53#define DEBUG_COND2(obj) (obj->isSelected())
58#define DEBUG_COND_ZIPPER (ego->isSelected())
64#define INVALID_TIME -1000
67#define JM_CROSSING_GAP_DEFAULT 10
70#define DIVERGENCE_MIN_WIDTH 2.5
95 if (foeConflictIndex >= 0) {
96 return foeExitLink->
myConflicts[foeConflictIndex].conflictSize;
107 return lengthBehindCrossing;
115 double length,
double foeVisibilityDistance,
bool keepClear,
159 const double dist = from.back().distanceTo2D(to.front());
165 myLateralShift = (from.back().distanceTo2D(to.front()) < dist) ? dist : -dist;
192 if (cc.from == foeFrom && cc.to == foeTo) {
203 const std::vector<MSLink*>& foeLinks,
204 const std::vector<MSLane*>& foeLanes,
205 MSLane* internalLaneBefore) {
215 for (
MSLane* foeLane : foeLanes) {
223 if (internalLaneBefore !=
nullptr) {
225 lane = internalLaneBefore;
237 for (
MSLane* foeLane : foeLanes) {
238 assert(foeLane->isInternal() || foeLane->isCrossing());
239 MSLink* viaLink = foeLane->getIncomingLanes().front().viaLink;
246#ifdef MSLink_DEBUG_CROSSING_POINTS
249 if (lane !=
nullptr) {
250 const bool beforeInternalJunction = lane->
getLinkCont()[0]->getViaLaneOrLane()->getEdge().isInternal();
274 const CustomConflict* rcc = foeLane->getEntryLink()->getCustomConflict(lane);
275 bool haveIntersection =
false;
276 if (rcc ==
nullptr) {
281 const bool foeIsSecondPart = foeLane->getLogicalPredecessorLane()->isInternal();
284 if (foeIsSecondPart) {
285 foeStartPos -= foeLane->getLogicalPredecessorLane()->getLength();
287 const double foeEndPos = foeStartPos + foeConflictSize;
288 haveIntersection = ((foeStartPos > 0 && foeStartPos < foeLane->getLength())
289 || (foeEndPos > 0 && foeEndPos < foeLane->
getLength()));
291 if (haveIntersection) {
296#ifdef MSLink_DEBUG_CROSSING_POINTS
297 std::cout <<
" " << lane->
getID() <<
" custom conflict with " << foeLane->getID() <<
" customReverse=" << (rcc !=
nullptr)
298 <<
" haveIntersection=" << haveIntersection
299 <<
" startPos=" << startPos <<
" conflictSize=" << conflictSize
300 <<
" lbc=" <<
myConflicts.back().lengthBehindCrossing
307 if (sameTarget && !beforeInternalJunction && !
contIntersect(lane, foeLane)) {
311 if (lane->
getShape().back().distanceTo2D(foeLane->getShape().back()) >= minDist) {
313 if (foeLane->getEntryLink()->isIndirect()) {
315#ifdef MSLink_DEBUG_CROSSING_POINTS
316 std::cout <<
" " << lane->
getID() <<
" dummy merge with indirect" << foeLane->getID() <<
"\n";
320#ifdef MSLink_DEBUG_CROSSING_POINTS
321 std::cout <<
" " << lane->
getID() <<
" dummy merge with " << foeLane->getID() <<
"\n";
328#ifdef MSLink_DEBUG_CROSSING_POINTS
330 <<
" " << lane->
getID()
331 <<
" merges with " << foeLane->getID()
332 <<
" nextLane " << lane->
getLinkCont()[0]->getViaLaneOrLane()->getID()
333 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
339#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
340 std::cout <<
" intersections1=" <<
toString(intersections1) <<
"\n";
342 bool haveIntersection =
true;
343 if (intersections1.size() == 0) {
345 haveIntersection =
false;
346 }
else if (intersections1.size() > 1) {
347 std::sort(intersections1.begin(), intersections1.end());
349 std::vector<double> intersections2 = foeLane->getShape().intersectsAtLengths2D(lane->
getShape());
350#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
351 std::cout <<
" intersections2=" <<
toString(intersections2) <<
"\n";
353 if (intersections2.size() == 0) {
354 intersections2.push_back(0);
355 }
else if (intersections2.size() > 1) {
356 std::sort(intersections2.begin(), intersections2.end());
358 double conflictSize = foeLane->getWidth();
360 if (haveIntersection) {
363 const double angle2 =
GeomHelper::naviDegree(foeLane->getShape().rotationAtOffset(intersections2.back()));
367 const double widthFactor = 1 /
MAX2(sin(
DEG2RAD(angleDiff)), 0.2) * 2 - 1;
369 conflictSize *= widthFactor;
372 intersections1.back() -= conflictSize / 2;
374 intersections1.back() =
MAX2(0.0, intersections1.back());
383 if (foeLane->getEdge().isCrossing()) {
390 lane->
getLength() - intersections1.back(),
391 conflictSize, flag));
393#ifdef MSLink_DEBUG_CROSSING_POINTS
395 <<
" intersection of " << lane->
getID()
397 <<
" with " << foeLane->getID()
398 <<
" totalLength=" << foeLane->getLength()
399 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
400 <<
" widthFactor=" <<
myConflicts.back().conflictSize / foeLane->getWidth()
410 const MSLane*
const sibling = link->getViaLane();
411 if (sibling != lane && sibling !=
nullptr) {
413 if (lane->
getShape().front().distanceTo2D(sibling->
getShape().front()) >= minDist) {
423 lbcLane = lane->
getLength() - distToDivergence;
431 const int replacedIndex = (int)(it -
myFoeLanes.begin());
437#ifdef MSLink_DEBUG_CROSSING_POINTS
438 std::cout <<
" adding same-origin foe" << sibling->
getID()
439 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
442 const MSLane*
const siblingCont = sibling->
getLinkCont().front()->getViaLaneOrLane();
452#ifdef MSLink_DEBUG_CROSSING_POINTS
453 std::cout <<
" adding same-origin foeContinuation" << siblingCont->
getID()
454 <<
" dist1=" <<
myConflicts.back().lengthBehindCrossing
462 for (
int i = 0; i < (int)
myFoeLanes.size(); i++) {
466 for (
int i2 = 0; i2 < (int)foeExitLink->
myFoeLanes.size(); i2++) {
475#ifdef MSLink_DEBUG_CROSSING_POINTS
476 std::cout << lane->
getID() <<
" foeLane=" << foeLane->
getID() <<
" index=" << i <<
" foundIndex=" << foundIndex <<
"\n";
478 if (foundIndex < 0) {
490 const MSEdge* target = &(it->getLane()->getEdge());
494 if (target == myTarget) {
496#ifdef MSLink_DEBUG_CROSSING_POINTS
497 std::cout <<
" sublaneFoeLink (same target): " << it->getViaLaneOrLane()->
getID() <<
"\n";
502#ifdef MSLink_DEBUG_CROSSING_POINTS
503 std::cout <<
" sublaneFoeLink2 (other target: " << it->getViaLaneOrLane()->getID() <<
"\n";
545#ifdef MSLink_DEBUG_CROSSING_POINTS
546 std::cout <<
" recheck l1=" << item.first->getDescription() <<
" l2=" << item.second->getDescription() <<
"\n";
548 MSLink*
const link = item.first;
549 MSLink*
const foeExitLink = item.second;
552 int conflictIndex = -1;
553 for (
int i = 0; i < (int)link->
myFoeLanes.size(); i++) {
559 if (conflictIndex == -1) {
571#ifdef MSLink_DEBUG_CROSSING_POINTS
572 std::cout <<
" siblingContinuation: distToDivergence=" << distToDivergence <<
" lbcSibCont=" << lbcSibCont <<
"\n";
583 if (intersections1.size() == 0) {
584#ifdef MSLink_DEBUG_CROSSING_POINTS
585 std::cout <<
" no intersection\n";
590 const double conflictSize2 = lane->
getWidth() * widthFactor;
591 std::sort(intersections1.begin(), intersections1.end());
592 intersections1.back() -= conflictSize2 / 2;
593 intersections1.back() =
MAX2(0.0, intersections1.back());
596#ifdef MSLink_DEBUG_CROSSING_POINTS
597 std::cout <<
" ci=" << conflictIndex <<
" wf=" << widthFactor <<
" flag=" << ci.
flag <<
" flbc=" << foeExitLink->
myConflicts.back().lengthBehindCrossing <<
"\n";
605 double lbcSibling = 0;
619 lbcSibling += s[-1].distanceTo2D(s[-2]);
625 lbcLane += l[-1].distanceTo2D(l[-2]);
629#ifdef MSLink_DEBUG_CROSSING_POINTS_DETAILS
630 std::cout <<
" sameSource=" << sameSource <<
" minDist=" << minDist <<
" backDist=" << l.back().distanceTo2D(s.back()) <<
"\n";
632 if (l.back().distanceTo2D(s.back()) > minDist) {
639 std::vector<double> distances = l.
distances(s);
640#ifdef MSLink_DEBUG_CROSSING_POINTS
641 std::cout <<
" distances=" <<
toString(distances) <<
"\n";
643 assert(distances.size() == l.size() + s.size());
644 if (distances.back() > minDist && distances[l.size() - 1] > minDist) {
646 for (
int j = (
int)s.size() - 2; j >= 0; j--) {
647 const int i = j + (int)l.size();
648 const double segLength = s[j].distanceTo2D(s[j + 1]);
649 if (distances[i] > minDist) {
650 lbcSibling += segLength;
653 lbcSibling += segLength - (minDist - distances[i]) * segLength / (distances[i + 1] - distances[i]);
657 for (
int i = (
int)l.size() - 2; i >= 0; i--) {
658 const double segLength = l[i].distanceTo2D(l[i + 1]);
659 if (distances[i] > minDist) {
660 lbcLane += segLength;
663 lbcLane += segLength - (minDist - distances[i]) * segLength / (distances[i + 1] - distances[i]);
668 assert(lbcSibling >= -NUMERICAL_EPS);
669 assert(lbcLane >= -NUMERICAL_EPS);
671 const double distToDivergence1 = sibling->
getLength() + siblingPredLength - lbcSibling;
672 const double distToDivergence2 = lane->
getLength() - lbcLane;
673 const double distToDivergence =
MIN3(
674 MAX2(distToDivergence1, distToDivergence2),
676#ifdef MSLink_DEBUG_CROSSING_POINTS
677 std::cout <<
" distToDivergence=" << distToDivergence
678 <<
" distTD1=" << distToDivergence1
679 <<
" distTD2=" << distToDivergence2
680 <<
" length=" << length
681 <<
" sibLength=" << sibLength
684 return distToDivergence;
690 if (foe->
getLinkCont()[0]->getViaLane() !=
nullptr) {
692 return intersections.size() > 0;
700 const bool setRequest,
const double arrivalSpeedBraking,
const SUMOTime waitingTime,
double dist,
double latOffset) {
702#ifdef DEBUG_APPROACHING
706 std::cout <<
" curApproaching=";
708 std::cout << i->first->getID() <<
" ";
716 arrivalSpeedBraking, waitingTime, dist, approaching->
getSpeed(), latOffset));
722#ifdef DEBUG_APPROACHING
726 std::cout <<
" curApproaching=";
728 std::cout << i->first->getID() <<
" ";
747#ifdef DEBUG_APPROACHING
751 std::cout <<
" curApproaching=";
753 std::cout << i->first->getID() <<
" ";
769#ifdef DEBUG_APPROACHING
772 std::cout <<
"' Removing approaching person '" << person->
getID() <<
"'\nCurrently registered persons:" << std::endl;
774 std::cout <<
"'" << i->first->getID() <<
"'" << std::endl;
812 const double leaveSpeed,
const double vehicleLength)
const {
819 double impatience,
double decel,
SUMOTime waitingTime,
double posLat,
821#ifdef MSLink_DEBUG_OPENED
836 assert(
myLane != foeLink->getLane());
837 for (
const auto& it : foeLink->myApproachingVehicles) {
841 ((posLat < foe->getLateralPositionOnLane() + it.second.latOffset &&
myLane->
getIndex() > foeLink->myLane->getIndex())
844 && (arrivalTime > it.second.arrivalTime
848 if (
blockedByFoe(foe, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
false,
849 impatience, decel, waitingTime, ego)) {
850#ifdef MSLink_DEBUG_OPENED
852 std::cout <<
SIMTIME <<
" blocked by " << foe->
getID() <<
" arrival=" << arrivalTime <<
" foeArrival=" << it.second.arrivalTime <<
"\n";
855 if (collectFoes ==
nullptr) {
856#ifdef MSLink_DEBUG_OPENED
858 std::cout <<
" link=" <<
getViaLaneOrLane()->
getID() <<
" blocked by sublaneFoe=" << foe->
getID() <<
" foeLink=" << foeLink->getViaLaneOrLane()->getID() <<
" posLat=" << posLat <<
"\n";
863 collectFoes->push_back(it.first);
874 for (
const auto& it : foeLink->myApproachingVehicles) {
884 if (
blockedByFoe(foe, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
false,
885 impatience, decel, waitingTime, ego)) {
886#ifdef MSLink_DEBUG_OPENED
888 std::cout <<
SIMTIME <<
" blocked by sublane foe " << foe->
getID() <<
" arrival=" << arrivalTime <<
" foeArrival=" << it.second.arrivalTime <<
"\n";
891 if (collectFoes ==
nullptr) {
892#ifdef MSLink_DEBUG_OPENED
894 std::cout <<
" link=" <<
getViaLaneOrLane()->
getID() <<
" blocked by sublaneFoe2=" << foe->
getID() <<
" foeLink=" << foeLink->getViaLaneOrLane()->getID() <<
" posLat=" << posLat <<
"\n";
899 collectFoes->push_back(it.first);
910 return collectFoes ==
nullptr || collectFoes->size() == 0;
919#ifdef MSLink_DEBUG_OPENED
929 for (
const MSLink*
const link : foeLinks) {
931 if (link->haveRed()) {
935#ifdef MSLink_DEBUG_OPENED
937 std::cout <<
SIMTIME <<
" foeLink=" << link->getViaLaneOrLane()->getID() <<
" numApproaching=" << link->getApproaching().size() <<
"\n";
938 if (link->getLane()->isCrossing()) {
939 std::cout <<
SIMTIME <<
" approachingPersons=" << (link->myApproachingPersons ==
nullptr ?
"NULL" :
toString(link->myApproachingPersons->size())) <<
"\n";
943 if (link->blockedAtTime(arrivalTime, leaveTime, arrivalSpeed, leaveSpeed,
myLane == link->getLane(),
944 impatience, decel, waitingTime, collectFoes, ego, lastWasContRed, dist)) {
948 if (collectFoes !=
nullptr && collectFoes->size() > 0) {
957 bool sameTargetLane,
double impatience,
double decel,
SUMOTime waitingTime,
960#ifdef MSLink_DEBUG_OPENED
965 std::stringstream stream;
967 <<
" foeVeh=" << it.first->getID() <<
" (below ignore speed)"
970 std::cout << stream.str();
981 &&
blockedByFoe(it.first, it.second, arrivalTime, leaveTime, arrivalSpeed, leaveSpeed, sameTargetLane,
982 impatience, decel, waitingTime, ego)) {
983 if (collectFoes ==
nullptr) {
986 collectFoes->push_back(it.first);
1004 && !((arrivalTime > it.second.leavingTime) || (leaveTime < it.second.arrivalTime))) {
1005 if (ego ==
nullptr) {
1015#ifdef MSLink_DEBUG_OPENED
1017 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" conflict with person " << it.first->getID() <<
" aTime=" << arrivalTime <<
" foeATime=" << it.second.arrivalTime <<
" dist=" << dist <<
" bGap=" << cfm.brakeGap(ego->
getSpeed(), cfm.getMaxDecel(), 0) <<
"\n";
1020 if (dist > cfm.brakeGap(ego->
getSpeed(), cfm.getMaxDecel(), 0)) {
1021#ifdef MSLink_DEBUG_OPENED
1023 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" blocked by person " << it.first->getID() <<
"\n";
1026 if (collectFoes ==
nullptr) {
1029 collectFoes->push_back(it.first);
1041 SUMOTime arrivalTime,
SUMOTime leaveTime,
double arrivalSpeed,
double leaveSpeed,
1042 bool sameTargetLane,
double impatience,
double decel,
SUMOTime waitingTime,
1044#ifdef MSLink_DEBUG_OPENED
1046 std::stringstream stream;
1048 <<
" foeVeh=" << veh->
getID()
1053 std::cout << stream.str();
1060 assert(waitingTime > 0);
1061#ifdef MSLink_DEBUG_OPENED
1063 std::stringstream stream;
1064 stream <<
" foeDist=" << avi.
dist
1067 <<
" wait=" << waitingTime
1069 std::cout << stream.str();
1074 if (waitingTime > avi.
waitingTime + actionDelta) {
1083 if (impatience > 0 && arrivalTime < avi.
arrivalTime) {
1084#ifdef MSLink_DEBUG_OPENED
1088 foeArrivalTime = (
SUMOTime)((1. - impatience) * (double)avi.
arrivalTime + impatience * (
double)fatb);
1089#ifdef MSLink_DEBUG_OPENED
1108#ifdef MSLink_DEBUG_OPENED
1110 std::stringstream stream;
1111 stream <<
" imp=" << impatience <<
" fAT2=" << foeArrivalTime <<
" fASb=" << foeArrivalSpeedBraking <<
" lA=" << lookAhead <<
" egoAT=" << arrivalTime <<
" egoLT=" << leaveTime <<
" egoLS=" << leaveSpeed <<
"\n";
1112 std::cout << stream.str();
1117 if (sameTargetLane && (arrivalTime - avi.
leavingTime < lookAhead
1120#ifdef MSLink_DEBUG_OPENED
1122 std::cout <<
" blocked (cannot follow)\n";
1127 }
else if (foeArrivalTime > leaveTime + lookAhead) {
1131#ifdef MSLink_DEBUG_OPENED
1133 std::cout <<
" blocked (cannot lead)\n";
1140#ifdef MSLink_DEBUG_OPENED
1142 std::cout <<
" blocked (hard conflict)\n";
1159 if (arrivalTime - arrivalTime %
DELTA_T == foeArrivalTime - foeArrivalTime %
DELTA_T) {
1161 return foeArrivalTime;
1163 if (arrivalTime %
DELTA_T > 0) {
1168 const double dt =
STEPS2TIME(foeArrivalTime - arrivalTime);
1169 const double d = dt * m;
1170 const double a = dt * d / 2;
1173 if (0.5 * v * v / m <= dist2) {
1175 std::cout <<
" dist=" << dist <<
" dist2=" << dist2 <<
" at=" <<
STEPS2TIME(arrivalTime) <<
" m=" << m <<
" d=" << d <<
" a=" << a <<
" canBrakeToStop\n";
1187 const double x = (sqrt(4 * (v - d) * (v - d) - 8 * m * a) * -0.5 - d + v) / m;
1189#ifdef MSLink_DEBUG_OPENED
1190 const double x2 = (sqrt(4 * (v - d) * (v - d) - 8 * m * a) * 0.5 - d + v) / m;
1192 std::cout <<
SIMTIME <<
" dist=" << dist <<
" dist2=" << dist2 <<
" at=" <<
STEPS2TIME(arrivalTime) <<
" m=" << m <<
" d=" << d <<
" v=" << v <<
" a=" << a <<
" x=" << x <<
" x2=" << x2 <<
"\n";
1195 fasb = v - (dt + x) * m;
1203 if (link->blockedAtTime(arrivalTime, leaveTime, speed, speed,
myLane == link->getLane(), 0, decel, 0)) {
1208 if (lane->getVehicleNumberWithPartials() > 0) {
1216std::pair<const SUMOVehicle*, const MSLink*>
1218 double closetDist = std::numeric_limits<double>::max();
1220 const MSLink* foeLink =
nullptr;
1222 for (
const auto& it : link->myApproachingVehicles) {
1225 return std::make_pair(
nullptr, wrapAround);
1226 }
else if (it.second.dist < closetDist) {
1227 closetDist = it.second.dist;
1228 if (it.second.willPass) {
1235 return std::make_pair(closest, foeLink);
1274 assert(pred2 !=
nullptr);
1276 assert(predLink !=
nullptr);
1300 assert(pred2 !=
nullptr);
1302 assert(predLink !=
nullptr);
1303 return predLink->
getState() == linkState;
1317 std::vector<std::pair<SUMOTime, const SUMOVehicle*> > toSort;
1319 toSort.push_back(std::make_pair(it.second.arrivalTime, it.first));
1321 std::sort(toSort.begin(), toSort.end());
1322 for (std::vector<std::pair<SUMOTime, const SUMOVehicle*> >::const_iterator it = toSort.begin(); it != toSort.end(); ++it) {
1345 while (lane !=
nullptr && lane->
isInternal()) {
1357 while (lane !=
nullptr && lane->
isInternal()) {
1372 double totalDist = 0.;
1373 bool foundCrossing =
false;
1374 while (via !=
nullptr) {
1380 foundCrossing =
true;
1387 if (foundCrossing) {
1398 for (foe_ix = 0; foe_ix != (int)
myFoeLanes.size(); ++foe_ix) {
1405#ifdef MSLink_DEBUG_CROSSING_POINTS
1412 if (dist == -10000.) {
1416#ifdef MSLink_DEBUG_CROSSING_POINTS
1418 <<
"' at distance " << dist <<
" (approach along '"
1465 const MSLink* link =
this;
1466 while (lane !=
nullptr) {
1476 const MSLink* link =
this;
1502 std::cout <<
SIMTIME <<
" getLeaderInfo link=" <<
getDescription() <<
" dist=" << dist <<
" isShadowLink=" << isShadowLink <<
"\n";
1510 std::cout <<
" ignore linkLeaders beyond red light\n";
1517 for (
int i = 0; i < (int)
myFoeLanes.size(); ++i) {
1521 double distToCrossing = dist -
myConflicts[i].getLengthBehindCrossing(
this);
1522 const double foeDistToCrossing = foeLane->
getLength() -
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink);
1525 const double crossingWidth = (sameTarget || sameSource) ? 0 :
myConflicts[i].conflictSize;
1526 const double foeCrossingWidth = (sameTarget || sameSource) ? 0 :
myConflicts[i].getFoeConflictSize(foeExitLink);
1531 std::cout <<
" distToCrossing=" << distToCrossing <<
" foeLane=" << foeLane->
getID() <<
" cWidth=" << crossingWidth
1533 <<
" lbc=" <<
myConflicts[i].getLengthBehindCrossing(
this)
1534 <<
" flbc=" <<
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink)
1535 <<
" cw=" << crossingWidth
1536 <<
" fcw=" << foeCrossingWidth
1537 <<
" contLane=" << contLane
1542 if (distToCrossing + crossingWidth < 0 && !sameTarget
1546 bool ignoreGreenCont =
false;
1547 bool foeIndirect =
false;
1552 if (entry !=
nullptr && entry->
haveGreen()
1553 && foeEntry !=
nullptr && foeEntry->
haveGreen()
1556 ignoreGreenCont =
true;
1561 std::cout <<
" ignore:noIntersection\n";
1575 const double leaderBackDist = foeDistToCrossing - leaderBack;
1576 const double l2 = ego !=
nullptr ? ego->
getLength() + 2 : 0;
1578 const bool pastTheCrossingPoint = leaderBackDist + foeCrossingWidth + sagitta < 0;
1582 const bool ignoreIndirectBicycleTurn = pastTheCrossingPoint && foeIsBicycleTurn;
1583 const bool cannotIgnore = ((contLane && !ignoreIndirectBicycleTurn) || sameTarget || (sameSource && !
MSGlobals::gComputeLC)) && ego !=
nullptr;
1584 const bool inTheWay = ((((!pastTheCrossingPoint && distToCrossing > 0) || (sameTarget && distToCrossing > leaderBackDist - leader->
getLength()))
1585 && enteredTheCrossingPoint
1593 std::cout <<
" candidate leader=" << leader->
getID()
1594 <<
" cannotIgnore=" << cannotIgnore
1595 <<
" fdtc=" << foeDistToCrossing
1596 <<
" lb=" << leaderBack
1597 <<
" lbd=" << leaderBackDist
1598 <<
" fcwidth=" << foeCrossingWidth
1600 <<
" sagitta=" << sagitta
1601 <<
" foePastCP=" << pastTheCrossingPoint
1602 <<
" foeEnteredCP=" << enteredTheCrossingPoint
1603 <<
" inTheWay=" << inTheWay
1604 <<
" willPass=" << willPass
1606 <<
" ignoreGreenCont=" << ignoreGreenCont
1607 <<
" foeIndirect=" << foeIndirect
1608 <<
" foeBikeTurn=" << foeIsBicycleTurn
1609 <<
" isOpposite=" << isOpposite <<
"\n";
1611 if (leader == ego) {
1615 if (!inTheWay && ignoreGreenCont) {
1617 std::cout <<
" ignoreGreenCont\n";
1623 && distToCrossing < -POSITION_EPS && !inTheWay
1626 std::cout <<
" ego entered conflict area\n";
1633 && leaderBack + leader->
getLength() < ego->getPositionOnLane() - ego->getLength()) {
1636 std::cout <<
" ego ahead of same-source foe\n";
1642 if ((!cannotIgnore || leader->
isStopped() || sameTarget)
1651 std::cout <<
" foe will not pass\n";
1666 && (!foeStrategicBlocked || sameInternalEdge)) {
1667 if (ego->getLane() == leader->
getLane()) {
1671 const double egoLatOffset = isShadowLink ? ego->getLatOffset(ego->getLaneChangeModel().getShadowLane()) : 0;
1672 const double posLat = ego->getLateralPositionOnLane() + egoLatOffset;
1674 if (foeLaneIsBidi) {
1676 posLatLeader = foeLane->
getWidth() - posLatLeader;
1678 const double latGap = (fabs(posLat - posLatLeader)
1683 <<
" sameSource=" << sameSource
1684 <<
" sameTarget=" << sameTarget
1685 <<
" foeLaneIsBidi=" << foeLaneIsBidi
1686 <<
" foeLane=" << foeLane->
getID()
1687 <<
" leader=" << leader->
getID()
1688 <<
" egoLane=" << ego->getLane()->getID()
1690 <<
" egoLat=" << posLat
1691 <<
" egoLatOffset=" << egoLatOffset
1692 <<
" leaderLat=" << posLatLeader
1693 <<
" leaderLatOffset=" << leader->
getLatOffset(foeLane)
1694 <<
" latGap=" << latGap
1695 <<
" maneuverDist=" << maneuverDist
1697 <<
" egoMaxSpeedLat=" << ego->getVehicleType().getMaxSpeedLat()
1708 if ((posLat > posLatLeader) == leaderFromRight) {
1711 std::cout <<
" ignored (same source) leaderFromRight=" << leaderFromRight <<
"\n";
1715 }
else if (sameTarget) {
1722 leaderFromRight = !leaderFromRight;
1724 if ((posLat > posLatLeader) == leaderFromRight
1728 && (ego->getLaneChangeModel().getSpeedLat() == 0
1729 || leaderFromRight == (ego->getLaneChangeModel().getSpeedLat() > latGap))) {
1731 std::cout <<
" ignored (different source) leaderFromRight=" << leaderFromRight <<
"\n";
1740 std::cout <<
" ignored oncoming bidi leader\n";
1750 bool fromLeft =
true;
1751 if (ego ==
nullptr) {
1754 gap = leaderBackDist;
1758 distToCrossing +=
myConflicts[i].conflictSize / 2;
1759 if (gap + foeCrossingWidth < 0) {
1766 fromLeft = foeDistToCrossing > 0.5 * foeLane->
getLength();
1767 }
else if ((contLane && !sameSource && !ignoreIndirectBicycleTurn) || isOpposite) {
1768 gap = -std::numeric_limits<double>::max();
1770 if (pastTheCrossingPoint && !sameTarget) {
1774 std::cout <<
" foePastCP ignored\n";
1778 double leaderBackDist2 = leaderBackDist;
1779 if (sameTarget && leaderBackDist2 < 0) {
1780 const double mismatch =
myConflicts[i].getFoeLengthBehindCrossing(foeExitLink) -
myConflicts[i].getLengthBehindCrossing(
this);
1782 leaderBackDist2 += mismatch;
1786 std::cout <<
" distToCrossing=" << distToCrossing <<
" leaderBack=" << leaderBack
1787 <<
" backDist=" << leaderBackDist
1788 <<
" backDist2=" << leaderBackDist2
1792 gap = distToCrossing - ego->getVehicleType().getMinGap() - leaderBackDist2 - foeCrossingWidth;
1797 const bool stopAsap = ((leader->
isFrontOnLane(foeLane) ? cannotIgnore : (sameTarget || sameSource))
1798 || (ego !=
nullptr && ego->getVehicleType().getParameter().getJMParam(
SUMO_ATTR_JM_ADVANCE, 1.0) == 0.0));
1800 std::cout <<
" leader=" << leader->
getID() <<
" contLane=" << contLane <<
" cannotIgnore=" << cannotIgnore <<
" stopAsap=" << stopAsap <<
" gap=" << gap <<
"\n";
1809 result.emplace_back(leader, gap, stopAsap ? -1 : distToCrossing, llFlags, leader->
getLatOffset(foeLane));
1826 result.emplace_back(
nullptr, -1, distToPeds);
1832 const double timeToEnterCrossing = distToCrossing /
MAX2(ego->
getSpeed(), 1.0);
1836 std::cout <<
SIMTIME <<
": " << ego->
getID() <<
" breaking for approaching person " << item.first->getID()
1840 result.emplace_back(
nullptr, -1, distToPeds);
1856 if (ego !=
nullptr) {
1864 const MSLane* foeLane = *it;
1868 if (leader == ego) {
1885 <<
" foeLane=" << foeLane->
getID()
1886 <<
" leader=" << leader->
getID()
1890 <<
" egoLat=" << posLat
1891 <<
" leaderLat=" << posLatLeader
1892 <<
" leaderLatOffset=" << leader->
getLatOffset(foeLane)
1894 <<
" foeIndex=" << foeLane->
getIndex()
1900 if ((posLat < posLatLeader && myInternalLaneBefore->
getIndex() > foeLane->
getIndex())
1903 std::cout <<
SIMTIME <<
" blocked by " << leader->
getID() <<
" (sublane split) foeLane=" << foeLane->
getID() <<
"\n";
1908 result.emplace_back(leader, gap, -1);
1924 double distToPeds = std::numeric_limits<double>::max();
1937#ifdef DEBUG_WALKINGAREA
1943 <<
" inFront=" << inFront
1944 <<
" dist=" << dist <<
"\n";
1947 if (dist < ego->getVehicleType().getWidth() / 2 || inFront) {
1950 if (oncomingFactor > 0) {
1952 const double timeToStop = sqrt(dist) / 2;
1953 const double pedDist = p->
getMaxSpeed() *
MAX2(timeToStop,
TS) * oncomingFactor;
1954 dist =
MAX2(0.0, dist - pedDist);
1955#ifdef DEBUG_WALKINGAREA
1957 std::cout <<
" timeToStop=" << timeToStop <<
" pedDist=" << pedDist <<
" factor=" << oncomingFactor <<
" dist2=" << dist <<
"\n";
1965 distToPeds =
MIN2(distToPeds, dist);
1966 if (collectBlockers !=
nullptr) {
1967 collectBlockers->push_back(p);
1971 if (distToPeds != std::numeric_limits<double>::max()) {
1973 result.emplace_back(
nullptr, -1, distToPeds);
1982#ifdef DEBUG_WALKINGAREA
1984 std::cout <<
" angleDiff=" <<
RAD2DEG(angleDiff) <<
"\n";
1987 if (angleDiff <
DEG2RAD(75)) {
1998#ifdef DEBUG_WALKINGAREA
2000 std::cout <<
" ped-angleDiff=" <<
RAD2DEG(angleDiff) <<
" res=" << cos(angleDiff) <<
"\n";
2003 if (angleDiff <=
DEG2RAD(90)) {
2005 return cos(angleDiff);
2015 const double dist = timeHorizon * p->
getMaxSpeed();
2017 const Position offset(cos(a) * dist, sin(a) * dist);
2024 if (direction == -1) {
2026 }
else if (direction == 1) {
2051 if (before !=
nullptr && after !=
nullptr) {
2053 if (link->getLane() == after) {
2076 <<
" dist=" << dist <<
" bGap=" << brakeGap <<
" ignoring foes (arrival in " <<
STEPS2TIME(arrivalTime - now) <<
")\n")
2082 <<
" egoAT=" << arrivalTime
2084 <<
" brakeGap=" << brakeGap
2085 <<
" vSafe=" << vSafe
2086 <<
" numFoes=" << foes->size()
2089 const bool uniqueFoeLink =
myFoeLinks.size() == 1;
2091 for (
const auto& item : *foes) {
2092 if (!item->isVehicle()) {
2098 if (uniqueFoeLink) {
2103 aviPtr = fl->getApproachingPtr(foe);
2104 if (aviPtr !=
nullptr) {
2109 if (aviPtr ==
nullptr) {
2124 <<
" ignoring foe=" << foe->
getID()
2126 <<
" foeDist=" << avi.
dist
2127 <<
" foeDist2=" << foeDist
2128 <<
" foeSpeed=" << avi.
speed
2130 <<
" deltaDist=" << foeDist - dist
2153 const double uEnd =
MIN2(uMax, uAccel);
2154 const double uAvg = (avi.
speed + uEnd) / 2;
2155 const double tf0 = foeDist /
MAX2(NUMERICAL_EPS, uAvg);
2156 const double tf =
MAX2(1.0, ceil((tf0) /
TS) *
TS);
2161 const double vEnd =
MIN3(vMax, vAccel,
MAX2(uEnd, vDecel));
2162 const double vAvg = (ego->
getSpeed() + vEnd) / 2;
2163 const double te0 = dist /
MAX2(NUMERICAL_EPS, vAvg);
2164 const double te =
MAX2(1.0, ceil((te0) /
TS) *
TS);
2175 const double w =
MIN2(1.0, te / 10);
2179 vSafe =
MIN2(vSafe, vZipper);
2182 <<
" foeDist=" << foeDist
2183 <<
" foeSpeed=" << avi.
speed
2187 <<
" uAccel=" << uAccel
2194 <<
" aSafeGap=" << a
2196 <<
" vAccel=" << vAccel
2197 <<
" vDecel=" << vDecel
2199 <<
" vSafeGap=" << vSafeGap
2200 <<
" vFollow=" << vFollow
2202 <<
" maxDecel=" << maxDecel
2203 <<
" vZipper=" << vZipper
2204 <<
" vSafe=" << vSafe
2215 followDist > leaderDist &&
2233 for (
const MSLink* link : cand->getLinkCont()) {
2244 return fabs(posLat2 - posLat) < (width + width2) / 2;
2265 if (
id == foe->
getID()) {
2279std::pair<const SUMOVehicle* const, const MSLink::ApproachingVehicleInformation>
2282 double minDist = std::numeric_limits<double>::max();
2285 if (apprIt->second.dist < minDist) {
2286 minDist = apprIt->second.dist;
#define JM_CROSSING_GAP_DEFAULT
#define DIVERGENCE_MIN_WIDTH
#define DEBUG_COND_ZIPPER
#define WRITE_WARNINGF(...)
#define WRITE_WARNING(msg)
std::string time2string(SUMOTime t, bool humanReadable)
convert SUMOTime to string (independently of global format setting)
const SVCPermissions SVCAll
all VClasses are allowed
@ SVC_BICYCLE
vehicle is a bicycle
const long long int VEHPARS_JUNCTIONMODEL_PARAMS_SET
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ PARTRIGHT
The link is a partial right direction.
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_STOP
This is an uncontrolled, minor link, has to stop.
@ LINKSTATE_TL_GREEN_MAJOR
The link has green light, may pass.
@ LINKSTATE_ZIPPER
This is an uncontrolled, zipper-merge link.
@ LINKSTATE_TL_OFF_BLINKING
The link is controlled by a tls which is off and blinks, has to brake.
@ LINKSTATE_TL_RED
The link has red light (must brake)
@ LINKSTATE_TL_GREEN_MINOR
The link has green light, has to brake.
@ LINKSTATE_TL_OFF_NOSIGNAL
The link is controlled by a tls which is off, not blinking, may pass.
@ SUMO_ATTR_JM_IGNORE_FOE_SPEED
@ SUMO_ATTR_JM_STOPLINE_CROSSING_GAP
@ SUMO_ATTR_JM_STOPSIGN_WAIT
@ SUMO_ATTR_JM_IGNORE_IDS
@ SUMO_ATTR_JM_IGNORE_TYPES
@ SUMO_ATTR_JM_ALLWAYSTOP_WAIT
@ SUMO_ATTR_JM_IGNORE_FOE_PROB
@ SUMO_ATTR_JM_CROSSING_GAP
@ SUMO_ATTR_JM_TIMEGAP_MINOR
bool gDebugFlag1
global utility flags for debugging
const double INVALID_DOUBLE
invalid double
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
#define DEBUGOUT(cond, msg)
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
static double naviDegree(const double angle)
static double angleDiff(const double angle1, const double angle2)
Returns the difference of the second angle to the first angle in radiants.
static double getMinAngleDiff(double angle1, double angle2)
Returns the minimum distance (clockwise/counter-clockwise) between both angles.
bool isStrategicBlocked() const
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
double getSpeedLat() const
return the lateral speed of the current lane change maneuver
virtual bool isSelected() const
whether this vehicle is selected in the GUI
double getLength() const
Returns the vehicle's length.
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool isStopped() const
Returns whether the vehicle is at a stop.
double estimateSpeedAfterDistance(const double dist, const double v, const double accel) const
double getEmergencyDecel() const
Get the vehicle type's maximal physically possible deceleration [m/s^2].
static double avoidArrivalAccel(double dist, double time, double speed, double maxDecel)
Computes the acceleration needed to arrive not before the given time.
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0, const CalcReason usage=CalcReason::CURRENT) const =0
Computes the vehicle's follow speed (no dawdling)
virtual double getHeadwayTime() const
Get the driver's desired headway [s].
A road/street connecting two junctions.
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
const MSJunction * getToJunction() const
const MSJunction * getFromJunction() const
bool isRoundabout() const
bool isInternal() const
return whether this edge is an internal edge
static double gLateralResolution
static bool gComputeLC
whether the simulationLoop is in the lane changing phase
static bool gLefthand
Whether lefthand-drive is being simulated.
static SUMOTime gIgnoreJunctionBlocker
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
The base class for an intersection.
SumoXMLNodeType getType() const
return the type of this Junction
AnyVehicleIterator is a structure, which manages the iteration through all vehicles on the lane,...
Representation of a lane in the micro simulation.
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
const MSLane * getNormalSuccessorLane() const
get normal lane following this internal lane, for normal lanes, the lane itself is returned
AnyVehicleIterator anyVehiclesEnd() const
end iterator for iterating over all vehicles touching this lane in downstream direction
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
MSLane * getCanonicalPredecessorLane() const
double getLength() const
Returns the lane's length.
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
int getIndex() const
Returns the lane's index.
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
double interpolateGeometryPosToLanePos(double geometryPos) const
AnyVehicleIterator anyVehiclesBegin() const
begin iterator for iterating over all vehicles touching this lane in downstream direction
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
virtual const PositionVector & getShape(bool) const
MSEdge & getEdge() const
Returns the lane's edge.
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
double getWidth() const
Returns the lane's width.
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
bool fromInternalLane() const
return whether the fromLane of this link is an internal lane
void writeApproaching(OutputDevice &od, const std::string fromLaneID) const
write information about all approaching vehicles to the given output device
double getLengthBeforeCrossing(const MSLane *foeLane) const
Returns the internal length from the beginning of the link's internal lane before to the crossing wit...
const MSLane * getInternalLaneBefore() const
return myInternalLaneBefore (always 0 when compiled without internal lanes)
LinkState getState() const
Returns the current state of the link.
void setApproachingPerson(const MSPerson *approaching, const SUMOTime arrivalTime, const SUMOTime leaveTime)
Sets the information about an approaching person (only for a pedestrian crossing)
void checkWalkingAreaFoe(const MSVehicle *ego, const MSLane *foeLane, std::vector< const MSPerson * > *collectBlockers, LinkLeaders &result) const
check for persons on walkingarea in the path of ego vehicle
SUMOTime myMesoTLSPenalty
penalty time at tls for mesoscopic simulation
bool hasApproachingFoe(SUMOTime arrivalTime, SUMOTime leaveTime, double speed, double decel) const
Returns the information whether a vehicle is approaching on one of the link's foe streams.
double myDistToFoePedCrossing
distance from the stop line to the first pedestrian crossing or maxdouble
const bool myAmIndirect
whether this connection is an indirect turning movement
std::vector< MSLink * > mySublaneFoeLinks
double myGreenFraction
green fraction at tls for mesoscopic simulation
static const SUMOTime myLookaheadTime
ApproachInfos myApproachingVehicles
double myFoeVisibilityDistance
distance from which an approaching vehicle is able to see all relevant foes and may accelerate if the...
MSLink * computeParallelLink(int direction)
SVCPermissions myPermissions
who may drive on this link
int myIndex
The position within this respond.
bool myHasFoes
Whether any foe links exist.
const ApproachInfos & getApproaching() const
return all approaching vehicles
void setApproaching(const SUMOVehicle *approaching, const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const bool setRequest, const double arrivalSpeedBraking, const SUMOTime waitingTime, double dist, double latOffset)
Sets the information about an approaching vehicle.
const MSLane * myInternalLaneBefore
LinkState myState
The state of the link.
bool lastWasContState(LinkState linkState) const
whether this is a link past an internal junction where the entry to the junction currently has the gi...
void initParallelLinks()
initialize parallel links (to be called after all links are loaded)
void setTLState(LinkState state, SUMOTime t)
Sets the current tl-state.
static const SUMOTime myLookaheadTimeZipper
void removeApproachingPerson(const MSPerson *person)
removes the person from myApproachingPersons
const ApproachingVehicleInformation * getApproachingPtr(const SUMOVehicle *veh) const
MSLane * getLane() const
Returns the connected lane.
bool opened(SUMOTime arrivalTime, double arrivalSpeed, double leaveSpeed, double vehicleLength, double impatience, double decel, SUMOTime waitingTime, double posLat=0, BlockingFoes *collectFoes=nullptr, bool ignoreRed=false, const SUMOTrafficObject *ego=nullptr, double dist=-1) const
Returns the information whether the link may be passed.
std::vector< MSLink * > * myOffFoeLinks
bool isConflictEntryLink() const
return whether this link enters the conflict area (not a continuation link)
double myRadius
the turning radius for this link or doublemax for straight links
int getIndex() const
Returns the respond index (for visualization)
bool havePriority() const
Returns whether this link is a major link.
double myLength
The length of the link.
bool blockedByFoe(const SUMOVehicle *veh, const ApproachingVehicleInformation &avi, SUMOTime arrivalTime, SUMOTime leaveTime, double arrivalSpeed, double leaveSpeed, bool sameTargetLane, double impatience, double decel, SUMOTime waitingTime, const SUMOTrafficObject *ego) const
const LinkState myOffState
The state of the link when switching of traffic light control.
const LinkLeaders getLeaderInfo(const MSVehicle *ego, double dist, std::vector< const MSPerson * > *collectBlockers=0, bool isShadowLink=false) const
Returns all potential link leaders (vehicles on foeLanes) Valid during the planMove() phase.
static bool ignoreFoe(const SUMOTrafficObject *ego, const SUMOTrafficObject *foe)
std::map< const MSPerson *, ApproachingPersonInformation > PersonApproachInfos
bool isEntryLink() const
return whether the toLane of this link is an internal lane and fromLane is a normal lane
const MSLane * getLaneBefore() const
return the internalLaneBefore if it exists and the laneBefore otherwise
ApproachingVehicleInformation getApproaching(const SUMOVehicle *veh) const
const MSTrafficLightLogic * myLogic
the controlling logic or 0
@ CONFLICT_NO_INTERSECTION
@ CONFLICT_SIBLING_CONTINUATION
@ CONFLICT_STOP_AT_INTERNAL_JUNCTION
static bool lateralOverlap(double posLat, double width, double posLat2, double width2)
check whether the given vehicle positions overlap laterally
std::vector< MSLink * > myFoeLinks
bool isInternalJunctionLink() const
return whether the fromLane and the toLane of this link are internal lanes
double computeDistToDivergence(const MSLane *lane, const MSLane *sibling, double minDist, bool sameSource, double siblingPredLength=0) const
compute point of divergence for geomatries with a common start or end
bool isExitLink() const
return whether the fromLane of this link is an internal lane and toLane is a normal lane
std::vector< const MSLane * > myFoeLanes
std::vector< LinkLeader > LinkLeaders
static std::set< std::pair< MSLink *, MSLink * > > myRecheck
links that need post processing after initialization (to deal with legacy networks)
void clearState()
Remove all approaching vehicles before quick-loading state.
MSLane * myLane
The lane behind the junction approached by this link.
static const double NO_INTERSECTION
LinkState getOffState() const
Returns the off-state for the link.
bool isInFront(const MSVehicle *ego, const PositionVector &egoPath, const Position &pPos) const
whether the given person is in front of the car
MSLane * getViaLane() const
Returns the following inner lane.
const int myTLIndex
the traffic light index
double getInternalLengthsAfter() const
Returns the cumulative length of all internal lanes after this link.
std::string getDescription() const
get string description for this link
static void recheckSetRequestInformation()
post-processing for legacy networks
bool hasFoes() const
Returns whether this link belongs to a junction where more than one edge is incoming.
bool blockedAtTime(SUMOTime arrivalTime, SUMOTime leaveTime, double arrivalSpeed, double leaveSpeed, bool sameTargetLane, double impatience, double decel, SUMOTime waitingTime, BlockingFoes *collectFoes=nullptr, const SUMOTrafficObject *ego=nullptr, bool lastWasContRed=false, double dist=-1) const
Returns the information whether this link is blocked Valid after the vehicles have set their requests...
LinkState myLastGreenState
The last green state of the link (minor or major)
static SUMOTime computeFoeArrivalTimeBraking(SUMOTime arrivalTime, const SUMOVehicle *foe, SUMOTime foeArrivalTime, double impatience, double dist, double &fasb)
compute arrival time if foe vehicle is braking for ego
double isOnComingPed(const MSVehicle *ego, const MSPerson *p) const
whether the given person is walking towards the car returned as a factor in [0, 1]
std::pair< const SUMOVehicle *const, const ApproachingVehicleInformation > getClosest() const
get the closest vehicle approaching this link
void updateDistToFoePedCrossing(double dist)
add information about another pedestrian crossing
MSJunction * myJunction
the junction to which this link belongs
const MSLink * getCorrespondingEntryLink() const
returns the corresponding entry link for exitLinks to a junction.
void setRequestInformation(int index, bool hasFoes, bool isCont, const std::vector< MSLink * > &foeLinks, const std::vector< MSLane * > &foeLanes, MSLane *internalLaneBefore=0)
Sets the request information.
void removeApproaching(const SUMOVehicle *veh)
removes the vehicle from myApproachingVehicles
bool contIntersect(const MSLane *lane, const MSLane *foe)
check if the lane intersects with a foe cont-lane
bool isExitLinkAfterInternalJunction() const
return whether the fromLane of this link is an internal lane and its incoming lane is also an interna...
LinkState getLastGreenState() const
Returns the last green state of the link.
std::pair< const SUMOVehicle *, const MSLink * > getFirstApproachingFoe(const MSLink *wrapAround) const
get the foe vehicle that is closest to the intersection or nullptr along with the foe link This funct...
std::vector< MSLink * > mySublaneFoeLinks2
MSLink * getParallelLink(int direction) const
return the link that is parallel to this lane or 0
MSLane * getViaLaneOrLane() const
return the via lane if it exists and the lane otherwise
void addCustomConflict(const MSLane *from, const MSLane *to, double startPos, double endPos)
const CustomConflict * getCustomConflict(const MSLane *foeLane) const
return CustomConflict with foeLane if it is defined
MSLane *const myInternalLane
The following junction-internal lane if used.
std::vector< const SUMOTrafficObject * > BlockingFoes
double myLateralShift
lateral shift to be applied when passing this link
std::vector< ConflictInfo > myConflicts
double getInternalLengthsBefore() const
Returns the cumulative length of all internal lanes before this link.
const MSLane * myWalkingAreaFoe
walkingArea that must be checked when entering the intersection
static bool couldBrakeForLeader(double followDist, double leaderDist, const MSVehicle *follow, const MSVehicle *leader)
whether follower could stay behind leader (possibly by braking)
std::vector< CustomConflict > myCustomConflicts
Position getFuturePosition(const MSPerson *p, double timeHorizon=1) const
return extrapolated position of the given person after the given time
const MSLane * myWalkingAreaFoeExit
walkingArea that must be checked when leaving the intersection
MSLane * myLaneBefore
The lane approaching this link.
@ LL_SAME_SOURCE
link leader is coming from the same (normal) lane
@ LL_SAME_TARGET
link leader is targeting the same outgoing lane
@ LL_IN_THE_WAY
vehicle is in the way
@ LL_FROM_LEFT
link leader is passing from left to right
SVCPermissions getPermissions() const
who may use this link
bool lastWasContMajor() const
whether this is a link past an internal junction which currently has priority
double getLengthsBeforeCrossing(const MSLane *foeLane) const
Returns the sum of the lengths along internal lanes following this link to the crossing with the give...
bool myHavePedestrianCrossingFoe
whether on of myFoeLanes is a crossing
SUMOTime myLastStateChange
The time of the last state change.
PersonApproachInfos * myApproachingPersons
LinkDirection myDirection
An abstract (hopefully human readable) definition of the link's direction.
const MSTrafficLightLogic * getTLLogic() const
Returns the TLS index.
bool checkContOff() const
figure out whether the cont status remains in effect when switching off the tls
const MSLink * getCorrespondingExitLink() const
returns the corresponding exit link for entryLinks to a junction.
static bool unsafeMergeSpeeds(double leaderSpeed, double followerSpeed, double leaderDecel, double followerDecel)
return whether the given vehicles may NOT merge safely
SUMOTime getLeaveTime(const SUMOTime arrivalTime, const double arrivalSpeed, const double leaveSpeed, const double vehicleLength) const
return the expected time at which the given vehicle will clear the link
double getZipperSpeed(const MSVehicle *ego, const double dist, double vSafe, SUMOTime arrivalTime, const BlockingFoes *foes) const
return the speed at which ego vehicle must approach the zipper link
MSLink * getOppositeDirectionLink() const
return the link that is the opposite entry link to this one
MSLink(MSLane *predLane, MSLane *succLane, MSLane *via, LinkDirection dir, LinkState state, double length, double foeVisibilityDistance, bool keepClear, MSTrafficLightLogic *logic, int tlLinkIdx, bool indirect)
Constructor for simulation which uses internal lanes.
std::vector< MSLane * > mySublaneFoeLanes
LinkDirection getDirection() const
Returns the direction the vehicle passing this link take.
bool keepClear() const
whether the junction after this link must be kept clear
bool haveRed() const
Returns whether this link is blocked by a red (or redyellow) traffic light.
double getLength() const
Returns the length of this link.
void setTLLogic(const MSTrafficLightLogic *logic)
Sets the currently active tlLogic.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
bool hasPersons() const
Returns whether persons are simulated.
virtual MSTransportableControl & getPersonControl()
Returns the person control.
virtual bool blockedAtDist(const SUMOTrafficObject *ego, const MSLane *lane, double vehCenter, double vehWidth, double oncomingGap, std::vector< const MSPerson * > *collectBlockers)
whether a pedestrian is blocking the crossing of lane for the given vehicle bondaries
static const double SAFETY_GAP
The parent class for traffic light logics.
MSPModel * getMovementModel()
Returns the default movement model for this kind of transportables.
virtual double getAngle() const
return the current angle of the transportable
Position getPosition(const double) const
Return current position (x/y, cartesian)
const MSVehicleType & getVehicleType() const
Returns the object's "vehicle" type.
double getMaxSpeed() const
Returns the maximum speed (the minimum of desired and physical maximum speed)
Representation of a vehicle in the micro simulation.
bool willStop() const
Returns whether the vehicle will stop on the current edge.
SUMOTime getLastActionTime() const
Returns the time of the vehicle's last action point.
bool isActive() const
Returns whether the current simulation step is an action point for the vehicle.
SUMOTime getWaitingTime(const bool accumulated=false) const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
MSAbstractLaneChangeModel & getLaneChangeModel()
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
const MSLane * getLane() const
Returns the lane the vehicle is on.
bool isBidiOn(const MSLane *lane) const
whether this vehicle is driving against lane
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
double getSpeed() const
Returns the vehicle's current speed.
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
bool ignoreRed(const MSLink *link, bool canBrake) const
decide whether a red (or yellow light) may be ignored
double getAngle() const
Returns the vehicle's direction in radians.
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
const std::string & getID() const
Returns the name of the vehicle type.
double getMinGap() const
Get the free space in front of vehicles of this class.
const MSCFModel & getCarFollowModel() const
Returns the vehicle type's car following model definition (const version)
double getLength() const
Get vehicle's length [m].
const SUMOVTypeParameter & getParameter() const
const std::string & getID() const
Returns the id.
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
OutputDevice & openTag(const std::string &xmlElement)
Opens an XML tag.
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
A point in 2D or 3D with translation and scaling methods.
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position (in radians bet...
double length2D() const
Returns the length.
double rotationAtOffset(double pos) const
Returns the rotation at the given length.
std::vector< double > intersectsAtLengths2D(const PositionVector &other) const
For all intersections between this vector and other, return the 2D-length of the subvector from this ...
double distance2D(const Position &p, bool perpendicular=false) const
closest 2D-distance to point p (or -1 if perpendicular is true and the point is beyond this vector)
std::vector< double > distances(const PositionVector &s, bool perpendicular=false) const
distances of all my points to s and all of s points to myself
void move2side(double amount, double maxExtension=100)
move position vector to side using certain amount
double angleAt2D(int pos) const
get angle in certain position of position vector (in radians between -M_PI and M_PI)
PositionVector reverse() const
reverse position vector
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
Representation of a vehicle, person, or container.
virtual const MSVehicleType & getVehicleType() const =0
Returns the object's "vehicle" type.
virtual double getSpeed() const =0
Returns the object's current speed.
virtual const SUMOVehicleParameter & getParameter() const =0
Returns the vehicle's parameter (including departure definition)
virtual SumoRNG * getRNG() const =0
Returns the associated RNG for this object.
virtual bool isSelected() const =0
whether this object is selected in the GUI
double getJMParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
Representation of a vehicle.
virtual double getLateralPositionOnLane() const =0
Get the vehicle's lateral position on the lane.
virtual SUMOTime getLastActionTime() const =0
virtual double getBrakeGap(bool delayed=false) const =0
get distance for coming to a stop (used for rerouting checks)
Structure representing possible vehicle parameter.
bool wasSet(long long int what) const
Returns whether the given parameter was set.
std::vector< std::string > getVector()
return vector of strings
pre-computed information for conflict points
double getLengthBehindCrossing(const MSLink *exitLink) const
double getFoeConflictSize(const MSLink *foeExitLink) const
int foeConflictIndex
the conflict from the perspective of the foe
double conflictSize
the length of the conflict space
double getFoeLengthBehindCrossing(const MSLink *foeExitLink) const
double lengthBehindCrossing
length of internal lane after the crossing point
holds user defined conflict positions (must be interpreted for the correct exitLink)