40#define MAGIC_OFFSET 1.
41#define LOOK_FORWARD 10.
45#define LCA_RIGHT_IMPATIENCE -1.
46#define CUT_IN_LEFT_SPEED_THRESHOLD 27.
47#define MAX_ONRAMP_LENGTH 200.
49#define LOOK_AHEAD_MIN_SPEED 0.0
50#define LOOK_AHEAD_SPEED_MEMORY 0.9
52#define HELP_DECEL_FACTOR 1.0
54#define HELP_OVERTAKE (10.0 / 3.6)
55#define MIN_FALLBEHIND (7.0 / 3.6)
59#define KEEP_RIGHT_TIME 5.0
61#define RELGAIN_NORMALIZATION_MIN_SPEED 10.0
63#define TURN_LANE_DIST 200.0
64#define GAIN_PERCEPTION_THRESHOLD 0.05
66#define ARRIVALPOS_LAT_THRESHOLD 100.0
69#define LATGAP_SPEED_THRESHOLD (50 / 3.6)
72#define LATGAP_SPEED_THRESHOLD2 (50 / 3.6)
75#define SPEEDGAIN_DECAY_FACTOR 0.5
77#define SPEEDGAIN_MEMORY_FACTOR 0.5
79#define REACT_TO_STOPPED_DISTANCE 100
105#define DEBUG_COND (myVehicle.isSelected())
117 mySpeedGainProbabilityRight(0),
118 mySpeedGainProbabilityLeft(0),
119 myKeepRightProbability(0),
120 myLeadingBlockerLength(0),
124 myCanChangeFully(true),
125 mySafeLatDistRight(0),
126 mySafeLatDistLeft(0),
134 myMinGapLat(v.getVehicleType().getMinGapLat()),
137 MAX2(NUMERICAL_EPS, myMinGapLat)) /
138 MAX2(NUMERICAL_EPS, myMinGapLat)))),
140 myMinImpatience(myImpatience),
192 const std::vector<MSVehicle::LaneQ>& preb,
195 double& latDist,
double& maneuverDist,
int& blocked) {
198 const std::string changeType = laneOffset == -1 ?
"right" : (laneOffset == 1 ?
"left" :
"current");
206 <<
" neigh=" << neighLane.
getID()
211 <<
" considerChangeTo=" << changeType
218 leaders, followers, blockers,
219 neighLeaders, neighFollowers, neighBlockers,
221 lastBlocked, firstBlocked, latDist, maneuverDist, blocked);
223 result =
keepLatGap(result, leaders, followers, blockers,
224 neighLeaders, neighFollowers, neighBlockers,
225 neighLane, laneOffset, latDist, maneuverDist, blocked);
227 result |=
getLCA(result, latDist);
229#if defined(DEBUG_MANEUVER) || defined(DEBUG_STATE)
230 double latDistTmp = latDist;
233#if defined(DEBUG_MANEUVER) || defined(DEBUG_STATE)
235 std::cout <<
SIMTIME <<
" veh=" <<
myVehicle.
getID() <<
" maneuverDist=" << maneuverDist <<
" latDist=" << latDistTmp <<
" mySpeedPrev=" <<
mySpeedLat <<
" speedLat=" <<
DIST2SPEED(latDist) <<
" latDist2=" << latDist <<
"\n";
242 <<
" wantsChangeTo=" << changeType
243 <<
" latDist=" << latDist
244 <<
" maneuverDist=" << maneuverDist
252 <<
" wantsNoChangeTo=" << changeType
309 const double newSpeed =
_patchSpeed(
MAX2(min, 0.0), wanted, max, cfModel);
310#ifdef DEBUG_PATCHSPEED
312 const std::string patched = (wanted != newSpeed ?
" patched=" +
toString(newSpeed) :
"");
319 <<
" wanted=" << wanted
338 double nVSafe = wanted;
344#ifdef DEBUG_PATCHSPEED
352 max =
MIN2(max, safe);
357 if (safe >= vMinEmergency) {
359 min =
MAX2(vMinEmergency, safe);
362#ifdef DEBUG_PATCHSPEED
364 std::cout <<
SIMTIME <<
" veh=" <<
myVehicle.
getID() <<
" slowing down for leading blocker, safe=" << safe << (safe + NUMERICAL_EPS < min ?
" (not enough)" :
"") <<
"\n";
367 nVSafe =
MAX2(min, safe);
374 double accel = i.first;
376 if (v >= min && v <= max) {
379 nVSafe =
MIN2(v, nVSafe);
381 nVSafe =
MIN2(v * coopWeight + (1 - coopWeight) * wanted, nVSafe);
384#ifdef DEBUG_PATCHSPEED
386 std::cout <<
SIMTIME <<
" veh=" <<
myVehicle.
getID() <<
" got accel=" << accel <<
" nVSafe=" << nVSafe <<
"\n";
390#ifdef DEBUG_PATCHSPEED
393 std::cout <<
SIMTIME <<
" veh=" <<
myVehicle.
getID() <<
" ignoring low nVSafe=" << v <<
" (accel=" << accel <<
") min=" << min <<
"\n";
397 std::cout <<
SIMTIME <<
" veh=" <<
myVehicle.
getID() <<
" ignoring high nVSafe=" << v <<
" (accel=" << accel <<
") max=" << max <<
"\n";
405#ifdef DEBUG_PATCHSPEED
418#if defined(DEBUG_PATCHSPEED) || defined(DEBUG_STATE)
423 return (max + wanted) / 2.0;
427#if defined(DEBUG_PATCHSPEED) || defined(DEBUG_STATE)
432 return (min + wanted) / 2.0;
435#if defined(DEBUG_PATCHSPEED) || defined(DEBUG_STATE)
440 return (max + wanted) / 2.0;
481#if defined(DEBUG_PATCHSPEED) || defined(DEBUG_STATE)
486 return (max + wanted) / 2.0;
490#if defined(DEBUG_PATCHSPEED) || defined(DEBUG_STATE)
510 if (pinfo->first >= 0) {
519 <<
" informedBy=" << sender->
getID()
520 <<
" info=" << pinfo->second
521 <<
" vSafe=" << pinfo->first
534 assert(cld.first != 0);
543 double remainingSeconds) {
549 plannedSpeed =
MIN2(plannedSpeed, v);
554 std::cout <<
" informLeader speed=" <<
myVehicle.
getSpeed() <<
" planned=" << plannedSpeed <<
"\n";
565 if (
gDebugFlag2) std::cout <<
" blocked by leader nv=" << nv->
getID() <<
" nvSpeed=" << nv->
getSpeed() <<
" needGap="
569 const double dv = plannedSpeed - nv->
getSpeed();
570 const double overtakeDist = (neighLead.second
582 || dv * remainingSeconds < overtakeDist)
583 && (!neighLead.first->isStopped() || (
isOpposite() && neighLead.second >= 0))) {
598 <<
" cannot overtake leader nv=" << nv->
getID()
600 <<
" remainingSeconds=" << remainingSeconds
601 <<
" targetSpeed=" << targetSpeed
602 <<
" nextSpeed=" << nextSpeed
613 <<
" cannot overtake fast leader nv=" << nv->
getID()
615 <<
" remainingSeconds=" << remainingSeconds
616 <<
" targetSpeed=" << targetSpeed
627 <<
" wants to overtake leader nv=" << nv->
getID()
629 <<
" remainingSeconds=" << remainingSeconds
630 <<
" currentGap=" << neighLead.second
632 <<
" overtakeDist=" << overtakeDist
642 }
else if (neighLead.first != 0) {
645 double dv, nextNVSpeed;
665 std::cout <<
" not blocked by leader nv=" << nv->
getID()
667 <<
" gap=" << neighLead.second
668 <<
" nextGap=" << neighLead.second - dv
670 <<
" targetSpeed=" << targetSpeed
674 return MIN2(targetSpeed, plannedSpeed);
686 double remainingSeconds,
687 double plannedSpeed) {
695 if (
gDebugFlag2) std::cout <<
" blocked by follower nv=" << nv->
getID() <<
" nvSpeed=" << nv->
getSpeed() <<
" needGap="
702 if ((neededGap - neighFollow.second) / remainingSeconds < (plannedSpeed - nv->
getSpeed())) {
705 std::cout <<
" wants to cut in before nv=" << nv->
getID() <<
" without any help neededGap=" << neededGap <<
"\n";
724 const double neighNewSpeed1s =
MAX2(0., nv->
getSpeed() - helpDecel);
725 const double dv = plannedSpeed - neighNewSpeed1s;
727 const double decelGap = neighFollow.second + dv;
733 <<
" egoNV=" << plannedSpeed
734 <<
" nvNewSpeed=" << neighNewSpeed
735 <<
" nvNewSpeed1s=" << neighNewSpeed1s
736 <<
" deltaGap=" << dv
737 <<
" decelGap=" << decelGap
738 <<
" secGap=" << secureGap
742 if (decelGap > 0 && decelGap >= secureGap) {
757 std::cout <<
" wants to cut in before nv=" << nv->
getID()
758 <<
" vsafe1=" << vsafe1
759 <<
" vsafe=" << vsafe
764 }
else if (dv > 0 && dv * remainingSeconds > (secureGap - decelGap + POSITION_EPS)) {
769 std::cout <<
" wants to cut in before nv=" << nv->
getID() <<
" (eventually)\n";
777 std::cout <<
" wants to cut in before nv=" << nv->
getID() <<
" (nv cannot overtake right)\n";
793 std::cout <<
" wants right follower to slow down a bit\n";
799 std::cout <<
" wants to cut in before right follower nv=" << nv->
getID() <<
" (eventually)\n";
808 const double overtakeDist = (neighFollow.second
814 const double needDV = overtakeDist / remainingSeconds;
822 <<
" wants to be overtaken by=" << nv->
getID()
823 <<
" overtakeDist=" << overtakeDist
825 <<
" vhelp=" << vhelp
826 <<
" needDV=" << needDV
832 }
else if (neighFollow.first != 0) {
837 std::cout <<
" wants to cut in before non-blocking follower nv=" << neighFollow.first->getID() <<
"\n";
845 const std::vector<CLeaderDist>& blockers,
846 double remainingSeconds) {
858 plannedSpeed =
MIN2(plannedSpeed, safe);
860 for (std::vector<CLeaderDist>::const_iterator it = blockers.begin(); it != blockers.end(); ++it) {
861 plannedSpeed =
MIN2(plannedSpeed,
informLeader(blocked, dir, *it, remainingSeconds));
869 const std::vector<CLeaderDist>& blockers,
870 double remainingSeconds,
871 double plannedSpeed) {
873 for (std::vector<CLeaderDist>::const_iterator it = blockers.begin(); it != blockers.end(); ++it) {
874 informFollower(blocked, dir, *it, remainingSeconds, plannedSpeed);
899 const double halfWidth =
getWidth() * 0.5;
912 std::vector<double> newExpectedSpeeds;
921 const std::vector<MSLane*>& lanes = currEdge->
getLanes();
922 for (std::vector<MSLane*>::const_iterator it_lane = lanes.begin(); it_lane != lanes.end(); ++it_lane) {
924 for (
int i = 0; i < subLanes; ++i) {
925 newExpectedSpeeds.push_back((*it_lane)->getVehicleMaxSpeed(&
myVehicle));
931 for (
int i = 0; i < subLanes; ++i) {
932 newExpectedSpeeds.push_back(lanes.back()->getVehicleMaxSpeed(&
myVehicle));
940 if (subLaneShift < std::numeric_limits<int>::max()) {
942 const int newI = i + subLaneShift;
943 if (newI > 0 && newI < (
int)newExpectedSpeeds.size()) {
979 for (
const MSLink*
const link : lane->getLinkCont()) {
980 if (&link->getLane()->getEdge() == curEdge) {
982 const MSLane* target = link->getLane();
983 const std::vector<MSLane*>& lanes2 = curEdge->
getLanes();
984 for (std::vector<MSLane*>::const_iterator it_lane2 = lanes2.begin(); it_lane2 != lanes2.end(); ++it_lane2) {
985 const MSLane* lane2 = *it_lane2;
986 if (lane2 == target) {
987 return prevShift + curShift;
998 return std::numeric_limits<int>::max();
1032#if defined(DEBUG_MANEUVER) || defined(DEBUG_STATE)
1065 const std::vector<MSVehicle::LaneQ>& preb,
1068 double& latDist,
double& maneuverDist,
int& blocked) {
1070 if (laneOffset != 0) {
1072 const double halfWidth =
getWidth() * 0.5;
1074 if (laneOffset < 0) {
1084 int bestLaneOffset = 0;
1085 double currentDist = 0;
1086 double neighDist = 0;
1098 const int prebOffset = (checkOpposite ? 0 : laneOffset);
1099 for (
int p = 0; p < (int) preb.size(); ++p) {
1100 if (preb[p].lane == prebLane && p + laneOffset >= 0) {
1101 assert(p + prebOffset < (
int)preb.size());
1103 neigh = preb[p + prebOffset];
1104 currentDist = curr.
length;
1105 neighDist = neigh.
length;
1108 if (bestLaneOffset == 0 && preb[p + prebOffset].bestLaneOffset == 0 && !checkOpposite) {
1109#ifdef DEBUG_WANTSCHANGE
1113 <<
" bestLaneOffsetOld=" << bestLaneOffset
1114 <<
" bestLaneOffsetNew=" << laneOffset
1118 bestLaneOffset = prebOffset;
1120 best = preb[p + bestLaneOffset];
1124 assert(curr.
lane !=
nullptr);
1125 assert(neigh.
lane !=
nullptr);
1126 assert(best.
lane !=
nullptr);
1127 double driveToNextStop = -std::numeric_limits<double>::max();
1136#ifdef DEBUG_WANTS_CHANGE
1141 <<
" stopPos=" << stopPos
1142 <<
" currentDist=" << currentDist
1143 <<
" neighDist=" << neighDist
1147 currentDist =
MAX2(currentDist, stopPos);
1148 neighDist =
MAX2(neighDist, stopPos);
1151 const bool right = (laneOffset == -1);
1152 const bool left = (laneOffset == 1);
1155 const bool changeToBest = (right && bestLaneOffset < 0) || (left && bestLaneOffset > 0) || (laneOffset == 0 && bestLaneOffset == 0);
1181#ifdef DEBUG_WANTSCHANGE
1188 <<
"\n leaders=" << leaders.
toString()
1189 <<
"\n followers=" << followers.
toString()
1190 <<
"\n blockers=" << blockers.
toString()
1191 <<
"\n neighLeaders=" << neighLeaders.
toString()
1192 <<
"\n neighFollowers=" << neighFollowers.
toString()
1193 <<
"\n neighBlockers=" << neighBlockers.
toString()
1194 <<
"\n changeToBest=" << changeToBest
1195 <<
" latLaneDist=" << latLaneDist
1204 if (lastBlocked != firstBlocked) {
1255 for (
int i = 0; i < neighLeaders.
numSublanes(); ++i) {
1257 if (vehDist.first !=
nullptr && vehDist.first->isStopped()) {
1275 currentDist += roundaboutBonus;
1276 neighDist += roundaboutBonus;
1278 if (laneOffset != 0) {
1296 if ((ret &
LCA_STAY) != 0 && latDist == 0) {
1309 if (changeToBest && abs(bestLaneOffset) > 1
1315#ifdef DEBUG_WANTSCHANGE
1317 std::cout <<
" reserving space for unseen blockers myLeadingBlockerLength=" <<
myLeadingBlockerLength <<
"\n";
1326#ifdef DEBUG_WANTSCHANGE
1332 if (*firstBlocked != neighLeadLongest &&
tieBrakeLeader(*firstBlocked)) {
1341 std::vector<CLeaderDist> collectLeadBlockers;
1342 std::vector<CLeaderDist> collectFollowBlockers;
1343 int blockedFully = 0;
1344 maneuverDist = latDist;
1346 blocked =
checkBlocking(neighLane, latDist, maneuverDist, laneOffset,
1347 leaders, followers, blockers,
1348 neighLeaders, neighFollowers, neighBlockers, &collectLeadBlockers, &collectFollowBlockers,
1349 false, gapFactor, &blockedFully);
1351 const double absLaneOffset = fabs(bestLaneOffset != 0 ? bestLaneOffset : latDist /
SUMO_const_laneWidth);
1352 const double remainingSeconds = ((ret &
LCA_TRACI) == 0 ?
1355 const double plannedSpeed =
informLeaders(blocked, myLca, collectLeadBlockers, remainingSeconds);
1357 if (plannedSpeed >= 0) {
1359 informFollowers(blocked, myLca, collectFollowBlockers, remainingSeconds, plannedSpeed);
1361 if (plannedSpeed > 0) {
1362 commitManoeuvre(blocked, blockedFully, leaders, neighLeaders, neighLane, maneuverDist);
1364#if defined(DEBUG_WANTSCHANGE) || defined(DEBUG_STATE)
1371 <<
" remainingSeconds=" << remainingSeconds
1372 <<
" plannedSpeed=" << plannedSpeed
1383 if (roundaboutBonus > 0) {
1385#ifdef DEBUG_WANTS_CHANGE
1389 <<
" roundaboutBonus=" << roundaboutBonus
1400 latDist = latLaneDist;
1401 maneuverDist = latLaneDist;
1402 blocked =
checkBlocking(neighLane, latDist, maneuverDist, laneOffset,
1403 leaders, followers, blockers,
1404 neighLeaders, neighFollowers, neighBlockers);
1408 ret &= ~LCA_COOPERATIVE;
1424 const double inconvenience = (latLaneDist < 0
1427#ifdef DEBUG_COOPERATE
1435 <<
" inconvenience=" << inconvenience
1437 <<
" wantsChangeToHelp=" << (right ?
"right" :
"left")
1454 && (changeToBest ||
currentDistAllows(neighDist, abs(bestLaneOffset) + 1, laDist))) {
1457#ifdef DEBUG_COOPERATE
1459 std::cout <<
" wants cooperative change\n";
1466 maneuverDist = latDist;
1467 blocked =
checkBlocking(neighLane, latDist, maneuverDist, laneOffset,
1468 leaders, followers, blockers,
1469 neighLeaders, neighFollowers, neighBlockers);
1495 const double vehWidth =
getWidth();
1497 const double leftVehSide = rightVehSide + vehWidth;
1499 double defaultNextSpeed = std::numeric_limits<double>::max();
1501 int leftmostOnEdge = (int)sublaneSides.size() - 1;
1502 while (leftmostOnEdge > 0 && sublaneSides[leftmostOnEdge] > leftVehSide) {
1505 int rightmostOnEdge = leftmostOnEdge;
1506 while (rightmostOnEdge > 0 && sublaneSides[rightmostOnEdge] > rightVehSide + NUMERICAL_EPS) {
1508#ifdef DEBUG_WANTSCHANGE
1510 std::cout <<
" adapted to current sublane=" << rightmostOnEdge <<
" defaultNextSpeed=" << defaultNextSpeed <<
"\n";
1511 std::cout <<
" sublaneSides[rightmostOnEdge]=" << sublaneSides[rightmostOnEdge] <<
" rightVehSide=" << rightVehSide <<
"\n";
1517#ifdef DEBUG_WANTSCHANGE
1519 std::cout <<
" adapted to current sublane=" << rightmostOnEdge <<
" defaultNextSpeed=" << defaultNextSpeed <<
"\n";
1520 std::cout <<
" sublaneSides[rightmostOnEdge]=" << sublaneSides[rightmostOnEdge] <<
" rightVehSide=" << rightVehSide <<
"\n";
1523 double maxGain = -std::numeric_limits<double>::max();
1524 double maxGainRight = -std::numeric_limits<double>::max();
1525 double maxGainLeft = -std::numeric_limits<double>::max();
1526 double latDistNice = std::numeric_limits<double>::max();
1529 double leftMax =
MAX2(
1536 assert(leftMax <= edge.
getWidth());
1538 int sublaneCompact =
MAX2(iMin, rightmostOnEdge - 1);
1544 const double maxLatDist = leftMax - leftVehSide;
1545 const double minLatDist = rightMin - rightVehSide;
1546 const int iStart = laneOffset == 0 ? iMin : 0;
1547 const double rightEnd = laneOffset == 0 ? leftMax : (checkOpposite ?
getLeftBorder() : edge.
getWidth());
1548#ifdef DEBUG_WANTSCHANGE
1550 <<
" checking sublanes rightmostOnEdge=" << rightmostOnEdge
1551 <<
" rightEnd=" << rightEnd
1552 <<
" leftmostOnEdge=" << leftmostOnEdge
1553 <<
" iStart=" << iStart
1555 <<
" sublaneSides=" << sublaneSides.size()
1556 <<
" leftMax=" << leftMax
1557 <<
" minLatDist=" << minLatDist
1558 <<
" maxLatDist=" << maxLatDist
1559 <<
" sublaneCompact=" << sublaneCompact
1562 for (
int i = iStart; i < (int)sublaneSides.size(); ++i) {
1563 if (sublaneSides[i] + vehWidth < rightEnd) {
1569 while (vMin > 0 && j < (
int)sublaneSides.size() && sublaneSides[j] < sublaneSides[i] + vehWidth) {
1571#ifdef DEBUG_WANTSCHANGE
1579 if (laneOffset != 0 &&
overlap(sublaneSides[i], sublaneSides[i] + vehWidth, laneBoundary, laneBoundary)) {
1583 double currentLatDist = sublaneSides[i] - rightVehSide;
1584 if ((laneOffset == 0 && (currentLatDist > maxLatDist || currentLatDist < minLatDist))
1585 || (laneOffset < 0 && currentLatDist > maxLatDist)
1586 || (laneOffset > 0 && currentLatDist < minLatDist)) {
1587#ifdef DEBUG_WANTSCHANGE
1589 std::cout <<
" i=" << i <<
" currentLatDist=" << currentLatDist <<
" outOfBounds\n";
1594 currentLatDist =
MIN2(
MAX2(currentLatDist, minLatDist), maxLatDist);
1598 relativeGain *= 0.5;
1601 if (relativeGain > maxGain && currentLatDist * laneOffset >= 0) {
1602 maxGain = relativeGain;
1605 latDist = currentLatDist;
1606#ifdef DEBUG_WANTSCHANGE
1608 std::cout <<
" i=" << i <<
" vMin=" << vMin <<
" newLatDist=" << latDist <<
" relGain=" << relativeGain <<
"\n";
1614 if (currentLatDist > 0
1618 && maxGain - relativeGain < NUMERICAL_EPS) {
1619 latDist = currentLatDist;
1622#ifdef DEBUG_WANTSCHANGE
1624 std::cout <<
" i=" << i <<
" rightmostOnEdge=" << rightmostOnEdge <<
" vMin=" << vMin <<
" relGain=" << relativeGain <<
" sublaneCompact=" << sublaneCompact <<
" curLatDist=" << currentLatDist <<
"\n";
1628 maxGainRight =
MAX2(maxGainRight, relativeGain);
1630 maxGainLeft =
MAX2(maxGainLeft, relativeGain);
1632 const double subAlignDist = sublaneSides[i] - rightVehSide;
1633 if (fabs(subAlignDist) < fabs(latDistNice)) {
1634 latDistNice = subAlignDist;
1635#ifdef DEBUG_WANTSCHANGE
1637 <<
" nicest sublane=" << i
1638 <<
" side=" << sublaneSides[i]
1639 <<
" rightSide=" << rightVehSide
1640 <<
" latDistNice=" << latDistNice
1641 <<
" maxGainR=" << (maxGainRight == -std::numeric_limits<double>::max() ?
"n/a" :
toString(maxGainRight))
1642 <<
" maxGainL=" << (maxGainLeft == -std::numeric_limits<double>::max() ?
"n/a" :
toString(maxGainLeft))
1649 if (maxGainRight != -std::numeric_limits<double>::max()) {
1650#ifdef DEBUG_WANTSCHANGE
1656#ifdef DEBUG_WANTSCHANGE
1662 if (maxGainLeft != -std::numeric_limits<double>::max()) {
1663#ifdef DEBUG_WANTSCHANGE
1669#ifdef DEBUG_WANTSCHANGE
1676 if ((fabs(maxGainRight) < NUMERICAL_EPS || maxGainRight == -std::numeric_limits<double>::max())
1677 && (right || (alternatives &
LCA_RIGHT) == 0)) {
1680 if ((fabs(maxGainLeft) < NUMERICAL_EPS || maxGainLeft == -std::numeric_limits<double>::max())
1681 && (left || (alternatives &
LCA_LEFT) == 0)) {
1686#ifdef DEBUG_WANTSCHANGE
1689 <<
" defaultNextSpeed=" << defaultNextSpeed
1690 <<
" maxGain=" << maxGain
1691 <<
" maxGainRight=" << maxGainRight
1692 <<
" maxGainLeft=" << maxGainLeft
1695 <<
" latDist=" << latDist
1696 <<
" latDistNice=" << latDistNice
1697 <<
" sublaneCompact=" << sublaneCompact
1710 double acceptanceTime;
1719 double minFactor = 1.0;
1720 for (
int i = 0; i < followers.
numSublanes(); ++i) {
1722 if (follower.first !=
nullptr && follower.second < 2 * follower.first->getCarFollowModel().brakeGap(follower.first->getSpeed())) {
1725 const double fRSF = follower.first->getLane()->getVehicleMaxSpeed(follower.first) / follower.first->getLane()->getSpeedLimit();
1726 if (fRSF > roadSpeedFactor) {
1729 if (factor < minFactor) {
1735 acceptanceTime *= minFactor;
1739 double fullSpeedDrivingSeconds =
MIN2(acceptanceTime, fullSpeedGap / vMax);
1741 if (neighLead.first != 0 && neighLead.first->getSpeed() < vMax) {
1742 fullSpeedGap =
MAX2(0.,
MIN2(fullSpeedGap,
1744 vMax, neighLead.first->
getSpeed(), neighLead.first->getCarFollowModel().getMaxDecel())));
1745 fullSpeedDrivingSeconds =
MIN2(fullSpeedDrivingSeconds, fullSpeedGap / (vMax - neighLead.first->getSpeed()));
1754#ifdef DEBUG_WANTSCHANGE
1757 <<
" considering keepRight:"
1759 <<
" neighDist=" << neighDist
1761 <<
" leaderSpeed=" << (neighLead.first == 0 ? -1 : neighLead.first->getSpeed())
1763 myVehicle.
getSpeed(), neighLead.first->getSpeed(), neighLead.first->getCarFollowModel().getMaxDecel()))
1764 <<
" acceptanceTime=" << acceptanceTime
1765 <<
" fullSpeedGap=" << fullSpeedGap
1766 <<
" fullSpeedDrivingSeconds=" << fullSpeedDrivingSeconds
1767 <<
" dProb=" << deltaProb
1768 <<
" isSlide=" << isSlide
1779 latDist = latLaneDist;
1780 maneuverDist = latLaneDist;
1781 blocked =
checkBlocking(neighLane, latDist, maneuverDist, laneOffset,
1782 leaders, followers, blockers,
1783 neighLeaders, neighFollowers, neighBlockers);
1786 ret &= ~LCA_KEEPRIGHT;
1792#ifdef DEBUG_WANTSCHANGE
1797 <<
" neighDist=" << neighDist
1801 <<
" latDist=" << latDist
1811 int blockedFully = 0;
1812 maneuverDist = latDist;
1813 blocked =
checkBlocking(neighLane, latDist, maneuverDist, laneOffset,
1814 leaders, followers, blockers,
1815 neighLeaders, neighFollowers, neighBlockers,
1816 nullptr,
nullptr,
false, 0, &blockedFully);
1822 ret &= ~LCA_SPEEDGAIN;
1829#ifdef DEBUG_WANTSCHANGE
1834 <<
" latDist=" << latDist
1835 <<
" neighDist=" << neighDist
1838 <<
" stayInLane=" << stayInLane
1849 int blockedFully = 0;
1850 maneuverDist = latDist;
1851 blocked =
checkBlocking(neighLane, latDist, maneuverDist, laneOffset,
1852 leaders, followers, blockers,
1853 neighLeaders, neighFollowers, neighBlockers,
1854 nullptr,
nullptr,
false, 0, &blockedFully);
1859 ret &= ~LCA_SPEEDGAIN;
1864 double latDistSublane = 0.;
1866 const double halfVehWidth =
getWidth() * 0.5;
1869 && bestLaneOffset == 0
1889#ifdef DEBUG_WANTSCHANGE
1900 latDistSublane = -halfLaneWidth + halfVehWidth -
getPosLat();
1903 latDistSublane = halfLaneWidth - halfVehWidth -
getPosLat();
1910 latDistSublane = latDistNice;
1913 latDistSublane = sublaneSides[sublaneCompact] - rightVehSide;
1919 if (fabs(posLat) > hLW) {
1922 latDistSublane -= (posLat - hLW);
1924 latDistSublane += (-posLat - hLW);
1929 if (rightVehSide < 0) {
1930 latDistSublane -= rightVehSide;
1931 }
else if (leftVehSide > edgeWidth) {
1932 latDistSublane -= leftVehSide - edgeWidth;
1951 latDistSublane * latDist > 0) {
1953#if defined(DEBUG_WANTSCHANGE) || defined(DEBUG_STATE) || defined(DEBUG_MANEUVER)
1958 <<
" latDist=" << latDist
1959 <<
" latDistSublane=" << latDistSublane
1960 <<
" relGainSublane=" <<
computeSpeedGain(latDistSublane, defaultNextSpeed)
1961 <<
" maneuverDist=" << maneuverDist
1973#if defined(DEBUG_WANTSCHANGE)
1975 <<
" speedGain=" <<
computeSpeedGain(latDistSublane, defaultNextSpeed) <<
")\n";
1983#if defined(DEBUG_WANTSCHANGE)
1985 std::cout <<
" aborting sublane change due to prior maneuver\n";
1990 latDist = latDistSublane * (
isOpposite() ? -1 : 1);
1995#ifdef DEBUG_WANTSCHANGE
1998 <<
" latDist=" << latDist
2006#ifdef DEBUG_WANTSCHANGE
2012 maneuverDist = latDist;
2013 blocked =
checkBlocking(neighLane, latDist, maneuverDist, laneOffset,
2014 leaders, followers, blockers,
2015 neighLeaders, neighFollowers, neighBlockers);
2018 ret &= ~LCA_SUBLANE;
2044#ifdef DEBUG_WANTSCHANGE
2061 if ((*blocked) !=
nullptr) {
2063#ifdef DEBUG_SLOWDOWN
2072 if (gap > POSITION_EPS) {
2086 (gap - POSITION_EPS), (*blocked)->getSpeed(),
2087 (*blocked)->getCarFollowModel().getMaxDecel()),
false);
2105 if (cand !=
nullptr && cand->getBidiLane() == lane) {
2119 assert(preb.size() == lanes.size() ||
isOpposite());
2120#ifdef DEBUG_EXPECTED_SLSPEED
2123 <<
" sublaneOffset=" << sublaneOffset <<
" laneIndex=" << laneIndex <<
" lane=" << lane->
getID() <<
" ahead=" << ahead.
toString() <<
"\n";
2127 for (
int sublane = 0; sublane < (int)ahead.
numSublanes(); ++sublane) {
2128 const int edgeSublane = sublane + sublaneOffset;
2136 const MSVehicle* leader = ahead[sublane].first;
2137 const double gap = ahead[sublane].second;
2139 if (leader ==
nullptr) {
2144 const int prebIndex =
isOpposite() ? (int)preb.size() - 1 : laneIndex;
2155#ifdef DEBUG_EXPECTED_SLSPEED
2157 std::cout <<
SIMTIME <<
" updateExpectedSublaneSpeeds sublane=" << sublane <<
" leader=" << leader->
getID() <<
" bidi=" << bidi->
getID() <<
" gap=" << gap <<
" vSafe=" << vSafe <<
"\n";
2167#ifdef DEBUG_EXPECTED_SLSPEED
2169 std::cout <<
" updateExpectedSublaneSpeeds edgeSublane=" << edgeSublane <<
" leader=" << leader->
getID() <<
" gap=" << gap <<
" vSafe=" << vSafe <<
"\n";
2178 double foeRight, foeLeft;
2182 if (pedLeader.first != 0) {
2187#ifdef DEBUG_EXPECTED_SLSPEED
2189 std::cout <<
" updateExpectedSublaneSpeeds edgeSublane=" << edgeSublane <<
" pedLeader=" << pedLeader.first->getID() <<
" gap=" << pedGap <<
" vSafe=" << vSafe <<
"\n";
2197 double foeRight, foeLeft;
2199 const double foeRightBidi = bidi->
getWidth() - foeLeft;
2200 const double foeLeftBidi = bidi->
getWidth() - foeRight;
2205 if (pedLeader.first != 0) {
2210#ifdef DEBUG_EXPECTED_SLSPEED
2212 std::cout <<
" updateExpectedSublaneSpeeds edgeSublane=" << edgeSublane <<
" pedLeader=" << pedLeader.first->getID() <<
" (bidi) gap=" << pedGap <<
" vSafe=" << vSafe <<
"\n";
2217 vSafe =
MIN2(vMax, vSafe);
2232 const double deltaV = vMax - vLeader;
2233 if (deltaV > 0 && gap / deltaV < mySpeedGainLookahead && mySpeedGainLookahead > 0) {
2237 const double gapClosingTime =
MAX2(0.0, gap / deltaV);
2238 const double vSafe2 = (gapClosingTime * vSafe + (foreCastTime - gapClosingTime) * vLeader) / foreCastTime;
2239#ifdef DEBUG_EXPECTED_SLSPEED
2241 std::cout <<
" foreCastTime=" << foreCastTime <<
" gapClosingTime=" << gapClosingTime <<
" extrapolated vSafe=" << vSafe2 <<
"\n";
2252 double result = std::numeric_limits<double>::max();
2254 const double vehWidth =
getWidth();
2256 const double leftVehSide = rightVehSide + vehWidth;
2257 for (
int i = 0; i < (int)sublaneSides.size(); ++i) {
2259 if (
overlap(rightVehSide, leftVehSide, sublaneSides[i], leftSide)) {
2264 return result - defaultNextSpeed;
2271 double maxLength = -1;
2282 return iMax >= 0 ? ldi[iMax] : std::make_pair(
nullptr, -1);
2299 double minSpeed = std::numeric_limits<double>::max();
2301 if (ldi[i].first != 0) {
2302 const double speed = ldi[i].first->getSpeed();
2303 if (speed < minSpeed) {
2321 std::vector<CLeaderDist>* collectLeadBlockers,
2322 std::vector<CLeaderDist>* collectFollowBlockers,
2323 bool keepLatGapManeuver,
2325 int* retBlockedFully) {
2328 latDist =
MAX2(
MIN2(latDist, maxDist), -maxDist);
2337 if (laneOffset != 0) {
2348 if (laneOffset != 0) {
2352#ifdef DEBUG_BLOCKING
2364 }
else if (!forcedTraCIChange) {
2370 }
else if (!forcedTraCIChange) {
2376#ifdef DEBUG_BLOCKING
2378 std::cout <<
" checkBlocking fully=" <<
myCanChangeFully <<
" latDist=" << latDist <<
" maneuverDist=" << maneuverDist <<
"\n";
2392 if (laneOffset != 0) {
2399 int blockedFully = 0;
2404 if (laneOffset != 0) {
2410 if (retBlockedFully !=
nullptr) {
2411 *retBlockedFully = blockedFully;
2418 blocked |= blockedFully;
2423 if (collectFollowBlockers !=
nullptr && collectLeadBlockers !=
nullptr) {
2425 for (std::vector<CLeaderDist>::const_iterator it2 = collectLeadBlockers->begin(); it2 != collectLeadBlockers->end(); ++it2) {
2426 for (std::vector<CLeaderDist>::iterator it = collectFollowBlockers->begin(); it != collectFollowBlockers->end();) {
2427 if ((*it2).first == (*it).first) {
2428#ifdef DEBUG_BLOCKING
2430 std::cout <<
" removed follower " << (*it).first->getID() <<
" because it is already a leader\n";
2433 it = collectFollowBlockers->erase(it);
2447 int laneOffset,
double latDist,
double foeOffset,
bool leaders,
2448 double& safeLatGapRight,
double& safeLatGapLeft,
2449 std::vector<CLeaderDist>* collectBlockers)
const {
2456 const double vehWidth =
getWidth();
2458 const double leftVehSide = rightVehSide + vehWidth;
2459 const double rightVehSideDest = rightVehSide + latDist;
2460 const double leftVehSideDest = leftVehSide + latDist;
2461 const double rightNoOverlap =
MIN2(rightVehSideDest, rightVehSide);
2462 const double leftNoOverlap =
MAX2(leftVehSideDest, leftVehSide);
2463#ifdef DEBUG_BLOCKING
2465 std::cout <<
" checkBlockingVehicles"
2466 <<
" laneOffset=" << laneOffset
2467 <<
" latDist=" << latDist
2468 <<
" foeOffset=" << foeOffset
2469 <<
" vehRight=" << rightVehSide
2470 <<
" vehLeft=" << leftVehSide
2471 <<
" rightNoOverlap=" << rightNoOverlap
2472 <<
" leftNoOverlap=" << leftNoOverlap
2473 <<
" destRight=" << rightVehSideDest
2474 <<
" destLeft=" << leftVehSideDest
2475 <<
" leaders=" << leaders
2481 for (
int i = 0; i < vehicles.
numSublanes(); ++i) {
2483 if (vehDist.first != 0 &&
myCFRelated.count(vehDist.first) == 0) {
2484 const MSVehicle* leader = vehDist.first;
2490 double foeRight, foeLeft;
2492 const bool overlapBefore =
overlap(rightVehSide, leftVehSide, foeRight, foeLeft);
2493 const bool overlapDest =
overlap(rightVehSideDest, leftVehSideDest, foeRight, foeLeft);
2494 const bool overlapAny =
overlap(rightNoOverlap, leftNoOverlap, foeRight, foeLeft);
2495#ifdef DEBUG_BLOCKING
2497 std::cout <<
" foe=" << vehDist.first->getID()
2498 <<
" gap=" << vehDist.second
2500 <<
" foeRight=" << foeRight
2501 <<
" foeLeft=" << foeLeft
2502 <<
" overlapBefore=" << overlapBefore
2503 <<
" overlap=" << overlapAny
2504 <<
" overlapDest=" << overlapDest
2509 if (vehDist.second < 0) {
2510 if (overlapBefore && !overlapDest && !
outsideEdge()) {
2511#ifdef DEBUG_BLOCKING
2513 std::cout <<
" ignoring current overlap to come clear\n";
2517#ifdef DEBUG_BLOCKING
2523 if (collectBlockers ==
nullptr) {
2526 collectBlockers->push_back(vehDist);
2542 const double expectedGap =
MSCFModel::gapExtrapolation(timeTillAction, vehDist.second, leader->
getSpeed(), follower->
getSpeed(), leaderAccel, followerAccel, std::numeric_limits<double>::max(), std::numeric_limits<double>::max());
2545 const double followerExpectedSpeed = follower->
getSpeed() + timeTillAction * followerAccel;
2546 const double leaderExpectedSpeed =
MAX2(0., leader->
getSpeed() + timeTillAction * leaderAccel);
2549#if defined(DEBUG_ACTIONSTEPS) && defined(DEBUG_BLOCKING)
2551 std::cout <<
" timeTillAction=" << timeTillAction
2552 <<
" followerAccel=" << followerAccel
2553 <<
" followerExpectedSpeed=" << followerExpectedSpeed
2554 <<
" leaderAccel=" << leaderAccel
2555 <<
" leaderExpectedSpeed=" << leaderExpectedSpeed
2556 <<
"\n gap=" << vehDist.second
2557 <<
" gapChange=" << (expectedGap - vehDist.second)
2558 <<
" expectedGap=" << expectedGap
2559 <<
" expectedSecureGap=" << expectedSecureGap
2560 <<
" safeLatGapLeft=" << safeLatGapLeft
2561 <<
" safeLatGapRight=" << safeLatGapRight
2568 if (expectedGap < secureGap2) {
2570 if (foeRight > leftVehSide) {
2571 safeLatGapLeft =
MIN2(safeLatGapLeft, foeRight - leftVehSide);
2572 }
else if (foeLeft < rightVehSide) {
2573 safeLatGapRight =
MIN2(safeLatGapRight, rightVehSide - foeLeft);
2576#ifdef DEBUG_BLOCKING
2578 std::cout <<
" blocked by " << vehDist.first->getID() <<
" gap=" << vehDist.second <<
" expectedGap=" << expectedGap
2579 <<
" expectedSecureGap=" << expectedSecureGap <<
" secGap2=" << secureGap2 <<
" safetyFactor=" <<
getSafetyFactor()
2580 <<
" safeLatGapLeft=" << safeLatGapLeft <<
" safeLatGapRight=" << safeLatGapRight
2584 result |= blockType;
2585 if (collectBlockers ==
nullptr) {
2588#ifdef DEBUG_BLOCKING
2589 }
else if (
gDebugFlag2 && expectedGap < expectedSecureGap) {
2590 std::cout <<
" ignore blocker " << vehDist.first->getID() <<
" gap=" << vehDist.second <<
" expectedGap=" << expectedGap
2591 <<
" expectedSecureGap=" << expectedSecureGap <<
" secGap2=" << secureGap2 <<
" safetyFactor=" <<
getSafetyFactor() <<
"\n";
2594 if (collectBlockers !=
nullptr) {
2597 collectBlockers->push_back(vehDist);
2614 const double leftVehSide = rightVehSide + vehWidth;
2615#ifdef DEBUG_BLOCKING
2617 std::cout <<
" updateCFRelated foeOffset=" << foeOffset <<
" vehicles=" << vehicles.
toString() <<
"\n";
2620 for (
int i = 0; i < vehicles.
numSublanes(); ++i) {
2622 if (vehDist.first != 0 && (
myCFRelated.count(vehDist.first) == 0 || vehDist.second < 0)) {
2623 double foeRight, foeLeft;
2625#ifdef DEBUG_BLOCKING
2627 std::cout <<
" foe=" << vehDist.first->getID() <<
" gap=" << vehDist.second
2629 <<
" foeOffset=" << foeOffset
2630 <<
" egoR=" << rightVehSide <<
" egoL=" << leftVehSide
2631 <<
" iR=" << foeRight <<
" iL=" << foeLeft
2637 if (
overlap(rightVehSide, leftVehSide, foeRight, foeLeft) && !
outsideEdge() && (vehDist.second >= 0
2643 && -vehDist.second < vehDist.first->getVehicleType().getMinGap()
2646#ifdef DEBUG_BLOCKING
2648 std::cout <<
" ignoring cfrelated foe=" << vehDist.first->getID() <<
"\n";
2653 const int erased = (int)
myCFRelated.erase(vehDist.first);
2654#ifdef DEBUG_BLOCKING
2656 std::cout <<
" restoring cfrelated foe=" << vehDist.first->getID() <<
"\n";
2669 assert(right <= left);
2670 assert(right2 <= left2);
2671 return left2 >= right + NUMERICAL_EPS && left >= right2 + NUMERICAL_EPS;
2692 return changeReason;
2699 if (sd1.
state == 0) {
2701 }
else if (sd2.
state == 0) {
2711#ifdef DEBUG_DECISION
2717 <<
" dir1=" << sd1.
dir
2721 <<
" dir2=" << sd2.
dir
2737 if (reason1 < reason2) {
2739 return (!can1 && can2 && sd1.
sameDirection(sd2)) ? sd2 : sd1;
2741 }
else if (reason1 > reason2) {
2743 return (!can2 && can1 && sd1.
sameDirection(sd2)) ? sd1 : sd2;
2751 }
else if (sd2.
dir == 0) {
2756 assert(sd1.
dir == -1);
2757 assert(sd2.
dir == 1);
2760 }
else if (sd2.
latDist >= 0) {
2816 double& currentDist,
2819 double roundaboutBonus,
2824 const bool right = (laneOffset == -1);
2825 const bool left = (laneOffset == 1);
2832 const double neighLeftPlace =
MAX2(0., neighDist - forwardPos - maxJam);
2835#ifdef DEBUG_STRATEGIC_CHANGE
2839 <<
" forwardPos=" << forwardPos
2841 <<
" laDist=" << laDist
2842 <<
" currentDist=" << currentDist
2843 <<
" usableDist=" << usableDist
2844 <<
" bestLaneOffset=" << bestLaneOffset
2845 <<
" best.length=" << best.
length
2846 <<
" maxJam=" << maxJam
2847 <<
" neighLeftPlace=" << neighLeftPlace
2853 if (laneOffset != 0 && changeToBest && bestLaneOffset == curr.
bestLaneOffset
2856 if (!
mustOvertakeStopped(
false, neighLane, neighLeaders, leaders, forwardPos, neighDist, right, latLaneDist, currentDist, latDist)) {
2857 latDist = latLaneDist;
2859#ifdef DEBUG_STRATEGIC_CHANGE
2861 std::cout <<
SIMTIME <<
" mustChangeToBest\n";
2865#ifdef DEBUG_STRATEGIC_CHANGE
2867 std::cout <<
" veh=" <<
myVehicle.
getID() <<
" avoidStoppedNeigh\n";
2886#ifdef DEBUG_STRATEGIC_CHANGE
2889 <<
" avoid overtaking on the right nv=" << nv->
getID()
2901 if (laneOffset != 0 &&
myStrategicParam >= 0 && noOpposites &&
mustOvertakeStopped(
true, neighLane, leaders, neighLeaders, forwardPos, neighDist, right, latLaneDist, currentDist, latDist)) {
2902#ifdef DEBUG_STRATEGIC_CHANGE
2904 std::cout <<
" veh=" <<
myVehicle.
getID() <<
" mustOvertakeStopped\n";
2913 }
else if (!changeToBest && (
currentDistDisallows(neighLeftPlace, abs(bestLaneOffset) + 2, laDist))) {
2920#ifdef DEBUG_STRATEGIC_CHANGE
2922 std::cout <<
" veh=" <<
myVehicle.
getID() <<
" could not change back and forth in time (1) neighLeftPlace=" << neighLeftPlace <<
"\n";
2928 && bestLaneOffset == 0
2931 && roundaboutBonus == 0
2938#ifdef DEBUG_STRATEGIC_CHANGE
2940 std::cout <<
" veh=" <<
myVehicle.
getID() <<
" does not want to leave the bestLane (neighDist=" << neighDist <<
")\n";
2945 && bestLaneOffset == 0
2951#ifdef DEBUG_STRATEGIC_CHANGE
2953 std::cout <<
" veh=" <<
myVehicle.
getID() <<
" does not want to get stranded on the on-ramp of a highway\n";
2967 MSLane* shadowPrev =
nullptr;
2969 if (*it ==
nullptr) {
2973 if (shadow ==
nullptr || currentShadowDist >= requiredDist) {
2976 if (shadowPrev !=
nullptr) {
2979 currentShadowDist += shadow->
getLength();
2980 shadowPrev = shadow;
2981#ifdef DEBUG_STRATEGIC_CHANGE
2983 std::cout <<
" shadow=" << shadow->
getID() <<
" currentShadowDist=" << currentShadowDist <<
"\n";
2987#ifdef DEBUG_STRATEGIC_CHANGE
2992 if (currentShadowDist < requiredDist && currentShadowDist < usableDist) {
2995#ifdef DEBUG_STRATEGIC_CHANGE
2997 std::cout <<
" must change for shadowLane end latDist=" << latDist <<
" myLeftSpace=" <<
myLeftSpace <<
"\n";
3005#if defined(DEBUG_STRATEGIC_CHANGE) || defined(DEBUG_TRACI)
3017 }
else if (((retTraCI &
LCA_RIGHT) != 0 && laneOffset < 0)
3018 || ((retTraCI &
LCA_LEFT) != 0 && laneOffset > 0)) {
3020 latDist = latLaneDist;
3023#if defined(DEBUG_STRATEGIC_CHANGE) || defined(DEBUG_TRACI)
3034 double posOnLane,
double neighDist,
bool right,
double latLaneDist,
double& currentDist,
double& latDist) {
3035 bool mustOvertake =
false;
3040 const int dir = latLaneDist < 0 ? -1 : 1;
3044 if (curHasStopped) {
3046 for (
int i = rightmost; i <= leftmost; i++) {
3050 const double remaining =
MIN2(neighDist, currentDist) - posOnLane;
3051#ifdef DEBUG_STRATEGIC_CHANGE
3053 std::cout <<
" overtakeDist=" << overtakeDist <<
" remaining=" << remaining
3055 <<
" hasLaneBeyond=" << hasLaneBeyond
3060 remaining > overtakeDist
3062 && (!checkCurrent || !checkOverTakeRight || !right)
3071 latDist = latLaneDist;
3072 mustOvertake =
true;
3073#ifdef DEBUG_STRATEGIC_CHANGE
3075 std::cout <<
" veh=" <<
myVehicle.
getID() <<
" overtake stopped leader=" << leader.first->getID()
3076 <<
" newCurrentDist=" << currentDist
3077 <<
" overtakeDist=" << overtakeDist
3078 <<
" remaining=" << remaining
3094 mustOvertake =
true;
3095 if (i >= rightmost && i <= leftmost) {
3102 return mustOvertake;
3123 double& maneuverDist,
3159 const double oldLatDist = latDist;
3160 const double oldManeuverDist = maneuverDist;
3165 const double halfWidth =
getWidth() * 0.5;
3171 double surplusGapRight = oldCenter - halfWidth;
3172 double surplusGapLeft =
getLeftBorder(laneOffset != 0) - oldCenter - halfWidth;
3173 const bool stayInLane = (laneOffset == 0
3177 && (surplusGapLeft >= 0 && surplusGapRight >= 0)));
3180 std::swap(surplusGapLeft, surplusGapRight);
3182#ifdef DEBUG_KEEP_LATGAP
3184 std::cout <<
"\n " <<
SIMTIME <<
" keepLatGap() laneOffset=" << laneOffset
3185 <<
" latDist=" << latDist
3186 <<
" maneuverDist=" << maneuverDist
3190 <<
" gapFactor=" << gapFactor
3191 <<
" stayInLane=" << stayInLane <<
"\n"
3192 <<
" stayInEdge: surplusGapRight=" << surplusGapRight <<
" surplusGapLeft=" << surplusGapLeft <<
"\n";
3196 if (surplusGapLeft < 0 || surplusGapRight < 0) {
3206 if (laneOffset != 0) {
3209 updateGaps(neighLeaders, neighRight, oldCenter, gapFactor, surplusGapRight, surplusGapLeft,
true);
3210 updateGaps(neighFollowers, neighRight, oldCenter, gapFactor, surplusGapRight, surplusGapLeft,
true, netOverlap);
3212#ifdef DEBUG_KEEP_LATGAP
3214 std::cout <<
" minGapLat: surplusGapRight=" << surplusGapRight <<
" surplusGapLeft=" << surplusGapLeft <<
"\n"
3224 if (stayInLane || laneOffset == 1) {
3227 surplusGapRight =
MIN2(surplusGapRight,
MAX2(0.0, halfLaneWidth + posLat - halfWidth));
3228 physicalGapRight =
MIN2(physicalGapRight,
MAX2(0.0, halfLaneWidth + posLat - halfWidth));
3230 if (stayInLane || laneOffset == -1) {
3233 surplusGapLeft =
MIN2(surplusGapLeft,
MAX2(0.0, halfLaneWidth - posLat - halfWidth));
3234 physicalGapLeft =
MIN2(physicalGapLeft,
MAX2(0.0, halfLaneWidth - posLat - halfWidth));
3236#ifdef DEBUG_KEEP_LATGAP
3238 std::cout <<
" stayInLane: surplusGapRight=" << surplusGapRight <<
" surplusGapLeft=" << surplusGapLeft <<
"\n";
3242 if (surplusGapRight + surplusGapLeft < 0) {
3247 const double equalDeficit = 0.5 * (surplusGapLeft + surplusGapRight);
3248 if (surplusGapRight < surplusGapLeft) {
3250 const double delta =
MIN2(equalDeficit - surplusGapRight, physicalGapLeft);
3252 maneuverDist = delta;
3253#ifdef DEBUG_KEEP_LATGAP
3255 std::cout <<
" insufficient latSpace, move left: delta=" << delta <<
"\n";
3260 const double delta =
MIN2(equalDeficit - surplusGapLeft, physicalGapRight);
3262 maneuverDist = -delta;
3263#ifdef DEBUG_KEEP_LATGAP
3265 std::cout <<
" insufficient latSpace, move right: delta=" << delta <<
"\n";
3271 latDist =
MAX2(
MIN2(latDist, surplusGapLeft), -surplusGapRight);
3272 maneuverDist =
MAX2(
MIN2(maneuverDist, surplusGapLeft), -surplusGapRight);
3273 if ((state &
LCA_KEEPRIGHT) != 0 && maneuverDist != oldManeuverDist) {
3275 latDist = oldLatDist;
3276 maneuverDist = oldManeuverDist;
3278#ifdef DEBUG_KEEP_LATGAP
3280 std::cout <<
" adapted latDist=" << latDist <<
" maneuverDist=" << maneuverDist <<
" (old=" << oldLatDist <<
")\n";
3295#ifdef DEBUG_KEEP_LATGAP
3297 std::cout <<
" traci influenced latDist=" << latDist <<
"\n";
3303 const bool traciChange = ((state | traciState) &
LCA_TRACI) != 0;
3304 if (nonSublaneChange && !traciChange) {
3306#ifdef DEBUG_KEEP_LATGAP
3308 std::cout <<
" wanted changeToLeft oldLatDist=" << oldLatDist <<
", blocked latGap changeToRight\n";
3311 latDist = oldLatDist;
3314#ifdef DEBUG_KEEP_LATGAP
3316 std::cout <<
" wanted changeToRight oldLatDist=" << oldLatDist <<
", blocked latGap changeToLeft\n";
3319 latDist = oldLatDist;
3329#ifdef DEBUG_KEEP_LATGAP
3331 std::cout <<
" latDistUpdated=" << latDist <<
" oldLatDist=" << oldLatDist <<
"\n";
3334 blocked =
checkBlocking(neighLane, latDist, maneuverDist, laneOffset, leaders, followers, blockers, neighLeaders, neighFollowers, neighBlockers,
nullptr,
nullptr, nonSublaneChange);
3337 state = (state & ~LCA_STAY);
3348#if defined(DEBUG_KEEP_LATGAP) || defined(DEBUG_STATE)
3350 std::cout <<
" latDist2=" << latDist
3364 double& surplusGapRight,
double& surplusGapLeft,
3365 bool saveMinGap,
double netOverlap,
3367 std::vector<CLeaderDist>* collectBlockers) {
3369 const double halfWidth =
getWidth() * 0.5 + NUMERICAL_EPS;
3372 if (others[i].first != 0 && others[i].second <= 0
3374 && (netOverlap == 0 || others[i].second + others[i].first->getVehicleType().getMinGap() < netOverlap)) {
3378 double foeRight, foeLeft;
3380 const double foeCenter = foeRight + 0.5 * res;
3381 const double gap =
MIN2(fabs(foeRight - oldCenter), fabs(foeLeft - oldCenter)) - halfWidth;
3384 const double currentMinGap = desiredMinGap * gapFactor;
3395#if defined(DEBUG_BLOCKING) || defined(DEBUG_KEEP_LATGAP)
3397 std::cout <<
" updateGaps"
3399 <<
" foe=" << foe->
getID()
3400 <<
" foeRight=" << foeRight
3401 <<
" foeLeft=" << foeLeft
3402 <<
" oldCenter=" << oldCenter
3403 <<
" gap=" << others[i].second
3404 <<
" latgap=" << gap
3405 <<
" currentMinGap=" << currentMinGap
3406 <<
" surplusGapRight=" << surplusGapRight
3407 <<
" surplusGapLeft=" << surplusGapLeft
3415 if (foeCenter < oldCenter) {
3417 surplusGapRight =
MIN3(surplusGapRight, gap - currentMinGap,
MAX2(currentMinGap, gap - foeManeuverDist));
3420 surplusGapLeft =
MIN3(surplusGapLeft, gap - currentMinGap,
MAX2(currentMinGap, gap - foeManeuverDist));
3423 if (foeCenter < oldCenter) {
3424#if defined(DEBUG_BLOCKING) || defined(DEBUG_KEEP_LATGAP)
3426 std::cout <<
" new minimum rightGap=" << gap <<
"\n";
3431#if defined(DEBUG_BLOCKING) || defined(DEBUG_KEEP_LATGAP)
3433 std::cout <<
" new minimum leftGap=" << gap <<
"\n";
3439 if (collectBlockers !=
nullptr) {
3441 if ((foeCenter < oldCenter && latDist < 0 && gap < (desiredMinGap - latDist))
3442 || (foeCenter > oldCenter && latDist > 0 && gap < (desiredMinGap + latDist))) {
3443 collectBlockers->push_back(others[i]);
3460 int currentDirection =
mySpeedLat >= 0 ? 1 : -1;
3461 int directionWish = latDist >= 0 ? 1 : -1;
3468 maxSpeedLat =
MIN2(maxSpeedLat, speedBound);
3472 maxSpeedLat =
MAX2(maxSpeedLat, speedBound);
3481 accelLat =
MAX2(accelLat, 2 * edgeOverlap);
3482 maxSpeedLat =
MAX2(maxSpeedLat, edgeOverlap);
3485#ifdef DEBUG_MANEUVER
3489 <<
" computeSpeedLat()"
3490 <<
" latDist=" << latDist
3491 <<
" maneuverDist=" << maneuverDist
3492 <<
" urgent=" << urgent
3494 <<
" currentDirection=" << currentDirection
3495 <<
" directionWish=" << directionWish
3497 <<
" maxSpeedLat=" << maxSpeedLat
3503 if (directionWish == 1) {
3517 if (maneuverDist * latDist > 0) {
3518 maneuverDist = fullLatDist;
3521#ifdef DEBUG_MANEUVER
3525 <<
" fullLatDist=" << fullLatDist
3526 <<
" speedAccel=" << speedAccel
3527 <<
" speedDecel=" << speedDecel
3528 <<
" speedBound=" << speedBound
3532 if (speedDecel * speedAccel <= 0 && (
3534 (latDist >= 0 && speedAccel >= speedBound && speedBound >= speedDecel)
3535 || (latDist <= 0 && speedAccel <= speedBound && speedBound <= speedDecel))) {
3537#ifdef DEBUG_MANEUVER
3539 std::cout <<
" computeSpeedLat a)\n";
3546#ifdef DEBUG_MANEUVER
3548 std::cout <<
" computeSpeedLat b)\n";
3555 if ((fabs(minDistAccel) < fabs(fullLatDist)) || (fabs(minDistAccel - fullLatDist) < NUMERICAL_EPS)) {
3556#ifdef DEBUG_MANEUVER
3558 std::cout <<
" computeSpeedLat c)\n";
3563#ifdef DEBUG_MANEUVER
3565 std::cout <<
" minDistAccel=" << minDistAccel <<
"\n";
3570 if ((fabs(minDistCurrent) < fabs(fullLatDist)) || (fabs(minDistCurrent - fullLatDist) < NUMERICAL_EPS)) {
3571#ifdef DEBUG_MANEUVER
3573 std::cout <<
" computeSpeedLat d)\n";
3580#ifdef DEBUG_MANEUVER
3582 std::cout <<
" computeSpeedLat e)\n";
3594#ifdef DEBUG_MANEUVER
3596 std::cout <<
" rightDanger speedLat=" << speedLat <<
"\n";
3601#ifdef DEBUG_MANEUVER
3603 std::cout <<
" leftDanger speedLat=" << speedLat <<
"\n";
3618 const bool indirect = turnInfo.second ==
nullptr ? false : turnInfo.second->isIndirect();
3651 double maneuverDist) {
3654 double secondsToLeaveLane;
3664#if defined(DEBUG_MANEUVER) || defined(DEBUG_COMMITTED_SPEED)
3680 double nextLeftSpace;
3681 if (nextActionStepSpeed > 0.) {
3696#if defined(DEBUG_MANEUVER) || defined(DEBUG_COMMITTED_SPEED)
3700 <<
" avoidArrivalSpeed=" << avoidArrivalSpeed
3703 <<
"\n nextLeftSpace=" << nextLeftSpace
3704 <<
" nextActionStepSpeed=" << nextActionStepSpeed
3705 <<
" nextActionStepRemainingSeconds=" << secondsToLeaveLane - timeTillActionStep
3715#if defined(DEBUG_MANEUVER) || defined(DEBUG_COMMITTED_SPEED)
3719 <<
" secondsToLeave=" << secondsToLeaveLane
3741 const double vehWidth =
getWidth();
3743 const double leftVehSide = rightVehSide + vehWidth;
3744 const double rightVehSideDest = rightVehSide + latDist;
3745 const double leftVehSideDest = leftVehSide + latDist;
3746#if defined(DEBUG_MANEUVER) || defined(DEBUG_COMMITTED_SPEED)
3748 std::cout <<
" commitFollowSpeed"
3749 <<
" latDist=" << latDist
3750 <<
" foeOffset=" << foeOffset
3751 <<
" vehRight=" << rightVehSide
3752 <<
" vehLeft=" << leftVehSide
3753 <<
" destRight=" << rightVehSideDest
3754 <<
" destLeft=" << leftVehSideDest
3760 if (vehDist.first != 0) {
3761 const MSVehicle* leader = vehDist.first;
3763 double foeRight, foeLeft;
3765#if defined(DEBUG_MANEUVER) || defined(DEBUG_COMMITTED_SPEED)
3767 std::cout <<
" foe=" << vehDist.first->getID()
3768 <<
" gap=" << vehDist.second
3770 <<
" foeRight=" << foeRight
3771 <<
" foeLeft=" << foeLeft
3772 <<
" overlapBefore=" <<
overlap(rightVehSide, leftVehSide, foeRight, foeLeft)
3773 <<
" overlapDest=" <<
overlap(rightVehSideDest, leftVehSideDest, foeRight, foeLeft)
3777 if (
overlap(rightVehSideDest, leftVehSideDest, foeRight, foeLeft)) {
3781 speed =
MIN2(speed, vSafe);
3782#if defined(DEBUG_MANEUVER) || defined(DEBUG_COMMITTED_SPEED)
3784 std::cout <<
" case1 vsafe=" << vSafe <<
" speed=" << speed <<
"\n";
3787 }
else if (
overlap(rightVehSide, leftVehSide, foeRight, foeLeft)) {
3792 speed =
MIN2(speed, vSafe);
3793#if defined(DEBUG_MANEUVER) || defined(DEBUG_COMMITTED_SPEED)
3795 std::cout <<
" case2 vsafe=" << vSafe <<
" speed=" << speed <<
"\n";
3815 return myOppositeParam <= 0 ? std::numeric_limits<double>::max() : 1 /
myOppositeParam;
3874 }
else if (key ==
"speedGainProbabilityRight") {
3876 }
else if (key ==
"speedGainProbabilityLeft") {
3878 }
else if (key ==
"keepRightProbability") {
3880 }
else if (key ==
"lookAheadSpeed") {
3882 }
else if (key ==
"sigmaState") {
3885 }
else if (key ==
"speedGainRP") {
3887 }
else if (key ==
"speedGainLP") {
3889 }
else if (key ==
"keepRightP") {
3959 }
else if (key ==
"speedGainProbabilityRight") {
3961 }
else if (key ==
"speedGainProbabilityLeft") {
3963 }
else if (key ==
"keepRightProbability") {
3965 }
else if (key ==
"lookAheadSpeed") {
3967 }
else if (key ==
"sigmaState") {
3981 const std::pair<MSVehicle*, double>& leader,
3982 const std::pair<MSVehicle*, double>& follower,
3983 const std::pair<MSVehicle*, double>& neighLead,
3984 const std::pair<MSVehicle*, double>& neighFollow,
3986 const std::vector<MSVehicle::LaneQ>& preb,
3992#ifdef DEBUG_WANTSCHANGE
3994 std::cout <<
"\nWANTS_CHANGE\n" <<
SIMTIME
3998 <<
" neigh=" << neighLane.
getID()
4002 <<
" considerChangeTo=" << (laneOffset == -1 ?
"right" :
"left")
4016 double maneuverDist;
4019 leaders, followers, blockers,
4020 neighLeaders, neighFollowers, neighBlockers,
4022 lastBlocked, firstBlocked, latDist, maneuverDist, blocked);
4026 result &= ~LCA_SUBLANE;
4027 result |=
getLCA(result, latDist);
4029#if defined(DEBUG_WANTSCHANGE) || defined(DEBUG_STATE)
4034 <<
" wantsChangeTo=" << (laneOffset == -1 ?
"right" :
"left")
4035 << ((result &
LCA_URGENT) ?
" (urgent)" :
"")
4041 << ((result &
LCA_TRACI) ?
" (traci)" :
"")
4093 std::cout <<
SIMTIME <<
" veh=" <<
myVehicle.
getID() <<
" bgap=" << brakeGap <<
" maneuverDist=" << maneuverDist
#define HELP_DECEL_FACTOR
#define LOOK_AHEAD_MIN_SPEED
#define LCA_RIGHT_IMPATIENCE
#define REACT_TO_STOPPED_DISTANCE
#define RELGAIN_NORMALIZATION_MIN_SPEED
#define CUT_IN_LEFT_SPEED_THRESHOLD
#define MAX_ONRAMP_LENGTH
#define LOOK_AHEAD_SPEED_MEMORY
#define ARRIVALPOS_LAT_THRESHOLD
#define SPEEDGAIN_MEMORY_FACTOR
#define LOOK_AHEAD_MIN_SPEED
#define SPEEDGAIN_DECAY_FACTOR
#define LATGAP_SPEED_THRESHOLD
#define GAIN_PERCEPTION_THRESHOLD
#define LATGAP_SPEED_THRESHOLD2
std::pair< const MSVehicle *, double > CLeaderDist
std::pair< const MSPerson *, double > PersonDist
LatAlignmentDefinition
Possible ways to choose the lateral alignment, i.e., how vehicles align themselves within their lane.
@ RIGHT
drive on the right side
@ GIVEN
The alignment as offset is given.
@ DEFAULT
No information given; use default.
@ LEFT
drive on the left side
@ ARBITRARY
maintain the current alignment
@ NICE
align with the closest sublane border
@ COMPACT
align with the rightmost sublane that allows keeping the current speed
@ CENTER
drive in the middle
@ SVC_EMERGENCY
public emergency vehicles
@ RIGHT
At the rightmost side of the lane.
@ GIVEN
The position is given.
@ DEFAULT
No information given; use default.
@ LEFT
At the leftmost side of the lane.
@ CENTER
At the center of the lane.
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ TURN
The link is a 180 degree turn.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ TURN_LEFTHAND
The link is a 180 degree turn (left-hand network)
@ PARTRIGHT
The link is a partial right direction.
@ NODIR
The link has no direction (is a dead end link)
LaneChangeAction
The state of a vehicle's lane-change behavior.
@ LCA_BLOCKED_LEFT
blocked left
@ LCA_KEEPRIGHT
The action is due to the default of keeping right "Rechtsfahrgebot".
@ LCA_BLOCKED
blocked in all directions
@ LCA_URGENT
The action is urgent (to be defined by lc-model)
@ LCA_BLOCKED_BY_RIGHT_LEADER
The vehicle is blocked by right leader.
@ LCA_STAY
Needs to stay on the current lane.
@ LCA_SUBLANE
used by the sublane model
@ LCA_BLOCKED_BY_LEADER
blocked by leader
@ LCA_BLOCKED_BY_LEFT_FOLLOWER
The vehicle is blocked by left follower.
@ LCA_AMBLOCKINGFOLLOWER_DONTBRAKE
@ LCA_COOPERATIVE
The action is done to help someone else.
@ LCA_OVERLAPPING
The vehicle is blocked being overlapping.
@ LCA_LEFT
Wants go to the left.
@ LCA_BLOCKED_RIGHT
blocked right
@ LCA_BLOCKED_BY_RIGHT_FOLLOWER
The vehicle is blocked by right follower.
@ LCA_STRATEGIC
The action is needed to follow the route (navigational lc)
@ LCA_AMBACKBLOCKER_STANDING
@ LCA_CHANGE_REASONS
reasons of lane change
@ LCA_TRACI
The action is due to a TraCI request.
@ LCA_SPEEDGAIN
The action is due to the wish to be faster (tactical lc)
@ LCA_WANTS_LANECHANGE
lane can change
@ LCA_RIGHT
Wants go to the right.
@ LCA_BLOCKED_BY_FOLLOWER
blocker by follower
@ LCA_BLOCKED_BY_LEFT_LEADER
@ SUMO_ATTR_LCA_COOPERATIVE_SPEED
@ SUMO_ATTR_LCA_ASSERTIVE
@ SUMO_ATTR_LCA_LANE_DISCIPLINE
@ SUMO_ATTR_LCA_TURN_ALIGNMENT_DISTANCE
@ SUMO_ATTR_LCA_LOOKAHEADLEFT
@ SUMO_ATTR_LCA_SPEEDGAIN_PARAM
@ SUMO_ATTR_LCA_MAXDISTLATSTANDING
@ SUMO_ATTR_LCA_IMPATIENCE
@ SUMO_ATTR_LCA_COOPERATIVE_ROUNDABOUT
@ SUMO_ATTR_LCA_SPEEDGAIN_LOOKAHEAD
@ SUMO_ATTR_LCA_MAXSPEEDLATFACTOR
@ SUMO_ATTR_LCA_MAXSPEEDLATSTANDING
@ SUMO_ATTR_LCA_KEEPRIGHT_PARAM
@ SUMO_ATTR_LCA_COOPERATIVE_PARAM
@ SUMO_ATTR_LCA_OPPOSITE_PARAM
@ SUMO_ATTR_LCA_SPEEDGAIN_REMAIN_TIME
@ SUMO_ATTR_LCA_OVERTAKE_DELTASPEED_FACTOR
@ SUMO_ATTR_LCA_SUBLANE_PARAM
@ SUMO_ATTR_LCA_ACCEL_LAT
@ SUMO_ATTR_LCA_STRATEGIC_PARAM
@ SUMO_ATTR_LCA_KEEPRIGHT_ACCEPTANCE_TIME
@ SUMO_ATTR_LCA_TIME_TO_IMPATIENCE
@ SUMO_ATTR_LCA_SPEEDGAINRIGHT
int gPrecision
the precision for floating point outputs
const double SUMO_const_laneWidth
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
A class responsible for exchanging messages between cars involved in lane-change interaction.
Interface for lane-change models.
double getForwardPos() const
get vehicle position relative to the forward direction lane
virtual double getExtraReservation(int bestLaneOffset, double neighExtraDist=0) const
bool hasBlueLight() const
double getPreviousManeuverDist() const
virtual void setOwnState(const int state)
int myPreviousState
lane changing state from the previous simulation step
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
int myOwnState
The current state of the vehicle.
virtual void prepareStep()
MSLane * getShadowLane() const
Returns the lane the vehicle's shadow is on during continuous/sublane lane change.
double myLastLateralGapRight
double myCommittedSpeed
the speed when committing to a change maneuver
virtual LatAlignmentDefinition getDesiredAlignment() const
static const double NO_NEIGHBOR
double myMaxDistLatStanding
static bool myAllowOvertakingRight
whether overtaking on the right is permitted
void addLCSpeedAdvice(const double vSafe, bool ownAdvice=true)
Takes a vSafe (speed advice for speed in the next simulation step), converts it into an acceleration ...
int & getCanceledState(const int dir)
double myMaxSpeedLatFactor
const LaneChangeModel myModel
the type of this model
bool cancelRequest(int state, int laneOffset)
whether the influencer cancels the given request
std::vector< std::pair< double, bool > > myLCAccelerationAdvices
double getMaxSpeedLat2() const
return the max of maxSpeedLat and lcMaxSpeedLatStanding
const MSCFModel & getCarFollowModel() const
The vehicle's car following model.
double mySpeedLat
the current lateral speed
double myMaxSpeedLatStanding
MSVehicle & myVehicle
The vehicle this lane-changer belongs to.
double myLastLateralGapLeft
the minimum lateral gaps to other vehicles that were found when last changing to the left and right
virtual bool avoidOvertakeRight() const
virtual bool debugVehicle() const
whether the current vehicles shall be debugged
virtual double getArrivalPos() const
Returns this vehicle's desired arrivalPos for its current route (may change on reroute)
const SUMOVehicleParameter & getParameter() const
Returns the vehicle's parameter (including departure definition)
double getLength() const
Returns the vehicle's length.
const MSEdge * getEdge() const
Returns the edge the vehicle is currently at.
double getWaitingSeconds() const
Returns the number of seconds waited (speed was lesser than 0.1m/s)
const MSStop & getNextStop() const
SUMOVehicleClass getVClass() const
Returns the vehicle's access class.
const MSRoute & getRoute() const
Returns the current route.
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
The car-following model abstraction.
virtual double maxNextSpeed(double speed, const MSVehicle *const veh) const
Returns the maximum speed given the current speed.
static double gapExtrapolation(const double duration, const double currentGap, double v1, double v2, double a1=0, double a2=0, const double maxV1=std::numeric_limits< double >::max(), const double maxV2=std::numeric_limits< double >::max())
return the resulting gap if, starting with gap currentGap, two vehicles continue with constant accele...
virtual double minNextSpeedEmergency(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed after emergency braking, given the current speed (depends on the numerical ...
virtual double followSpeedTransient(double duration, const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel) const
Computes the vehicle's follow speed that avoids a collision for the given amount of time.
double getEmergencyDecel() const
Get the vehicle type's maximal physically possible deceleration [m/s^2].
static double brakeGapEuler(const double speed, const double decel, const double headwayTime)
static double avoidArrivalAccel(double dist, double time, double speed, double maxDecel)
Computes the acceleration needed to arrive not before the given time.
virtual double minNextSpeed(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed given the current speed (depends on the numerical update scheme and its ste...
virtual void setMaxDecel(double decel)
Sets a new value for maximal comfortable deceleration [m/s^2].
@ LANE_CHANGE
the return value is used for lane change calculations
virtual double getSecureGap(const MSVehicle *const veh, const MSVehicle *const, const double speed, const double leaderSpeed, const double leaderMaxDecel) const
Returns the minimum gap to reserve if the leader is braking at maximum (>=0)
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
static double estimateArrivalTime(double dist, double speed, double maxSpeed, double accel)
Computes the time needed to travel a distance dist given an initial speed and constant acceleration....
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0, const CalcReason usage=CalcReason::CURRENT) const =0
Computes the vehicle's follow speed (no dawdling)
double stopSpeed(const MSVehicle *const veh, const double speed, double gap, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed for approaching a non-moving obstacle (no dawdling)
A road/street connecting two junctions.
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
double getInternalFollowingLengthTo(const MSEdge *followerAfterInternal, SUMOVehicleClass vClass) const
returns the length of all internal edges on the junction until reaching the non-internal edge followe...
bool canChangeToOpposite() const
whether this edge allows changing to the opposite direction edge
bool isInternal() const
return whether this edge is an internal edge
double getWidth() const
Returns the edges's width (sum over all lanes)
const std::vector< double > getSubLaneSides() const
Returns the right side offsets of this edge's sublanes.
static double gLateralResolution
static bool gSemiImplicitEulerUpdate
static bool gLefthand
Whether lefthand-drive is being simulated.
static bool canSaveBlockerLength(const MSVehicle &veh, double requested, double leftSpace)
static double getSpeedPreservingSecureGap(const MSVehicle &leader, const MSVehicle &follower, double currentGap, double leaderPlannedSpeed)
static double getRoundaboutDistBonus(const MSVehicle &veh, double bonusParam, const MSVehicle::LaneQ &curr, const MSVehicle::LaneQ &neigh, const MSVehicle::LaneQ &best)
static bool updateBlockerLength(const MSVehicle &veh, MSVehicle *blocker, int lcaCounter, double leftSpace, bool reliefConnection, double &leadingBlockerLength)
static bool divergentRoute(const MSVehicle &v1, const MSVehicle &v2)
return whether the vehicles are on the same junction but on divergent paths
double mySafeLatDistRight
the lateral distance the vehicle can safely move in the currently considered direction
static bool overlap(double right, double left, double right2, double left2)
return whether the given intervals overlap
double _patchSpeed(double min, const double wanted, double max, const MSCFModel &cfModel)
double informLeaders(int blocked, int dir, const std::vector< CLeaderDist > &blockers, double remainingSeconds)
void commitManoeuvre(int blocked, int blockedFully, const MSLeaderDistanceInfo &leaders, const MSLeaderDistanceInfo &neighLeaders, const MSLane &neighLane, double maneuverDist)
commit to lane change maneuver potentially overriding safe speed
std::set< const MSVehicle * > myCFRelated
set of vehicles that are in a car-following relationship with ego (leader of followers)
void prepareStep() override
double myKeepRightProbability
double commitFollowSpeed(double speed, double latDist, double secondsToLeaveLane, const MSLeaderDistanceInfo &leaders, double foeOffset) const
compute speed when committing to an urgent change that is safe in regard to leading vehicles
double getLeftBorder(bool checkOpposite=true) const
return current edge width optionally extended by opposite direction lane width
double myChangeProbThresholdRight
double informLeader(int blocked, int dir, const CLeaderDist &neighLead, double remainingSeconds)
MSLCM_SL2015(MSVehicle &v)
int computeSublaneShift(const MSEdge *prevEdge, const MSEdge *curEdge)
compute shift so that prevSublane + shift = newSublane
double patchSpeed(const double min, const double wanted, const double max, const MSCFModel &cfModel) override
Called to adapt the speed in order to allow a lane change. It uses information on LC-related desired ...
double getSafetyFactor() const override
return factor for modifying the safety constraints of the car-following model
double myCooperativeSpeed
double computeSpeedLat(double latDist, double &maneuverDist, bool urgent) const override
decides the next lateral speed depending on the remaining lane change distance to be covered and upda...
std::vector< double > myExpectedSublaneSpeeds
expected travel speeds on all sublanes on the current edge(!)
double getWidth() const
return the width of this vehicle (padded for numerical stability)
bool myCanChangeFully
whether the current lane changing maneuver can be finished in a single step
int wantsChange(int laneOffset, MSAbstractLaneChangeModel::MSLCMessager &msgPass, int blocked, const std::pair< MSVehicle *, double > &leader, const std::pair< MSVehicle *, double > &follower, const std::pair< MSVehicle *, double > &neighLead, const std::pair< MSVehicle *, double > &neighFollow, const MSLane &neighLane, const std::vector< MSVehicle::LaneQ > &preb, MSVehicle **lastBlocked, MSVehicle **firstBlocked) override
Called to examine whether the vehicle wants to change using the given laneOffset (this is a wrapper a...
bool mustOvertakeStopped(bool checkCurrent, const MSLane &neighLane, const MSLeaderDistanceInfo &leaders, const MSLeaderDistanceInfo &neighLead, double posOnLane, double neighDist, bool right, double latLaneDist, double ¤tDist, double &latDist)
bool outsideEdge() const
whether the ego vehicle is driving outside edgebounds
bool myDontBrake
flag to prevent speed adaptation by slowing down
std::string getParameter(const std::string &key) const override
try to retrieve the given parameter from this device. Throw exception for unsupported key
bool wantsKeepRight(double keepRightProb) const
check against thresholds
double forecastAverageSpeed(double vSafe, double vMax, double gap, double vLeader) const
estimate average speed over mySpeedGainLookahead time
int checkStrategicChange(int ret, const MSLane &neighLane, int laneOffset, const MSLeaderDistanceInfo &leaders, const MSLeaderDistanceInfo &neighLeaders, const MSVehicle::LaneQ &curr, const MSVehicle::LaneQ &neigh, const MSVehicle::LaneQ &best, int bestLaneOffset, bool changeToBest, double ¤tDist, double neighDist, double laDist, double roundaboutBonus, double latLaneDist, bool checkOpposite, double &latDist)
compute strategic lane change actions TODO: Better documentation, refs #2
void updateCFRelated(const MSLeaderDistanceInfo &vehicles, double foeOffset, bool leaders)
find leaders/followers that are already in a car-following relationship with ego
bool debugVehicle() const override
whether the current vehicles shall be debugged
int wantsChangeSublane(int laneOffset, LaneChangeAction alternatives, const MSLeaderDistanceInfo &leaders, const MSLeaderDistanceInfo &followers, const MSLeaderDistanceInfo &blockers, const MSLeaderDistanceInfo &neighLeaders, const MSLeaderDistanceInfo &neighFollowers, const MSLeaderDistanceInfo &neighBlockers, const MSLane &neighLane, const std::vector< MSVehicle::LaneQ > &preb, MSVehicle **lastBlocked, MSVehicle **firstBlocked, double &latDist, double &maneuverDist, int &blocked) override
Called to examine whether the vehicle wants to change with the given laneOffset (using the sublane mo...
LatAlignmentDefinition getDesiredAlignment() const override
double mySpeedGainProbabilityRight
a value for tracking the probability that a change to the right is beneficial
int slowDownForBlocked(MSVehicle **blocked, int state)
compute useful slowdowns for blocked vehicles
void initDerivedParameters()
init cached parameters derived directly from model parameters
int keepLatGap(int state, const MSLeaderDistanceInfo &leaders, const MSLeaderDistanceInfo &followers, const MSLeaderDistanceInfo &blockers, const MSLeaderDistanceInfo &neighLeaders, const MSLeaderDistanceInfo &neighFollowers, const MSLeaderDistanceInfo &neighBlockers, const MSLane &neighLane, int laneOffset, double &latDist, double &maneuverDist, int &blocked)
check whether lateral gap requirements are met override the current maneuver if necessary
bool tieBrakeLeader(const MSVehicle *veh) const
bool currentDistAllows(double dist, int laneOffset, double lookForwardDist)
CLeaderDist getLongest(const MSLeaderDistanceInfo &ldi) const
get the longest vehicle in the given info
double myCooperativeParam
double getNeighRight(const MSLane &neighLane) const
return the right offset of the neighboring lane relative to the current edge
double computeSpeedGain(double latDistSublane, double defaultNextSpeed) const
compute speedGain when moving by the given amount
double emergencySpeedLat(double speedLat) const
avoid unsafe lateral speed (overruling lcAccelLat)
double myKeepRightAcceptanceTime
void updateGaps(const MSLeaderDistanceInfo &others, double foeOffset, double oldCenter, double gapFactor, double &surplusGapRight, double &surplusGapLeft, bool saveMinGap=false, double netOverlap=0, double latDist=0, std::vector< CLeaderDist > *collectBlockers=0)
check remaining lateral gaps for the given foe vehicles and optionally update minimum lateral gaps
virtual void updateSafeLatDist(const double travelledLatDist) override
Updates the value of safe lateral distances (mySafeLatDistLeft and mySafeLatDistRight) during maneuve...
const MSEdge * myLastEdge
expected travel speeds on all sublanes on the current edge(!)
double getOppositeSafetyFactor() const override
return factor for modifying the safety constraints for opposite-diretction overtaking of the car-foll...
StateAndDist decideDirection(StateAndDist sd1, StateAndDist sd2) const override
decide in which direction to move in case both directions are desirable
std::pair< double, int > Info
information regarding save velocity (unused) and state flags of the ego vehicle
void msg(const CLeaderDist &cld, double speed, int state)
send a speed recommendation to the given vehicle
double mySpeedGainRemainTime
int checkBlocking(const MSLane &neighLane, double &latDist, double maneuverDist, int laneOffset, const MSLeaderDistanceInfo &leaders, const MSLeaderDistanceInfo &followers, const MSLeaderDistanceInfo &blockers, const MSLeaderDistanceInfo &neighLeaders, const MSLeaderDistanceInfo &neighFollowers, const MSLeaderDistanceInfo &neighBlockers, std::vector< CLeaderDist > *collectLeadBlockers=0, std::vector< CLeaderDist > *collectFollowBlockers=0, bool keepLatGapManeuver=false, double gapFactor=0, int *retBlockedFully=0)
restrict latDist to permissible speed and determine blocking state depending on that distance
double getVehicleCenter() const
return vehicle position relative to the current edge (extend by another virtual lane for opposite-dir...
int _wantsChangeSublane(int laneOffset, LaneChangeAction alternatives, const MSLeaderDistanceInfo &leaders, const MSLeaderDistanceInfo &followers, const MSLeaderDistanceInfo &blockers, const MSLeaderDistanceInfo &neighLeaders, const MSLeaderDistanceInfo &neighFollowers, const MSLeaderDistanceInfo &neighBlockers, const MSLane &neighLane, const std::vector< MSVehicle::LaneQ > &preb, MSVehicle **lastBlocked, MSVehicle **firstBlocked, double &latDist, double &maneuverDist, int &blocked)
helper function for doing the actual work
double getLateralDrift()
get lateral drift for the current step
double computeGapFactor(int state) const
compute the gap factor for the given state
double getPosLat()
get lateral position of this vehicle
bool preventSliding(double maneuverDist) const
bool isBidi(const MSLane *lane) const
check whether lane is an upcoming bidi lane
void * inform(void *info, MSVehicle *sender) override
void informFollower(int blocked, int dir, const CLeaderDist &neighFollow, double remainingSeconds, double plannedSpeed)
decide whether we will try cut in before the follower or allow to be overtaken
void setParameter(const std::string &key, const std::string &value) override
try to set the given parameter for this laneChangeModel. Throw exception for unsupported key
bool saveBlockerLength(double length, double foeLeftSpace) override
reserve space at the end of the lane to avoid dead locks
double myOvertakeDeltaSpeedFactor
double myTurnAlignmentDist
double myLeadingBlockerLength
void setOwnState(const int state) override
int checkBlockingVehicles(const MSVehicle *ego, const MSLeaderDistanceInfo &vehicles, int laneOffset, double latDist, double foeOffset, bool leaders, double &safeLatGapRight, double &safeLatGapLeft, std::vector< CLeaderDist > *collectBlockers=0) const
check whether any of the vehicles overlaps with ego
void informFollowers(int blocked, int dir, const std::vector< CLeaderDist > &blockers, double remainingSeconds, double plannedSpeed)
call informFollower for multiple followers
double mySpeedGainLookahead
double mySpeedLossProbThreshold
void resetState() override
double mySpeedGainProbabilityLeft
a value for tracking the probability that a change to the left is beneficial
static LaneChangeAction getLCA(int state, double latDist)
compute lane change action from desired lateral distance
double myChangeProbThresholdLeft
void updateExpectedSublaneSpeeds(const MSLeaderDistanceInfo &ahead, int sublaneOffset, int laneIndex) override
update expected speeds for each sublane of the current edge
bool currentDistDisallows(double dist, int laneOffset, double lookForwardDist)
double myTimeToImpatience
static int lowest_bit(int changeReason)
return the most important change reason
static CLeaderDist getSlowest(const MSLeaderDistanceInfo &ldi)
get the slowest vehicle in the given info
bool amBlockingFollowerPlusNB()
Representation of a lane in the micro simulation.
std::pair< const MSPerson *, double > nextBlocking(double minPos, double minRight, double maxLeft, double stopTime=0, bool bidi=false) const
This is just a wrapper around MSPModel::nextBlocking. You should always check using hasPedestrians be...
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
double getSpeedLimit() const
Returns the lane's maximum allowed speed.
double getLength() const
Returns the lane's length.
bool allowsVehicleClass(SUMOVehicleClass vclass) const
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
double getRightSideOnEdge() const
bool hasPedestrians() const
whether the lane has pedestrians on it
int getIndex() const
Returns the lane's index.
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
MSLane * getParallelOpposite() const
return the opposite direction lane of this lanes edge or nullptr
MSEdge & getEdge() const
Returns the lane's edge.
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
double getWidth() const
Returns the lane's width.
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
int getRightmostSublane() const
saves leader/follower vehicles and their distances relative to an ego vehicle
virtual std::string toString() const
print a debugging representation
double getMinDistToStopped() const
return minimum distance to a stopped vehicle or max double
bool hasStoppedVehicle() const
whether a stopped vehicle is leader
void getSublaneBorders(int sublane, double latOffset, double &rightSide, double &leftSide) const
void getSubLanes(const MSVehicle *veh, double latOffset, int &rightmost, int &leftmost) const
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
const MSEdge * getLastEdge() const
returns the destination edge
const MSLane * lane
The lane to stop at (microsim only)
double getLatDist() const
double changeRequestRemainingSeconds(const SUMOTime currentTime) const
Return the remaining number of seconds of the current laneTimeLine assuming one exists.
bool ignoreOverlap() const
Representation of a vehicle in the micro simulation.
double getRightSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
double getLeftSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
bool isActive() const
Returns whether the current simulation step is an action point for the vehicle.
const std::pair< double, const MSLink * > & getNextTurn()
Get the distance and direction of the next upcoming turn for the vehicle (within its look-ahead range...
MSAbstractLaneChangeModel & getLaneChangeModel()
double getActionStepLengthSecs() const
Returns the vehicle's action step length in secs, i.e. the interval between two action points.
int influenceChangeDecision(int state)
allow TraCI to influence a lane change decision
double nextStopDist() const
return the distance to the next stop or doubleMax if there is none.
double getAcceleration() const
Returns the vehicle's acceleration in m/s (this is computed as the last step's mean acceleration in c...
const std::vector< MSLane * > & getBestLanesContinuation() const
Returns the best sequence of lanes to continue the route starting at myLane.
int getBestLaneOffset() const
double lateralDistanceToLane(const int offset) const
Get the minimal lateral distance required to move fully onto the lane at given offset.
const MSEdge * getCurrentEdge() const
Returns the edge the vehicle is currently at (possibly an internal edge or nullptr)
const MSLane * getLane() const
Returns the lane the vehicle is on.
double getLastStepDist() const
Get the distance the vehicle covered in the previous timestep.
Influencer & getInfluencer()
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
double getSpeed() const
Returns the vehicle's current speed.
const std::vector< LaneQ > & getBestLanes() const
Returns the description of best lanes to use in order to continue the route.
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
double getPositionOnLane() const
Get the vehicle's position along the lane.
double getLateralOverlap() const
return the amount by which the vehicle extends laterally outside it's primary lane
bool hasInfluencer() const
whether the vehicle is individually influenced (via TraCI or special parameters)
double getCenterOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
double getLengthWithGap() const
Get vehicle's length including the minimum gap [m].
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
const LatAlignmentDefinition & getPreferredLateralAlignment() const
Get vehicle's preferred lateral alignment procedure.
double getMinGap() const
Get the free space in front of vehicles of this class.
double getMaxSpeedLat() const
Get vehicle's maximum lateral speed [m/s].
double getLength() const
Get vehicle's length [m].
double getPreferredLateralAlignmentOffset() const
Get vehicle's preferred lateral alignment offset (in m from center line)
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
const std::string & getID() const
Returns the id.
void step(double dt)
evolve for a time step of length dt.
double arrivalPosLat
(optional) The lateral position the vehicle shall arrive on
ArrivalPosLatDefinition arrivalPosLatProcedure
Information how the vehicle shall choose the lateral arrival position.
static double toDouble(const std::string &sData)
converts a string into the double value described by it by calling the char-type converter
#define UNUSED_PARAMETER(x)
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
bool sameDirection(const StateAndDist &other) const
A structure representing the best lanes for continuing the current route starting at 'lane'.
double length
The overall length which may be driven when using this lane without a lane change.
std::vector< MSLane * > bestContinuations
MSLane * lane
The described lane.
int bestLaneOffset
The (signed) number of lanes to be crossed to get to the lane which allows to continue the drive.
double occupation
The overall vehicle sum on consecutive lanes which can be passed without a lane change.