass.
@ LINKSTATE_MINOR
This is an uncontrolled, minor link, has to brake.
@ SUMO_ATTR_JUNCTIONS_MINIMAL_SHAPE
@ SUMO_ATTR_LANE
@ SUMO_ATTR_NODES
a list of node ids, used for controlling joining
@ SUMO_ATTR_LATEST_END
The maximum time within the cycle for switching (for coordinated actuation)
@ SUMO_ATTR_TLLINKINDEX2
link: the index of the opposite direction link of a pedestrian crossing
@ SUMO_ATTR_RED
red duration of a phase
@ SUMO_ATTR_SPEED
@ SUMO_ATTR_LINKDETAIL
@ SUMO_ATTR_VALUE
@ SUMO_ATTR_VIA
@ SUMO_ATTR_CORNERDETAIL
@ SUMO_ATTR_RADIUS
The turning radius at an intersection in m.
@ SUMO_ATTR_INDIRECT
Whether this connection is an indirect (left) turn.
@ SUMO_ATTR_RECTANGULAR_LANE_CUT
@ SUMO_ATTR_FROM_LANE
@ SUMO_ATTR_LIMIT_TURN_SPEED
@ SUMO_ATTR_CHECKLANEFOES_ROUNDABOUT
@ SUMO_ATTR_OFFSET
@ SUMO_ATTR_AVOID_OVERLAP
@ SUMO_ATTR_YELLOW
yellow duration of a phase
@ SUMO_ATTR_CUSTOMSHAPE
whether a given shape is user-defined
@ SUMO_ATTR_INTLANES
@ SUMO_ATTR_VEHICLEEXTENSION
vehicle extension time of a phase
@ SUMO_ATTR_EDGES
the edges of a route
@ SUMO_ATTR_FRINGE
Fringe type of node.
@ SUMO_ATTR_BIDI
@ SUMO_ATTR_PROHIBITED
@ SUMO_ATTR_PRIORITY
@ SUMO_ATTR_SHAPE
edge: the shape in xml-definition
@ SUMO_ATTR_LEFTHAND
@ SUMO_ATTR_WEIGHT
@ SUMO_ATTR_NEXT
succesor phase index
@ SUMO_ATTR_INCLANES
@ SUMO_ATTR_CHANGE_LEFT
@ SUMO_ATTR_INDEX
@ SUMO_ATTR_VCLASSES
@ SUMO_ATTR_NAME
@ SUMO_ATTR_EXCEPTIONS
@ SUMO_ATTR_JUNCTIONS_ENDPOINT_SHAPE
@ SUMO_ATTR_CHECKLANEFOES_ALL
@ SUMO_ATTR_SPREADTYPE
The information about how to spread the lanes from the given position.
@ SUMO_ATTR_PASS
@ SUMO_ATTR_ENDOFFSET
@ SUMO_ATTR_HIGHER_SPEED
@ SUMO_ATTR_TO
@ SUMO_ATTR_FROM
@ SUMO_ATTR_ACCELERATION
@ SUMO_ATTR_CHANGE_RIGHT
@ SUMO_ATTR_TLID
link,node: the traffic light id responsible for this link
@ SUMO_ATTR_DISTANCE
@ SUMO_ATTR_TO_LANE
@ SUMO_ATTR_UNCONTROLLED
@ SUMO_ATTR_TYPE
@ SUMO_ATTR_LENGTH
@ SUMO_ATTR_VERSION
@ SUMO_ATTR_ID
@ SUMO_ATTR_MAXDURATION
maximum duration of a phase
@ SUMO_ATTR_RIGHT_OF_WAY
How to compute right of way.
@ SUMO_ATTR_PROGRAMID
@ SUMO_ATTR_OUTLINESHAPE
edge: the outline shape in xml-definition
@ SUMO_ATTR_FUNCTION
@ SUMO_ATTR_VISIBILITY_DISTANCE
foe visibility distance of a link
@ SUMO_ATTR_PROHIBITOR
@ SUMO_ATTR_DURATION
@ SUMO_ATTR_CONTPOS
@ SUMO_ATTR_WIDTH
@ SUMO_ATTR_CROSSING_EDGES
the edges crossed by a pedestrian crossing
@ SUMO_ATTR_DIR
The abstract direction of a link.
@ SUMO_ATTR_TLS_IGNORE_INTERNAL_JUNCTION_JAM
@ SUMO_ATTR_TLLINKINDEX
link: the index of the link within the traffic light
@ SUMO_ATTR_MINDURATION
@ SUMO_ATTR_KEEP_CLEAR
Whether vehicles must keep the junction clear.
@ SUMO_ATTR_INTERNAL_JUNCTIONS_VEHICLE_WIDTH
@ SUMO_ATTR_STATE
The state of a link.
@ SUMO_ATTR_FRICTION
@ SUMO_ATTR_WALKINGAREAS
@ SUMO_ATTR_EARLIEST_END
The minimum time within the cycle for switching (for coordinated actuation)
int gPrecisionGeo
Definition StdDefs.cpp:28
T MIN2(T a, T b)
Definition StdDefs.h:80
T MAX2(T a, T b)
Definition StdDefs.h:86
const MMVersion NETWORK_VERSION(1, 20)
std::string joinToString(const std::vector< T > &v, const T_BETWEEN &between, std::streamsize accuracy=gPrecision)
Definition ToString.h:283
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
Definition ToString.h:46
static void writeLocation(OutputDevice &into)
writes the location element
NBEdge * getFrom() const
returns the from-edge (start of the connection)
static const int InvalidTlIndex
NBEdge * getTo() const
returns the to-edge (end of the connection)
A container for districts.
std::map< std::string, NBDistrict * >::const_iterator end() const
Returns the pointer to the end of the stored districts.
std::map< std::string, NBDistrict * >::const_iterator begin() const
Returns the pointer to the begin of the stored districts.
int size() const
Returns the number of districts inside the container.
A class representing a single district.
Definition NBDistrict.h:62
const std::vector< double > & getSourceWeights() const
Returns the weights of the sources.
Definition NBDistrict.h:180
const std::vector< double > & getSinkWeights() const
Returns the weights of the sinks.
Definition NBDistrict.h:196
const PositionVector & getShape() const
Returns the shape.
Definition NBDistrict.h:212
const std::vector< NBEdge * > & getSinkEdges() const
Returns the sinks.
Definition NBDistrict.h:204
const std::vector< NBEdge * > & getSourceEdges() const
Returns the sources.
Definition NBDistrict.h:188
Storage for edges, including some functionality operating on multiple edges.
Definition NBEdgeCont.h:59
const std::set< EdgeSet > getRoundabouts() const
Returns the determined roundabouts.
std::map< std::string, NBEdge * >::const_iterator begin() const
Returns the pointer to the begin of the stored edges.
Definition NBEdgeCont.h:171
NBEdge * retrieve(const std::string &id, bool retrieveExtracted=false) const
Returns the edge that has the given id.
std::map< std::string, NBEdge * >::const_iterator end() const
Returns the pointer to the end of the stored edges.
Definition NBEdgeCont.h:178
std::set< std::string > getUsedTypes() const
return all edge types in used
The representation of a single edge during network building.
Definition NBEdge.h:92
const std::vector< Connection > & getConnections() const
Returns the connections.
Definition NBEdge.h:1047
@ ROUNDABOUT
Definition NBEdge.h:387
double getLoadedLength() const
Returns the length was set explicitly or the computed length if it wasn't set.
Definition NBEdge.h:608
NBNode * getToNode() const
Returns the destination node of the edge.
Definition NBEdge.h:552
static const double UNSPECIFIED_FRICTION
unspecified lane friction
Definition NBEdge.h:355
const PositionVector & getGeometry() const
Returns the geometry of the edge.
Definition NBEdge.h:789
LaneSpreadFunction getLaneSpreadFunction() const
Returns how this edge's lanes' lateral offset is computed.
Definition NBEdge.cpp:1019
bool isBidiRail(bool ignoreSpread=false) const
whether this edge is part of a bidirectional railway
Definition NBEdge.cpp:770
bool hasLoadedLength() const
Returns whether a length was set explicitly.
Definition NBEdge.h:618
const std::vector< NBEdge::Lane > & getLanes() const
Returns the lane definitions.
Definition NBEdge.h:736
const std::string & getID() const
Definition NBEdge.h:1540
double getDistance() const
get distance
Definition NBEdge.h:685
static const double UNSPECIFIED_LOADED_LENGTH
no length override given
Definition NBEdge.h:364
const StopOffset & getEdgeStopOffset() const
Returns the stopOffset to the end of the edge.
Definition NBEdge.cpp:4376
int getNumLanes() const
Returns the number of lanes.
Definition NBEdge.h:526
std::vector< Connection > getConnectionsFromLane(int lane, const NBEdge *to=nullptr, int toLane=-1) const
Returns connections from a given lane.
Definition NBEdge.cpp:1308
static const double UNSPECIFIED_CONTPOS
unspecified internal junction position
Definition NBEdge.h:358
static const double UNSPECIFIED_VISIBILITY_DISTANCE
unspecified foe visibility for connections
Definition NBEdge.h:361
std::string getLaneID(int lane) const
get lane ID
Definition NBEdge.cpp:4161
static const double UNSPECIFIED_SPEED
unspecified lane speed
Definition NBEdge.h:352
int getJunctionPriority(const NBNode *const node) const
Returns the junction priority (normalised for the node currently build)
Definition NBEdge.cpp:2155
const std::string & getTypeID() const
get ID of type
Definition NBEdge.h:1187
const std::string & getStreetName() const
Returns the street name of this edge.
Definition NBEdge.h:675
const NBEdge * getBidiEdge() const
Definition NBEdge.h:1526
NBNode * getFromNode() const
Returns the origin node of the edge.
Definition NBEdge.h:545
NBEdge * getTurnDestination(bool possibleDestination=false) const
Definition NBEdge.cpp:4152
bool hasDefaultGeometry() const
Returns whether the geometry consists only of the node positions.
Definition NBEdge.cpp:617
int getPriority() const
Returns the priority of the edge.
Definition NBEdge.h:533
static const double UNSPECIFIED_WIDTH
unspecified lane width
Definition NBEdge.h:346
double getEndOffset() const
Returns the offset to the destination node.
Definition NBEdge.h:695
static const double UNSPECIFIED_OFFSET
unspecified lane offset
Definition NBEdge.h:349
bool isMacroscopicConnector() const
Returns whether this edge was marked as a macroscopic connector.
Definition NBEdge.h:1142
double getFinalLength() const
get length that will be assigned to the lanes in the final network
Definition NBEdge.cpp:4867
static void interpretLaneID(const std::string &lane_id, std::string &edge_id, int &index)
parses edge-id and index from lane-id
Instance responsible for building networks.
NBNodeCont & getNodeCont()
Returns a reference to the node container.
NBEdgeCont & getEdgeCont()
NBDistrictCont & getDistrictCont()
Returns a reference the districts container.
NBTypeCont & getTypeCont()
Returns a reference to the type container.
NBTrafficLightLogicCont & getTLLogicCont()
Returns a reference to the traffic light logics container.
A definition of a pedestrian crossing.
Definition NBNode.h:135
int tlLinkIndex
the traffic light index of this crossing (if controlled)
Definition NBNode.h:162
std::string tlID
The id of the traffic light that controls this connection.
Definition NBNode.h:168
bool priority
whether the pedestrians have priority
Definition NBNode.h:158
Container for nodes during the netbuilding process.
Definition NBNodeCont.h:57
std::map< std::string, NBNode * >::const_iterator begin() const
Returns the pointer to the begin of the stored nodes.
Definition NBNodeCont.h:113
std::map< std::string, NBNode * >::const_iterator end() const
Returns the pointer to the end of the stored nodes.
Definition NBNodeCont.h:118
Represents a single node (junction) during network building.
Definition NBNode.h:66
LinkDirection getDirection(const NBEdge *const incoming, const NBEdge *const outgoing, bool leftHand=false) const
Returns the representation of the described stream's direction.
Definition NBNode.cpp:2487
RightOfWay getRightOfWay() const
Returns hint on how to compute right of way.
Definition NBNode.h:300
LinkState getLinkState(const NBEdge *incoming, const NBEdge *outgoing, int fromLane, int toLane, bool mayDefinitelyPass, const std::string &tlID) const
get link state
Definition NBNode.cpp:2572
static const double UNSPECIFIED_RADIUS
unspecified lane width
Definition NBNode.h:220
Crossing * getCrossing(const std::string &id) const
return the crossing with the given id
Definition NBNode.cpp:4111
FringeType getFringeType() const
Returns fringe type.
Definition NBNode.h:305
SumoXMLNodeType getType() const
Returns the type of this node.
Definition NBNode.h:285
const EdgeVector & getIncomingEdges() const
Returns this node's incoming edges (The edges which yield in this node)
Definition NBNode.h:268
bool brakeForCrossingOnExit(const NBEdge *to, LinkDirection dir, bool indirect) const
whether a connection to the given edge must brake for a crossing when leaving the intersection
Definition NBNode.cpp:2156
bool hasCustomShape() const
return whether the shape was set by the user
Definition NBNode.h:591
std::vector< Crossing * > getCrossings() const
return this junctions pedestrian crossings
Definition NBNode.cpp:3087
const std::string & getName() const
Returns intersection name.
Definition NBNode.h:310
bool writeLogic(OutputDevice &into) const
writes the XML-representation of the logic as a bitset-logic XML representation
Definition NBNode.cpp:1120
const Position & getPosition() const
Definition NBNode.h:260
const PositionVector & getShape() const
retrieve the junction shape
Definition NBNode.cpp:2772
double getRadius() const
Returns the turning radius of this node.
Definition NBNode.h:290
const std::vector< WalkingArea > & getWalkingAreas() const
return this junctions pedestrian walking areas
Definition NBNode.h:754
The base class for traffic light logic definitions.
virtual void finalChecks() const
perform optional final checks
static const SUMOTime UNSPECIFIED_DURATION
The definition of a single phase of the logic.
A container for traffic light definitions and built programs.
std::vector< NBTrafficLightLogic * > getComputed() const
Returns a list of all computed logics.
NBTrafficLightDefinition * getDefinition(const std::string &id, const std::string &programID) const
Returns the named definition.
A SUMO-compliant built logic for a traffic light.
SUMOTime getOffset() const
Returns the offset of first switch.
TrafficLightType getType() const
get the algorithm type (static etc..)
const std::string & getProgramID() const
Returns the ProgramID.
const std::vector< PhaseDefinition > & getPhases() const
Returns the phases.
void writeEdgeTypes(OutputDevice &into, const std::set< std::string > &typeIDs=std::set< std::string >()) const
writes all EdgeTypes (and their lanes) as XML
static void writePositionLong(const Position &pos, OutputDevice &dev)
Writes the given position to device in long format (one attribute per dimension)
Definition NWFrame.cpp:216
static void writeConnection(OutputDevice &into, const NBEdge &from, const NBEdge::Connection &c, bool includeInternal, ConnectionStyle style=SUMONET, bool geoAccuracy=false)
Writes connections outgoing from the given edge (also used in NWWriter_XML)
static void writeNetwork(const OptionsCont &oc, NBNetBuilder &nb)
Writes the network into a SUMO-file.
static bool writeInternalNodes(OutputDevice &into, const NBNode &n)
Writes internal junctions (<junction with id[0]==':' ...) of the given node.
static void writeProhibitions(OutputDevice &into, const NBConnectionProhibits &prohibitions)
writes the given prohibitions
static std::string getOppositeInternalID(const NBEdgeCont &ec, const NBEdge *from, const NBEdge::Connection &con, double &oppositeLength)
retrieve the id of the opposite direction internal lane if it exists
static std::string writeSUMOTime(SUMOTime time)
writes a SUMOTime as int if possible, otherwise as a float
static void writeJunction(OutputDevice &into, const NBNode &n)
Writes a junction (<junction ...)
static bool writeInternalEdges(OutputDevice &into, const NBEdgeCont &ec, const NBNode &n)
Writes internal edges (<edge ... with id[0]==':') of the given node.
static bool writeInternalConnections(OutputDevice &into, const NBNode &n)
Writes inner connections within the node.
static void writeLane(OutputDevice &into, const std::string &lID, double speed, double friction, SVCPermissions permissions, SVCPermissions preferred, SVCPermissions changeLeft, SVCPermissions changeRight, double startOffset, double endOffset, const StopOffset &stopOffset, double width, PositionVector shape, const Parameterised *params, double length, int index, const std::string &oppositeID, const std::string &type, bool accelRamp=false, bool customShape=false, const PositionVector &outlineShape=PositionVector())
Writes a lane (<lane ...) of an edge.
static void writeDistrict(OutputDevice &into, const NBDistrict &d)
Writes a district.
static void writeRoundabouts(OutputDevice &into, const std::set< EdgeSet > &roundabouts, const NBEdgeCont &ec)
Writes roundabouts.
static std::string getInternalBidi(const NBEdge *e, const NBEdge::Connection &k, double &length)
retrieve bidi edge id for internal corresponding to the given connection
static void writeRoundabout(OutputDevice &into, const std::vector< std::string > &r, const NBEdgeCont &ec)
Writes a roundabout.
static void writeStopOffsets(OutputDevice &into, const StopOffset &stopOffset)
Write a stopOffset element into output device.
static void writeInternalConnection(OutputDevice &into, const std::string &from, const std::string &to, int fromLane, int toLane, const std::string &via, LinkDirection dir=LinkDirection::STRAIGHT, const std::string &tlID="", int linkIndex=NBConnection::InvalidTlIndex, bool minor=false, double visibility=NBEdge::UNSPECIFIED_VISIBILITY_DISTANCE)
Writes a single internal connection.
static void writeTrafficLight(OutputDevice &into, const NBTrafficLightLogic *logic)
writes a single traffic light logic to the given device
static void writeEdge(OutputDevice &into, const NBEdge &e, bool noNames, LaneSpreadFunction defaultSpread)
Writes an edge (<edge ...)
static std::string prohibitionConnection(const NBConnection &c)
the attribute value for a prohibition
static void writeTrafficLights(OutputDevice &into, const NBTrafficLightLogicCont &tllCont)
writes the traffic light logics to the given device
const std::string & getID() const
Returns the id.
Definition Named.h:74
A storage for options typed value containers)
Definition OptionsCont.h:89
bool isSet(const std::string &name, bool failOnNonExistant=true) const
Returns the information whether the named option is set.
double getFloat(const std::string &name) const
Returns the double-value of the named option (only for Option_Float)
int getInt(const std::string &name) const
Returns the int-value of the named option (only for Option_Integer)
std::string getString(const std::string &name) const
Returns the string-value of the named option (only for Option_String)
bool isDefault(const std::string &name) const
Returns the information whether the named option has still the default value.
bool exists(const std::string &name) const
Returns the information whether the named option is known.
bool set(const std::string &name, const std::string &value, const bool append=false)
Sets the given value for the named option.
bool getBool(const std::string &name) const
Returns the boolean-value of the named option (only for Option_Bool)
void resetWritable()
Resets all options to be writeable.
static OptionsCont & getOptions()
Retrieves the options.
Static storage of an output device and its base (abstract) implementation.
void lf()
writes a line feed if applicable
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
OutputDevice & writePadding(const std::string &val)
writes padding (ignored for binary output)
void close()
Closes the device and removes it from the dictionary.
OutputDevice & openTag(const std::string &xmlElement)
Opens an XML tag.
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
void setPrecision(int precision=gPrecision)
Sets the precision or resets it to default.
static OutputDevice & getDevice(const std::string &name, bool usePrefix=true)
Returns the described OutputDevice.
bool writeXMLHeader(const std::string &rootElement, const std::string &schemaFile, std::map< SumoXMLAttr, std::string > attrs=std::map< SumoXMLAttr, std::string >(), bool includeConfig=true)
Writes an XML header with optional configuration.
An upper class for objects with additional parameters.
void writeParams(OutputDevice &device) const
write Params in the given outputdevice
A point in 2D or 3D with translation and scaling methods.
Definition Position.h:37
A list of positions.
double length() const
Returns the length.
PositionVector simplified() const
return the same shape with intermediate colinear points removed
PositionVector reverse() const
reverse position vector
PositionVector getSubpart(double beginOffset, double endOffset) const
get subpart of a position vector
static StringBijection< LaneSpreadFunction > LaneSpreadFunctions
lane spread functions
stop offset
bool isDefined() const
check if stopOffset was defined
SVCPermissions getPermissions() const
get permissions
double getOffset() const
get offset
T get(const std::string &str) const
get key
static std::string escapeXML(const std::string &orig, const bool maskDoubleHyphen=false)
Replaces the standard escapes by their XML entities.
static int toInt(const std::string &sData)
converts a string into the integer value described by it by calling the char-type converter,...
static void normaliseSum(std::vector< T > &v, T msum=1.0)
A structure which describes a connection between edges or lanes.
Definition NBEdge.h:201
bool indirectLeft
Whether this connection is an indirect left turn.
Definition NBEdge.h:261
int fromLane
The lane the connections starts at.
Definition NBEdge.h:210
int toLane
The lane the connections yields in.
Definition NBEdge.h:216
SVCPermissions permissions
List of vehicle types that are allowed on this connection.
Definition NBEdge.h:252
double speed
custom speed for connection
Definition NBEdge.h:240
NBEdge * toEdge
The edge the connections yields in.
Definition NBEdge.h:213
KeepClear keepClear
whether the junction must be kept clear when using this connection
Definition NBEdge.h:231
double customLength
custom length for connection
Definition NBEdge.h:246
std::string edgeType
optional type of Connection
Definition NBEdge.h:264
bool uncontrolled
check if Connection is uncontrolled
Definition NBEdge.h:298
PositionVector customShape
custom shape for connection
Definition NBEdge.h:249
bool mayDefinitelyPass
Information about being definitely free to drive (on-ramps)
Definition NBEdge.h:228
SVCPermissions changeLeft
List of vehicle types that are allowed to change Left from this connections internal lane(s)
Definition NBEdge.h:255
SVCPermissions changeRight
List of vehicle types that are allowed to change right from this connections internal lane(s)
Definition NBEdge.h:258
std::string getDescription(const NBEdge *parent) const
get string describing this connection
Definition NBEdge.cpp:104
double contPos
custom position for internal junction on this connection
Definition NBEdge.h:234
std::string getInternalLaneID() const
get ID of internal lane
Definition NBEdge.cpp:92
std::string tlID
The id of the traffic light that controls this connection.
Definition NBEdge.h:219
double visibility
custom foe visiblity for connection
Definition NBEdge.h:237
int tlLinkIndex2
The index of the internal junction within the controlling traffic light (optional)
Definition NBEdge.h:225
double length
computed length (average of all internal lane shape lengths that share an internal edge)
Definition NBEdge.h:310
std::string id
id of Connection
Definition NBEdge.h:267
int tlLinkIndex
The index of this connection within the controlling traffic light.
Definition NBEdge.h:222
An (internal) definition of a single lane of an edge.
Definition NBEdge.h:143
double width
This lane's width.
Definition NBEdge.h:176
StopOffset laneStopOffset
stopOffsets.second - The stop offset for vehicles stopping at the lane's end. Applies if vClass is in...
Definition NBEdge.h:173
PositionVector customShape
A custom shape for this lane set by the user.
Definition NBEdge.h:189
double endOffset
This lane's offset to the intersection begin.
Definition NBEdge.h:169
std::string type
the type of this lane
Definition NBEdge.h:192
SVCPermissions preferred
List of vehicle types that are preferred on this lane.
Definition NBEdge.h:160
double speed
The speed allowed on this lane.
Definition NBEdge.h:151
std::string oppositeID
An opposite lane ID, if given.
Definition NBEdge.h:179
SVCPermissions changeRight
List of vehicle types that are allowed to change right from this lane.
Definition NBEdge.h:166
double friction
The friction on this lane.
Definition NBEdge.h:154
SVCPermissions changeLeft
List of vehicle types that are allowed to change Left from this lane.
Definition NBEdge.h:163
SVCPermissions permissions
List of vehicle types that are allowed on this lane.
Definition NBEdge.h:157
bool accelRamp
Whether this lane is an acceleration lane.
Definition NBEdge.h:182
PositionVector shape
The lane's shape.
Definition NBEdge.h:148
A definition of a pedestrian walking area.
Definition NBNode.h:177
std::string id
the (edge)-id of this walkingArea
Definition NBNode.h:184
bool hasCustomShape
whether this walkingArea has a custom shape
Definition NBNode.h:200
double width
This lane's width.
Definition NBNode.h:186
PositionVector shape
The polygonal shape.
Definition NBNode.h:190
double length
This lane's width.
Definition NBNode.h:188