60#define DEBUGCOND (getID() == DEBUGID)
63#define DEBUGCOND2(obj) ((obj != 0 && (obj)->getID() == DEBUGID))
99 return viaID +
"_" +
toString(internalViaLaneIndex);
114 mayDefinitelyPass(mayDefinitelyPass_),
131 connectionsDone(false) {
144 assert((
int)myTransitions.size() > virtEdge);
146 NBEdge* succEdge = myTransitions[virtEdge];
147 std::vector<int> lanes;
151 std::map<NBEdge*, std::vector<int> >::iterator i =
myConnections.find(succEdge);
159 std::vector<int>::iterator j = std::find(lanes.begin(), lanes.end(), lane);
160 if (j == lanes.end()) {
162 lanes.push_back(lane);
175 const NBEdge* straight =
nullptr;
176 for (
const NBEdge*
const out : outgoing) {
178 for (
const int l : availableLanes) {
179 if ((parent->
myLanes[l].permissions & outPerms) != 0) {
180 if (straight ==
nullptr || sorter(out, straight)) {
187 if (straight ==
nullptr) {
190 myStraightest = (int)std::distance(outgoing.begin(), std::find(outgoing.begin(), outgoing.end(), straight));
193 assert(outgoing.size() > 0);
195#ifdef DEBUG_CONNECTION_GUESSING
197 std::cout <<
" MainDirections edge=" << parent->
getID() <<
" straightest=" << straight->
getID() <<
" dir=" <<
toString(straightestDir) <<
"\n";
209 if (outgoing.back()->getJunctionPriority(to) == 1) {
213 if (outgoing.back()->getPriority() > straight->
getPriority() ||
214 outgoing.back()->getNumLanes() > straight->
getNumLanes()) {
231 return myDirs.empty();
237 return std::find(myDirs.begin(), myDirs.end(), d) != myDirs.end();
257 std::string type,
double speed,
double friction,
int nolanes,
258 int priority,
double laneWidth,
double endOffset,
280 init(nolanes,
false,
"");
285 std::string type,
double speed,
double friction,
int nolanes,
286 int priority,
double laneWidth,
double endOffset,
289 const std::string& streetName,
290 const std::string& origID,
291 bool tryIgnoreNodePositions) :
295 myFrom(from), myTo(to),
296 myStartAngle(0), myEndAngle(0), myTotalAngle(0),
297 myPriority(priority), mySpeed(speed), myFriction(friction),
299 myTurnDestination(nullptr),
300 myPossibleTurnDestination(nullptr),
301 myFromJunctionPriority(-1), myToJunctionPriority(-1),
302 myGeom(geom), myLaneSpreadFunction(spread), myEndOffset(endOffset),
303 myLaneWidth(laneWidth),
304 myLoadedLength(UNSPECIFIED_LOADED_LENGTH),
305 myAmInTLS(false), myAmMacroscopicConnector(false),
306 myStreetName(streetName),
308 mySignalNode(nullptr),
312 init(nolanes, tryIgnoreNodePositions, origID);
319 myType(tpl->getTypeID()),
320 myFrom(from), myTo(to),
321 myStartAngle(0), myEndAngle(0), myTotalAngle(0),
322 myPriority(tpl->getPriority()), mySpeed(tpl->getSpeed()),
323 myFriction(tpl->getFriction()),
325 myTurnDestination(nullptr),
326 myPossibleTurnDestination(nullptr),
327 myFromJunctionPriority(-1), myToJunctionPriority(-1),
329 myLaneSpreadFunction(tpl->getLaneSpreadFunction()),
330 myEndOffset(tpl->getEndOffset()),
331 myEdgeStopOffset(tpl->getEdgeStopOffset()),
332 myLaneWidth(tpl->getLaneWidth()),
333 myLoadedLength(UNSPECIFIED_LOADED_LENGTH),
335 myAmMacroscopicConnector(false),
336 myStreetName(tpl->getStreetName()),
337 mySignalPosition(to == tpl->myTo ? tpl->mySignalPosition :
Position::
INVALID),
338 mySignalNode(to == tpl->myTo ? tpl->mySignalNode : nullptr),
350 myLanes[i].updateParameters(tpl->
myLanes[tplIndex].getParametersMap());
351 if (to == tpl->
myTo) {
366 myFrom(nullptr), myTo(nullptr),
367 myStartAngle(0), myEndAngle(0), myTotalAngle(0),
368 myPriority(0), mySpeed(0), myFriction(UNSPECIFIED_FRICTION),
370 myTurnDestination(nullptr),
371 myPossibleTurnDestination(nullptr),
372 myFromJunctionPriority(-1), myToJunctionPriority(-1),
377 myLoadedLength(UNSPECIFIED_LOADED_LENGTH),
379 myAmMacroscopicConnector(false),
381 mySignalNode(nullptr) {
387 double speed,
double friction,
int nolanes,
int priority,
389 const std::string& streetName,
391 bool tryIgnoreNodePositions) {
413 const std::vector<Lane> oldLanes =
myLanes;
414 init(nolanes, tryIgnoreNodePositions, oldLanes.empty() ?
"" : oldLanes[0].getParameter(
SUMO_PARAM_ORIGID));
415 for (
int i = 0; i < (int)nolanes; ++i) {
417 myLanes[i] = oldLanes[
MIN2(i, (
int)oldLanes.size() - 1)];
439 if (from ==
nullptr || to ==
nullptr) {
463NBEdge::init(
int noLanes,
bool tryIgnoreNodePositions,
const std::string& origID) {
486 if (!tryIgnoreNodePositions ||
myGeom.size() < 2) {
509 assert(
myGeom.size() >= 2);
511 if ((
int)
myLanes.size() > noLanes) {
513 for (
int lane = noLanes; lane < (int)
myLanes.size(); ++lane) {
518 for (EdgeVector::const_iterator i = incoming.begin(); i != incoming.end(); i++) {
519 for (
int lane = noLanes; lane < (int)
myLanes.size(); ++lane) {
520 (*i)->removeFromConnections(
this, -1, lane);
525 for (
int i = 0; i < noLanes; i++) {
531#ifdef DEBUG_CONNECTION_GUESSING
533 std::cout <<
"init edge=" <<
getID() <<
"\n";
535 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
538 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
463NBEdge::init(
int noLanes,
bool tryIgnoreNodePositions,
const std::string& origID) {
…}
553 lane.customShape.add(xoff, yoff, 0);
557 (*i).customShape.add(xoff, yoff, 0);
572 for (
int i = 0; i < (int)
myLanes.size(); i++) {
574 myLanes[i].customShape.mirrorX();
578 c.viaShape.mirrorX();
579 c.customShape.mirrorX();
614 assert(node ==
myTo);
626 assert(
myGeom.size() >= 2);
629 }
else if (node ==
myTo) {
668 assert(node ==
myTo);
697 if (rectangularCut) {
698 const double extend = 100;
702 border.push_back(p2);
704 if (border.size() == 2) {
709 assert(node ==
myTo);
713#ifdef DEBUG_NODE_BORDER
716 <<
" rect=" << rectangularCut
717 <<
" p=" << p <<
" p2=" << p2
718 <<
" border=" << border
731 assert(node ==
myTo);
742 assert(node ==
myTo);
797#ifdef DEBUG_CUT_LANES
799 std::cout <<
getID() <<
" cutFrom=" << shape <<
"\n";
802 if (shape.size() < 2) {
804 const double oldLength = old.
length();
805 shape = old.
getSubpart(oldLength - 2 * POSITION_EPS, oldLength);
806#ifdef DEBUG_CUT_LANES
808 std::cout <<
getID() <<
" cutFromFallback=" << shape <<
"\n";
813#ifdef DEBUG_CUT_LANES
815 std::cout <<
getID() <<
" cutTo=" << shape <<
"\n";
819 if (shape.
length() < POSITION_EPS) {
820 if (old.
length() < 2 * POSITION_EPS) {
823 const double midpoint = old.
length() / 2;
825 shape = old.
getSubpart(midpoint - POSITION_EPS, midpoint + POSITION_EPS);
826 assert(shape.size() >= 2);
827 assert(shape.
length() > 0);
828#ifdef DEBUG_CUT_LANES
830 std::cout <<
getID() <<
" fallBackShort=" << shape <<
"\n";
840 tmp.push_back(shape[0]);
841 tmp.push_back(shape[-1]);
843 if (tmp.
length() < POSITION_EPS) {
845 if (old.
length() < 2 * POSITION_EPS) {
848 const double midpoint = old.
length() / 2;
850 shape = old.
getSubpart(midpoint - POSITION_EPS, midpoint + POSITION_EPS);
851 assert(shape.size() >= 2);
852 assert(shape.
length() > 0);
854#ifdef DEBUG_CUT_LANES
856 std::cout <<
getID() <<
" fallBackReversed=" << shape <<
"\n";
860 const double midpoint = shape.
length() / 2;
862 shape = shape.
getSubpart(midpoint - POSITION_EPS, midpoint + POSITION_EPS);
863 if (shape.
length() < POSITION_EPS) {
868#ifdef DEBUG_CUT_LANES
870 std::cout <<
getID() <<
" fallBackReversed2=" << shape <<
" mid=" << midpoint <<
"\n";
875 const double z = (shape[0].z() + shape[1].z()) / 2;
891 const double d = cut[0].distanceTo2D(cut[1]);
892 const double dZ = fabs(cut[0].z() - cut[1].z());
893 if (dZ / smoothElevationThreshold > d) {
899 const double d = cut[-1].distanceTo2D(cut[-2]);
900 const double dZ = fabs(cut[-1].z() - cut[-2].z());
901 if (dZ / smoothElevationThreshold > d) {
912 for (
int i = 0; i < (int)
myLanes.size(); i++) {
916 double avgLength = 0;
917 for (
int i = 0; i < (int)
myLanes.size(); i++) {
918 avgLength +=
myLanes[i].shape.length();
927 if (nodeShape.size() == 0) {
936 assert(pbv.size() > 0);
944 const double delta = ns[0].z() - laneShape[0].z();
946 if (fabs(delta) > 2 * POSITION_EPS && (!startNode->
geometryLike() || pb < 1)) {
951 assert(ns.size() >= 2);
956 assert(pbv.size() > 0);
961 const double delta = np.
z() - laneShape[0].z();
963 if (fabs(delta) > 2 * POSITION_EPS && !startNode->
geometryLike()) {
1022 reverse = lane.customShape.
reverse();
1024 lane.customShape = reverse.
reverse();
1029 lane.customShape.removeDoublePoints(minDist,
true, 0, 0,
true);
1041 std::vector<double> angles;
1043 for (
int i = 0; i < (int)
myGeom.size() - 1; ++i) {
1049 for (
int i = 0; i < (int)angles.size() - 1; ++i) {
1052 if (maxAngle > 0 && relAngle > maxAngle) {
1054 WRITE_MESSAGEF(
TL(
"Removing sharp angle of % degrees at edge '%', segment %."),
1057 if (bidi !=
nullptr) {
1062 }
else if (!silent) {
1069 if (i == 0 || i == (
int)angles.size() - 2) {
1070 const bool start = i == 0;
1072 const double r = tan(0.5 * (
M_PI - relAngle)) * dist;
1074 if (minRadius > 0 && r < minRadius) {
1076 WRITE_MESSAGEF(
TL(
"Removing sharp turn with radius % at the % of edge '%'."),
1079 if (bidi !=
nullptr) {
1084 }
else if (!silent) {
1104 if (dest !=
nullptr &&
myTo != dest->
myFrom) {
1107 if (dest ==
nullptr) {
1115 if (overrideRemoval) {
1118 if (it->toEdge == dest) {
1135 bool mayUseSameDestination,
1136 bool mayDefinitelyPass,
1147 const std::string& edgeType,
1163 return setConnection(from, dest, toLane, type, mayUseSameDestination, mayDefinitelyPass, keepClear, contPos, visibility, speed, friction, length,
1164 customShape, uncontrolled, permissions, indirectLeft, edgeType, changeLeft, changeRight, postProcess);
1170 NBEdge* dest,
int toLane,
1172 bool invalidatePrevious,
1173 bool mayDefinitelyPass) {
1174 if (invalidatePrevious) {
1178 for (
int i = 0; i < no && ok; i++) {
1188 bool mayUseSameDestination,
1189 bool mayDefinitelyPass,
1200 const std::string& edgeType,
1228 if ((*i).toEdge == destEdge && ((*i).fromLane == -1 || (*i).toLane == -1)) {
1232 permissions = (*i).permissions;
1240 if (mayDefinitelyPass) {
1273 if ((it->fromLane < 0 || it->fromLane == lane)
1274 && (it->toEdge ==
nullptr || it->toEdge == destEdge)
1275 && (it->toLane < 0 || it->toLane == destLane)) {
1286std::vector<NBEdge::Connection>
1288 std::vector<NBEdge::Connection> ret;
1290 if ((lane < 0 || c.fromLane == lane)
1291 && (to ==
nullptr || to == c.toEdge)
1292 && (toLane < 0 || toLane == c.toLane)) {
1303 if (c.fromLane == fromLane && c.toEdge == to && c.toLane == toLane) {
1308 +
" to " + to->
getID() +
"_" +
toString(toLane) +
" not found");
1315 if (c.fromLane == fromLane && c.toEdge == to && c.toLane == toLane) {
1320 +
" to " + to->
getID() +
"_" +
toString(toLane) +
" not found");
1351 if (find(outgoing.begin(), outgoing.end(), (*i).toEdge) == outgoing.end()) {
1352 outgoing.push_back((*i).toEdge);
1357 if (it->fromLane < 0 && it->toLane < 0) {
1359 EdgeVector::iterator forbidden = std::find(outgoing.begin(), outgoing.end(), it->toEdge);
1360 if (forbidden != outgoing.end()) {
1361 outgoing.erase(forbidden);
1366 int size = (int) outgoing.size();
1368 edges->reserve(size);
1369 for (EdgeVector::const_iterator i = outgoing.begin(); i != outgoing.end(); i++) {
1372 edges->push_back(outedge);
1384 if (find(ret.begin(), ret.end(), (*i).toEdge) == ret.end()) {
1385 ret.push_back((*i).toEdge);
1396 for (EdgeVector::const_iterator i = candidates.begin(); i != candidates.end(); i++) {
1397 if ((*i)->isConnectedTo(
this)) {
1407 std::vector<int> ret;
1411 ret.push_back(c.fromLane);
1434 for (EdgeVector::const_iterator i = incoming.begin(); i != incoming.end(); i++) {
1439 for (EdgeVector::iterator j = connected.begin(); j != connected.end(); j++) {
1449 const bool keepPossibleTurns) {
1451 const int fromLaneRemoved = adaptToLaneRemoval && fromLane >= 0 ? fromLane : -1;
1452 const int toLaneRemoved = adaptToLaneRemoval && toLane >= 0 ? toLane : -1;
1455 if ((toEdge ==
nullptr || c.
toEdge == toEdge)
1456 && (fromLane < 0 || c.
fromLane == fromLane)
1457 && (toLane < 0 || c.
toLane == toLane)) {
1460 for (std::set<NBTrafficLightDefinition*>::iterator it = tldefs.begin(); it != tldefs.end(); it++) {
1467 if (fromLaneRemoved >= 0 && c.
fromLane > fromLaneRemoved) {
1470 for (std::set<NBTrafficLightDefinition*>::iterator it = tldefs.begin(); it != tldefs.end(); it++) {
1471 for (NBConnectionVector::iterator tlcon = (*it)->getControlledLinks().begin(); tlcon != (*it)->getControlledLinks().end(); ++tlcon) {
1482 if (toLaneRemoved >= 0 && c.
toLane > toLaneRemoved && (toEdge ==
nullptr || c.
toEdge == toEdge)) {
1498#ifdef DEBUG_CONNECTION_GUESSING
1500 std::cout <<
"removeFromConnections " <<
getID() <<
"_" << fromLane <<
"->" << toEdge->
getID() <<
"_" << toLane <<
"\n";
1502 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
1505 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
1517 if ((i->toEdge == connectionToRemove.
toEdge) && (i->fromLane == connectionToRemove.
fromLane) && (i->toLane == connectionToRemove.
toLane)) {
1532 if (reallowSetting) {
1544 if ((*i).toEdge == which) {
1546 (*i).toLane += laneOff;
1557 std::map<int, int> laneMap;
1561 bool wasConnected =
false;
1563 if ((*i).toEdge != which) {
1566 wasConnected =
true;
1567 if ((*i).fromLane != -1) {
1568 int fromLane = (*i).fromLane;
1569 laneMap[(*i).toLane] = fromLane;
1570 if (minLane == -1 || minLane > fromLane) {
1573 if (maxLane == -1 || maxLane < fromLane) {
1578 if (!wasConnected) {
1582 std::vector<NBEdge::Connection> conns = origConns;
1584 for (std::vector<NBEdge::Connection>::iterator i = conns.begin(); i != conns.end(); ++i) {
1585 if ((*i).toEdge == which || (*i).toEdge ==
this
1587 || std::find(origTargets.begin(), origTargets.end(), (*i).toEdge) != origTargets.end()) {
1588#ifdef DEBUG_REPLACECONNECTION
1590 std::cout <<
" replaceInConnections edge=" <<
getID() <<
" which=" << which->
getID()
1591 <<
" origTargets=" <<
toString(origTargets) <<
" newTarget=" << i->toEdge->getID() <<
" skipped\n";
1601 int fromLane = (*i).fromLane;
1603 if (laneMap.find(fromLane) == laneMap.end()) {
1604 if (fromLane >= 0 && fromLane <= minLane) {
1607 for (
auto& item : laneMap) {
1608 if (item.first < fromLane) {
1609 item.second =
MIN2(item.second, minLane);
1613 if (fromLane >= 0 && fromLane >= maxLane) {
1616 for (
auto& item : laneMap) {
1617 if (item.first > fromLane) {
1618 item.second =
MAX2(item.second, maxLane);
1623 toUse = laneMap[fromLane];
1628#ifdef DEBUG_REPLACECONNECTION
1630 std::cout <<
" replaceInConnections edge=" <<
getID() <<
" which=" << which->
getID() <<
" origTargets=" <<
toString(origTargets)
1631 <<
" origFrom=" << fromLane <<
" laneMap=" <<
joinToString(laneMap,
":",
",") <<
" minLane=" << minLane <<
" maxLane=" << maxLane
1632 <<
" newTarget=" << i->toEdge->getID() <<
" fromLane=" << toUse <<
" toLane=" << i->toLane <<
"\n";
1636 i->contPos, i->visibility, i->speed, i->friction, i->customLength, i->customShape, i->uncontrolled);
1661#ifdef DEBUG_CONNECTION_CHECKING
1662 std::cout <<
" moveConnectionToLeft " <<
getID() <<
" lane=" << lane <<
"\n";
1670 std::vector<Connection>::iterator i =
myConnections.begin() + index;
1679#ifdef DEBUG_CONNECTION_CHECKING
1680 std::cout <<
" moveConnectionToRight " <<
getID() <<
" lane=" << lane <<
"\n";
1696 const int numPoints = oc.
getInt(
"junctions.internal-link-detail");
1697 const bool joinTurns = oc.
getBool(
"junctions.join-turns");
1698 const double limitTurnSpeed = oc.
getFloat(
"junctions.limit-turn-speed");
1699 const double limitTurnSpeedMinAngle =
DEG2RAD(oc.
getFloat(
"junctions.limit-turn-speed.min-angle"));
1700 const double limitTurnSpeedMinAngleRail =
DEG2RAD(oc.
getFloat(
"junctions.limit-turn-speed.min-angle.railway"));
1701 const double limitTurnSpeedWarnStraight = oc.
getFloat(
"junctions.limit-turn-speed.warn.straight");
1702 const double limitTurnSpeedWarnTurn = oc.
getFloat(
"junctions.limit-turn-speed.warn.turn");
1703 const bool higherSpeed = oc.
getBool(
"junctions.higher-speed");
1704 const double interalJunctionVehicleWidth = oc.
getFloat(
"internal-junctions.vehicle-width");
1705 const double defaultContPos = oc.
getFloat(
"default.connection.cont-pos");
1707 std::string innerID =
":" + n.
getID();
1708 NBEdge* toEdge =
nullptr;
1709 int edgeIndex = linkIndex;
1710 int internalLaneIndex = 0;
1712 double lengthSum = 0;
1713 int avoidedIntersectingLeftOriginLane = std::numeric_limits<int>::max();
1714 bool averageLength =
true;
1715 double maxCross = 0.;
1719 if (con.
toEdge ==
nullptr) {
1726 if (con.
toEdge != toEdge) {
1729 edgeIndex = linkIndex;
1731 internalLaneIndex = 0;
1736 averageLength = !isTurn || joinTurns;
1740 std::vector<int> foeInternalLinks;
1747 std::pair<double, std::vector<int> > crossingPositions(-1, std::vector<int>());
1748 std::set<std::string> tmpFoeIncomingLanes;
1751 std::vector<PositionVector> otherShapes;
1753 const double width1OppositeLeft = 0;
1755 for (
const Connection& k2 : i2->getConnections()) {
1756 if (k2.toEdge ==
nullptr) {
1761 double width2 = k2.toEdge->getLaneWidth(k2.toLane);
1762 if (k2.toEdge->getPermissions(k2.toLane) !=
SVC_BICYCLE) {
1765 const bool foes = n.
foes(
this, con.
toEdge, i2, k2.toEdge);
1768 const bool avoidIntersectCandidate = !foes &&
bothLeftTurns(dir, i2, dir2);
1769 bool oppositeLeftIntersect = avoidIntersectCandidate &&
haveIntersection(n, shape, i2, k2, numPoints, width1OppositeLeft, width2);
1774 && k2.customShape.size() == 0
1775 && (oppositeLeftIntersect || (avoidedIntersectingLeftOriginLane < con.
fromLane && avoidIntersectCandidate))
1776 && ((i2->getPermissions(k2.fromLane) & warn) != 0
1777 && (k2.toEdge->getPermissions(k2.toLane) & warn) != 0)) {
1783 oppositeLeftIntersect =
haveIntersection(n, shape, i2, k2, numPoints, width1OppositeLeft, width2, shapeFlag);
1784 if (oppositeLeftIntersect
1789 if (avoidedIntersectingLeftOriginLane == std::numeric_limits<int>::max()
1790 || avoidedIntersectingLeftOriginLane < con.
fromLane) {
1793 const double minDV =
firstIntersection(shape, otherShape, width1OppositeLeft, width2,
1794 "Could not compute intersection of conflicting internal lanes at node '" +
myTo->
getID() +
"'", secondIntersection);
1795 if (minDV < shape.
length() - POSITION_EPS && minDV > POSITION_EPS) {
1797 if (crossingPositions.first < 0 || crossingPositions.first > minDV) {
1798 crossingPositions.first = minDV;
1804 avoidedIntersectingLeftOriginLane = con.
fromLane;
1810 const bool isBicycleLeftTurn = k2.indirectLeft || (dir2 ==
LinkDirection::LEFT && (i2->getPermissions(k2.fromLane) & k2.toEdge->getPermissions(k2.toLane)) ==
SVC_BICYCLE);
1813 crossingPositions.second.push_back(index);
1815 otherShapes.push_back(otherShape);
1818 "Could not compute intersection of conflicting internal lanes at node '" +
myTo->
getID() +
"'", secondIntersection);
1819 if (minDV < shape.
length() - POSITION_EPS && minDV > POSITION_EPS) {
1821 if (crossingPositions.first < 0 || crossingPositions.first > minDV) {
1822 crossingPositions.first = minDV;
1834 if (foes || rightTurnConflict || oppositeLeftIntersect || mergeConflict || indirectTurnConflit || bidiConflict) {
1835 foeInternalLinks.push_back(index);
1838 if (oppositeLeftIntersect &&
getID() > i2->getID()
1841 && (i2->getPermissions(k2.fromLane) & warn) != 0
1842 && (k2.toEdge->getPermissions(k2.toLane) & warn) != 0
1846 WRITE_WARNINGF(
TL(
"Intersecting left turns at junction '%' from lane '%' and lane '%' (increase junction radius to avoid this)."),
1851 if ((n.
forbids(i2, k2.toEdge,
this, con.
toEdge, signalised) || rightTurnConflict || indirectTurnConflit || mergeResponse)
1853 tmpFoeIncomingLanes.insert(i2->getID() +
"_" +
toString(k2.fromLane));
1855 if (bothPrio && oppositeLeftIntersect &&
getID() < i2->getID()) {
1859 tmpFoeIncomingLanes.insert(
":" +
toString(index));
1864 if (dir ==
LinkDirection::TURN && crossingPositions.first < 0 && crossingPositions.second.size() != 0 && shape.
length() > 2. * POSITION_EPS) {
1870 std::vector<NBNode::Crossing*> crossings = n.
getCrossings();
1871 for (
auto c : crossings) {
1873 for (EdgeVector::const_iterator it_e = crossing.
edges.begin(); it_e != crossing.
edges.end(); ++it_e) {
1874 const NBEdge* edge = *it_e;
1876 if ((
this == edge || con.
toEdge == edge) && !
isRailway(conPermissions)) {
1877 foeInternalLinks.push_back(index);
1878 if (con.
toEdge == edge &&
1884 if (minDV < shape.
length() - POSITION_EPS && minDV > POSITION_EPS) {
1886 if (crossingPositions.first < 0 || crossingPositions.first > minDV) {
1887 crossingPositions.first = minDV;
1891 crossingPositions.first = 0;
1906 crossingPositions.first = -1;
1909 crossingPositions.first = con.
contPos;
1928 if (limitTurnSpeed > 0) {
1933 const double angle =
MAX2(0.0, angleRaw - (fromRail ? limitTurnSpeedMinAngleRail : limitTurnSpeedMinAngle));
1934 const double length = shape.
length2D();
1937 if (angle > 0 && length > 1) {
1940 const double limit = sqrt(limitTurnSpeed * radius);
1941 const double reduction = con.
vmax - limit;
1949 dirType =
"roundabout";
1951 WRITE_WARNINGF(
TL(
"Speed of % connection '%' reduced by % due to turning radius of % (length=%, angle=%)."),
1958 assert(con.
vmax > 0);
1973 assert(shape.size() >= 2);
1975 con.
id = innerID +
"_" +
toString(edgeIndex);
1976 const double shapeLength = shape.
length();
1977 double firstLength = shapeLength;
1978 if (crossingPositions.first > 0 && crossingPositions.first < shapeLength) {
1979 std::pair<PositionVector, PositionVector>
split = shape.
splitAt(crossingPositions.first);
1981 con.
foeIncomingLanes = std::vector<std::string>(tmpFoeIncomingLanes.begin(), tmpFoeIncomingLanes.end());
1987 con.
viaID = innerID +
"_" +
toString(splitIndex + noInternalNoSplits);
1996 ++internalLaneIndex;
2001 lengthSum += (shapeLength != 0 ? firstLength / shapeLength : 1) * con.
customLength;
2003 lengthSum += firstLength;
2015 double maxCross = 0.;
2017 for (
int prevIndex = 1; prevIndex <= numLanes; prevIndex++) {
2031 if (!averageLength) {
2052 double intersect = std::numeric_limits<double>::max();
2053 if (v2.
length() < POSITION_EPS) {
2070 bool skip = secondIntersection;
2076 intersect =
MIN2(intersect, cand);
2078 skip = secondIntersection;
2084 intersect =
MIN2(intersect, cand);
2086 skip = secondIntersection;
2092 intersect =
MIN2(intersect, cand);
2094 skip = secondIntersection;
2100 intersect =
MIN2(intersect, cand);
2116 if (otherFrom ==
this) {
2125 double width1,
double width2,
int shapeFlag)
const {
2128 return minDV < shape.
length() - POSITION_EPS && minDV > POSITION_EPS;
2147#ifdef DEBUG_JUNCTIONPRIO
2152#ifdef DEBUG_JUNCTIONPRIO
2164 assert(atNode ==
myTo);
2175 assert(atNode ==
myTo);
2194 assert(atNode ==
myTo);
2202 if (!onlyPossible) {
2217 return myLanes[lane].friction;
2230 if (lane.changeLeft !=
SVCAll) {
2231 lane.changeLeft = ignoring;
2233 if (lane.changeRight !=
SVCAll) {
2234 lane.changeRight = ignoring;
2239 con.changeLeft = ignoring;
2242 con.changeRight = ignoring;
2255 std::vector<double> offsets(
myLanes.size(), 0.);
2257 for (
int i = (
int)
myLanes.size() - 2; i >= 0; --i) {
2259 offsets[i] = offset;
2263 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
2269 offset = laneWidth / 2.;
2280 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
2281 offsets[i] += offset;
2285 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
2286 if (
myLanes[i].customShape.size() != 0) {
2322 if ((hasFromShape || hasToShape) &&
getNumLanes() > 0) {
2355 if (suspiciousFromShape) {
2356 std::cout <<
"suspiciousFromShape len=" << shape.
length() <<
" startA=" <<
myStartAngle <<
" startA2=" << myStartAngle2 <<
" startA3=" << myStartAngle3
2358 <<
" fromCenter=" << fromCenter
2360 <<
" refStart=" << referencePosStart
2363 if (suspiciousToShape) {
2364 std::cout <<
"suspiciousToShape len=" << shape.
length() <<
" endA=" <<
myEndAngle <<
" endA2=" << myEndAngle2 <<
" endA3=" << myEndAngle3
2366 <<
" toCenter=" << toCenter
2368 <<
" refEnd=" << referencePosEnd
2374 if (suspiciousFromShape && shape.
length() > 1) {
2385 if (suspiciousToShape && shape.
length() > 1) {
2399 <<
" fromCenter=" << fromCenter <<
" toCenter=" << toCenter
2400 <<
" refStart=" << referencePosStart <<
" refEnd=" << referencePosEnd <<
" shape=" << shape
2401 <<
" hasFromShape=" << hasFromShape
2402 <<
" hasToShape=" << hasToShape
2428 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2429 if ((*i).permissions !=
SVCAll) {
2439 std::vector<Lane>::const_iterator i =
myLanes.begin();
2442 for (; i !=
myLanes.end(); ++i) {
2443 if (i->permissions != firstLanePermissions) {
2453 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2463 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2464 if (i->friction !=
myLanes.begin()->friction) {
2473 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2474 if (i->width !=
myLanes.begin()->width) {
2484 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2485 if (i->type !=
myLanes.begin()->type) {
2495 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2496 if (i->endOffset !=
myLanes.begin()->endOffset) {
2506 for (
const auto& lane :
myLanes) {
2507 if (lane.laneStopOffset.isDefined()) {
2519 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2530 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2531 if (i->customShape.size() > 0) {
2541 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2542 if (i->getParametersMap().size() > 0) {
2552 if (lane.changeLeft !=
SVCAll || lane.changeRight !=
SVCAll) {
2578#ifdef DEBUG_CONNECTION_GUESSING
2580 std::cout <<
"computeEdge2Edges edge=" <<
getID() <<
" step=" << (int)
myStep <<
" noLeftMovers=" << noLeftMovers <<
"\n";
2582 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
2585 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
2600 if (fromRail &&
isRailway(out->getPermissions())) {
2604 }
else if (angle > 90) {
2612 if (radius < minRadius) {
2634#ifdef DEBUG_CONNECTION_GUESSING
2636 std::cout <<
"computeLanes2Edges edge=" <<
getID() <<
" step=" << (int)
myStep <<
"\n";
2638 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
2641 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
2667std::vector<LinkDirection>
2669 std::vector<LinkDirection> result;
2670 for (
int i = 0; i < 8; i++) {
2672 if ((turnSigns & (1 << (i + shift))) != 0) {
2681 if (dirs.size() > 0) {
2682 if (std::find(dirs.begin(), dirs.end(), dir) == dirs.end()) {
2692#ifdef DEBUG_TURNSIGNS
2693 std::cout <<
"applyTurnSigns edge=" <<
getID() <<
"\n";
2696 std::vector<const NBEdge*> targets;
2697 std::map<const NBEdge*, std::vector<int> > toLaneMap;
2699 if (
myLanes[c.fromLane].turnSigns != 0) {
2700 if (std::find(targets.begin(), targets.end(), c.toEdge) == targets.end()) {
2701 targets.push_back(c.toEdge);
2703 toLaneMap[c.toEdge].push_back(c.toLane);
2707 for (
auto& item : toLaneMap) {
2708 std::sort(item.second.begin(), item.second.end());
2712 std::map<LinkDirection, int> signCons;
2715 allDirs |= lane.turnSigns;
2725 targets.push_back(
nullptr);
2731 std::map<LinkDirection, const NBEdge*> dirMap;
2732#ifdef DEBUG_TURNSIGNS
2733 std::cout <<
" numDirs=" << signedDirs.size() <<
" numTargets=" << targets.size() <<
"\n";
2735 if (signedDirs.size() > targets.size()) {
2736 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because there are % signed directions but only % targets"),
getID(), signedDirs.size(), targets.size());
2738 }
else if (signedDirs.size() < targets.size()) {
2741 std::vector<LinkDirection> sumoDirs;
2742 for (
const NBEdge* to : targets) {
2746 bool checkMore =
true;
2747 while (signedDirs.size() < targets.size() && checkMore) {
2750 if (sumoDirs.back() != signedDirs.back()) {
2752 sumoDirs.pop_back();
2758 while (signedDirs.size() < targets.size() && checkMore) {
2760 if (sumoDirs.front() != signedDirs.front()) {
2761 targets.erase(targets.begin());
2762 sumoDirs.erase(sumoDirs.begin());
2768 while (signedDirs.size() < targets.size() && i < (int)targets.size()) {
2769 if (targets[i] !=
nullptr && (targets[i]->
getPermissions() & defaultPermissions) == 0) {
2770 targets.erase(targets.begin() + i);
2771 sumoDirs.erase(sumoDirs.begin() + i);
2776 if (signedDirs.size() != targets.size()) {
2777 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because there are % signed directions and % targets (after target pruning)"),
getID(), signedDirs.size(), targets.size());
2782 for (
int i = 0; i < (int)signedDirs.size(); i++) {
2783 dirMap[signedDirs[i]] = targets[i];
2786 for (
auto item : signCons) {
2791 const NBEdge* to = dirMap[dir];
2793 if (candidates == 0) {
2794 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because the target edge '%' has no suitable lanes"),
getID(), to->
getID());
2797 std::vector<int>& knownTargets = toLaneMap[to];
2798 if ((
int)knownTargets.size() < item.second) {
2799 if (candidates < item.second) {
2800 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because there are % signed connections with directions '%' but target edge '%' has only % suitable lanes"),
2818 while ((
int)knownTargets.size() < item.second && i != iEnd) {
2820 if (std::find(knownTargets.begin(), knownTargets.end(), i) == knownTargets.end()) {
2821 knownTargets.push_back(i);
2826 if ((
int)knownTargets.size() != item.second) {
2827 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because not enough target lanes could be determined for direction '%'"),
getID(),
toString(dir));
2830 std::sort(knownTargets.begin(), knownTargets.end());
2833 std::map<const NBEdge*, int> toLaneIndex;
2835 const int turnSigns =
myLanes[i].turnSigns;
2837 if (turnSigns != 0) {
2840 if (it->fromLane == i) {
2847 int allSigns = (turnSigns
2872 if (to !=
nullptr) {
2873 if (toLaneIndex.count(to) == 0) {
2875 int toLane = toLaneMap[to][0];
2888#ifdef DEBUG_TURNSIGNS
2889 std::cout <<
" target=" << to->
getID() <<
" initial toLane=" << toLane <<
"\n";
2891 toLaneIndex[to] = toLane;
2893#ifdef DEBUG_TURNSIGNS
2902 if (toLaneIndex[to] < to->getNumLanes() - 1
2903 && (to->getPermissions(toLaneIndex[to] + 1) & fromP) != 0) {
2905 }
else if (toLaneIndex[to] < to->getNumLanes() - 2
2906 && (to->getPermissions(toLaneIndex[to] + 2) & fromP) != 0) {
2908 toLaneIndex[to] += 2;
2922#ifdef DEBUG_CONNECTION_GUESSING
2924 std::cout <<
"recheckLanes (initial) edge=" <<
getID() <<
"\n";
2926 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
2929 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
2937 std::vector<int> connNumbersPerLane(
myLanes.size(), 0);
2939 if ((*i).toEdge ==
nullptr || (*i).fromLane < 0 || (*i).toLane < 0) {
2942 if ((*i).fromLane >= 0) {
2943 ++connNumbersPerLane[(*i).fromLane];
2949#ifdef DEBUG_TURNSIGNS
2950 if (
myLanes.back().turnSigns != 0) {
2951 std::cout <<
getID() <<
" hasTurnSigns\n";
2963 for (
int i = 0; i < (int)
myLanes.size(); i++) {
2966 bool hasDeadEnd =
true;
2968 for (
int i2 = i - 1; hasDeadEnd && i2 >= 0; i2--) {
2972 if (connNumbersPerLane[i2] > 1) {
2973 connNumbersPerLane[i2]--;
2974 for (
int i3 = i2; i3 != i; i3++) {
2984 for (
int i2 = i + 1; hasDeadEnd && i2 <
getNumLanes(); i2++) {
2988 if (connNumbersPerLane[i2] > 1) {
2989 connNumbersPerLane[i2]--;
2990 for (
int i3 = i2; i3 != i; i3--) {
3000 int passengerLanes = 0;
3001 int passengerTargetLanes = 0;
3009 for (
const Lane& lane : out->getLanes()) {
3011 passengerTargetLanes++;
3016 if (passengerLanes > 0 && passengerLanes <= passengerTargetLanes) {
3021 if (rightCons.size() > 0) {
3024 int toLane = rc.
toLane + 1;
3028#ifdef DEBUG_CONNECTION_CHECKING
3029 std::cout <<
" recheck1 setConnection " <<
getID() <<
"_" << i <<
"->" << to->
getID() <<
"_" << toLane <<
"\n";
3045#ifdef DEBUG_CONNECTION_CHECKING
3046 std::cout <<
" recheck2 setConnection " <<
getID() <<
"_" << i <<
"->" << to->
getID() <<
"_" << (toLane + 1) <<
"\n";
3059 if (leftCons.size() > 0) {
3060 NBEdge* to = leftCons.front().toEdge;
3061 int toLane = leftCons.front().toLane - 1;
3065#ifdef DEBUG_CONNECTION_CHECKING
3066 std::cout <<
" recheck3 setConnection " <<
getID() <<
"_" << i <<
"->" << to->
getID() <<
"_" << toLane <<
"\n";
3075#ifdef ADDITIONAL_WARNINGS
3093 if (incoming.size() > 1) {
3094 for (
int i = 0; i < (int)
myLanes.size(); i++) {
3096 bool connected =
false;
3097 for (std::vector<NBEdge*>::const_iterator in = incoming.begin(); in != incoming.end(); ++in) {
3098 if ((*in)->hasConnectionTo(
this, i)) {
3112 for (
int i = 0; i < (int)
myLanes.size(); i++) {
3114 if ((connNumbersPerLane[i] == 0 || ((lane.
accelRamp || (i > 0 &&
myLanes[i - 1].accelRamp && connNumbersPerLane[i - 1] > 0))
3119 if (forbiddenLeft && (i == 0 || forbiddenRight)) {
3122 }
else if (forbiddenRight && (i ==
getNumLanes() - 1 || (i > 0 &&
myLanes[i - 1].accelRamp))) {
3129#ifdef ADDITIONAL_WARNINGS
3136 bool hasAlternative =
false;
3138 if (c.fromLane == c2.fromLane && c.toEdge == c2.toEdge
3139 && (c.toEdge->getPermissions(c2.toLane) &
SVC_PASSENGER) != 0) {
3140 hasAlternative =
true;
3143 if (!hasAlternative) {
3144 WRITE_WARNING(
"Road lane ends on bikeLane for connection " + c.getDescription(
this));
3150#ifdef DEBUG_CONNECTION_GUESSING
3152 std::cout <<
"recheckLanes (final) edge=" <<
getID() <<
"\n";
3154 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
3171 for (
int i = 0; i < leftmostLane; i++) {
3172 const std::string& oppositeID =
getLanes()[i].oppositeID;
3173 NBEdge* oppEdge = ec.
retrieve(oppositeID.substr(0, oppositeID.rfind(
"_")));
3174 if (oppositeID !=
"" && oppositeID !=
"-") {
3175 if (
getLanes().back().oppositeID ==
"" && oppEdge !=
nullptr) {
3177 WRITE_WARNINGF(
TL(
"Moving opposite lane '%' from invalid lane '%' to lane index %."), oppositeID,
getLaneID(i), leftmostLane);
3184 const std::string& oppositeID =
getLanes().back().oppositeID;
3185 if (oppositeID !=
"" && oppositeID !=
"-") {
3186 NBEdge* oppEdge = ec.
retrieve(oppositeID.substr(0, oppositeID.rfind(
"_")));
3187 if (oppEdge ==
nullptr) {
3193 WRITE_WARNINGF(
TL(
"Adapting invalid opposite lane '%' for edge '%' to '%'."), oppositeID,
getID(), oppEdgeLeftmost);
3198 const std::string leftmostID =
getLaneID(leftmostLane);
3199 WRITE_WARNINGF(
TL(
"Adapting missing opposite lane '%' for edge '%'."), leftmostID, oppEdge->
getID());
3203 if (fixOppositeLengths) {
3205 WRITE_WARNINGF(
TL(
"Averaging edge lengths for lane '%' (length %) and edge '%' (length %)."),
3211 ") differs in length from edge '" +
getID() +
"' (length " +
3217 WRITE_ERRORF(
TL(
"Opposite lane '%' does not connect the same nodes as edge '%'!"), oppositeID,
getID());
3231 if (startOffset + l.endOffset >
getLength()) {
3232 WRITE_WARNINGF(
TL(
"Invalid endOffset % at lane '%' with length % (startOffset %)."),
3234 }
else if (l.speed < 0.) {
3236 }
else if (l.speed == 0.) {
3250#ifdef DEBUG_CONNECTION_CHECKING
3251 std::cout <<
" remove pedCon " << c.
getDescription(
this) <<
"\n";
3254 }
else if (common == 0) {
3257 const int origToLane = c.
toLane;
3259 int toLane = origToLane;
3272 toLane = origToLane;
3285#ifdef DEBUG_CONNECTION_CHECKING
3286 std::cout <<
" remove " << c.
getDescription(
this) <<
" with no alternative target\n";
3294#ifdef DEBUG_CONNECTION_CHECKING
3295 std::cout <<
" remove " << c.
getDescription(
this) <<
" (rail turnaround)\n";
3306 if (outgoing->size() == 0) {
3312#ifdef DEBUG_CONNECTION_GUESSING
3314 std::cout <<
" divideOnEdges " <<
getID() <<
" outgoing=" <<
toString(*outgoing) <<
"\n";
3319 std::vector<int> availableLanes;
3320 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
3322 availableLanes.push_back(i);
3325 if (availableLanes.size() > 0) {
3329 availableLanes.clear();
3330 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
3335 availableLanes.push_back(i);
3337 if (availableLanes.size() > 0) {
3341 availableLanes.clear();
3342 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
3347 availableLanes.push_back(i);
3349 if (availableLanes.size() > 0) {
3353 availableLanes.clear();
3354 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
3359 availableLanes.push_back(i);
3361 if (availableLanes.size() > 0) {
3365 bool explicitTurnaround =
false;
3368 if ((*i).fromLane == -1) {
3370 explicitTurnaround =
true;
3371 turnaroundPermissions = (*i).permissions;
3375 if (c.toLane == -1 && c.toEdge == (*i).toEdge) {
3377 c.permissions = (*i).permissions;
3386 if (explicitTurnaround) {
3397 if (priorities.empty()) {
3400#ifdef DEBUG_CONNECTION_GUESSING
3402 std::cout <<
"divideSelectedLanesOnEdges " <<
getID() <<
" out=" <<
toString(*outgoing) <<
" prios=" <<
toString(priorities) <<
" avail=" <<
toString(availableLanes) <<
"\n";
3406 const int numOutgoing = (int)outgoing->size();
3407 std::vector<int> resultingLanesFactor;
3408 resultingLanesFactor.reserve(numOutgoing);
3409 int minResulting = std::numeric_limits<int>::max();
3410 for (
int i = 0; i < numOutgoing; i++) {
3412 const int res = priorities[i] * (int)availableLanes.size();
3413 resultingLanesFactor.push_back(res);
3414 if (minResulting > res && res > 0) {
3426 transition.reserve(numOutgoing);
3427 for (
int i = 0; i < numOutgoing; i++) {
3429 assert(i < (
int)resultingLanesFactor.size());
3430 const int tmpNum = (resultingLanesFactor[i] + minResulting - 1) / minResulting;
3431 numVirtual += tmpNum;
3432 for (
int j = 0; j < tmpNum; j++) {
3433 transition.push_back((*outgoing)[i]);
3436#ifdef DEBUG_CONNECTION_GUESSING
3438 std::cout <<
" minResulting=" << minResulting <<
" numVirtual=" << numVirtual <<
" availLanes=" <<
toString(availableLanes) <<
" resLanes=" <<
toString(resultingLanesFactor) <<
" transition=" <<
toString(transition) <<
"\n";
3447 for (
NBEdge*
const target : *outgoing) {
3448 assert(l2eConns.find(target) != l2eConns.end());
3449 for (
const int j : l2eConns.find(target)->second) {
3450 const int fromIndex = availableLanes[j];
3451 if ((
getPermissions(fromIndex) & target->getPermissions()) == 0) {
3465 int targetLanes = target->getNumLanes();
3469 if (numConsToTarget >= targetLanes) {
3472 if (
myLanes[fromIndex].connectionsDone) {
3475#ifdef DEBUG_CONNECTION_GUESSING
3477 std::cout <<
" connectionsDone from " <<
getID() <<
"_" << fromIndex <<
": ";
3479 std::cout << c.getDescription(
this) <<
", ";
3487#ifdef DEBUG_CONNECTION_GUESSING
3489 std::cout <<
" request connection from " <<
getID() <<
"_" << fromIndex <<
" to " << target->getID() <<
"\n";
3502 const int numOutgoing = (int) outgoing->size();
3503 NBEdge* target =
nullptr;
3504 NBEdge* rightOfTarget =
nullptr;
3505 NBEdge* leftOfTarget =
nullptr;
3507 for (
int i = 0; i < numOutgoing; i++) {
3508 if (maxPrio < priorities[i]) {
3511 maxPrio = priorities[i];
3512 target = (*outgoing)[i];
3513 rightOfTarget = i == 0 ? outgoing->back() : (*outgoing)[i - 1];
3514 leftOfTarget = i + 1 == numOutgoing ? outgoing->front() : (*outgoing)[i + 1];
3518 if (target ==
nullptr) {
3526 const int numDesiredConsToTarget =
MIN2(targetLanes, (
int)availableLanes.size());
3527#ifdef DEBUG_CONNECTION_GUESSING
3529 std::cout <<
" checking extra lanes for target=" << target->
getID() <<
" cons=" << numConsToTarget <<
" desired=" << numDesiredConsToTarget <<
"\n";
3532 std::vector<int>::const_iterator it_avail = availableLanes.begin();
3533 while (numConsToTarget < numDesiredConsToTarget && it_avail != availableLanes.end()) {
3534 const int fromIndex = *it_avail;
3543 && !
myLanes[fromIndex].connectionsDone
3545#ifdef DEBUG_CONNECTION_GUESSING
3547 std::cout <<
" candidate from " <<
getID() <<
"_" << fromIndex <<
" to " << target->
getID() <<
"\n";
3556#ifdef DEBUG_CONNECTION_GUESSING
3558 std::cout <<
" request additional connection from " <<
getID() <<
"_" << fromIndex <<
" to " << target->
getID() <<
"\n";
3564#ifdef DEBUG_CONNECTION_GUESSING
3569 <<
" rightOfTarget=" << rightOfTarget->
getID()
3570 <<
" leftOfTarget=" << leftOfTarget->
getID()
3581const std::vector<int>
3583 std::vector<int> priorities;
3590 priorities.reserve(outgoing->size());
3591 for (
const NBEdge*
const out : *outgoing) {
3593 assert((prio + 1) * 2 > 0);
3594 prio = (prio + 1) * 2;
3595 priorities.push_back(prio);
3600#ifdef DEBUG_CONNECTION_GUESSING
3602 <<
" outgoing=" <<
toString(*outgoing)
3603 <<
" priorities1=" <<
toString(priorities)
3608 assert(priorities.size() > 0);
3610#ifdef DEBUG_CONNECTION_GUESSING
3612 std::cout <<
" priorities2=" <<
toString(priorities) <<
"\n";
3619 if (mainDirections.
empty()) {
3620 assert(dist < (
int)priorities.size());
3621 priorities[dist] *= 2;
3622#ifdef DEBUG_CONNECTION_GUESSING
3624 std::cout <<
" priorities3=" <<
toString(priorities) <<
"\n";
3629 priorities[dist] += 1;
3634 priorities[(int)priorities.size() - 1] /= 2;
3635#ifdef DEBUG_CONNECTION_GUESSING
3637 std::cout <<
" priorities6=" <<
toString(priorities) <<
"\n";
3641 && outgoing->size() > 2
3642 && availableLanes.size() == 2
3643 && (*outgoing)[dist]->getPriority() == (*outgoing)[0]->getPriority()) {
3645 priorities.back() /= 2;
3646#ifdef DEBUG_CONNECTION_GUESSING
3648 std::cout <<
" priorities7=" <<
toString(priorities) <<
"\n";
3655 priorities[dist] *= 2;
3656#ifdef DEBUG_CONNECTION_GUESSING
3658 std::cout <<
" priorities4=" <<
toString(priorities) <<
"\n";
3662 priorities[dist] *= 3;
3663#ifdef DEBUG_CONNECTION_GUESSING
3665 std::cout <<
" priorities5=" <<
toString(priorities) <<
"\n";
3675NBEdge::appendTurnaround(
bool noTLSControlled,
bool noFringe,
bool onlyDeadends,
bool onlyTurnlane,
bool noGeometryLike,
bool checkPermissions) {
3688 bool isDeadEnd =
true;
3690 if ((c.toEdge->getPermissions(c.toLane)
3698 if (onlyDeadends && !isDeadEnd) {
3711 if (checkPermissions) {
3735 if (noGeometryLike && !isDeadEnd) {
3744 if (turnIncoming.size() > 1) {
3675NBEdge::appendTurnaround(
bool noTLSControlled,
bool noFringe,
bool onlyDeadends,
bool onlyTurnlane,
bool noGeometryLike,
bool checkPermissions) {
…}
3770 if (pos < tolerance) {
3784 for (
int i = 0; i < lanes; i++) {
3786 assert(el.tlID ==
"");
3808 if (c.fromLane == fromLane && c.toEdge == toEdge && c.toLane == toLane && c.uncontrolled) {
3828 assert(fromLane < 0 || fromLane < (
int)
myLanes.size());
3830 if (fromLane >= 0 && toLane >= 0) {
3832 std::vector<Connection>::iterator i =
3840 connection.
tlID = tlID;
3849 bool hadError =
false;
3851 if ((*i).toEdge != toEdge) {
3854 if (fromLane >= 0 && fromLane != (*i).fromLane) {
3857 if (toLane >= 0 && toLane != (*i).toLane) {
3860 if ((*i).tlID ==
"") {
3862 (*i).tlLinkIndex = tlIndex;
3863 (*i).tlLinkIndex2 = tlIndex2;
3866 if ((*i).tlID != tlID && (*i).tlLinkIndex == tlIndex) {
3867 WRITE_WARNINGF(
TL(
"The lane '%' on edge '%' already had a traffic light signal."), i->fromLane,
getID());
3872 if (hadError && no == 0) {
3873 WRITE_WARNINGF(
TL(
"Could not set any signal of the tlLogic '%' (unknown group)."), tlID);
3927 reason =
"laneNumber";
3937 reason =
"bidi-rail";
3951 if (find(conn.begin(), conn.end(), possContinuation) == conn.end()) {
3952 reason =
"disconnected";
3963 reason =
"disconnected";
3969 if (conns.size() <
myLanes.size() - offset) {
3970 reason =
"some lanes disconnected";
3983 if (maxJunctionSize >= 0) {
3984 const double junctionSize =
myGeom.back().distanceTo2D(possContinuation->
myGeom.front());
3985 if (junctionSize > maxJunctionSize + POSITION_EPS) {
3986 reason =
"junction size (" +
toString(junctionSize) +
") > max-junction-size (" +
toString(maxJunctionSize) +
")";
3992 reason =
"priority";
4002 reason =
"spreadType";
4006 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4008 reason =
"lane " +
toString(i) +
" speed";
4010 }
else if (
myLanes[i].permissions != possContinuation->
myLanes[i].permissions) {
4011 reason =
"lane " +
toString(i) +
" permissions";
4013 }
else if (
myLanes[i].changeLeft != possContinuation->
myLanes[i].changeLeft ||
myLanes[i].changeRight != possContinuation->
myLanes[i].changeRight) {
4014 reason =
"lane " +
toString(i) +
" change restrictions";
4016 }
else if (
myLanes[i].width != possContinuation->
myLanes[i].width &&
4018 reason =
"lane " +
toString(i) +
" width";
4039 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4045 if (origID != origID2) {
4055 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4089 if ((*i).toEdge == e && (*i).tlID !=
"") {
4115 assert(distances.size() > 0);
4121NBEdge::addLane(
int index,
bool recomputeShape,
bool recomputeConnections,
bool shiftIndices) {
4122 assert(index <= (
int)
myLanes.size());
4126 int templateIndex = index > 0 ? index - 1 : index + 1;
4136 if (recomputeShape) {
4139 if (recomputeConnections) {
4140 for (EdgeVector::const_iterator i = incs.begin(); i != incs.end(); ++i) {
4141 (*i)->invalidateConnections(
true);
4144 }
else if (shiftIndices) {
4147 if (c.fromLane >= index) {
4154 if (c.toEdge ==
this && c.toLane >= index) {
4121NBEdge::addLane(
int index,
bool recomputeShape,
bool recomputeConnections,
bool shiftIndices) {
…}
4166 int newLaneNo = (int)
myLanes.size() + by;
4167 while ((
int)
myLanes.size() < newLaneNo) {
4177 assert(index < (
int)
myLanes.size());
4182 for (EdgeVector::const_iterator i = incs.begin(); i != incs.end(); ++i) {
4183 (*i)->invalidateConnections(
true);
4186 }
else if (shiftIndices) {
4189 inc->removeFromConnections(
this, -1, index,
false,
true);
4197 int newLaneNo = (int)
myLanes.size() - by;
4198 assert(newLaneNo > 0);
4199 while ((
int)
myLanes.size() > newLaneNo) {
4217 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4221 assert(lane < (
int)
myLanes.size());
4222 myLanes[lane].permissions |= vclass;
4230 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4234 assert(lane < (
int)
myLanes.size());
4235 myLanes[lane].permissions &= ~vclass;
4243 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4247 assert(lane < (
int)
myLanes.size());
4248 myLanes[lane].permissions |= vclasses;
4249 myLanes[lane].preferred |= vclasses;
4259 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4265 assert(lane < (
int)
myLanes.size());
4272 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4278 assert(lane < (
int)
myLanes.size());
4309 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4332 return myLanes[lane].laneStopOffset;
4342 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4348 assert(lane < (
int)
myLanes.size());
4349 myLanes[lane].endOffset = offset;
4367 }
else if (lane < (
int)
myLanes.size()) {
4368 if (!
myLanes[lane].laneStopOffset.isDefined() || overwrite) {
4373 myLanes[lane].laneStopOffset = offset;
4388 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4394 assert(lane < (
int)
myLanes.size());
4404 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4410 assert(lane < (
int)
myLanes.size());
4411 myLanes[lane].friction = friction;
4418 assert(lane < (
int)
myLanes.size());
4419 myLanes[lane].accelRamp = accelRamp;
4426 assert(lane < (
int)
myLanes.size());
4427 myLanes[lane].customShape = shape;
4434 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4439 assert(lane < (
int)
myLanes.size());
4440 myLanes[lane].permissions = permissions;
4448 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4453 assert(lane < (
int)
myLanes.size());
4454 myLanes[lane].preferred = permissions;
4462 assert(lane < (
int)
myLanes.size());
4463 myLanes[lane].changeLeft = changeLeft;
4464 myLanes[lane].changeRight = changeRight;
4472 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4477 assert(lane < (
int)
myLanes.size());
4478 return myLanes[lane].permissions;
4496 for (std::vector<Lane>::iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
4497 (*i).permissions =
SVCAll;
4533 for (
int i = start; i != end; i += direction) {
4549 for (
int i = start; i != end; i += direction) {
4563 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4564 if (
myLanes[i].permissions == permissions) {
4576 for (
int i = start; i != end; i += direction) {
4577 if (
myLanes[i].permissions != 0) {
4581 return end - direction;
4585std::set<SVCPermissions>
4587 std::set<SVCPermissions> result;
4591 for (
int i = iStart; i < iEnd; ++i) {
4601 if ((allPermissions && (lane.permissions & permissions) == permissions)
4602 || (!allPermissions && (lane.permissions & permissions) != 0)) {
4631 std::cout <<
getID() <<
" angle=" <<
getAngleAtNode(node) <<
" convAngle=" << angle <<
"\n";
4649 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4654 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4688 if (lane.permissions == vclass) {
4709 if (newIndex == 0) {
4715 myLanes[newIndex].permissions = vclass;
4716 myLanes[newIndex].width = fabs(width);
4726 for (EdgeVector::const_iterator it = incoming.begin(); it != incoming.end(); ++it) {
4727 (*it)->shiftToLanesToEdge(
this, 1);
4738 if (
myLanes[0].permissions != vclass) {
4748 for (EdgeVector::const_iterator it = incoming.begin(); it != incoming.end(); ++it) {
4749 (*it)->shiftToLanesToEdge(
this, 0);
4762 if ((*it).toEdge == to && (*it).toLane >= 0) {
4763 (*it).toLane += laneOff;
4775 const int i = (node ==
myTo ? -1 : 0);
4776 const int i2 = (node ==
myTo ? 0 : -1);
4781 const double neededOffset2 = neededOffset + (other->
getTotalWidth()) / 2;
4782 if (dist < neededOffset && dist2 < neededOffset2) {
4818 double avgEndOffset = 0;
4820 avgEndOffset += lane.endOffset;
4825 avgEndOffset /= (double)
myLanes.size();
4826 return MAX2(result - avgEndOffset, POSITION_EPS);
4832 if (laneIdx == -1) {
4833 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4840 if (std::find(oldIDs.begin(), oldIDs.end(), origID) == oldIDs.end()) {
4841 oldIDs.push_back(origID);
4861 if (con.fromLane >= 0 && con.toLane >= 0 && con.toEdge !=
nullptr &&
4863 & con.toEdge->getPermissions(con.toLane) & vClass) != 0)
4878 std::pair<const NBEdge*, const Connection*> pair(con.toEdge,
nullptr);
4882 }
else if ((con.fromLane >= 0) && (con.toLane >= 0) &&
4883 (con.toEdge !=
nullptr) &&
4884 ((
getPermissions(con.fromLane) & con.toEdge->getPermissions(con.toLane) & vClass) == vClass)) {
4886 if (con.getLength() > 0) {
4900 std::cout <<
" " <<
getID() <<
"_" << c.fromLane <<
"->" << c.toEdge->getID() <<
"_" << c.toLane <<
"\n";
4906 if (c.toEdge ==
this) {
4907 std::cout <<
" " << inc->getID() <<
"_" << c.fromLane <<
"->" << c.toEdge->getID() <<
"_" << c.toLane <<
"\n";
4922 bool haveJoined =
false;
4927 const std::string newType =
myLanes[i].type +
"|" +
myLanes[i + 1].type;
4943 for (
NBEdge* edge : edges) {
4944 if ((edge->getPermissions() & permissions) != 0) {
4945 result.push_back(edge);
4954 if (cands.size() == 0) {
4958 NBEdge* best = cands.front();
4969 if (cands.size() == 0) {
4973 NBEdge* best = cands.front();
4984 NBEdge* opposite =
nullptr;
4990 if (cand->getToNode() ==
getFromNode() && !cand->getLanes().empty()) {
4991 const double lastWidthCand = cand->getLaneWidth(cand->getNumLanes() - 1);
4994 const double threshold = 1.42 * 0.5 * (lastWidth + lastWidthCand) + 0.5;
4997 if (distance < threshold) {
5002 if (opposite !=
nullptr) {
std::vector< std::string > & split(const std::string &s, char delim, std::vector< std::string > &elems)
#define WRITE_WARNINGF(...)
#define WRITE_MESSAGEF(...)
#define WRITE_ERRORF(...)
#define WRITE_WARNING(msg)
std::vector< std::pair< const NBRouterEdge *, const NBRouterEdge * > > ConstRouterEdgePairVector
std::vector< NBEdge * > EdgeVector
container for (sorted) edges
KeepClear
keepClear status of connections
const SVCPermissions SVCAll
all VClasses are allowed
bool isRailway(SVCPermissions permissions)
Returns whether an edge with the given permissions is a (exclusive) railway edge.
const SVCPermissions SVC_UNSPECIFIED
permissions not specified
const std::string & getVehicleClassNames(SVCPermissions permissions, bool expand)
Returns the ids of the given classes, divided using a ' '.
bool isForbidden(SVCPermissions permissions)
Returns whether an edge with the given permissions is a forbidden edge.
bool isBikepath(SVCPermissions permissions)
Returns whether an edge with the given permissions is a bicycle edge.
long long int SVCPermissions
bitset where each bit declares whether a certain SVC may use this edge/lane
SUMOVehicleClass
Definition of vehicle classes to differ between different lane usage and authority types.
@ SVC_IGNORING
vehicles ignoring classes
@ SVC_RAIL_CLASSES
classes which drive on tracks
@ SVC_PASSENGER
vehicle is a passenger car (a "normal" car)
@ SVC_BICYCLE
vehicle is a bicycle
@ SVC_DELIVERY
vehicle is a small delivery vehicle
@ SVC_TRAM
vehicle is a light rail
@ SVC_TAXI
vehicle is a taxi
@ SVC_BUS
vehicle is a bus
@ SVC_PEDESTRIAN
pedestrian
@ RIGHT
At the rightmost side of the lane.
const std::string SUMO_PARAM_ORIGID
LaneSpreadFunction
Numbers representing special SUMO-XML-attribute values Information how the edge's lateral offset shal...
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ TURN
The link is a 180 degree turn.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ PARTRIGHT
The link is a partial right direction.
@ NODIR
The link has no direction (is a dead end link)
int gPrecision
the precision for floating point outputs
bool gDebugFlag1
global utility flags for debugging
const double SUMO_const_laneWidth
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
std::string joinToString(const std::vector< T > &v, const T_BETWEEN &between, std::streamsize accuracy=gPrecision)
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
static void compute(BresenhamCallBack *callBack, const int val1, const int val2)
static const double INVALID_OFFSET
a value to signify offsets outside the range of [0, Line.length()]
static double legacyDegree(const double angle, const bool positive=false)
static double angleDiff(const double angle1, const double angle2)
Returns the difference of the second angle to the first angle in radiants.
int getFromLane() const
returns the from-lane
int getTLIndex() const
returns the index within the controlling tls or InvalidTLIndex if this link is unontrolled
void shiftLaneIndex(NBEdge *edge, int offset, int threshold=-1)
patches lane indices refering to the given edge and above the threshold by the given offset
int getToLane() const
returns the to-lane
NBEdge * getTo() const
returns the to-edge (end of the connection)
Holds (- relative to the edge it is build from -!!!) the list of main directions a vehicle that drive...
bool empty() const
returns the information whether no following street has a higher priority
bool includes(Direction d) const
returns the information whether the street in the given direction has a higher priority
int getStraightest() const
returns the index of the straightmost among the given outgoing edges
MainDirections(const EdgeVector &outgoing, NBEdge *parent, NBNode *to, const std::vector< int > &availableLanes)
constructor
std::vector< Direction > myDirs
list of the main direction within the following junction relative to the edge
~MainDirections()
destructor
int myStraightest
the index of the straightmost among the given outgoing edges
Direction
enum of possible directions
A class that being a bresenham-callback assigns the incoming lanes to the edges.
const std::map< NBEdge *, std::vector< int > > & getBuiltConnections() const
get built connections
void execute(const int lane, const int virtEdge)
executes a bresenham - step
Class to sort edges by their angle.
int operator()(const Connection &c1, const Connection &c2) const
comparing operation
Storage for edges, including some functionality operating on multiple edges.
NBEdge * retrieve(const std::string &id, bool retrieveExtracted=false) const
Returns the edge that has the given id.
The representation of a single edge during network building.
void reinit(NBNode *from, NBNode *to, const std::string &type, double speed, double friction, int nolanes, int priority, PositionVector geom, double width, double endOffset, const std::string &streetName, LaneSpreadFunction spread, bool tryIgnoreNodePositions=false)
Resets initial values.
void addGeometryPoint(int index, const Position &p)
Adds a further geometry point.
static std::vector< LinkDirection > decodeTurnSigns(int turnSigns, int shift=0)
decode bitset
void mirrorX()
mirror coordinates along the x-axis
void setPreferredVehicleClass(SVCPermissions permissions, int lane=-1)
set preferred Vehicle Class
static const int TURN_SIGN_SHIFT_BUS
shift values for decoding turn signs
double getLaneSpeed(int lane) const
get lane speed
static const int TURN_SIGN_SHIFT_BICYCLE
NBEdge * guessOpposite(bool reguess=false)
set oppositeID and return opposite edge if found
void setPermittedChanging(int lane, SVCPermissions changeLeft, SVCPermissions changeRight)
set allowed classes for changing to the left and right from the given lane
double getLength() const
Returns the computed length of the edge.
double myLaneWidth
This width of this edge's lanes.
SVCPermissions getPermissions(int lane=-1) const
get the union of allowed classes over all lanes or for a specific lane
std::vector< Connection > myConnectionsToDelete
List of connections marked for delayed removal.
const EdgeVector * getConnectedSorted()
Returns the list of outgoing edges without the turnaround sorted in clockwise direction.
double getDistancAt(double pos) const
get distance at the given offset
double myEndOffset
This edges's offset to the intersection begin (will be applied to all lanes)
int myToJunctionPriority
The priority normalised for the node the edge is incoming in.
void setPermissions(SVCPermissions permissions, int lane=-1)
set allowed/disallowed classes for the given lane or for all lanes if -1 is given
StopOffset myEdgeStopOffset
A vClass specific stop offset - assumed of length 0 (unspecified) or 1. For the latter case the int i...
double getLoadedLength() const
Returns the length was set explicitly or the computed length if it wasn't set.
double getCrossingAngle(NBNode *node)
return the angle for computing pedestrian crossings at the given node
void addBikeLane(double width)
add a bicycle lane of the given width and shift existing connctions
bool expandableBy(NBEdge *possContinuation, std::string &reason) const
Check if Node is expandable.
double getLaneFriction(int lane) const
get lane friction of specified lane
void recheckOpposite(const NBEdgeCont &ec, bool fixOppositeLengths)
recheck whether all opposite and bidi settings are consistent
const ConstRouterEdgePairVector & getViaSuccessors(SUMOVehicleClass vClass=SVC_IGNORING, bool ignoreTransientPermissions=false) const
Returns the following edges for the given vClass.
void init(int noLanes, bool tryIgnoreNodePositions, const std::string &origID)
Initialization routines common to all constructors.
void setSpeed(int lane, double speed)
set lane specific speed (negative lane implies set for all lanes)
void reinitNodes(NBNode *from, NBNode *to)
Resets nodes but keeps all other values the same (used when joining)
double mySpeed
The maximal speed.
bool hasLaneSpecificFriction() const
whether lanes differ in friction
double getLaneWidth() const
Returns the default width of lanes of this edge.
PositionVector getCWBoundaryLine(const NBNode &n) const
get the outer boundary of this edge when going clock-wise around the given node
NBNode * getToNode() const
Returns the destination node of the edge.
void checkGeometry(const double maxAngle, bool fixAngle, const double minRadius, bool fix, bool silent)
Check the angles of successive geometry segments.
std::vector< Connection > myConnections
List of connections to following edges.
Connection & getConnectionRef(int fromLane, const NBEdge *to, int toLane)
Returns reference to the specified connection This method goes through "myConnections" and returns th...
NBEdge()
constructor for dummy edge
void divideOnEdges(const EdgeVector *outgoing)
divides the lanes on the outgoing edges
ConstRouterEdgePairVector myViaSuccessors
PositionVector getCCWBoundaryLine(const NBNode &n) const
get the outer boundary of this edge when going counter-clock-wise around the given node
double buildInnerEdges(const NBNode &n, int noInternalNoSplits, int &linkIndex, int &splitIndex)
static const double UNSPECIFIED_FRICTION
unspecified lane friction
void incLaneNo(int by)
increment lane
static EdgeVector filterByPermissions(const EdgeVector &edges, SVCPermissions permissions)
return only those edges that permit at least one of the give permissions
Lane & getLaneStruct(int lane)
const Connection & getConnection(int fromLane, const NBEdge *to, int toLane) const
Returns the specified connection (unmodifiable) This method goes through "myConnections" and returns ...
void addLane(int index, bool recomputeShape, bool recomputeConnections, bool shiftIndices)
add lane
bool hasLaneSpecificSpeed() const
whether lanes differ in speed
void setAverageLengthWithOpposite(double val)
patch average lane length in regard to the opposite edge
void disallowVehicleClass(int lane, SUMOVehicleClass vclass)
set disallowed class for the given lane or for all lanes if -1 is given
void removeInvalidConnections()
double getShapeStartAngle() const
Returns the angle at the start of the edge.
static const int UNSPECIFIED_INTERNAL_LANE_INDEX
internal lane computation not yet done
void appendTurnaround(bool noTLSControlled, bool noFringe, bool onlyDeadends, bool onlyTurnlane, bool noGeometryLike, bool checkPermissions)
Add a connection to the previously computed turnaround, if wished and a turning direction exists (myT...
static bool connections_sorter(const Connection &c1, const Connection &c2)
connections_sorter sort by fromLane, toEdge and toLane
std::string myType
The type of the edge.
const PositionVector & getGeometry() const
Returns the geometry of the edge.
bool hasPermissions() const
whether at least one lane has restrictions
LaneSpreadFunction getLaneSpreadFunction() const
Returns how this edge's lanes' lateral offset is computed.
bool hasDefaultGeometryEndpoints() const
Returns whether the geometry is terminated by the node positions This default may be violated by init...
std::string myTurnSignTarget
node for which turnSign information applies
bool isBidiRail(bool ignoreSpread=false) const
whether this edge is part of a bidirectional railway
static const bool UNSPECIFIED_CONNECTION_UNCONTROLLED
TLS-controlled despite its node controlled not specified.
const EdgeVector & getSuccessors(SUMOVehicleClass vClass=SVC_IGNORING) const
Returns the following edges for the given vClass.
void dismissVehicleClassInformation()
dimiss vehicle class information
bool computeEdge2Edges(bool noLeftMovers)
computes the edge (step1: computation of approached edges)
EdgeBuildingStep getStep() const
The building step of this edge.
LaneSpreadFunction myLaneSpreadFunction
The information about how to spread the lanes.
void moveConnectionToLeft(int lane)
void updateChangeRestrictions(SVCPermissions ignoring)
modify all existing restrictions on lane changing
void restoreBikelane(std::vector< NBEdge::Lane > oldLanes, PositionVector oldGeometry, std::vector< NBEdge::Connection > oldConnections)
restore an previously added BikeLane
Position getEndpointAtNode(const NBNode *node) const
NBEdge * getStraightContinuation(SVCPermissions permissions) const
return the straightest follower edge for the given permissions or nullptr (never returns turn-arounds...
bool hasLoadedLength() const
Returns whether a length was set explicitly.
void resetEndpointAtNode(const NBNode *node)
void restoreSidewalk(std::vector< NBEdge::Lane > oldLanes, PositionVector oldGeometry, std::vector< NBEdge::Connection > oldConnections)
restore an previously added sidewalk
bool addEdge2EdgeConnection(NBEdge *dest, bool overrideRemoval=false, SVCPermissions permission=SVC_UNSPECIFIED)
Adds a connection to another edge.
bool addLane2LaneConnection(int fromLane, NBEdge *dest, int toLane, Lane2LaneInfoType type, bool mayUseSameDestination=false, bool mayDefinitelyPass=false, KeepClear keepClear=KEEPCLEAR_UNSPECIFIED, double contPos=UNSPECIFIED_CONTPOS, double visibility=UNSPECIFIED_VISIBILITY_DISTANCE, double speed=UNSPECIFIED_SPEED, double friction=UNSPECIFIED_FRICTION, double length=myDefaultConnectionLength, const PositionVector &customShape=PositionVector::EMPTY, const bool uncontrolled=UNSPECIFIED_CONNECTION_UNCONTROLLED, SVCPermissions permissions=SVC_UNSPECIFIED, const bool indirectLeft=false, const std::string &edgeType="", SVCPermissions changeLeft=SVC_UNSPECIFIED, SVCPermissions changeRight=SVC_UNSPECIFIED, bool postProcess=false)
Adds a connection between the specified this edge's lane and an approached one.
void divideSelectedLanesOnEdges(const EdgeVector *outgoing, const std::vector< int > &availableLanes)
divide selected lanes on edges
bool setEdgeStopOffset(int lane, const StopOffset &offset, bool overwrite=false)
set lane and vehicle class specific stopOffset (negative lane implies set for all lanes)
const std::vector< NBEdge::Lane > & getLanes() const
Returns the lane definitions.
bool hasLaneSpecificStopOffsets() const
whether lanes differ in stopOffsets
void setNodeBorder(const NBNode *node, const Position &p, const Position &p2, bool rectangularCut)
Set Node border.
int getFirstNonPedestrianLaneIndex(int direction, bool exclusive=false) const
return the first lane with permissions other than SVC_PEDESTRIAN and 0
void shiftToLanesToEdge(NBEdge *to, int laneOff)
modifify the toLane for all connections to the given edge
static double myDefaultConnectionLength
bool isNearEnough2BeJoined2(NBEdge *e, double threshold) const
Check if edge is near enought to be joined to another edge.
EdgeBuildingStep myStep
The building step.
void setLaneType(int lane, const std::string &type)
set lane specific type (negative lane implies set for all lanes)
bool computeLanes2Edges()
computes the edge, step2: computation of which lanes approach the edges)
EdgeBuildingStep
Current state of the edge within the building process.
@ INIT_REJECT_CONNECTIONS
The edge has been loaded and connections shall not be added.
@ EDGE2EDGES
The relationships between edges are computed/loaded.
@ LANES2LANES_RECHECK
Lanes to lanes - relationships are computed; should be rechecked.
@ LANES2LANES_DONE
Lanes to lanes - relationships are computed; no recheck is necessary/wished.
@ LANES2EDGES
Lanes to edges - relationships are computed/loaded.
@ LANES2LANES_USER
Lanes to lanes - relationships are loaded; no recheck is necessary/wished.
@ INIT
The edge has been loaded, nothing is computed yet.
NBEdge * getStraightPredecessor(SVCPermissions permissions) const
return the straightest predecessor edge for the given permissions or nullptr (never returns turn-arou...
void remapConnections(const EdgeVector &incoming)
Remaps the connection in a way that allows the removal of it.
double getSpeed() const
Returns the speed allowed on this edge.
const std::string & getID() const
int getFirstAllowedLaneIndex(int direction) const
return the first lane that permits at least 1 vClass or the last lane if search direction of there is...
bool allowsChangingRight(int lane, SUMOVehicleClass vclass) const
Returns whether the given vehicle class may change left from this lane.
static const double UNSPECIFIED_LOADED_LENGTH
no length override given
void setLaneWidth(int lane, double width)
set lane specific width (negative lane implies set for all lanes)
void resetLaneShapes()
reset lane shapes to what they would be before cutting with the junction shapes
bool setControllingTLInformation(const NBConnection &c, const std::string &tlID)
Returns if the link could be set as to be controlled.
bool bothLeftTurns(LinkDirection dir, const NBEdge *otherFrom, LinkDirection dir2) const
determine conflict between opposite left turns
void setAcceleration(int lane, bool accelRamp)
marks one lane as acceleration lane
const StopOffset & getEdgeStopOffset() const
Returns the stopOffset to the end of the edge.
NBNode * tryGetNodeAtPosition(double pos, double tolerance=5.0) const
Returns the node at the given edges length (using an epsilon)
void setLaneSpreadFunction(LaneSpreadFunction spread)
(Re)sets how the lanes lateral offset shall be computed
void clearControllingTLInformation()
clears tlID for all connections
bool isTurningDirectionAt(const NBEdge *const edge) const
Returns whether the given edge is the opposite direction to this edge.
void addStraightConnections(const EdgeVector *outgoing, const std::vector< int > &availableLanes, const std::vector< int > &priorities)
add some straight connections
bool hasLaneSpecificPermissions() const
whether lanes differ in allowed vehicle classes
bool needsLaneSpecificOutput() const
whether at least one lane has values differing from the edges values
void computeAngle()
computes the angle of this edge and stores it in myAngle
bool isBidiEdge(bool checkPotential=false) const
whether this edge is part of a bidirectional edge pair
static const double UNSPECIFIED_SIGNAL_OFFSET
unspecified signal offset
void addSidewalk(double width)
add a pedestrian sidewalk of the given width and shift existing connctions
bool hasSignalisedConnectionTo(const NBEdge *const e) const
Check if edge has signalised connections.
std::vector< Lane > myLanes
Lane information.
int getNumLanes() const
Returns the number of lanes.
std::vector< Connection > getConnectionsFromLane(int lane, const NBEdge *to=nullptr, int toLane=-1) const
Returns connections from a given lane.
bool hasAccelLane() const
whether one of the lanes is an acceleration lane
bool myIsBidi
whether this edge is part of a non-rail bidi edge pair
static double firstIntersection(const PositionVector &v1, const PositionVector &v2, double width1, double width2, const std::string &error="", bool secondIntersection=false)
compute the first intersection point between the given lane geometries considering their rspective wi...
PositionVector myToBorder
void extendGeometryAtNode(const NBNode *node, double maxExtent)
linearly extend the geometry at the given node
void setFriction(int lane, double friction)
set lane specific friction (negative lane implies set for all lanes)
static const double UNSPECIFIED_CONTPOS
unspecified internal junction position
static const double ANGLE_LOOKAHEAD
the distance at which to take the default angle
int getNumLanesThatAllow(SVCPermissions permissions, bool allPermissions=true) const
void reduceGeometry(const double minDist)
Removes points with a distance lesser than the given.
static NBEdge DummyEdge
Dummy edge to use when a reference must be supplied in the no-arguments constructor (FOX technicality...
bool joinLanes(SVCPermissions perms)
join adjacent lanes with the given permissions
void resetNodeBorder(const NBNode *node)
void markAsInLane2LaneState()
mark edge as in lane to state lane
bool mayBeTLSControlled(int fromLane, NBEdge *toEdge, int toLane) const
return true if certain connection must be controlled by TLS
void addRestrictedLane(double width, SUMOVehicleClass vclass)
add a lane of the given width, restricted to the given class and shift existing connections
void removeFromConnections(NBEdge *toEdge, int fromLane=-1, int toLane=-1, bool tryLater=false, const bool adaptToLaneRemoval=false, const bool keepPossibleTurns=false)
Removes the specified connection(s)
double myLength
The length of the edge.
NBEdge::Lane getFirstNonPedestrianLane(int direction) const
@brif get first non-pedestrian lane
void invalidateConnections(bool reallowSetting=false)
invalidate current connections of edge
const std::vector< int > prepareEdgePriorities(const EdgeVector *outgoing, const std::vector< int > &availableLanes)
recomputes the edge priorities and manipulates them for a distribution of lanes on edges which is mor...
int myIndex
the index of the edge in the list of all edges. Set by NBEdgeCont and requires re-set whenever the li...
double getTotalWidth() const
Returns the combined width of all lanes of this edge.
PositionVector cutAtIntersection(const PositionVector &old) const
cut shape at the intersection shapes
Position geometryPositionAtOffset(double offset) const
return position taking into account loaded length
static const double UNSPECIFIED_VISIBILITY_DISTANCE
unspecified foe visibility for connections
bool canMoveConnection(const Connection &con, int newFromLane) const
whether the connection can originate on newFromLane
double getInternalLaneWidth(const NBNode &node, const NBEdge::Connection &connection, const NBEdge::Lane &successor, bool isVia) const
Returns the width of the internal lane associated with the connection.
void allowVehicleClass(int lane, SUMOVehicleClass vclass)
set allowed class for the given lane or for all lanes if -1 is given
bool isConnectedTo(const NBEdge *e, const bool ignoreTurnaround=false) const
Returns the information whethe a connection to the given edge has been added (or computed)
double getMaxLaneOffset()
get max lane offset
void deleteLane(int index, bool recompute, bool shiftIndices)
delete lane
NBEdge * myPossibleTurnDestination
The edge that would be the turn destination if there was one.
const PositionVector & getNodeBorder(const NBNode *node) const
const NBNode * mySignalNode
bool hasLaneSpecificWidth() const
whether lanes differ in width
void moveConnectionToRight(int lane)
std::set< SVCPermissions > getPermissionVariants(int iStart, int iEnd) const
return all permission variants within the specified lane range [iStart, iEnd[
void reshiftPosition(double xoff, double yoff)
Applies an offset to the edge.
static const int TURN_SIGN_SHIFT_TAXI
void moveOutgoingConnectionsFrom(NBEdge *e, int laneOff)
move outgoing connection
std::string getLaneID(int lane) const
get lane ID
bool myIsOffRamp
whether this edge is an Off-Ramp or leads to one
static const double UNSPECIFIED_SPEED
unspecified lane speed
Lane2LaneInfoType
Modes of setting connections between lanes.
@ USER
The connection was given by the user.
@ VALIDATED
The connection was computed and validated.
@ COMPUTED
The connection was computed.
double getFriction() const
Returns the friction on this edge.
static PositionVector startShapeAt(const PositionVector &laneShape, const NBNode *startNode, PositionVector nodeShape)
std::string getSidewalkID()
get the lane id for the canonical sidewalk lane
std::vector< int > getConnectionLanes(NBEdge *currentOutgoing, bool withBikes=true) const
Returns the list of lanes that may be used to reach the given edge.
void computeLaneShapes()
compute lane shapes
double getAngleAtNodeToCenter(const NBNode *const node) const
Returns the angle of from the node shape center to where the edge meets the node shape.
int getSpecialLane(SVCPermissions permissions) const
return index of the first lane that allows the given permissions
bool setConnection(int lane, NBEdge *destEdge, int destLane, Lane2LaneInfoType type, bool mayUseSameDestination=false, bool mayDefinitelyPass=false, KeepClear keepClear=KEEPCLEAR_UNSPECIFIED, double contPos=UNSPECIFIED_CONTPOS, double visibility=UNSPECIFIED_VISIBILITY_DISTANCE, double speed=UNSPECIFIED_SPEED, double friction=UNSPECIFIED_FRICTION, double length=myDefaultConnectionLength, const PositionVector &customShape=PositionVector::EMPTY, const bool uncontrolled=UNSPECIFIED_CONNECTION_UNCONTROLLED, SVCPermissions permissions=SVC_UNSPECIFIED, bool indirectLeft=false, const std::string &edgeType="", SVCPermissions changeLeft=SVC_UNSPECIFIED, SVCPermissions changeRight=SVC_UNSPECIFIED, bool postProcess=false)
Adds a connection to a certain lane of a certain edge.
bool hasLaneSpecificEndOffset() const
whether lanes differ in offset
int getJunctionPriority(const NBNode *const node) const
Returns the junction priority (normalised for the node currently build)
double myDistance
The mileage/kilometrage at the start of this edge in a linear coordination system.
bool myAmMacroscopicConnector
Information whether this edge is a (macroscopic) connector.
EdgeVector getConnectedEdges() const
Returns the list of outgoing edges unsorted.
const std::string & getStreetName() const
Returns the street name of this edge.
void setLaneShape(int lane, const PositionVector &shape)
sets a custom lane shape
double myLoadedLength
An optional length to use (-1 if not valid)
static void updateTurnPermissions(SVCPermissions &perm, LinkDirection dir, SVCPermissions spec, std::vector< LinkDirection > dirs)
void sortOutgoingConnectionsByAngle()
sorts the outgoing connections by their angle relative to their junction
bool applyTurnSigns()
apply loaded turn sign information
bool haveIntersection(const NBNode &n, const PositionVector &shape, const NBEdge *otherFrom, const NBEdge::Connection &otherCon, int numPoints, double width1, double width2, int shapeFlag=0) const
void preferVehicleClass(int lane, SVCPermissions vclasses)
prefer certain vehicle classes for the given lane or for all lanes if -1 is given (ensures also permi...
const NBEdge * getBidiEdge() const
NBNode * getFromNode() const
Returns the origin node of the edge.
double myStartAngle
The angles of the edge.
double getAngleAtNodeNormalized(const NBNode *const node) const
Returns the angle of the edge's geometry at the given node and disregards edge direction.
NBEdge * getTurnDestination(bool possibleDestination=false) const
void shiftPositionAtNode(NBNode *node, NBEdge *opposite)
shift geometry at the given node to avoid overlap
double getAngleAtNode(const NBNode *const node) const
Returns the angle of the edge's geometry at the given node.
bool hasLaneSpecificType() const
whether lanes differ in type
PositionVector myFromBorder
intersection borders (because the node shape might be invalid)
double getSignalOffset() const
Returns the offset of a traffic signal from the end of this edge.
bool hasDefaultGeometry() const
Returns whether the geometry consists only of the node positions.
bool myAmInTLS
Information whether this is lies within a joined tls.
void setTurningDestination(NBEdge *e, bool onlyPossible=false)
Sets the turing destination at the given edge.
bool hasDefaultGeometryEndpointAtNode(const NBNode *node) const
Returns whether the geometry is terminated by the node positions This default may be violated by init...
NBEdge * myTurnDestination
The turn destination edge (if a connection exists)
int getPriority() const
Returns the priority of the edge.
void computeEdgeShape(double smoothElevationThreshold=-1)
Recomputeds the lane shapes to terminate at the node shape For every lane the intersection with the f...
double assignInternalLaneLength(std::vector< Connection >::iterator i, int numLanes, double lengthSum, bool averageLength)
assign length to all lanes of an internal edge
static const double UNSPECIFIED_WIDTH
unspecified lane width
bool hasRestrictedLane(SUMOVehicleClass vclass) const
returns whether any lane already allows the given vclass exclusively
void copyConnectionsFrom(NBEdge *src)
copy connections from antoher edge
const StopOffset & getLaneStopOffset(int lane) const
Returns the stop offset to the specified lane's end.
void debugPrintConnections(bool outgoing=true, bool incoming=false) const
debugging helper to print all connections
Position mySignalPosition
the position of a traffic light signal on this edge
void replaceInConnections(NBEdge *which, NBEdge *by, int laneOff)
replace in current connections of edge
bool lanesWereAssigned() const
Check if lanes were assigned.
void restoreRestrictedLane(SUMOVehicleClass vclass, std::vector< NBEdge::Lane > oldLanes, PositionVector oldGeometry, std::vector< NBEdge::Connection > oldConnections)
restore a restricted lane
double getEndOffset() const
Returns the offset to the destination node.
bool isRailDeadEnd() const
whether this edge is a railway edge that does not continue
double myFriction
The current friction.
void setEndOffset(int lane, double offset)
set lane specific end-offset (negative lane implies set for all lanes)
static const double UNSPECIFIED_OFFSET
unspecified lane offset
void sortOutgoingConnectionsByIndex()
sorts the outgoing connections by their from-lane-index and their to-lane-index
bool recheckLanes()
recheck whether all lanes within the edge are all right and optimises the connections once again
int myFromJunctionPriority
The priority normalised for the node the edge is outgoing of.
bool addLane2LaneConnections(int fromLane, NBEdge *dest, int toLane, int no, Lane2LaneInfoType type, bool invalidatePrevious=false, bool mayDefinitelyPass=false)
Builds no connections starting at the given lanes.
void setOrigID(const std::string origID, const bool append, const int laneIdx=-1)
set origID for all lanes or for a specific lane
PositionVector computeLaneShape(int lane, double offset) const
Computes the shape for the given lane.
bool allowsChangingLeft(int lane, SUMOVehicleClass vclass) const
Returns whether the given vehicle class may change left from this lane.
static int getLaneIndexFromLaneID(const std::string laneID)
bool hasConnectionTo(const NBEdge *destEdge, int destLane, int fromLane=-1) const
Retrieves info about a connection to a certain lane of a certain edge.
bool hasCustomLaneShape() const
whether one of the lanes has a custom shape
bool hasLaneParams() const
whether one of the lanes has parameters set
const PositionVector & getLaneShape(int i) const
Returns the shape of the nth lane.
double getShapeEndAngle() const
Returns the angle at the end of the edge.
bool prohibitsChanging() const
whether one of the lanes prohibits lane changing
void setLoadedLength(double val)
set loaded length
PositionVector myGeom
The geometry for the edge.
const PositionVector getInnerGeometry() const
Returns the geometry of the edge without the endpoints.
void decLaneNo(int by)
decrement lane
NBNode * myFrom
The source and the destination node.
void append(NBEdge *continuation)
append another edge
void setJunctionPriority(const NBNode *const node, int prio)
Sets the junction priority of the edge.
double getFinalLength() const
get length that will be assigned to the lanes in the final network
void shortenGeometryAtNode(const NBNode *node, double reduction)
linearly extend the geometry at the given node
void setGeometry(const PositionVector &g, bool inner=false)
(Re)sets the edge's geometry
int myPriority
The priority of the edge.
std::string myStreetName
The street name (or whatever arbitrary string you wish to attach)
EdgeVector getIncomingEdges() const
Returns the list of incoming edges unsorted.
int getFirstNonPedestrianNonBicycleLaneIndex(int direction, bool exclusive=false) const
return the first lane with permissions other than SVC_PEDESTRIAN, SVC_BICYCLE and 0
static double normRelAngle(double angle1, double angle2)
ensure that reverse relAngles (>=179.999) always count as turnarounds (-180)
A definition of a pedestrian crossing.
PositionVector shape
The crossing's shape.
bool priority
whether the pedestrians have priority
EdgeVector edges
The edges being crossed.
double width
This crossing's width.
Represents a single node (junction) during network building.
void addIncomingEdge(NBEdge *edge)
adds an incoming edge
LinkDirection getDirection(const NBEdge *const incoming, const NBEdge *const outgoing, bool leftHand=false) const
Returns the representation of the described stream's direction.
static const int AVOID_INTERSECTING_LEFT_TURNS
void removeEdge(NBEdge *edge, bool removeFromConnections=true)
Removes edge from this node and optionally removes connections as well.
const std::set< NBTrafficLightDefinition * > & getControllingTLS() const
Returns the traffic lights that were assigned to this node (The set of tls that control this node)
bool needsCont(const NBEdge *fromE, const NBEdge *otherFromE, const NBEdge::Connection &c, const NBEdge::Connection &otherC, bool checkOnlyTLS=false) const
whether an internal junction should be built at from and respect other
FringeType getFringeType() const
Returns fringe type.
static const int BACKWARD
SumoXMLNodeType getType() const
Returns the type of this node.
bool isTrafficLight() const
const EdgeVector & getIncomingEdges() const
Returns this node's incoming edges (The edges which yield in this node)
static bool rightTurnConflict(const NBEdge *from, const NBEdge *to, int fromLane, const NBEdge *prohibitorFrom, const NBEdge *prohibitorTo, int prohibitorFromLane)
return whether the given laneToLane connection is a right turn which must yield to a bicycle crossing...
const EdgeVector & getOutgoingEdges() const
Returns this node's outgoing edges (The edges which start at this node)
bool forbids(const NBEdge *const possProhibitorFrom, const NBEdge *const possProhibitorTo, const NBEdge *const possProhibitedFrom, const NBEdge *const possProhibitedTo, bool regardNonSignalisedLowerPriority) const
Returns the information whether "prohibited" flow must let "prohibitor" flow pass.
bool bidiConflict(const NBEdge *from, const NBEdge::Connection &con, const NBEdge *prohibitorFrom, const NBEdge::Connection &prohibitorCon, bool foes) const
whether the foe connections is oncoming on the same lane
PositionVector computeSmoothShape(const PositionVector &begShape, const PositionVector &endShape, int numPoints, bool isTurnaround, double extrapolateBeg, double extrapolateEnd, NBNode *recordError=0, int shapeFlag=0) const
Compute a smooth curve between the given geometries.
bool isLeftMover(const NBEdge *const from, const NBEdge *const to) const
Computes whether the given connection is a left mover across the junction.
bool mergeConflict(const NBEdge *from, const NBEdge::Connection &con, const NBEdge *prohibitorFrom, const NBEdge::Connection &prohibitorCon, bool foes) const
whether multiple connections from the same edge target the same lane
std::vector< Crossing * > getCrossings() const
return this junctions pedestrian crossings
void addOutgoingEdge(NBEdge *edge)
adds an outgoing edge
bool isConstantWidthTransition() const
detects whether a given junction splits or merges lanes while keeping constant road width
const Position & getPosition() const
const PositionVector & getShape() const
retrieve the junction shape
static const int FORWARD
edge directions (for pedestrian related stuff)
bool foes(const NBEdge *const from1, const NBEdge *const to1, const NBEdge *const from2, const NBEdge *const to2) const
Returns the information whether the given flows cross.
PositionVector computeInternalLaneShape(const NBEdge *fromE, const NBEdge::Connection &con, int numPoints, NBNode *recordError=0, int shapeFlag=0) const
Compute the shape for an internal lane.
void shiftTLConnectionLaneIndex(NBEdge *edge, int offset, int threshold=-1)
patches loaded signal plans by modifying lane indices above threshold by the given offset
bool geometryLike() const
whether this is structurally similar to a geometry node
bool isTLControlled() const
Returns whether this node is controlled by any tls.
static const int SCURVE_IGNORE
static const double MIN_SPEED_CROSSING_TIME
minimum speed for computing time to cross intersection
Base class for objects which have an id.
std::string myID
The name of the object.
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
const std::string & getID() const
Returns the id.
A storage for options typed value containers)
double getFloat(const std::string &name) const
Returns the double-value of the named option (only for Option_Float)
int getInt(const std::string &name) const
Returns the int-value of the named option (only for Option_Integer)
bool getBool(const std::string &name) const
Returns the boolean-value of the named option (only for Option_Bool)
static OptionsCont & getOptions()
Retrieves the options.
bool hasParameter(const std::string &key) const
Returns whether the parameter is set.
void mergeParameters(const Parameterised::Map &mapArg, const std::string separator=" ", bool uniqueValues=true)
Adds or appends all given parameters from the map.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
const Parameterised::Map & getParametersMap() const
Returns the inner key/value map.
virtual void setParameter(const std::string &key, const std::string &value)
Sets a parameter.
void updateParameters(const Parameterised::Map &mapArg)
Adds or updates all given parameters from the map.
A point in 2D or 3D with translation and scaling methods.
static const Position INVALID
used to indicate that a position is valid
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
void add(const Position &pos)
Adds the given position to this one.
void setz(double z)
set position z
double z() const
Returns the z-position.
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position (in radians bet...
void sety(double y)
set position y
double y() const
Returns the y-position.
double length2D() const
Returns the length.
void append(const PositionVector &v, double sameThreshold=2.0)
double beginEndAngle() const
returns the angle in radians of the line connecting the first and the last position
double length() const
Returns the length.
void push_front_noDoublePos(const Position &p)
insert in front a non double position
Position positionAtOffset(double pos, double lateralOffset=0) const
Returns the position at the given length.
void add(double xoff, double yoff, double zoff)
void closePolygon()
ensures that the last position equals the first
std::vector< double > intersectsAtLengths2D(const PositionVector &other) const
For all intersections between this vector and other, return the 2D-length of the subvector from this ...
double distance2D(const Position &p, bool perpendicular=false) const
closest 2D-distance to point p (or -1 if perpendicular is true and the point is beyond this vector)
double nearest_offset_to_point2D(const Position &p, bool perpendicular=true) const
return the nearest offest to point 2D
std::vector< double > distances(const PositionVector &s, bool perpendicular=false) const
distances of all my points to s and all of s points to myself
PositionVector getOrthogonal(const Position &p, double extend, bool before, double length=1.0, double deg=90) const
return orthogonal through p (extending this vector if necessary)
std::pair< PositionVector, PositionVector > splitAt(double where, bool use2D=false) const
Returns the two lists made when this list vector is splitted at the given point.
void move2side(double amount, double maxExtension=100)
move position vector to side using certain amount
bool almostSame(const PositionVector &v2, double maxDiv=POSITION_EPS) const
check if the two vectors have the same length and pairwise similar positions
PositionVector getSubpart2D(double beginOffset, double endOffset) const
get subpart of a position vector in two dimensions (Z is ignored)
PositionVector smoothedZFront(double dist=std::numeric_limits< double >::max()) const
returned vector that is smoothed at the front (within dist)
double angleAt2D(int pos) const
get angle in certain position of position vector (in radians between -M_PI and M_PI)
bool hasElevation() const
return whether two positions differ in z-coordinate
static const PositionVector EMPTY
empty Vector
void extrapolate(const double val, const bool onlyFirst=false, const bool onlyLast=false)
extrapolate position vector
Position getCentroid() const
Returns the centroid (closes the polygon if unclosed)
void extrapolate2D(const double val, const bool onlyFirst=false)
extrapolate position vector in two dimensions (Z is ignored)
Position positionAtOffset2D(double pos, double lateralOffset=0, bool extrapolateBeyond=false) const
Returns the position at the given length.
void push_back_noDoublePos(const Position &p)
insert in back a non double position
void removeDoublePoints(double minDist=POSITION_EPS, bool assertLength=false, int beginOffset=0, int endOffset=0, bool resample=false)
Removes positions if too near.
bool intersects(const Position &p1, const Position &p2) const
Returns the information whether this list of points interesects the given line.
PositionVector reverse() const
reverse position vector
PositionVector getSubpartByIndex(int beginIndex, int count) const
get subpart of a position vector using index and a cout
PositionVector getSubpart(double beginOffset, double endOffset) const
get subpart of a position vector
bool around(const Position &p, double offset=0) const
Returns the information whether the position vector describes a polygon lying around the given point.
static bool isValidNetID(const std::string &value)
whether the given string is a valid id for a network element
bool isDefined() const
check if stopOffset was defined
double getOffset() const
get offset
std::vector< std::string > getVector()
return vector of strings
Some static methods for string processing.
static std::string convertUmlaute(std::string str)
Converts german "Umlaute" to their latin-version.
static int toInt(const std::string &sData)
converts a string into the integer value described by it by calling the char-type converter,...
static T maxValue(const std::vector< T > &v)
A structure which describes a connection between edges or lanes.
bool indirectLeft
Whether this connection is an indirect left turn.
int fromLane
The lane the connections starts at.
std::string viaID
if Connection have a via, ID of it
int toLane
The lane the connections yields in.
std::vector< int > foeInternalLinks
FOE Internal links.
Connection(int fromLane_, NBEdge *toEdge_, int toLane_, const bool mayDefinitelyPass_=false)
Constructor.
std::string getInternalViaLaneID() const
get ID of internal lane (second part)
double speed
custom speed for connection
NBEdge * toEdge
The edge the connections yields in.
double customLength
custom length for connection
double vmax
maximum velocity
PositionVector customShape
custom shape for connection
PositionVector viaShape
shape of via
std::string getDescription(const NBEdge *parent) const
get string describing this connection
double contPos
custom position for internal junction on this connection
std::string getInternalLaneID() const
get ID of internal lane
int internalLaneIndex
The lane index of this internal lane within the internal edge.
std::string tlID
The id of the traffic light that controls this connection.
int tlLinkIndex2
The index of the internal junction within the controlling traffic light (optional)
double length
computed length (average of all internal lane shape lengths that share an internal edge)
PositionVector shape
shape of Connection
std::string id
id of Connection
std::vector< std::string > foeIncomingLanes
FOE Incomings lanes.
bool haveVia
check if Connection have a Via
int tlLinkIndex
The index of this connection within the controlling traffic light.
double viaLength
the length of the via shape (maybe customized)
static ConstRouterEdgePairVector myViaSuccessors
An (internal) definition of a single lane of an edge.
double width
This lane's width.
std::string oppositeID
An opposite lane ID, if given.
SVCPermissions changeRight
List of vehicle types that are allowed to change right from this lane.
SVCPermissions changeLeft
List of vehicle types that are allowed to change Left from this lane.
Lane(NBEdge *e, const std::string &_origID)
constructor
bool accelRamp
Whether this lane is an acceleration lane.
PositionVector shape
The lane's shape.