53#define DEBUG_COND2(obj) (obj->isSelected())
57#define DEBUG_COND_ZIPPER (ego->isSelected())
63#define INVALID_TIME -1000
66#define JM_CROSSING_GAP_DEFAULT 10
69#define DIVERGENCE_MIN_WIDTH 2.5
94 if (foeConflictIndex >= 0) {
95 return foeExitLink->
myConflicts[foeConflictIndex].conflictSize;
106 return lengthBehindCrossing;
114 double length,
double foeVisibilityDistance,
bool keepClear,
158 const double dist = from.back().distanceTo2D(to.front());
164 myLateralShift = (from.back().distanceTo2D(to.front()) < dist) ? dist : -dist;
191 if (cc.from == foeFrom && cc.to == foeTo) {
202 const std::vector<MSLink*>& foeLinks,
203 const std::vector<MSLane*>& foeLanes,
204 MSLane* internalLaneBefore) {
214 for (
MSLane* foeLane : foeLanes) {
222 if (internalLaneBefore !=
nullptr) {
224 lane = internalLaneBefore;
236 for (
MSLane* foeLane : foeLanes) {
237 assert(foeLane->isInternal() || foeLane->isCrossing());
238 MSLink* viaLink = foeLane->getIncomingLanes().front().viaLink;
245#ifdef MSLink_DEBUG_CROSSING_POINTS
248 if (lane !=
nullptr) {
249 const bool beforeInternalJunction = lane->
getLinkCont()[0]->getViaLaneOrLane()->getEdge().isInternal();
273 const CustomConflict* rcc = foeLane->getEntryLink()->getCustomConflict(lane);
274 bool haveIntersection =
false;
275 if (rcc ==
nullptr) {
280 const bool foeIsSecondPart = foeLane->getLogicalPredecessorLane()->isInternal();
283 if (foeIsSecondPart) {
284 foeStartPos -= foeLane->getLogicalPredecessorLane()->getLength();
286 const double foeEndPos = foeStartPos + foeConflictSize;
287 haveIntersection = ((foeStartPos > 0 && foeStartPos < foeLane->getLength())
288 || (foeEndPos > 0 && foeEndPos < foeLane->
getLength()));
290 if (haveIntersection) {
295#ifdef MSLink_DEBUG_CROSSING_POINTS
296 std::cout <<
" " << lane->
getID() <<
" custom conflict with " << foeLane->getID() <<
" customReverse=" << (rcc !=
nullptr)
297 <<
" haveIntersection=" << haveIntersection
298 <<
" startPos=" << startPos <<
" conflictSize=" << conflictSize
299 <<
" lbc=" <<
myConflicts.back().lengthBehindCrossing
306 if (sameTarget && !beforeInternalJunction && !
contIntersect(lane, foeLane)) {
310 if (lane->
getShape().back().distanceTo2D(foeLane->getShape().back()) >= minDist) {
312 if (foeLane->getEntryLink()->isIndirect()) {
314#ifdef MSLink_DEBUG_CROSSING_POINTS
315 std::cout <<
" " << lane->
getID() <<
" dummy merge with indirect" << foeLane->getID() <<
"\n";
319#ifdef MSLink_DEBUG_CROSSING_POINTS
320 std::cout <<
" " << lane->
getID() <<
" dummy merge with " << foeLane->getID() <<
"\n";
327#ifdef MSLink_DEBUG_CROSSING_POINTS
329 <<
" " << lane->
getID()
330 <<
" merges with " << foeLane->getID()
331 <<
" nextLane " << lane->
getLinkCont()[0]->getViaLaneOrLane()->getID()
332 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
338#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
339 std::cout <<
" intersections1=" <<
toString(intersections1) <<
"\n";
341 bool haveIntersection =
true;
342 if (intersections1.size() == 0) {
344 haveIntersection =
false;
345 }
else if (intersections1.size() > 1) {
346 std::sort(intersections1.begin(), intersections1.end());
348 std::vector<double> intersections2 = foeLane->getShape().intersectsAtLengths2D(lane->
getShape());
349#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
350 std::cout <<
" intersections2=" <<
toString(intersections2) <<
"\n";
352 if (intersections2.size() == 0) {
353 intersections2.push_back(0);
354 }
else if (intersections2.size() > 1) {
355 std::sort(intersections2.begin(), intersections2.end());
357 double conflictSize = foeLane->getWidth();
359 if (haveIntersection) {
362 const double angle2 =
GeomHelper::naviDegree(foeLane->getShape().rotationAtOffset(intersections2.back()));
366 const double widthFactor = 1 /
MAX2(sin(
DEG2RAD(angleDiff)), 0.2) * 2 - 1;
368 conflictSize *= widthFactor;
371 intersections1.back() -= conflictSize / 2;
373 intersections1.back() =
MAX2(0.0, intersections1.back());
382 if (foeLane->getEdge().isCrossing()) {
389 lane->
getLength() - intersections1.back(),
390 conflictSize, flag));
392#ifdef MSLink_DEBUG_CROSSING_POINTS
394 <<
" intersection of " << lane->
getID()
396 <<
" with " << foeLane->getID()
397 <<
" totalLength=" << foeLane->getLength()
398 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
399 <<
" widthFactor=" <<
myConflicts.back().conflictSize / foeLane->getWidth()
409 const MSLane*
const sibling = link->getViaLane();
410 if (sibling != lane && sibling !=
nullptr) {
412 if (lane->
getShape().front().distanceTo2D(sibling->
getShape().front()) >= minDist) {
422 lbcLane = lane->
getLength() - distToDivergence;
430 const int replacedIndex = (int)(it -
myFoeLanes.begin());
436#ifdef MSLink_DEBUG_CROSSING_POINTS
437 std::cout <<
" adding same-origin foe" << sibling->
getID()
438 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
445 for (
int i = 0; i < (int)
myFoeLanes.size(); i++) {
449 for (
int i2 = 0; i2 < (int)foeExitLink->
myFoeLanes.size(); i2++) {
458#ifdef MSLink_DEBUG_CROSSING_POINTS
459 std::cout << lane->
getID() <<
" foeLane=" << foeLane->
getID() <<
" index=" << i <<
" foundIndex=" << foundIndex <<
"\n";
461 if (foundIndex < 0) {
473 const MSEdge* target = &(it->getLane()->getEdge());
477 if (target == myTarget) {
479#ifdef MSLink_DEBUG_CROSSING_POINTS
480 std::cout <<
" sublaneFoeLink (same target): " << it->getViaLaneOrLane()->
getID() <<
"\n";
485#ifdef MSLink_DEBUG_CROSSING_POINTS
486 std::cout <<
" sublaneFoeLink2 (other target: " << it->getViaLaneOrLane()->getID() <<
"\n";
528#ifdef MSLink_DEBUG_CROSSING_POINTS
529 std::cout <<
" recheck l1=" << item.first->getDescription() <<
" l2=" << item.second->getDescription() <<
"\n";
531 MSLink* link = item.first;
532 MSLink* foeExitLink = item.second;
535 int conflictIndex = -1;
536 for (
int i = 0; i < (int)link->
myFoeLanes.size(); i++) {
542 if (conflictIndex == -1) {
548 if (intersections1.size() == 0) {
549#ifdef MSLink_DEBUG_CROSSING_POINTS
550 std::cout <<
" no intersection\n";
555 const double conflictSize2 = lane->
getWidth() * widthFactor;
556 std::sort(intersections1.begin(), intersections1.end());
557 intersections1.back() -= conflictSize2 / 2;
558 intersections1.back() =
MAX2(0.0, intersections1.back());
561#ifdef MSLink_DEBUG_CROSSING_POINTS
562 std::cout <<
" ci=" << conflictIndex <<
" wf=" << widthFactor <<
" flag=" << ci.
flag <<
" flbc=" << foeExitLink->
myConflicts.back().lengthBehindCrossing <<
"\n";
570 double lbcSibling = 0;
584 lbcSibling += s[-1].distanceTo2D(s[-2]);
590 lbcLane += l[-1].distanceTo2D(l[-2]);
594#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
595 std::cout <<
" sameSource=" << sameSource <<
" minDist=" << minDist <<
" backDist=" << l.back().distanceTo2D(s.back()) <<
"\n";
597 if (l.back().distanceTo2D(s.back()) > minDist) {
604 std::vector<double> distances = l.
distances(s);
605#ifdef MSLink_DEBUG_CROSSING_POINTS
606 std::cout <<
" distances=" <<
toString(distances) <<
"\n";
608 assert(distances.size() == l.size() + s.size());
609 if (distances.back() > minDist && distances[l.size() - 1] > minDist) {
611 for (
int j = (
int)s.size() - 2; j >= 0; j--) {
612 const int i = j + (int)l.size();
613 const double segLength = s[j].distanceTo2D(s[j + 1]);
614 if (distances[i] > minDist) {
615 lbcSibling += segLength;
618 lbcSibling += segLength - (minDist - distances[i]) * segLength / (distances[i + 1] - distances[i]);
622 for (
int i = (
int)l.size() - 2; i >= 0; i--) {
623 const double segLength = l[i].distanceTo2D(l[i + 1]);
624 if (distances[i] > minDist) {
625 lbcLane += segLength;
628 lbcLane += segLength - (minDist - distances[i]) * segLength / (distances[i + 1] - distances[i]);
633 assert(lbcSibling >= -NUMERICAL_EPS);
634 assert(lbcLane >= -NUMERICAL_EPS);
636 const double distToDivergence1 = sibling->
getLength() - lbcSibling;
637 const double distToDivergence2 = lane->
getLength() - lbcLane;
638 const double distToDivergence =
MIN3(
639 MAX2(distToDivergence1, distToDivergence2),
641#ifdef MSLink_DEBUG_CROSSING_POINTS
642 std::cout <<
" distToDivergence=" << distToDivergence
643 <<
" distTD1=" << distToDivergence1
644 <<
" distTD2=" << distToDivergence2
645 <<
" length=" << length
646 <<
" sibLength=" << sibLength
649 return distToDivergence;
655 if (foe->
getLinkCont()[0]->getViaLane() !=
nullptr) {
657 return intersections.size() > 0;
665 const bool setRequest,
const double arrivalSpeedBraking,
const SUMOTime waitingTime,
double dist,
double latOffset) {
667#ifdef DEBUG_APPROACHING
671 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
677 arrivalSpeedBraking, waitingTime, dist, approaching->
getSpeed(), latOffset));
684#ifdef DEBUG_APPROACHING
688 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
706#ifdef DEBUG_APPROACHING
709 std::cout <<
"' Removing approaching vehicle '" << veh->
getID() <<
"'\nCurrently registered vehicles:" << std::endl;
711 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
725#ifdef DEBUG_APPROACHING
728 std::cout <<
"' Removing approaching person '" << person->
getID() <<
"'\nCurrently registered persons:" << std::endl;
730 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
757 const double leaveSpeed,
const double vehicleLength)
const {
764 double impatience,
double decel,
SUMOTime waitingTime,
double posLat,
766#ifdef MSLink_DEBUG_OPENED
781 assert(
myLane != foeLink->getLane());
782 for (
const auto& it : foeLink->myApproachingVehicles) {
786 ((posLat < foe->getLateralPositionOnLane() + it.second.latOffset &&
myLane->
getIndex() > foeLink->myLane->getIndex())
789 && (arrivalTime > it.second.arrivalTime
793 if (
blockedByFoe(foe, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
false,
794 impatience, decel, waitingTime, ego)) {
795#ifdef MSLink_DEBUG_OPENED
797 std::cout <<
SIMTIME <<
" blocked by " << foe->
getID() <<
" arrival=" << arrivalTime <<
" foeArrival=" << it.second.arrivalTime <<
"\n";
800 if (collectFoes ==
nullptr) {
801#ifdef MSLink_DEBUG_OPENED
803 std::cout <<
" link=" <<
getViaLaneOrLane()->
getID() <<
" blocked by sublaneFoe=" << foe->
getID() <<
" foeLink=" << foeLink->getViaLaneOrLane()->getID() <<
" posLat=" << posLat <<
"\n";
808 collectFoes->push_back(it.first);
819 for (
const auto& it : foeLink->myApproachingVehicles) {
829 if (
blockedByFoe(foe, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
false,
830 impatience, decel, waitingTime, ego)) {
831#ifdef MSLink_DEBUG_OPENED
833 std::cout <<
SIMTIME <<
" blocked by sublane foe " << foe->
getID() <<
" arrival=" << arrivalTime <<
" foeArrival=" << it.second.arrivalTime <<
"\n";
836 if (collectFoes ==
nullptr) {
837#ifdef MSLink_DEBUG_OPENED
839 std::cout <<
" link=" <<
getViaLaneOrLane()->
getID() <<
" blocked by sublaneFoe2=" << foe->
getID() <<
" foeLink=" << foeLink->getViaLaneOrLane()->getID() <<
" posLat=" << posLat <<
"\n";
844 collectFoes->push_back(it.first);
855 return collectFoes ==
nullptr || collectFoes->size() == 0;
864#ifdef MSLink_DEBUG_OPENED
874 for (
const MSLink*
const link : foeLinks) {
876 if (link->haveRed()) {
880#ifdef MSLink_DEBUG_OPENED
882 std::cout <<
SIMTIME <<
" foeLink=" << link->getViaLaneOrLane()->getID() <<
" numApproaching=" << link->getApproaching().size() <<
"\n";
883 if (link->getLane()->isCrossing()) {
884 std::cout <<
SIMTIME <<
" approachingPersons=" << (link->myApproachingPersons ==
nullptr ?
"NULL" :
toString(link->myApproachingPersons->size())) <<
"\n";
888 if (link->blockedAtTime(arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
myLane == link->getLane(),
889 impatience, decel, waitingTime, collectFoes, ego, lastWasContRed, dist)) {
893 if (collectFoes !=
nullptr && collectFoes->size() > 0) {
902 bool sameTargetLane,
double impatience,
double decel,
SUMOTime waitingTime,
905#ifdef MSLink_DEBUG_OPENED
910 std::stringstream stream;
912 <<
" foeVeh=" << it.first->getID() <<
" (below ignore speed)"
915 std::cout << stream.str();
926 &&
blockedByFoe(it.first, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed, sameTargetLane,
927 impatience, decel, waitingTime, ego)) {
928 if (collectFoes ==
nullptr) {
931 collectFoes->push_back(it.first);
949 && !((arrivalTime > it.second.leavingTime) || (leaveTime < it.second.arrivalTime))) {
950 if (ego ==
nullptr) {
960#ifdef MSLink_DEBUG_OPENED
962 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" conflict with person " << it.first->getID() <<
" aTime=" << arrivalTime <<
" foeATime=" << it.second.arrivalTime <<
" dist=" << dist <<
" bGap=" << cfm.brakeGap(ego->
getSpeed(), cfm.getMaxDecel(), 0) <<
"\n";
965 if (dist > cfm.brakeGap(ego->
getSpeed(), cfm.getMaxDecel(), 0)) {
966#ifdef MSLink_DEBUG_OPENED
968 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" blocked by person " << it.first->getID() <<
"\n";
971 if (collectFoes ==
nullptr) {
974 collectFoes->push_back(it.first);
986 SUMOTime arrivalTime,
SUMOTime leaveTime,
double arrivalSpeed,
double leaveSpeed,
987 bool sameTargetLane,
double impatience,
double decel,
SUMOTime waitingTime,
989#ifdef MSLink_DEBUG_OPENED
991 std::stringstream stream;
993 <<
" foeVeh=" << veh->
getID()
998 std::cout << stream.str();
1005 assert(waitingTime > 0);
1006#ifdef MSLink_DEBUG_OPENED
1008 std::stringstream stream;
1009 stream <<
" foeDist=" << avi.
dist
1012 <<
" wait=" << waitingTime
1014 std::cout << stream.str();
1019 if (waitingTime > avi.
waitingTime + actionDelta) {
1028 if (impatience > 0 && arrivalTime < avi.
arrivalTime) {
1029#ifdef MSLink_DEBUG_OPENED
1033 foeArrivalTime = (
SUMOTime)((1. - impatience) * (double)avi.
arrivalTime + impatience * (
double)fatb);
1034#ifdef MSLink_DEBUG_OPENED
1053#ifdef MSLink_DEBUG_OPENED
1055 std::stringstream stream;
1056 stream <<
" imp=" << impatience <<
" fAT2=" << foeArrivalTime <<
" fASb=" << foeArrivalSpeedBraking <<
" lA=" << lookAhead <<
" egoAT=" << arrivalTime <<
" egoLT=" << leaveTime <<
" egoLS=" << leaveSpeed <<
"\n";
1057 std::cout << stream.str();
1062 if (sameTargetLane && (arrivalTime - avi.
leavingTime < lookAhead
1065#ifdef MSLink_DEBUG_OPENED
1067 std::cout <<
" blocked (cannot follow)\n";
1072 }
else if (foeArrivalTime > leaveTime + lookAhead) {
1076#ifdef MSLink_DEBUG_OPENED
1078 std::cout <<
" blocked (cannot lead)\n";
1085#ifdef MSLink_DEBUG_OPENED
1087 std::cout <<
" blocked (hard conflict)\n";
1104 if (arrivalTime - arrivalTime %
DELTA_T == foeArrivalTime - foeArrivalTime %
DELTA_T) {
1106 return foeArrivalTime;
1108 if (arrivalTime %
DELTA_T > 0) {
1113 const double dt =
STEPS2TIME(foeArrivalTime - arrivalTime);
1114 const double d = dt * m;
1115 const double a = dt * d / 2;
1118 if (0.5 * v * v / m <= dist2) {
1120 std::cout <<
" dist=" << dist <<
" dist2=" << dist2 <<
" at=" <<
STEPS2TIME(arrivalTime) <<
" m=" << m <<
" d=" << d <<
" a=" << a <<
" canBrakeToStop\n";
1132 const double x = (sqrt(4 * (v - d) * (v - d) - 8 * m * a) * -0.5 - d + v) / m;
1134#ifdef MSLink_DEBUG_OPENED
1135 const double x2 = (sqrt(4 * (v - d) * (v - d) - 8 * m * a) * 0.5 - d + v) / m;
1137 std::cout <<
SIMTIME <<
" dist=" << dist <<
" dist2=" << dist2 <<
" at=" <<
STEPS2TIME(arrivalTime) <<
" m=" << m <<
" d=" << d <<
" v=" << v <<
" a=" << a <<
" x=" << x <<
" x2=" << x2 <<
"\n";
1140 fasb = v - (dt + x) * m;
1148 if (link->blockedAtTime(arrivalTime, leaveTime, speed, speed,
myLane == link->getLane(), 0, decel, 0)) {
1153 if (lane->getVehicleNumberWithPartials() > 0) {
1161std::pair<const SUMOVehicle*, const MSLink*>
1163 double closetDist = std::numeric_limits<double>::max();
1165 const MSLink* foeLink =
nullptr;
1167 for (
const auto& it : link->myApproachingVehicles) {
1170 return std::make_pair(
nullptr, wrapAround);
1171 }
else if (it.second.dist < closetDist) {
1172 closetDist = it.second.dist;
1173 if (it.second.willPass) {
1180 return std::make_pair(closest, foeLink);
1219 assert(pred2 !=
nullptr);
1221 assert(predLink !=
nullptr);
1245 assert(pred2 !=
nullptr);
1247 assert(predLink !=
nullptr);
1248 return predLink->
getState() == linkState;
1262 std::vector<std::pair<SUMOTime, const SUMOVehicle*> > toSort;
1264 toSort.push_back(std::make_pair(it.second.arrivalTime, it.first));
1266 std::sort(toSort.begin(), toSort.end());
1267 for (std::vector<std::pair<SUMOTime, const SUMOVehicle*> >::const_iterator it = toSort.begin(); it != toSort.end(); ++it) {
1290 while (lane !=
nullptr && lane->
isInternal()) {
1302 while (lane !=
nullptr && lane->
isInternal()) {
1317 double totalDist = 0.;
1318 bool foundCrossing =
false;
1319 while (via !=
nullptr) {
1325 foundCrossing =
true;
1332 if (foundCrossing) {
1343 for (foe_ix = 0; foe_ix != (int)
myFoeLanes.size(); ++foe_ix) {
1350#ifdef MSLink_DEBUG_CROSSING_POINTS
1357 if (dist == -10000.) {
1361#ifdef MSLink_DEBUG_CROSSING_POINTS
1363 <<
"' at distance " << dist <<
" (approach along '"
1410 const MSLink* link =
this;
1411 while (lane !=
nullptr) {
1421 const MSLink* link =
this;
1447 std::cout <<
SIMTIME <<
" getLeaderInfo link=" <<
getDescription() <<
" dist=" << dist <<
" isShadowLink=" << isShadowLink <<
"\n";
1455 std::cout <<
" ignore linkLeaders beyond red light\n";
1462 for (
int i = 0; i < (int)
myFoeLanes.size(); ++i) {
1466 double distToCrossing = dist -
myConflicts[i].getLengthBehindCrossing(
this);
1467 const double foeDistToCrossing = foeLane->
getLength() -
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink);
1470 const double crossingWidth = (sameTarget || sameSource) ? 0 :
myConflicts[i].conflictSize;
1471 const double foeCrossingWidth = (sameTarget || sameSource) ? 0 :
myConflicts[i].getFoeConflictSize(foeExitLink);
1476 std::cout <<
" distToCrossing=" << distToCrossing <<
" foeLane=" << foeLane->
getID() <<
" cWidth=" << crossingWidth
1478 <<
" lbc=" <<
myConflicts[i].getLengthBehindCrossing(
this)
1479 <<
" flbc=" <<
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink)
1480 <<
" cw=" << crossingWidth
1481 <<
" fcw=" << foeCrossingWidth
1482 <<
" contLane=" << contLane
1487 if (distToCrossing + crossingWidth < 0 && !sameTarget
1491 bool ignoreGreenCont =
false;
1492 bool foeIndirect =
false;
1497 if (entry !=
nullptr && entry->
haveGreen()
1498 && foeEntry !=
nullptr && foeEntry->
haveGreen()
1501 ignoreGreenCont =
true;
1506 std::cout <<
" ignore:noIntersection\n";
1520 const double leaderBackDist = foeDistToCrossing - leaderBack;
1521 const double l2 = ego !=
nullptr ? ego->
getLength() + 2 : 0;
1523 const bool pastTheCrossingPoint = leaderBackDist + foeCrossingWidth + sagitta < 0;
1527 const bool ignoreIndirectBicycleTurn = pastTheCrossingPoint && foeIsBicycleTurn;
1528 const bool cannotIgnore = ((contLane && !ignoreIndirectBicycleTurn) || sameTarget || (sameSource && !
MSGlobals::gComputeLC)) && ego !=
nullptr;
1529 const bool inTheWay = ((((!pastTheCrossingPoint && distToCrossing > 0) || (sameTarget && distToCrossing > leaderBackDist - leader->
getLength()))
1530 && enteredTheCrossingPoint
1538 std::cout <<
" candidate leader=" << leader->
getID()
1539 <<
" cannotIgnore=" << cannotIgnore
1540 <<
" fdtc=" << foeDistToCrossing
1541 <<
" lb=" << leaderBack
1542 <<
" lbd=" << leaderBackDist
1543 <<
" fcwidth=" << foeCrossingWidth
1545 <<
" sagitta=" << sagitta
1546 <<
" foePastCP=" << pastTheCrossingPoint
1547 <<
" foeEnteredCP=" << enteredTheCrossingPoint
1548 <<
" inTheWay=" << inTheWay
1549 <<
" willPass=" << willPass
1551 <<
" ignoreGreenCont=" << ignoreGreenCont
1552 <<
" foeIndirect=" << foeIndirect
1553 <<
" foeBikeTurn=" << foeIsBicycleTurn
1554 <<
" isOpposite=" << isOpposite <<
"\n";
1556 if (leader == ego) {
1560 if (!inTheWay && ignoreGreenCont) {
1562 std::cout <<
" ignoreGreenCont\n";
1568 && distToCrossing < -POSITION_EPS && !inTheWay
1571 std::cout <<
" ego entered conflict area\n";
1578 && leaderBack + leader->
getLength() < ego->getPositionOnLane() - ego->getLength()) {
1581 std::cout <<
" ego ahead of same-source foe\n";
1587 if ((!cannotIgnore || leader->
isStopped() || sameTarget)
1595 std::cout <<
" foe will not pass\n";
1610 && (!foeStrategicBlocked || sameInternalEdge)) {
1611 if (ego->getLane() == leader->
getLane()) {
1615 const double egoLatOffset = isShadowLink ? ego->getLatOffset(ego->getLaneChangeModel().getShadowLane()) : 0;
1616 const double posLat = ego->getLateralPositionOnLane() + egoLatOffset;
1618 if (foeLaneIsBidi) {
1620 posLatLeader = foeLane->
getWidth() - posLatLeader;
1622 const double latGap = (fabs(posLat - posLatLeader)
1627 <<
" sameSource=" << sameSource
1628 <<
" sameTarget=" << sameTarget
1629 <<
" foeLaneIsBidi=" << foeLaneIsBidi
1630 <<
" foeLane=" << foeLane->
getID()
1631 <<
" leader=" << leader->
getID()
1632 <<
" egoLane=" << ego->getLane()->getID()
1634 <<
" egoLat=" << posLat
1635 <<
" egoLatOffset=" << egoLatOffset
1636 <<
" leaderLat=" << posLatLeader
1637 <<
" leaderLatOffset=" << leader->
getLatOffset(foeLane)
1638 <<
" latGap=" << latGap
1639 <<
" maneuverDist=" << maneuverDist
1641 <<
" egoMaxSpeedLat=" << ego->getVehicleType().getMaxSpeedLat()
1652 if ((posLat > posLatLeader) == leaderFromRight) {
1655 std::cout <<
" ignored (same source) leaderFromRight=" << leaderFromRight <<
"\n";
1659 }
else if (sameTarget) {
1666 leaderFromRight = !leaderFromRight;
1668 if ((posLat > posLatLeader) == leaderFromRight
1672 && (ego->getLaneChangeModel().getSpeedLat() == 0
1673 || leaderFromRight == (ego->getLaneChangeModel().getSpeedLat() > latGap))) {
1675 std::cout <<
" ignored (different source) leaderFromRight=" << leaderFromRight <<
"\n";
1684 std::cout <<
" ignored oncoming bidi leader\n";
1694 bool fromLeft =
true;
1695 if (ego ==
nullptr) {
1698 gap = leaderBackDist;
1702 distToCrossing +=
myConflicts[i].conflictSize / 2;
1703 if (gap + foeCrossingWidth < 0) {
1710 fromLeft = foeDistToCrossing > 0.5 * foeLane->
getLength();
1711 }
else if ((contLane && !sameSource && !ignoreIndirectBicycleTurn) || isOpposite) {
1712 gap = -std::numeric_limits<double>::max();
1714 if (pastTheCrossingPoint && !sameTarget) {
1718 std::cout <<
" foePastCP ignored\n";
1722 double leaderBackDist2 = leaderBackDist;
1723 if (sameTarget && leaderBackDist2 < 0) {
1724 const double mismatch =
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink) -
myConflicts[i].getLengthBehindCrossing(
this);
1726 leaderBackDist2 += mismatch;
1730 std::cout <<
" distToCrossing=" << distToCrossing <<
" leaderBack=" << leaderBack
1731 <<
" backDist=" << leaderBackDist
1732 <<
" backDist2=" << leaderBackDist2
1736 gap = distToCrossing - ego->getVehicleType().getMinGap() - leaderBackDist2 - foeCrossingWidth;
1741 const bool stopAsap = ((leader->
isFrontOnLane(foeLane) ? cannotIgnore : (sameTarget || sameSource))
1742 || (ego !=
nullptr && ego->getVehicleType().getParameter().getJMParam(
SUMO_ATTR_JM_ADVANCE, 1.0) == 0.0));
1744 std::cout <<
" leader=" << leader->
getID() <<
" contLane=" << contLane <<
" cannotIgnore=" << cannotIgnore <<
" stopAsap=" << stopAsap <<
" gap=" << gap <<
"\n";
1753 result.emplace_back(leader, gap, stopAsap ? -1 : distToCrossing, llFlags, leader->
getLatOffset(foeLane));
1770 result.emplace_back(
nullptr, -1, distToPeds);
1776 const double timeToEnterCrossing = distToCrossing /
MAX2(ego->
getSpeed(), 1.0);
1780 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" breaking for approaching person " << item.first->getID()
1784 result.emplace_back(
nullptr, -1, distToPeds);
1800 if (ego !=
nullptr) {
1808 const MSLane* foeLane = *it;
1812 if (leader == ego) {
1829 <<
" foeLane=" << foeLane->
getID()
1830 <<
" leader=" << leader->
getID()
1834 <<
" egoLat=" << posLat
1835 <<
" leaderLat=" << posLatLeader
1836 <<
" leaderLatOffset=" << leader->
getLatOffset(foeLane)
1838 <<
" foeIndex=" << foeLane->
getIndex()
1844 if ((posLat < posLatLeader && myInternalLaneBefore->
getIndex() > foeLane->
getIndex())
1847 std::cout <<
SIMTIME <<
" blocked by " << leader->
getID() <<
" (sublane split) foeLane=" << foeLane->
getID() <<
"\n";
1852 result.emplace_back(leader, gap, -1);
1868 double distToPeds = std::numeric_limits<double>::max();
1881#ifdef DEBUG_WALKINGAREA
1887 <<
" inFront=" << inFront
1888 <<
" dist=" << dist <<
"\n";
1891 if (dist < ego->getVehicleType().getWidth() / 2 || inFront) {
1894 if (oncomingFactor > 0) {
1896 const double timeToStop = sqrt(dist) / 2;
1897 const double pedDist = p->
getMaxSpeed() *
MAX2(timeToStop,
TS) * oncomingFactor;
1898 dist =
MAX2(0.0, dist - pedDist);
1899#ifdef DEBUG_WALKINGAREA
1901 std::cout <<
" timeToStop=" << timeToStop <<
" pedDist=" << pedDist <<
" factor=" << oncomingFactor <<
" dist2=" << dist <<
"\n";
1909 distToPeds =
MIN2(distToPeds, dist);
1910 if (collectBlockers !=
nullptr) {
1911 collectBlockers->push_back(p);
1915 if (distToPeds != std::numeric_limits<double>::max()) {
1917 result.emplace_back(
nullptr, -1, distToPeds);
1926#ifdef DEBUG_WALKINGAREA
1928 std::cout <<
" angleDiff=" <<
RAD2DEG(angleDiff) <<
"\n";
1931 if (angleDiff <
DEG2RAD(75)) {
1942#ifdef DEBUG_WALKINGAREA
1944 std::cout <<
" ped-angleDiff=" <<
RAD2DEG(angleDiff) <<
" res=" << cos(angleDiff) <<
"\n";
1947 if (angleDiff <=
DEG2RAD(90)) {
1949 return cos(angleDiff);
1959 const double dist = timeHorizon * p->
getMaxSpeed();
1961 const Position offset(cos(a) * dist, sin(a) * dist);
1968 if (direction == -1) {
1970 }
else if (direction == 1) {
1995 if (before !=
nullptr && after !=
nullptr) {
1997 if (link->getLane() == after) {
2015 throw ProcessError(
"Zipper junctions with more than two conflicting lanes are not supported (at junction '"
2023 <<
" dist=" << dist <<
" bGap=" << brakeGap <<
" ignoring foes (arrival in " <<
STEPS2TIME(arrivalTime - now) <<
")\n")
2029 <<
" egoAT=" << arrivalTime
2031 <<
" brakeGap=" << brakeGap
2032 <<
" vSafe=" << vSafe
2033 <<
" numFoes=" << foes->size()
2037 for (
const auto& item : *foes) {
2038 if (!item->isVehicle()) {
2055 <<
" ignoring foe=" << foe->
getID()
2057 <<
" foeDist=" << avi.
dist
2058 <<
" foeDist2=" << foeDist
2059 <<
" foeSpeed=" << avi.
speed
2061 <<
" deltaDist=" << foeDist - dist
2084 const double uEnd =
MIN2(uMax, uAccel);
2085 const double uAvg = (avi.
speed + uEnd) / 2;
2086 const double tf0 = foeDist /
MAX2(NUMERICAL_EPS, uAvg);
2087 const double tf =
MAX2(1.0, ceil((tf0) /
TS) *
TS);
2092 const double vEnd =
MIN3(vMax, vAccel,
MAX2(uEnd, vDecel));
2093 const double vAvg = (ego->
getSpeed() + vEnd) / 2;
2094 const double te0 = dist /
MAX2(NUMERICAL_EPS, vAvg);
2095 const double te =
MAX2(1.0, ceil((te0) /
TS) *
TS);
2102 const double deltaGap = gap + tf * uAvg - safeGap - vAvg * tf;
2103 const double a = 2 * deltaGap / (tf * tf);
2109 const double w =
MIN2(1.0, te / 10);
2111 const double vZipper =
MAX3(vFollow, ego->
getSpeed() -
ACCEL2SPEED(maxDecel), w * vSafeGap + (1 - w) * vFollow);
2113 vSafe =
MIN2(vSafe, vZipper);
2116 <<
" foeDist=" << foeDist
2117 <<
" foeSpeed=" << avi.
speed
2121 <<
" uAccel=" << uAccel
2125 <<
" safeGap=" << safeGap
2129 <<
" dg=" << deltaGap
2130 <<
" aSafeGap=" << a
2132 <<
" vAccel=" << vAccel
2133 <<
" vDecel=" << vDecel
2135 <<
" vSafeGap=" << vSafeGap
2136 <<
" vFollow=" << vFollow
2138 <<
" maxDecel=" << maxDecel
2139 <<
" vZipper=" << vZipper
2140 <<
" vSafe=" << vSafe
2151 followDist > leaderDist &&
2169 for (
const MSLink* link : cand->getLinkCont()) {
2180 return fabs(posLat2 - posLat) < (width + width2) / 2;
2201 if (
id == foe->
getID()) {
2215std::pair<const SUMOVehicle* const, const MSLink::ApproachingVehicleInformation>
2218 double minDist = std::numeric_limits<double>::max();
2221 if (apprIt->second.dist < minDist) {
2222 minDist = apprIt->second.dist;
#define JM_CROSSING_GAP_DEFAULT
#define DIVERGENCE_MIN_WIDTH
#define DEBUG_COND_ZIPPER
#define WRITE_WARNINGF(...)
#define WRITE_WARNING(msg)
std::string time2string(SUMOTime t, bool humanReadable)
convert SUMOTime to string (independently of global format setting)
const SVCPermissions SVCAll
all VClasses are allowed
@ SVC_BICYCLE
vehicle is a bicycle
const long long int VEHPARS_JUNCTIONMODEL_PARAMS_SET
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ PARTRIGHT
The link is a partial right direction.
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_STOP
This is an uncontrolled, minor link, has to stop.
@ LINKSTATE_TL_GREEN_MAJOR
The link has green light, may pass.
@ LINKSTATE_ZIPPER
This is an uncontrolled, zipper-merge link.
@ LINKSTATE_TL_OFF_BLINKING
The link is controlled by a tls which is off and blinks, has to brake.
@ LINKSTATE_TL_RED
The link has red light (must brake)
@ LINKSTATE_TL_GREEN_MINOR
The link has green light, has to brake.
@ LINKSTATE_TL_OFF_NOSIGNAL
The link is controlled by a tls which is off, not blinking, may pass.
@ SUMO_ATTR_JM_IGNORE_FOE_SPEED
@ SUMO_ATTR_JM_STOPLINE_CROSSING_GAP
@ SUMO_ATTR_JM_STOPSIGN_WAIT
@ SUMO_ATTR_JM_IGNORE_IDS
@ SUMO_ATTR_JM_IGNORE_TYPES
@ SUMO_ATTR_JM_ALLWAYSTOP_WAIT
@ SUMO_ATTR_JM_IGNORE_FOE_PROB
@ SUMO_ATTR_JM_CROSSING_GAP
@ SUMO_ATTR_JM_TIMEGAP_MINOR
bool gDebugFlag1
global utility flags for debugging
const double INVALID_DOUBLE
invalid double
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
#define DEBUGOUT(cond, msg)
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
static double naviDegree(const double angle)
static double angleDiff(const double angle1, const double angle2)
Returns the difference of the second angle to the first angle in radiants.
static double getMinAngleDiff(double angle1, double angle2)
Returns the minimum distance (clockwise/counter-clockwise) between both angles.
bool isStrategicBlocked() const
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
double getSpeedLat() const
return the lateral speed of the current lane change maneuver
virtual bool isSelected() const
whether this vehicle is selected in the GUI
double getLength() const
Returns the vehicle's length.
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool isStopped() const
Returns whether the vehicle is at a stop.
double estimateSpeedAfterDistance(const double dist, const double v, const double accel) const
double getEmergencyDecel() const
Get the vehicle type's maximal physically possible deceleration [m/s^2].
virtual double getSecureGap(const MSVehicle *const veh, const MSVehicle *const, const double speed, const double leaderSpeed, const double leaderMaxDecel) const
Returns the minimum gap to reserve if the leader is braking at maximum (>=0)
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0, const CalcReason usage=CalcReason::CURRENT) const =0
Computes the vehicle's follow speed (no dawdling)
A road/street connecting two junctions.
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
const MSJunction * getToJunction() const
const MSJunction * getFromJunction() const
bool isInternal() const
return whether this edge is an internal edge
static double gLateralResolution
static bool gComputeLC
whether the simulationLoop is in the lane changing phase
static bool gLefthand
Whether lefthand-drive is being simulated.
static SUMOTime gIgnoreJunctionBlocker
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
The base class for an intersection.
SumoXMLNodeType getType() const
return the type of this Junction
AnyVehicleIterator is a structure, which manages the iteration through all vehicles on the lane,...
Representation of a lane in the micro simulation.
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
const MSLane * getNormalSuccessorLane() const
get normal lane following this internal lane, for normal lanes, the lane itself is returned
AnyVehicleIterator anyVehiclesEnd() const
end iterator for iterating over all vehicles touching this lane in downstream direction
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
MSLane * getCanonicalPredecessorLane() const
double getLength() const
Returns the lane's length.
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
int getIndex() const
Returns the lane's index.
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
double interpolateGeometryPosToLanePos(double geometryPos) const
AnyVehicleIterator anyVehiclesBegin() const
begin iterator for iterating over all vehicles touching this lane in downstream direction
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
virtual const PositionVector & getShape(bool) const
MSEdge & getEdge() const
Returns the lane's edge.
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
double getWidth() const
Returns the lane's width.
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
bool fromInternalLane() const
return whether the fromLane of this link is an internal lane
void writeApproaching(OutputDevice &od, const std::string fromLaneID) const
write information about all approaching vehicles to the given output device
double computeDistToDivergence(const MSLane *lane, const MSLane *sibling, double minDist, bool sameSource) const
compute point of divergence for geomatries with a common start or end
double getLengthBeforeCrossing(const MSLane *foeLane) const
Returns the internal length from the beginning of the link's internal lane before to the crossing wit...
const MSLane * getInternalLaneBefore() const
return myInternalLaneBefore (always 0 when compiled without internal lanes)
LinkState getState() const
Returns the current state of the link.
void setApproachingPerson(const MSPerson *approaching, const SUMOTime arrivalTime, const SUMOTime leaveTime)
Sets the information about an approaching person (only for a pedestrian crossing)
void checkWalkingAreaFoe(const MSVehicle *ego, const MSLane *foeLane, std::vector< const MSPerson * > *collectBlockers, LinkLeaders &result) const
check for persons on walkingarea in the path of ego vehicle
SUMOTime myMesoTLSPenalty
penalty time at tls for mesoscopic simulation
bool hasApproachingFoe(SUMOTime arrivalTime, SUMOTime leaveTime, double speed, double decel) const
Returns the information whether a vehicle is approaching on one of the link's foe streams.
double myDistToFoePedCrossing
distance from the stop line to the first pedestrian crossing or maxdouble
const bool myAmIndirect
whether this connection is an indirect turning movement
std::vector< MSLink * > mySublaneFoeLinks
double myGreenFraction
green fraction at tls for mesoscopic simulation
static const SUMOTime myLookaheadTime
ApproachInfos myApproachingVehicles
double myFoeVisibilityDistance
distance from which an approaching vehicle is able to see all relevant foes and may accelerate if the...
MSLink * computeParallelLink(int direction)
SVCPermissions myPermissions
who may drive on this link
int myIndex
The position within this respond.
bool myHasFoes
Whether any foe links exist.
const ApproachInfos & getApproaching() const
return all approaching vehicles
void setApproaching(const SUMOVehicle *approaching, const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const bool setRequest, const double arrivalSpeedBraking, const SUMOTime waitingTime, double dist, double latOffset)
Sets the information about an approaching vehicle.
const MSLane * myInternalLaneBefore
LinkState myState
The state of the link.
bool lastWasContState(LinkState linkState) const
whether this is a link past an internal junction where the entry to the junction currently has the gi...
void initParallelLinks()
initialize parallel links (to be called after all links are loaded)
void setTLState(LinkState state, SUMOTime t)
Sets the current tl-state.
static const SUMOTime myLookaheadTimeZipper
void removeApproachingPerson(const MSPerson *person)
removes the person from myApproachingPersons
MSLane * getLane() const
Returns the connected lane.
bool opened(SUMOTime arrivalTime, double arrivalSpeed, double leaveSpeed, double vehicleLength, double impatience, double decel, SUMOTime waitingTime, double posLat=0, BlockingFoes *collectFoes=nullptr, bool ignoreRed=false, const SUMOTrafficObject *ego=nullptr, double dist=-1) const
Returns the information whether the link may be passed.
std::vector< MSLink * > * myOffFoeLinks
bool isConflictEntryLink() const
return whether this link enters the conflict area (not a continuation link)
double myRadius
the turning radius for this link or doublemax for straight links
int getIndex() const
Returns the respond index (for visualization)
bool havePriority() const
Returns whether this link is a major link.
double myLength
The length of the link.
bool blockedByFoe(const SUMOVehicle *veh, const ApproachingVehicleInformation &avi, SUMOTime arrivalTime, SUMOTime leaveTime, double arrivalSpeed, double leaveSpeed, bool sameTargetLane, double impatience, double decel, SUMOTime waitingTime, const SUMOTrafficObject *ego) const
const LinkState myOffState
The state of the link when switching of traffic light control.
const LinkLeaders getLeaderInfo(const MSVehicle *ego, double dist, std::vector< const MSPerson * > *collectBlockers=0, bool isShadowLink=false) const
Returns all potential link leaders (vehicles on foeLanes) Valid during the planMove() phase.
static bool ignoreFoe(const SUMOTrafficObject *ego, const SUMOTrafficObject *foe)
std::map< const MSPerson *, ApproachingPersonInformation > PersonApproachInfos
bool isEntryLink() const
return whether the toLane of this link is an internal lane and fromLane is a normal lane
const MSLane * getLaneBefore() const
return the internalLaneBefore if it exists and the laneBefore otherwise
ApproachingVehicleInformation getApproaching(const SUMOVehicle *veh) const
const MSTrafficLightLogic * myLogic
the controlling logic or 0
@ CONFLICT_NO_INTERSECTION
@ CONFLICT_STOP_AT_INTERNAL_JUNCTION
static bool lateralOverlap(double posLat, double width, double posLat2, double width2)
check whether the given vehicle positions overlap laterally
std::vector< MSLink * > myFoeLinks
bool isInternalJunctionLink() const
return whether the fromLane and the toLane of this link are internal lanes
bool isExitLink() const
return whether the fromLane of this link is an internal lane and toLane is a normal lane
std::vector< const MSLane * > myFoeLanes
std::vector< LinkLeader > LinkLeaders
static std::set< std::pair< MSLink *, MSLink * > > myRecheck
links that need post processing after initialization (to deal with legacy networks)
void clearState()
Remove all approaching vehicles before quick-loading state.
MSLane * myLane
The lane behind the junction approached by this link.
static const double NO_INTERSECTION
LinkState getOffState() const
Returns the off-state for the link.
bool isInFront(const MSVehicle *ego, const PositionVector &egoPath, const Position &pPos) const
whether the given person is in front of the car
MSLane * getViaLane() const
Returns the following inner lane.
const int myTLIndex
the traffic light index
double getInternalLengthsAfter() const
Returns the cumulative length of all internal lanes after this link.
std::string getDescription() const
get string description for this link
static void recheckSetRequestInformation()
post-processing for legacy networks
bool hasFoes() const
Returns whether this link belongs to a junction where more than one edge is incoming.
bool blockedAtTime(SUMOTime arrivalTime, SUMOTime leaveTime, double arrivalSpeed, double leaveSpeed, bool sameTargetLane, double impatience, double decel, SUMOTime waitingTime, BlockingFoes *collectFoes=nullptr, const SUMOTrafficObject *ego=nullptr, bool lastWasContRed=false, double dist=-1) const
Returns the information whether this link is blocked Valid after the vehicles have set their requests...
LinkState myLastGreenState
The last green state of the link (minor or major)
static SUMOTime computeFoeArrivalTimeBraking(SUMOTime arrivalTime, const SUMOVehicle *foe, SUMOTime foeArrivalTime, double impatience, double dist, double &fasb)
compute arrival time if foe vehicle is braking for ego
double isOnComingPed(const MSVehicle *ego, const MSPerson *p) const
whether the given person is walking towards the car returned as a factor in [0, 1]
std::pair< const SUMOVehicle *const, const ApproachingVehicleInformation > getClosest() const
get the closest vehicle approaching this link
void updateDistToFoePedCrossing(double dist)
add information about another pedestrian crossing
MSJunction * myJunction
the junction to which this link belongs
const MSLink * getCorrespondingEntryLink() const
returns the corresponding entry link for exitLinks to a junction.
void setRequestInformation(int index, bool hasFoes, bool isCont, const std::vector< MSLink * > &foeLinks, const std::vector< MSLane * > &foeLanes, MSLane *internalLaneBefore=0)
Sets the request information.
void removeApproaching(const SUMOVehicle *veh)
removes the vehicle from myApproachingVehicles
bool contIntersect(const MSLane *lane, const MSLane *foe)
check if the lane intersects with a foe cont-lane
bool isExitLinkAfterInternalJunction() const
return whether the fromLane of this link is an internal lane and its incoming lane is also an interna...
LinkState getLastGreenState() const
Returns the last green state of the link.
std::pair< const SUMOVehicle *, const MSLink * > getFirstApproachingFoe(const MSLink *wrapAround) const
get the foe vehicle that is closest to the intersection or nullptr along with the foe link This funct...
std::vector< MSLink * > mySublaneFoeLinks2
MSLink * getParallelLink(int direction) const
return the link that is parallel to this lane or 0
MSLane * getViaLaneOrLane() const
return the via lane if it exists and the lane otherwise
void addCustomConflict(const MSLane *from, const MSLane *to, double startPos, double endPos)
const CustomConflict * getCustomConflict(const MSLane *foeLane) const
return CustomConflict with foeLane if it is defined
MSLane *const myInternalLane
The following junction-internal lane if used.
std::vector< const SUMOTrafficObject * > BlockingFoes
double myLateralShift
lateral shift to be applied when passing this link
std::vector< ConflictInfo > myConflicts
double getInternalLengthsBefore() const
Returns the cumulative length of all internal lanes before this link.
const MSLane * myWalkingAreaFoe
walkingArea that must be checked when entering the intersection
static bool couldBrakeForLeader(double followDist, double leaderDist, const MSVehicle *follow, const MSVehicle *leader)
whether follower could stay behind leader (possibly by braking)
std::vector< CustomConflict > myCustomConflicts
Position getFuturePosition(const MSPerson *p, double timeHorizon=1) const
return extrapolated position of the given person after the given time
const MSLane * myWalkingAreaFoeExit
walkingArea that must be checked when leaving the intersection
MSLane * myLaneBefore
The lane approaching this link.
@ LL_SAME_SOURCE
link leader is coming from the same (normal) lane
@ LL_SAME_TARGET
link leader is targeting the same outgoing lane
@ LL_IN_THE_WAY
vehicle is in the way
@ LL_FROM_LEFT
link leader is passing from left to right
SVCPermissions getPermissions() const
who may use this link
bool lastWasContMajor() const
whether this is a link past an internal junction which currently has priority
double getLengthsBeforeCrossing(const MSLane *foeLane) const
Returns the sum of the lengths along internal lanes following this link to the crossing with the give...
bool myHavePedestrianCrossingFoe
whether on of myFoeLanes is a crossing
SUMOTime myLastStateChange
The time of the last state change.
PersonApproachInfos * myApproachingPersons
LinkDirection myDirection
An abstract (hopefully human readable) definition of the link's direction.
const MSTrafficLightLogic * getTLLogic() const
Returns the TLS index.
bool checkContOff() const
figure out whether the cont status remains in effect when switching off the tls
const MSLink * getCorrespondingExitLink() const
returns the corresponding exit link for entryLinks to a junction.
static bool unsafeMergeSpeeds(double leaderSpeed, double followerSpeed, double leaderDecel, double followerDecel)
return whether the given vehicles may NOT merge safely
SUMOTime getLeaveTime(const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const double vehicleLength) const
return the expected time at which the given vehicle will clear the link
double getZipperSpeed(const MSVehicle *ego, const double dist, double vSafe, SUMOTime arrivalTime, const BlockingFoes *foes) const
return the speed at which ego vehicle must approach the zipper link
MSLink * getOppositeDirectionLink() const
return the link that is the opposite entry link to this one
MSLink(MSLane *predLane, MSLane *succLane, MSLane *via, LinkDirection dir, LinkState state, double length, double foeVisibilityDistance, bool keepClear, MSTrafficLightLogic *logic, int tlLinkIdx, bool indirect)
Constructor for simulation which uses internal lanes.
std::vector< MSLane * > mySublaneFoeLanes
LinkDirection getDirection() const
Returns the direction the vehicle passing this link take.
bool keepClear() const
whether the junction after this link must be kept clear
bool haveRed() const
Returns whether this link is blocked by a red (or redyellow) traffic light.
double getLength() const
Returns the length of this link.
void setTLLogic(const MSTrafficLightLogic *logic)
Sets the currently active tlLogic.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
bool hasPersons() const
Returns whether persons are simulated.
virtual MSTransportableControl & getPersonControl()
Returns the person control.
virtual bool blockedAtDist(const SUMOTrafficObject *ego, const MSLane *lane, double vehCenter, double vehWidth, double oncomingGap, std::vector< const MSPerson * > *collectBlockers)
whether a pedestrian is blocking the crossing of lane for the given vehicle bondaries
static const double SAFETY_GAP
The parent class for traffic light logics.
MSPModel * getMovementModel()
Returns the default movement model for this kind of transportables.
virtual double getAngle() const
return the current angle of the transportable
Position getPosition(const double) const
Return current position (x/y, cartesian)
const MSVehicleType & getVehicleType() const
Returns the object's "vehicle" type.
double getMaxSpeed() const
Returns the maximum speed (the minimum of desired and physical maximum speed)
Representation of a vehicle in the micro simulation.
bool willStop() const
Returns whether the vehicle will stop on the current edge.
SUMOTime getLastActionTime() const
Returns the time of the vehicle's last action point.
bool isActive() const
Returns whether the current simulation step is an action point for the vehicle.
SUMOTime getWaitingTime(const bool accumulated=false) const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
MSAbstractLaneChangeModel & getLaneChangeModel()
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
const MSLane * getLane() const
Returns the lane the vehicle is on.
bool isBidiOn(const MSLane *lane) const
whether this vehicle is driving against lane
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
double getSpeed() const
Returns the vehicle's current speed.
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
bool ignoreRed(const MSLink *link, bool canBrake) const
decide whether a red (or yellow light) may be ignored
double getAngle() const
Returns the vehicle's direction in radians.
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
const std::string & getID() const
Returns the name of the vehicle type.
double getMinGap() const
Get the free space in front of vehicles of this class.
const MSCFModel & getCarFollowModel() const
Returns the vehicle type's car following model definition (const version)
double getLength() const
Get vehicle's length [m].
const SUMOVTypeParameter & getParameter() const
const std::string & getID() const
Returns the id.
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
OutputDevice & openTag(const std::string &xmlElement)
Opens an XML tag.
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
A point in 2D or 3D with translation and scaling methods.
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position (in radians bet...
double length2D() const
Returns the length.
double rotationAtOffset(double pos) const
Returns the rotation at the given length.
std::vector< double > intersectsAtLengths2D(const PositionVector &other) const
For all intersections between this vector and other, return the 2D-length of the subvector from this ...
double distance2D(const Position &p, bool perpendicular=false) const
closest 2D-distance to point p (or -1 if perpendicular is true and the point is beyond this vector)
std::vector< double > distances(const PositionVector &s, bool perpendicular=false) const
distances of all my points to s and all of s points to myself
void move2side(double amount, double maxExtension=100)
move position vector to side using certain amount
double angleAt2D(int pos) const
get angle in certain position of position vector (in radians between -M_PI and M_PI)
PositionVector reverse() const
reverse position vector
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
Representation of a vehicle, person, or container.
virtual const MSVehicleType & getVehicleType() const =0
Returns the object's "vehicle" type.
virtual double getSpeed() const =0
Returns the object's current speed.
virtual const SUMOVehicleParameter & getParameter() const =0
Returns the vehicle's parameter (including departure definition)
virtual SumoRNG * getRNG() const =0
Returns the associated RNG for this object.
virtual bool isSelected() const =0
whether this object is selected in the GUI
double getJMParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
Representation of a vehicle.
virtual double getLateralPositionOnLane() const =0
Get the vehicle's lateral position on the lane.
virtual SUMOTime getLastActionTime() const =0
virtual double getBrakeGap(bool delayed=false) const =0
get distance for coming to a stop (used for rerouting checks)
Structure representing possible vehicle parameter.
bool wasSet(long long int what) const
Returns whether the given parameter was set.
std::vector< std::string > getVector()
return vector of strings
pre-computed information for conflict points
double getLengthBehindCrossing(const MSLink *exitLink) const
double getFoeConflictSize(const MSLink *foeExitLink) const
int foeConflictIndex
the conflict from the perspective of the foe
double conflictSize
the length of the conflict space
double getFoeLengthBehindCrossing(const MSLink *foeExitLink) const
holds user defined conflict positions (must be interpreted for the correct exitLink)