Eclipse SUMO - Simulation of Urban MObility
Loading...
Searching...
No Matches
MSVehicle.cpp
Go to the documentation of this file.
1/****************************************************************************/
2// Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.dev/sumo
3// Copyright (C) 2001-2025 German Aerospace Center (DLR) and others.
4// This program and the accompanying materials are made available under the
5// terms of the Eclipse Public License 2.0 which is available at
6// https://www.eclipse.org/legal/epl-2.0/
7// This Source Code may also be made available under the following Secondary
8// Licenses when the conditions for such availability set forth in the Eclipse
9// Public License 2.0 are satisfied: GNU General Public License, version 2
10// or later which is available at
11// https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
12// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
13/****************************************************************************/
31// Representation of a vehicle in the micro simulation
32/****************************************************************************/
33#include <config.h>
34
35#include <iostream>
36#include <cassert>
37#include <cmath>
38#include <cstdlib>
39#include <algorithm>
40#include <map>
41#include <memory>
71#include "MSEdgeControl.h"
72#include "MSVehicleControl.h"
73#include "MSInsertionControl.h"
74#include "MSVehicleTransfer.h"
75#include "MSGlobals.h"
76#include "MSJunctionLogic.h"
77#include "MSStop.h"
78#include "MSStoppingPlace.h"
79#include "MSParkingArea.h"
80#include "MSMoveReminder.h"
81#include "MSLane.h"
82#include "MSJunction.h"
83#include "MSEdge.h"
84#include "MSVehicleType.h"
85#include "MSNet.h"
86#include "MSRoute.h"
87#include "MSLeaderInfo.h"
88#include "MSDriverState.h"
89#include "MSVehicle.h"
90
91
92//#define DEBUG_PLAN_MOVE
93//#define DEBUG_PLAN_MOVE_LEADERINFO
94//#define DEBUG_CHECKREWINDLINKLANES
95//#define DEBUG_EXEC_MOVE
96//#define DEBUG_FURTHER
97//#define DEBUG_SETFURTHER
98//#define DEBUG_TARGET_LANE
99//#define DEBUG_STOPS
100//#define DEBUG_BESTLANES
101//#define DEBUG_IGNORE_RED
102//#define DEBUG_ACTIONSTEPS
103//#define DEBUG_NEXT_TURN
104//#define DEBUG_TRACI
105//#define DEBUG_REVERSE_BIDI
106//#define DEBUG_EXTRAPOLATE_DEPARTPOS
107//#define DEBUG_REMOTECONTROL
108//#define DEBUG_MOVEREMINDERS
109//#define DEBUG_COND (getID() == "ego")
110//#define DEBUG_COND (true)
111#define DEBUG_COND (isSelected())
112//#define DEBUG_COND2(obj) (obj->getID() == "ego")
113#define DEBUG_COND2(obj) (obj->isSelected())
114
115//#define PARALLEL_STOPWATCH
116
117
118#define STOPPING_PLACE_OFFSET 0.5
119
120#define CRLL_LOOK_AHEAD 5
121
122#define JUNCTION_BLOCKAGE_TIME 5 // s
123
124// @todo Calibrate with real-world values / make configurable
125#define DIST_TO_STOPLINE_EXPECT_PRIORITY 1.0
126
127#define NUMERICAL_EPS_SPEED (0.1 * NUMERICAL_EPS * TS)
128
129// ===========================================================================
130// static value definitions
131// ===========================================================================
132std::vector<MSLane*> MSVehicle::myEmptyLaneVector;
133
134
135// ===========================================================================
136// method definitions
137// ===========================================================================
138/* -------------------------------------------------------------------------
139 * methods of MSVehicle::State
140 * ----------------------------------------------------------------------- */
142 myPos = state.myPos;
143 mySpeed = state.mySpeed;
144 myPosLat = state.myPosLat;
145 myBackPos = state.myBackPos;
148}
149
150
153 myPos = state.myPos;
154 mySpeed = state.mySpeed;
155 myPosLat = state.myPosLat;
156 myBackPos = state.myBackPos;
157 myPreviousSpeed = state.myPreviousSpeed;
158 myLastCoveredDist = state.myLastCoveredDist;
159 return *this;
160}
161
162
163bool
165 return (myPos != state.myPos ||
166 mySpeed != state.mySpeed ||
167 myPosLat != state.myPosLat ||
168 myLastCoveredDist != state.myLastCoveredDist ||
169 myPreviousSpeed != state.myPreviousSpeed ||
170 myBackPos != state.myBackPos);
171}
172
173
174MSVehicle::State::State(double pos, double speed, double posLat, double backPos, double previousSpeed) :
175 myPos(pos), mySpeed(speed), myPosLat(posLat), myBackPos(backPos), myPreviousSpeed(previousSpeed), myLastCoveredDist(SPEED2DIST(speed)) {}
176
177
178
179/* -------------------------------------------------------------------------
180 * methods of MSVehicle::WaitingTimeCollector
181 * ----------------------------------------------------------------------- */
183
184
187 assert(memorySpan <= myMemorySize);
188 if (memorySpan == -1) {
189 memorySpan = myMemorySize;
190 }
191 SUMOTime totalWaitingTime = 0;
192 for (const auto& interval : myWaitingIntervals) {
193 if (interval.second >= memorySpan) {
194 if (interval.first >= memorySpan) {
195 break;
196 } else {
197 totalWaitingTime += memorySpan - interval.first;
198 }
199 } else {
200 totalWaitingTime += interval.second - interval.first;
201 }
202 }
203 return totalWaitingTime;
204}
205
206
207void
209 auto i = myWaitingIntervals.begin();
210 const auto end = myWaitingIntervals.end();
211 const bool startNewInterval = i == end || (i->first != 0);
212 while (i != end) {
213 i->first += dt;
214 if (i->first >= myMemorySize) {
215 break;
216 }
217 i->second += dt;
218 i++;
219 }
220
221 // remove intervals beyond memorySize
222 auto d = std::distance(i, end);
223 while (d > 0) {
224 myWaitingIntervals.pop_back();
225 d--;
226 }
227
228 if (!waiting) {
229 return;
230 } else if (!startNewInterval) {
231 myWaitingIntervals.begin()->first = 0;
232 } else {
233 myWaitingIntervals.push_front(std::make_pair(0, dt));
234 }
235 return;
236}
237
238
239const std::string
241 std::ostringstream state;
242 state << myMemorySize << " " << myWaitingIntervals.size();
243 for (const auto& interval : myWaitingIntervals) {
244 state << " " << interval.first << " " << interval.second;
245 }
246 return state.str();
247}
248
249
250void
252 std::istringstream is(state);
253 int numIntervals;
254 SUMOTime begin, end;
255 is >> myMemorySize >> numIntervals;
256 while (numIntervals-- > 0) {
257 is >> begin >> end;
258 myWaitingIntervals.emplace_back(begin, end);
259 }
260}
261
262
263/* -------------------------------------------------------------------------
264 * methods of MSVehicle::Influencer::GapControlState
265 * ----------------------------------------------------------------------- */
266void
268// std::cout << "GapControlVehStateListener::vehicleStateChanged() vehicle=" << vehicle->getID() << ", to=" << to << std::endl;
269 switch (to) {
273 // Vehicle left road
274// Look up reference vehicle in refVehMap and in case deactivate corresponding gap control
275 const MSVehicle* msVeh = static_cast<const MSVehicle*>(vehicle);
276// std::cout << "GapControlVehStateListener::vehicleStateChanged() vehicle=" << vehicle->getID() << " left the road." << std::endl;
277 if (GapControlState::refVehMap.find(msVeh) != end(GapControlState::refVehMap)) {
278// std::cout << "GapControlVehStateListener::deactivating ref vehicle=" << vehicle->getID() << std::endl;
279 GapControlState::refVehMap[msVeh]->deactivate();
280 }
281 }
282 break;
283 default:
284 {};
285 // do nothing, vehicle still on road
286 }
287}
288
289std::map<const MSVehicle*, MSVehicle::Influencer::GapControlState*>
291
293
295 tauOriginal(-1), tauCurrent(-1), tauTarget(-1), addGapCurrent(-1), addGapTarget(-1),
296 remainingDuration(-1), changeRate(-1), maxDecel(-1), referenceVeh(nullptr), active(false), gapAttained(false), prevLeader(nullptr),
297 lastUpdate(-1), timeHeadwayIncrement(0.0), spaceHeadwayIncrement(0.0) {}
298
299
303
304void
306 if (MSNet::hasInstance()) {
307 if (myVehStateListener == nullptr) {
308 //std::cout << "GapControlState::init()" << std::endl;
309 myVehStateListener = new GapControlVehStateListener();
310 MSNet::getInstance()->addVehicleStateListener(myVehStateListener);
311 }
312 } else {
313 WRITE_ERROR("MSVehicle::Influencer::GapControlState::init(): No MSNet instance found!")
314 }
315}
316
317void
319 if (myVehStateListener != nullptr) {
320 MSNet::getInstance()->removeVehicleStateListener(myVehStateListener);
321 delete myVehStateListener;
322 myVehStateListener = nullptr;
323 }
324}
325
326void
327MSVehicle::Influencer::GapControlState::activate(double tauOrig, double tauNew, double additionalGap, double dur, double rate, double decel, const MSVehicle* refVeh) {
329 WRITE_ERROR(TL("No gap control available for meso."))
330 } else {
331 // always deactivate control before activating (triggers clean-up of refVehMap)
332// std::cout << "activate gap control with refVeh=" << (refVeh==nullptr? "NULL" : refVeh->getID()) << std::endl;
333 tauOriginal = tauOrig;
334 tauCurrent = tauOrig;
335 tauTarget = tauNew;
336 addGapCurrent = 0.0;
337 addGapTarget = additionalGap;
338 remainingDuration = dur;
339 changeRate = rate;
340 maxDecel = decel;
341 referenceVeh = refVeh;
342 active = true;
343 gapAttained = false;
344 prevLeader = nullptr;
345 lastUpdate = SIMSTEP - DELTA_T;
346 timeHeadwayIncrement = changeRate * TS * (tauTarget - tauOriginal);
347 spaceHeadwayIncrement = changeRate * TS * addGapTarget;
348
349 if (referenceVeh != nullptr) {
350 // Add refVeh to refVehMap
351 GapControlState::refVehMap[referenceVeh] = this;
352 }
353 }
354}
355
356void
358 active = false;
359 if (referenceVeh != nullptr) {
360 // Remove corresponding refVehMapEntry if appropriate
361 GapControlState::refVehMap.erase(referenceVeh);
362 referenceVeh = nullptr;
363 }
364}
365
366
367/* -------------------------------------------------------------------------
368 * methods of MSVehicle::Influencer
369 * ----------------------------------------------------------------------- */
391
392
394
395void
397 GapControlState::init();
398}
399
400void
402 GapControlState::cleanup();
403}
404
405void
406MSVehicle::Influencer::setSpeedTimeLine(const std::vector<std::pair<SUMOTime, double> >& speedTimeLine) {
407 mySpeedAdaptationStarted = true;
408 mySpeedTimeLine = speedTimeLine;
409}
410
411void
412MSVehicle::Influencer::activateGapController(double originalTau, double newTimeHeadway, double newSpaceHeadway, double duration, double changeRate, double maxDecel, MSVehicle* refVeh) {
413 if (myGapControlState == nullptr) {
414 myGapControlState = std::make_shared<GapControlState>();
415 init(); // only does things on first call
416 }
417 myGapControlState->activate(originalTau, newTimeHeadway, newSpaceHeadway, duration, changeRate, maxDecel, refVeh);
418}
419
420void
422 if (myGapControlState != nullptr && myGapControlState->active) {
423 myGapControlState->deactivate();
424 }
425}
426
427void
428MSVehicle::Influencer::setLaneTimeLine(const std::vector<std::pair<SUMOTime, int> >& laneTimeLine) {
429 myLaneTimeLine = laneTimeLine;
430}
431
432
433void
435 for (auto& item : myLaneTimeLine) {
436 item.second += indexShift;
437 }
438}
439
440
441void
443 myLatDist = latDist;
444}
445
446int
448 return (1 * myConsiderSafeVelocity +
449 2 * myConsiderMaxAcceleration +
450 4 * myConsiderMaxDeceleration +
451 8 * myRespectJunctionPriority +
452 16 * myEmergencyBrakeRedLight +
453 32 * !myRespectJunctionLeaderPriority + // inverted!
454 64 * !myConsiderSpeedLimit // inverted!
455 );
456}
457
458
459int
461 return (1 * myStrategicLC +
462 4 * myCooperativeLC +
463 16 * mySpeedGainLC +
464 64 * myRightDriveLC +
465 256 * myTraciLaneChangePriority +
466 1024 * mySublaneLC);
467}
468
471 SUMOTime duration = -1;
472 for (std::vector<std::pair<SUMOTime, int>>::iterator i = myLaneTimeLine.begin(); i != myLaneTimeLine.end(); ++i) {
473 if (duration < 0) {
474 duration = i->first;
475 } else {
476 duration -= i->first;
477 }
478 }
479 return -duration;
480}
481
484 if (!myLaneTimeLine.empty()) {
485 return myLaneTimeLine.back().first;
486 } else {
487 return -1;
488 }
489}
490
491
492double
493MSVehicle::Influencer::influenceSpeed(SUMOTime currentTime, double speed, double vSafe, double vMin, double vMax) {
494 // remove leading commands which are no longer valid
495 while (mySpeedTimeLine.size() == 1 || (mySpeedTimeLine.size() > 1 && currentTime > mySpeedTimeLine[1].first)) {
496 mySpeedTimeLine.erase(mySpeedTimeLine.begin());
497 }
498
499 if (!(mySpeedTimeLine.size() < 2 || currentTime < mySpeedTimeLine[0].first)) {
500 // Speed advice is active -> compute new speed according to speedTimeLine
501 if (!mySpeedAdaptationStarted) {
502 mySpeedTimeLine[0].second = speed;
503 mySpeedAdaptationStarted = true;
504 }
505 currentTime += DELTA_T; // start slowing down in the step in which this command was issued (the input value of currentTime still reflects the previous step)
506 const double td = MIN2(1.0, STEPS2TIME(currentTime - mySpeedTimeLine[0].first) / MAX2(TS, STEPS2TIME(mySpeedTimeLine[1].first - mySpeedTimeLine[0].first)));
507
508 speed = mySpeedTimeLine[0].second - (mySpeedTimeLine[0].second - mySpeedTimeLine[1].second) * td;
509 if (myConsiderSafeVelocity) {
510 speed = MIN2(speed, vSafe);
511 }
512 if (myConsiderMaxAcceleration) {
513 speed = MIN2(speed, vMax);
514 }
515 if (myConsiderMaxDeceleration) {
516 speed = MAX2(speed, vMin);
517 }
518 }
519 return speed;
520}
521
522double
523MSVehicle::Influencer::gapControlSpeed(SUMOTime currentTime, const SUMOVehicle* veh, double speed, double vSafe, double vMin, double vMax) {
524#ifdef DEBUG_TRACI
525 if DEBUG_COND2(veh) {
526 std::cout << currentTime << " Influencer::gapControlSpeed(): speed=" << speed
527 << ", vSafe=" << vSafe
528 << ", vMin=" << vMin
529 << ", vMax=" << vMax
530 << std::endl;
531 }
532#endif
533 double gapControlSpeed = speed;
534 if (myGapControlState != nullptr && myGapControlState->active) {
535 // Determine leader and the speed that would be chosen by the gap controller
536 const double currentSpeed = veh->getSpeed();
537 const MSVehicle* msVeh = dynamic_cast<const MSVehicle*>(veh);
538 assert(msVeh != nullptr);
539 const double desiredTargetTimeSpacing = myGapControlState->tauTarget * currentSpeed;
540 std::pair<const MSVehicle*, double> leaderInfo;
541 if (myGapControlState->referenceVeh == nullptr) {
542 // No reference vehicle specified -> use current leader as reference
543 const double brakeGap = msVeh->getBrakeGap(true);
544 leaderInfo = msVeh->getLeader(MAX2(desiredTargetTimeSpacing, myGapControlState->addGapCurrent) + MAX2(brakeGap, 20.0));
545#ifdef DEBUG_TRACI
546 if DEBUG_COND2(veh) {
547 std::cout << " --- no refVeh; myGapControlState->addGapCurrent: " << myGapControlState->addGapCurrent << ", brakeGap: " << brakeGap << " in simstep: " << SIMSTEP << std::endl;
548 }
549#endif
550 } else {
551 // Control gap wrt reference vehicle
552 const MSVehicle* leader = myGapControlState->referenceVeh;
553 double dist = msVeh->getDistanceToPosition(leader->getPositionOnLane(), leader->getLane()) - leader->getLength();
554 if (dist > 100000) {
555 // Reference vehicle was not found downstream the ego's route
556 // Maybe, it is behind the ego vehicle
557 dist = - leader->getDistanceToPosition(msVeh->getPositionOnLane(), msVeh->getLane()) - leader->getLength();
558#ifdef DEBUG_TRACI
559 if DEBUG_COND2(veh) {
560 if (dist < -100000) {
561 // also the ego vehicle is not ahead of the reference vehicle -> no CF-relation
562 std::cout << " Ego and reference vehicle are not in CF relation..." << std::endl;
563 } else {
564 std::cout << " Reference vehicle is behind ego..." << std::endl;
565 }
566 }
567#endif
568 }
569 leaderInfo = std::make_pair(leader, dist - msVeh->getVehicleType().getMinGap());
570 }
571 const double fakeDist = MAX2(0.0, leaderInfo.second - myGapControlState->addGapCurrent);
572#ifdef DEBUG_TRACI
573 if DEBUG_COND2(veh) {
574 const double desiredCurrentSpacing = myGapControlState->tauCurrent * currentSpeed;
575 std::cout << " Gap control active:"
576 << " currentSpeed=" << currentSpeed
577 << ", desiredTargetTimeSpacing=" << desiredTargetTimeSpacing
578 << ", desiredCurrentSpacing=" << desiredCurrentSpacing
579 << ", leader=" << (leaderInfo.first == nullptr ? "NULL" : leaderInfo.first->getID())
580 << ", dist=" << leaderInfo.second
581 << ", fakeDist=" << fakeDist
582 << ",\n tauOriginal=" << myGapControlState->tauOriginal
583 << ", tauTarget=" << myGapControlState->tauTarget
584 << ", tauCurrent=" << myGapControlState->tauCurrent
585 << std::endl;
586 }
587#endif
588 if (leaderInfo.first != nullptr) {
589 if (myGapControlState->prevLeader != nullptr && myGapControlState->prevLeader != leaderInfo.first) {
590 // TODO: The leader changed. What to do?
591 }
592 // Remember leader
593 myGapControlState->prevLeader = leaderInfo.first;
594
595 // Calculate desired following speed assuming the alternative headway time
596 MSCFModel* cfm = (MSCFModel*) & (msVeh->getVehicleType().getCarFollowModel());
597 const double origTau = cfm->getHeadwayTime();
598 cfm->setHeadwayTime(myGapControlState->tauCurrent);
599 gapControlSpeed = MIN2(gapControlSpeed,
600 cfm->followSpeed(msVeh, currentSpeed, fakeDist, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first));
601 cfm->setHeadwayTime(origTau);
602#ifdef DEBUG_TRACI
603 if DEBUG_COND2(veh) {
604 std::cout << " -> gapControlSpeed=" << gapControlSpeed;
605 if (myGapControlState->maxDecel > 0) {
606 std::cout << ", with maxDecel bound: " << MAX2(gapControlSpeed, currentSpeed - TS * myGapControlState->maxDecel);
607 }
608 std::cout << std::endl;
609 }
610#endif
611 if (myGapControlState->maxDecel > 0) {
612 gapControlSpeed = MAX2(gapControlSpeed, currentSpeed - TS * myGapControlState->maxDecel);
613 }
614 }
615
616 // Update gap controller
617 // Check (1) if the gap control has established the desired gap,
618 // and (2) if it has maintained active for the given duration afterwards
619 if (myGapControlState->lastUpdate < currentTime) {
620#ifdef DEBUG_TRACI
621 if DEBUG_COND2(veh) {
622 std::cout << " Updating GapControlState." << std::endl;
623 }
624#endif
625 if (myGapControlState->tauCurrent == myGapControlState->tauTarget && myGapControlState->addGapCurrent == myGapControlState->addGapTarget) {
626 if (!myGapControlState->gapAttained) {
627 // Check if the desired gap was established (add the POSITION_EPS to avoid infinite asymptotic behavior without having established the gap)
628 myGapControlState->gapAttained = leaderInfo.first == nullptr || leaderInfo.second > MAX2(desiredTargetTimeSpacing, myGapControlState->addGapTarget) - POSITION_EPS;
629#ifdef DEBUG_TRACI
630 if DEBUG_COND2(veh) {
631 if (myGapControlState->gapAttained) {
632 std::cout << " Target gap was established." << std::endl;
633 }
634 }
635#endif
636 } else {
637 // Count down remaining time if desired gap was established
638 myGapControlState->remainingDuration -= TS;
639#ifdef DEBUG_TRACI
640 if DEBUG_COND2(veh) {
641 std::cout << " Gap control remaining duration: " << myGapControlState->remainingDuration << std::endl;
642 }
643#endif
644 if (myGapControlState->remainingDuration <= 0) {
645#ifdef DEBUG_TRACI
646 if DEBUG_COND2(veh) {
647 std::cout << " Gap control duration expired, deactivating control." << std::endl;
648 }
649#endif
650 // switch off gap control
651 myGapControlState->deactivate();
652 }
653 }
654 } else {
655 // Adjust current headway values
656 myGapControlState->tauCurrent = MIN2(myGapControlState->tauCurrent + myGapControlState->timeHeadwayIncrement, myGapControlState->tauTarget);
657 myGapControlState->addGapCurrent = MIN2(myGapControlState->addGapCurrent + myGapControlState->spaceHeadwayIncrement, myGapControlState->addGapTarget);
658 }
659 }
660 if (myConsiderSafeVelocity) {
661 gapControlSpeed = MIN2(gapControlSpeed, vSafe);
662 }
663 if (myConsiderMaxAcceleration) {
664 gapControlSpeed = MIN2(gapControlSpeed, vMax);
665 }
666 if (myConsiderMaxDeceleration) {
667 gapControlSpeed = MAX2(gapControlSpeed, vMin);
668 }
669 return MIN2(speed, gapControlSpeed);
670 } else {
671 return speed;
672 }
673}
674
675double
677 return myOriginalSpeed;
678}
679
680void
682 myOriginalSpeed = speed;
683}
684
685
686int
687MSVehicle::Influencer::influenceChangeDecision(const SUMOTime currentTime, const MSEdge& currentEdge, const int currentLaneIndex, int state) {
688 // remove leading commands which are no longer valid
689 while (myLaneTimeLine.size() == 1 || (myLaneTimeLine.size() > 1 && currentTime > myLaneTimeLine[1].first)) {
690 myLaneTimeLine.erase(myLaneTimeLine.begin());
691 }
692 ChangeRequest changeRequest = REQUEST_NONE;
693 // do nothing if the time line does not apply for the current time
694 if (myLaneTimeLine.size() >= 2 && currentTime >= myLaneTimeLine[0].first) {
695 const int destinationLaneIndex = myLaneTimeLine[1].second;
696 if (destinationLaneIndex < (int)currentEdge.getLanes().size()) {
697 if (currentLaneIndex > destinationLaneIndex) {
698 changeRequest = REQUEST_RIGHT;
699 } else if (currentLaneIndex < destinationLaneIndex) {
700 changeRequest = REQUEST_LEFT;
701 } else {
702 changeRequest = REQUEST_HOLD;
703 }
704 } else if (currentEdge.getLanes().back()->getOpposite() != nullptr) { // change to opposite direction driving
705 changeRequest = REQUEST_LEFT;
706 state = state | LCA_TRACI;
707 }
708 }
709 // check whether the current reason shall be canceled / overridden
710 if ((state & LCA_WANTS_LANECHANGE_OR_STAY) != 0) {
711 // flags for the current reason
713 if ((state & LCA_TRACI) != 0 && myLatDist != 0) {
714 // security checks
715 if ((myTraciLaneChangePriority == LCP_ALWAYS)
716 || (myTraciLaneChangePriority == LCP_NOOVERLAP && (state & LCA_OVERLAPPING) == 0)) {
717 state &= ~(LCA_BLOCKED | LCA_OVERLAPPING);
718 }
719 // continue sublane change manoeuvre
720 return state;
721 } else if ((state & LCA_STRATEGIC) != 0) {
722 mode = myStrategicLC;
723 } else if ((state & LCA_COOPERATIVE) != 0) {
724 mode = myCooperativeLC;
725 } else if ((state & LCA_SPEEDGAIN) != 0) {
726 mode = mySpeedGainLC;
727 } else if ((state & LCA_KEEPRIGHT) != 0) {
728 mode = myRightDriveLC;
729 } else if ((state & LCA_SUBLANE) != 0) {
730 mode = mySublaneLC;
731 } else if ((state & LCA_TRACI) != 0) {
732 mode = LC_NEVER;
733 } else {
734 WRITE_WARNINGF(TL("Lane change model did not provide a reason for changing (state=%, time=%\n"), toString(state), time2string(currentTime));
735 }
736 if (mode == LC_NEVER) {
737 // cancel all lcModel requests
738 state &= ~LCA_WANTS_LANECHANGE_OR_STAY;
739 state &= ~LCA_URGENT;
740 if (changeRequest == REQUEST_NONE) {
741 // also remove all reasons except TRACI
742 state &= ~LCA_CHANGE_REASONS | LCA_TRACI;
743 }
744 } else if (mode == LC_NOCONFLICT && changeRequest != REQUEST_NONE) {
745 if (
746 ((state & LCA_LEFT) != 0 && changeRequest != REQUEST_LEFT) ||
747 ((state & LCA_RIGHT) != 0 && changeRequest != REQUEST_RIGHT) ||
748 ((state & LCA_STAY) != 0 && changeRequest != REQUEST_HOLD)) {
749 // cancel conflicting lcModel request
750 state &= ~LCA_WANTS_LANECHANGE_OR_STAY;
751 state &= ~LCA_URGENT;
752 }
753 } else if (mode == LC_ALWAYS) {
754 // ignore any TraCI requests
755 return state;
756 }
757 }
758 // apply traci requests
759 if (changeRequest == REQUEST_NONE) {
760 return state;
761 } else {
762 state |= LCA_TRACI;
763 // security checks
764 if ((myTraciLaneChangePriority == LCP_ALWAYS)
765 || (myTraciLaneChangePriority == LCP_NOOVERLAP && (state & LCA_OVERLAPPING) == 0)) {
766 state &= ~(LCA_BLOCKED | LCA_OVERLAPPING);
767 }
768 if (changeRequest != REQUEST_HOLD && myTraciLaneChangePriority != LCP_OPPORTUNISTIC) {
769 state |= LCA_URGENT;
770 }
771 switch (changeRequest) {
772 case REQUEST_HOLD:
773 return state | LCA_STAY;
774 case REQUEST_LEFT:
775 return state | LCA_LEFT;
776 case REQUEST_RIGHT:
777 return state | LCA_RIGHT;
778 default:
779 throw ProcessError(TL("should not happen"));
780 }
781 }
782}
783
784
785double
787 assert(myLaneTimeLine.size() >= 2);
788 assert(currentTime >= myLaneTimeLine[0].first);
789 return STEPS2TIME(myLaneTimeLine[1].first - currentTime);
790}
791
792
793void
795 myConsiderSafeVelocity = ((speedMode & 1) != 0);
796 myConsiderMaxAcceleration = ((speedMode & 2) != 0);
797 myConsiderMaxDeceleration = ((speedMode & 4) != 0);
798 myRespectJunctionPriority = ((speedMode & 8) != 0);
799 myEmergencyBrakeRedLight = ((speedMode & 16) != 0);
800 myRespectJunctionLeaderPriority = ((speedMode & 32) == 0); // inverted!
801 myConsiderSpeedLimit = ((speedMode & 64) == 0); // inverted!
802}
803
804
805void
807 myStrategicLC = (LaneChangeMode)(value & (1 + 2));
808 myCooperativeLC = (LaneChangeMode)((value & (4 + 8)) >> 2);
809 mySpeedGainLC = (LaneChangeMode)((value & (16 + 32)) >> 4);
810 myRightDriveLC = (LaneChangeMode)((value & (64 + 128)) >> 6);
811 myTraciLaneChangePriority = (TraciLaneChangePriority)((value & (256 + 512)) >> 8);
812 mySublaneLC = (LaneChangeMode)((value & (1024 + 2048)) >> 10);
813}
814
815
816void
817MSVehicle::Influencer::setRemoteControlled(Position xyPos, MSLane* l, double pos, double posLat, double angle, int edgeOffset, const ConstMSEdgeVector& route, SUMOTime t) {
818 myRemoteXYPos = xyPos;
819 myRemoteLane = l;
820 myRemotePos = pos;
821 myRemotePosLat = posLat;
822 myRemoteAngle = angle;
823 myRemoteEdgeOffset = edgeOffset;
824 myRemoteRoute = route;
825 myLastRemoteAccess = t;
826}
827
828
829bool
831 return myLastRemoteAccess == MSNet::getInstance()->getCurrentTimeStep();
832}
833
834
835bool
837 return myLastRemoteAccess >= t - TIME2STEPS(10);
838}
839
840
841void
843 if (myRemoteRoute.size() != 0 && myRemoteRoute != v->getRoute().getEdges()) {
844 // only replace route at this time if the vehicle is moving with the flow
845 const bool isForward = v->getLane() != 0 && &v->getLane()->getEdge() == myRemoteRoute[0];
846#ifdef DEBUG_REMOTECONTROL
847 std::cout << SIMSTEP << " updateRemoteControlRoute veh=" << v->getID() << " old=" << toString(v->getRoute().getEdges()) << " new=" << toString(myRemoteRoute) << " fwd=" << isForward << "\n";
848#endif
849 if (isForward) {
850 v->replaceRouteEdges(myRemoteRoute, -1, 0, "traci:moveToXY", true);
851 v->updateBestLanes();
852 }
853 }
854}
855
856
857void
859 const bool wasOnRoad = v->isOnRoad();
860 const bool withinLane = myRemoteLane != nullptr && fabs(myRemotePosLat) < 0.5 * (myRemoteLane->getWidth() + v->getVehicleType().getWidth());
861 const bool keepLane = wasOnRoad && v->getLane() == myRemoteLane;
862 if (v->isOnRoad() && !(keepLane && withinLane)) {
863 if (myRemoteLane != nullptr && &v->getLane()->getEdge() == &myRemoteLane->getEdge()) {
864 // correct odometer which gets incremented via onRemovalFromNet->leaveLane
865 v->myOdometer -= v->getLane()->getLength();
866 }
869 }
870 if (myRemoteRoute.size() != 0 && myRemoteRoute != v->getRoute().getEdges()) {
871 // needed for the insertion step
872#ifdef DEBUG_REMOTECONTROL
873 std::cout << SIMSTEP << " postProcessRemoteControl veh=" << v->getID()
874 << "\n oldLane=" << Named::getIDSecure(v->getLane())
875 << " oldRoute=" << toString(v->getRoute().getEdges())
876 << "\n newLane=" << Named::getIDSecure(myRemoteLane)
877 << " newRoute=" << toString(myRemoteRoute)
878 << " newRouteEdge=" << myRemoteRoute[myRemoteEdgeOffset]->getID()
879 << "\n";
880#endif
881 // clear any prior stops because they cannot apply to the new route
882 const_cast<SUMOVehicleParameter&>(v->getParameter()).stops.clear();
883 v->replaceRouteEdges(myRemoteRoute, -1, 0, "traci:moveToXY", true);
884 myRemoteRoute.clear();
885 }
886 v->myCurrEdge = v->getRoute().begin() + myRemoteEdgeOffset;
887 if (myRemoteLane != nullptr && myRemotePos > myRemoteLane->getLength()) {
888 myRemotePos = myRemoteLane->getLength();
889 }
890 if (myRemoteLane != nullptr && withinLane) {
891 if (keepLane) {
892 // TODO this handles only the case when the new vehicle is completely on the edge
893 const bool needFurtherUpdate = v->myState.myPos < v->getVehicleType().getLength() && myRemotePos >= v->getVehicleType().getLength();
894 v->myState.myPos = myRemotePos;
895 v->myState.myPosLat = myRemotePosLat;
896 if (needFurtherUpdate) {
897 v->myState.myBackPos = v->updateFurtherLanes(v->myFurtherLanes, v->myFurtherLanesPosLat, std::vector<MSLane*>());
898 }
899 } else {
903 if (!v->isOnRoad()) {
904 MSVehicleTransfer::getInstance()->remove(v); // TODO may need optimization, this is linear in the number of vehicles in transfer
905 }
906 myRemoteLane->forceVehicleInsertion(v, myRemotePos, notify, myRemotePosLat);
907 v->updateBestLanes();
908 }
909 if (!wasOnRoad) {
910 v->drawOutsideNetwork(false);
911 }
912 //std::cout << "on road network p=" << myRemoteXYPos << " a=" << myRemoteAngle << " l=" << Named::getIDSecure(myRemoteLane) << " pos=" << myRemotePos << " posLat=" << myRemotePosLat << "\n";
913 myRemoteLane->requireCollisionCheck();
914 } else {
915 if (v->getDeparture() == NOT_YET_DEPARTED) {
916 v->onDepart();
917 }
918 v->drawOutsideNetwork(true);
919 // see updateState
920 double vNext = v->processTraCISpeedControl(
921 v->getMaxSpeed(), v->getSpeed());
922 v->setBrakingSignals(vNext);
924 v->myAcceleration = SPEED2ACCEL(vNext - v->getSpeed());
925 v->myState.mySpeed = vNext;
926 v->updateWaitingTime(vNext);
927 //std::cout << "outside network p=" << myRemoteXYPos << " a=" << myRemoteAngle << " l=" << Named::getIDSecure(myRemoteLane) << "\n";
928 }
929 // ensure that the position is correct (i.e. when the lanePosition is ambiguous at corners)
930 v->setRemoteState(myRemoteXYPos);
931 v->setAngle(GeomHelper::fromNaviDegree(myRemoteAngle));
932}
933
934
935double
937 if (veh->getPosition() == Position::INVALID) {
938 return oldSpeed;
939 }
940 double dist = veh->getPosition().distanceTo2D(myRemoteXYPos);
941 if (myRemoteLane != nullptr) {
942 // if the vehicles is frequently placed on a new edge, the route may
943 // consist only of a single edge. In this case the new edge may not be
944 // on the route so distAlongRoute will be double::max.
945 // In this case we still want a sensible speed value
946 const double distAlongRoute = veh->getDistanceToPosition(myRemotePos, myRemoteLane);
947 if (distAlongRoute != std::numeric_limits<double>::max()) {
948 dist = distAlongRoute;
949 }
950 }
951 //std::cout << SIMTIME << " veh=" << veh->getID() << " oldPos=" << veh->getPosition() << " traciPos=" << myRemoteXYPos << " dist=" << dist << "\n";
952 const double minSpeed = myConsiderMaxDeceleration ?
953 veh->getCarFollowModel().minNextSpeedEmergency(oldSpeed, veh) : 0;
954 const double maxSpeed = (myRemoteLane != nullptr
955 ? myRemoteLane->getVehicleMaxSpeed(veh)
956 : (veh->getLane() != nullptr
957 ? veh->getLane()->getVehicleMaxSpeed(veh)
958 : veh->getMaxSpeed()));
959 return MIN2(maxSpeed, MAX2(minSpeed, DIST2SPEED(dist)));
960}
961
962
963double
965 double dist = 0;
966 if (myRemoteLane == nullptr) {
967 dist = veh->getPosition().distanceTo2D(myRemoteXYPos);
968 } else {
969 // if the vehicles is frequently placed on a new edge, the route may
970 // consist only of a single edge. In this case the new edge may not be
971 // on the route so getDistanceToPosition will return double::max.
972 // In this case we would rather not move the vehicle in executeMove
973 // (updateState) as it would result in emergency braking
974 dist = veh->getDistanceToPosition(myRemotePos, myRemoteLane);
975 }
976 if (dist == std::numeric_limits<double>::max()) {
977 return 0;
978 } else {
979 if (DIST2SPEED(dist) > veh->getMaxSpeed() * 1.1) {
980 WRITE_WARNINGF(TL("Vehicle '%' moved by TraCI from % to % (dist %) with implied speed of % (exceeding maximum speed %). time=%."),
981 veh->getID(), veh->getPosition(), myRemoteXYPos, dist, DIST2SPEED(dist), veh->getMaxSpeed(), time2string(SIMSTEP));
982 // some sanity check here
983 dist = MIN2(dist, SPEED2DIST(veh->getMaxSpeed() * 2));
984 }
985 return dist;
986 }
987}
988
989
990/* -------------------------------------------------------------------------
991 * MSVehicle-methods
992 * ----------------------------------------------------------------------- */
994 MSVehicleType* type, const double speedFactor) :
995 MSBaseVehicle(pars, route, type, speedFactor),
996 myWaitingTime(0),
998 myTimeLoss(0),
999 myState(0, 0, 0, 0, 0),
1000 myDriverState(nullptr),
1001 myActionStep(true),
1003 myLane(nullptr),
1004 myLaneChangeModel(nullptr),
1005 myLastBestLanesEdge(nullptr),
1007 myAcceleration(0),
1008 myNextTurn(0., nullptr),
1009 mySignals(0),
1010 myAmOnNet(false),
1011 myAmIdling(false),
1013 myAngle(0),
1014 myStopDist(std::numeric_limits<double>::max()),
1020 myTimeSinceStartup(TIME2STEPS(3600 * 24)),
1021 myHaveStoppedFor(nullptr),
1022 myInfluencer(nullptr) {
1025}
1026
1027
1037
1038
1039void
1041 for (MSLane* further : myFurtherLanes) {
1042 further->resetPartialOccupation(this);
1043 if (further->getBidiLane() != nullptr
1044 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
1045 further->getBidiLane()->resetPartialOccupation(this);
1046 }
1047 }
1048 if (myLaneChangeModel != nullptr) {
1052 // still needed when calling resetPartialOccupation (getShadowLane) and when removing
1053 // approach information from parallel links
1054 }
1055 myFurtherLanes.clear();
1056 myFurtherLanesPosLat.clear();
1057}
1058
1059
1060void
1062#ifdef DEBUG_ACTIONSTEPS
1063 if (DEBUG_COND) {
1064 std::cout << SIMTIME << " Removing vehicle '" << getID() << "' (reason: " << toString(reason) << ")" << std::endl;
1065 }
1066#endif
1069 leaveLane(reason);
1072 }
1073}
1074
1075
1076void
1083
1084
1085// ------------ interaction with the route
1086bool
1088 // note: not a const method because getDepartLane may call updateBestLanes
1089 if (!(*myCurrEdge)->isTazConnector()) {
1091 if ((*myCurrEdge)->getDepartLane(*this) == nullptr) {
1092 msg = "Invalid departlane definition for vehicle '" + getID() + "'.";
1093 if (myParameter->departLane >= (int)(*myCurrEdge)->getLanes().size()) {
1095 } else {
1097 }
1098 return false;
1099 }
1100 } else {
1101 if ((*myCurrEdge)->allowedLanes(getVClass()) == nullptr) {
1102 msg = "Vehicle '" + getID() + "' is not allowed to depart on any lane of edge '" + (*myCurrEdge)->getID() + "'.";
1104 return false;
1105 }
1106 }
1108 msg = "Departure speed for vehicle '" + getID() + "' is too high for the vehicle type '" + myType->getID() + "'.";
1110 return false;
1111 }
1112 }
1114 return true;
1115}
1116
1117
1118bool
1120 return hasArrivedInternal(false);
1121}
1122
1123
1124bool
1125MSVehicle::hasArrivedInternal(bool oppositeTransformed) const {
1126 return ((myCurrEdge == myRoute->end() - 1 || (myParameter->arrivalEdge >= 0 && getRoutePosition() >= myParameter->arrivalEdge))
1127 && (myStops.empty() || myStops.front().edge != myCurrEdge || myStops.front().getSpeed() > 0)
1128 && ((myLaneChangeModel->isOpposite() && !oppositeTransformed) ? myLane->getLength() - myState.myPos : myState.myPos) > MIN2(myLane->getLength(), myArrivalPos) - POSITION_EPS
1129 && !isRemoteControlled());
1130}
1131
1132
1133bool
1134MSVehicle::replaceRoute(ConstMSRoutePtr newRoute, const std::string& info, bool onInit, int offset, bool addRouteStops, bool removeStops, std::string* msgReturn) {
1135 if (MSBaseVehicle::replaceRoute(newRoute, info, onInit, offset, addRouteStops, removeStops, msgReturn)) {
1136 // update best lanes (after stops were added)
1137 myLastBestLanesEdge = nullptr;
1139 updateBestLanes(true, onInit ? (*myCurrEdge)->getLanes().front() : 0);
1140 assert(!removeStops || haveValidStopEdges());
1141 if (myStops.size() == 0) {
1142 myStopDist = std::numeric_limits<double>::max();
1143 }
1144 return true;
1145 }
1146 return false;
1147}
1148
1149
1150// ------------ Interaction with move reminders
1151void
1152MSVehicle::workOnMoveReminders(double oldPos, double newPos, double newSpeed) {
1153 // This erasure-idiom works for all stl-sequence-containers
1154 // See Meyers: Effective STL, Item 9
1155 for (MoveReminderCont::iterator rem = myMoveReminders.begin(); rem != myMoveReminders.end();) {
1156 // XXX: calling notifyMove with newSpeed seems not the best choice. For the ballistic update, the average speed is calculated and used
1157 // although a higher order quadrature-formula might be more adequate.
1158 // For the euler case (where the speed is considered constant for each time step) it is conceivable that
1159 // the current calculations may lead to systematic errors for large time steps (compared to reality). Refs. #2579
1160 if (!rem->first->notifyMove(*this, oldPos + rem->second, newPos + rem->second, MAX2(0., newSpeed))) {
1161#ifdef _DEBUG
1162 if (myTraceMoveReminders) {
1163 traceMoveReminder("notifyMove", rem->first, rem->second, false);
1164 }
1165#endif
1166 rem = myMoveReminders.erase(rem);
1167 } else {
1168#ifdef _DEBUG
1169 if (myTraceMoveReminders) {
1170 traceMoveReminder("notifyMove", rem->first, rem->second, true);
1171 }
1172#endif
1173 ++rem;
1174 }
1175 }
1176 if (myEnergyParams != nullptr) {
1177 // TODO make the vehicle energy params a derived class which is a move reminder
1179 }
1180}
1181
1182
1183void
1185 updateWaitingTime(0.); // cf issue 2233
1186
1187 // vehicle move reminders
1188 for (const auto& rem : myMoveReminders) {
1189 rem.first->notifyIdle(*this);
1190 }
1191
1192 // lane move reminders - for aggregated values
1193 for (MSMoveReminder* rem : getLane()->getMoveReminders()) {
1194 rem->notifyIdle(*this);
1195 }
1196}
1197
1198// XXX: consider renaming...
1199void
1201 // save the old work reminders, patching the position information
1202 // add the information about the new offset to the old lane reminders
1203 const double oldLaneLength = myLane->getLength();
1204 for (auto& rem : myMoveReminders) {
1205 rem.second += oldLaneLength;
1206#ifdef _DEBUG
1207// if (rem->first==0) std::cout << "Null reminder (?!)" << std::endl;
1208// std::cout << "Adapted MoveReminder on lane " << ((rem->first->getLane()==0) ? "NULL" : rem->first->getLane()->getID()) <<" position to " << rem->second << std::endl;
1209 if (myTraceMoveReminders) {
1210 traceMoveReminder("adaptedPos", rem.first, rem.second, true);
1211 }
1212#endif
1213 }
1214 for (MSMoveReminder* const rem : enteredLane.getMoveReminders()) {
1215 addReminder(rem);
1216 }
1217}
1218
1219
1220// ------------ Other getter methods
1221double
1223 if (isParking() && getStops().begin()->parkingarea != nullptr) {
1224 return getStops().begin()->parkingarea->getVehicleSlope(*this);
1225 }
1226 if (myLane == nullptr) {
1227 return 0;
1228 }
1229 const double posLat = myState.myPosLat; // @todo get rid of the '-'
1230 Position p1 = getPosition();
1232 if (p2 == Position::INVALID) {
1233 // Handle special case of vehicle's back reaching out of the network
1234 if (myFurtherLanes.size() > 0) {
1235 p2 = myFurtherLanes.back()->geometryPositionAtOffset(0, -myFurtherLanesPosLat.back());
1236 if (p2 == Position::INVALID) {
1237 // unsuitable lane geometry
1238 p2 = myLane->geometryPositionAtOffset(0, posLat);
1239 }
1240 } else {
1241 p2 = myLane->geometryPositionAtOffset(0, posLat);
1242 }
1243 }
1245}
1246
1247
1249MSVehicle::getPosition(const double offset) const {
1250 if (myLane == nullptr) {
1251 // when called in the context of GUI-Drawing, the simulation step is already incremented
1253 return myCachedPosition;
1254 } else {
1255 return Position::INVALID;
1256 }
1257 }
1258 if (isParking()) {
1259 if (myInfluencer != nullptr && myInfluencer->getLastAccessTimeStep() > getNextStopParameter()->started) {
1260 return myCachedPosition;
1261 }
1262 if (myStops.begin()->parkingarea != nullptr) {
1263 return myStops.begin()->parkingarea->getVehiclePosition(*this);
1264 } else {
1265 // position beside the road
1266 PositionVector shp = myLane->getEdge().getLanes()[0]->getShape();
1269 }
1270 }
1271 const bool changingLanes = myLaneChangeModel->isChangingLanes();
1272 const double posLat = (MSGlobals::gLefthand ? 1 : -1) * getLateralPositionOnLane();
1273 if (offset == 0. && !changingLanes) {
1276 if (MSNet::getInstance()->hasElevation() && MSGlobals::gSublane) {
1278 }
1279 }
1280 return myCachedPosition;
1281 }
1282 Position result = validatePosition(myLane->geometryPositionAtOffset(getPositionOnLane() + offset, posLat), offset);
1283 interpolateLateralZ(result, getPositionOnLane() + offset, posLat);
1284 return result;
1285}
1286
1287
1288void
1289MSVehicle::interpolateLateralZ(Position& pos, double offset, double posLat) const {
1290 const MSLane* shadow = myLaneChangeModel->getShadowLane();
1291 if (shadow != nullptr && pos != Position::INVALID) {
1292 // ignore negative offset
1293 const Position shadowPos = shadow->geometryPositionAtOffset(MAX2(0.0, offset));
1294 if (shadowPos != Position::INVALID && pos.z() != shadowPos.z()) {
1295 const double centerDist = (myLane->getWidth() + shadow->getWidth()) * 0.5;
1296 double relOffset = fabs(posLat) / centerDist;
1297 double newZ = (1 - relOffset) * pos.z() + relOffset * shadowPos.z();
1298 pos.setz(newZ);
1299 }
1300 }
1301}
1302
1303
1304double
1306 double result = getLength() - getPositionOnLane();
1307 if (myLane->isNormal()) {
1308 return MAX2(0.0, result);
1309 }
1310 const MSLane* lane = myLane;
1311 while (lane->isInternal()) {
1312 result += lane->getLength();
1313 lane = lane->getCanonicalSuccessorLane();
1314 }
1315 return result;
1316}
1317
1318
1322 if (!isOnRoad()) {
1323 return Position::INVALID;
1324 }
1325 const std::vector<MSLane*>& bestLanes = getBestLanesContinuation();
1326 auto nextBestLane = bestLanes.begin();
1327 const bool opposite = myLaneChangeModel->isOpposite();
1328 double pos = opposite ? myLane->getLength() - myState.myPos : myState.myPos;
1329 const MSLane* lane = opposite ? myLane->getParallelOpposite() : getLane();
1330 assert(lane != 0);
1331 bool success = true;
1332
1333 while (offset > 0) {
1334 // take into account lengths along internal lanes
1335 while (lane->isInternal() && offset > 0) {
1336 if (offset > lane->getLength() - pos) {
1337 offset -= lane->getLength() - pos;
1338 lane = lane->getLinkCont()[0]->getViaLaneOrLane();
1339 pos = 0.;
1340 if (lane == nullptr) {
1341 success = false;
1342 offset = 0.;
1343 }
1344 } else {
1345 pos += offset;
1346 offset = 0;
1347 }
1348 }
1349 // set nextBestLane to next non-internal lane
1350 while (nextBestLane != bestLanes.end() && *nextBestLane == nullptr) {
1351 ++nextBestLane;
1352 }
1353 if (offset > 0) {
1354 assert(!lane->isInternal());
1355 assert(lane == *nextBestLane);
1356 if (offset > lane->getLength() - pos) {
1357 offset -= lane->getLength() - pos;
1358 ++nextBestLane;
1359 assert(nextBestLane == bestLanes.end() || *nextBestLane != 0);
1360 if (nextBestLane == bestLanes.end()) {
1361 success = false;
1362 offset = 0.;
1363 } else {
1364 const MSLink* link = lane->getLinkTo(*nextBestLane);
1365 assert(link != nullptr);
1366 lane = link->getViaLaneOrLane();
1367 pos = 0.;
1368 }
1369 } else {
1370 pos += offset;
1371 offset = 0;
1372 }
1373 }
1374
1375 }
1376
1377 if (success) {
1379 } else {
1380 return Position::INVALID;
1381 }
1382}
1383
1384
1385double
1387 if (myLane != nullptr) {
1388 return myLane->getVehicleMaxSpeed(this);
1389 }
1390 return myType->getMaxSpeed();
1391}
1392
1393
1395MSVehicle::validatePosition(Position result, double offset) const {
1396 int furtherIndex = 0;
1397 double lastLength = getPositionOnLane();
1398 while (result == Position::INVALID) {
1399 if (furtherIndex >= (int)myFurtherLanes.size()) {
1400 //WRITE_WARNINGF(TL("Could not compute position for vehicle '%', time=%."), getID(), time2string(MSNet::getInstance()->getCurrentTimeStep()));
1401 break;
1402 }
1403 //std::cout << SIMTIME << " veh=" << getID() << " lane=" << myLane->getID() << " pos=" << getPositionOnLane() << " posLat=" << getLateralPositionOnLane() << " offset=" << offset << " result=" << result << " i=" << furtherIndex << " further=" << myFurtherLanes.size() << "\n";
1404 MSLane* further = myFurtherLanes[furtherIndex];
1405 offset += lastLength;
1406 result = further->geometryPositionAtOffset(further->getLength() + offset, -getLateralPositionOnLane());
1407 lastLength = further->getLength();
1408 furtherIndex++;
1409 //std::cout << SIMTIME << " newResult=" << result << "\n";
1410 }
1411 return result;
1412}
1413
1414
1415ConstMSEdgeVector::const_iterator
1417 // too close to the next junction, so avoid an emergency brake here
1418 if (myLane != nullptr && (myCurrEdge + 1) != myRoute->end() && !isRailway(getVClass())) {
1419 if (myLane->isInternal()) {
1420 return myCurrEdge + 1;
1421 }
1422 if (myState.myPos > myLane->getLength() - getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getMaxDecel(), 0.)) {
1423 return myCurrEdge + 1;
1424 }
1426 return myCurrEdge + 1;
1427 }
1428 }
1429 return myCurrEdge;
1430}
1431
1432void
1433MSVehicle::setAngle(double angle, bool straightenFurther) {
1434#ifdef DEBUG_FURTHER
1435 if (DEBUG_COND) {
1436 std::cout << SIMTIME << " veh '" << getID() << " setAngle(" << angle << ") straightenFurther=" << straightenFurther << std::endl;
1437 }
1438#endif
1439 myAngle = angle;
1440 MSLane* next = myLane;
1441 if (straightenFurther && myFurtherLanesPosLat.size() > 0) {
1442 for (int i = 0; i < (int)myFurtherLanes.size(); i++) {
1443 MSLane* further = myFurtherLanes[i];
1444 const MSLink* link = further->getLinkTo(next);
1445 if (link != nullptr) {
1447 next = further;
1448 } else {
1449 break;
1450 }
1451 }
1452 }
1453}
1454
1455
1456void
1457MSVehicle::setActionStepLength(double actionStepLength, bool resetOffset) {
1458 SUMOTime actionStepLengthMillisecs = SUMOVehicleParserHelper::processActionStepLength(actionStepLength);
1459 SUMOTime previousActionStepLength = getActionStepLength();
1460 const bool newActionStepLength = actionStepLengthMillisecs != previousActionStepLength;
1461 if (newActionStepLength) {
1462 getSingularType().setActionStepLength(actionStepLengthMillisecs, resetOffset);
1463 if (!resetOffset) {
1464 updateActionOffset(previousActionStepLength, actionStepLengthMillisecs);
1465 }
1466 }
1467 if (resetOffset) {
1469 }
1470}
1471
1472
1473bool
1475 return myState.mySpeed < (60.0 / 3.6) || myLane->getSpeedLimit() < (60.1 / 3.6);
1476}
1477
1478
1479double
1481 Position p1;
1482 const double posLat = -myState.myPosLat; // @todo get rid of the '-'
1483 const double lefthandSign = (MSGlobals::gLefthand ? -1 : 1);
1484
1485 // if parking manoeuvre is happening then rotate vehicle on each step
1488 }
1489
1490 if (isParking()) {
1491 if (myStops.begin()->parkingarea != nullptr) {
1492 return myStops.begin()->parkingarea->getVehicleAngle(*this);
1493 } else {
1495 }
1496 }
1498 // cannot use getPosition() because it already includes the offset to the side and thus messes up the angle
1499 p1 = myLane->geometryPositionAtOffset(myState.myPos, lefthandSign * posLat);
1500 if (p1 == Position::INVALID && myLane->getShape().length2D() == 0. && myLane->isInternal()) {
1501 // workaround: extrapolate the preceding lane shape
1502 MSLane* predecessorLane = myLane->getCanonicalPredecessorLane();
1503 p1 = predecessorLane->geometryPositionAtOffset(predecessorLane->getLength() + myState.myPos, lefthandSign * posLat);
1504 }
1505 } else {
1506 p1 = getPosition();
1507 }
1508
1509 Position p2;
1510 if (getVehicleType().getParameter().locomotiveLength > 0) {
1511 // articulated vehicle should use the heading of the first part
1512 const double locoLength = MIN2(getVehicleType().getParameter().locomotiveLength, getLength());
1513 p2 = getPosition(-locoLength);
1514 } else {
1515 p2 = getBackPosition();
1516 }
1517 if (p2 == Position::INVALID) {
1518 // Handle special case of vehicle's back reaching out of the network
1519 if (myFurtherLanes.size() > 0) {
1520 p2 = myFurtherLanes.back()->geometryPositionAtOffset(0, -myFurtherLanesPosLat.back());
1521 if (p2 == Position::INVALID) {
1522 // unsuitable lane geometry
1523 p2 = myLane->geometryPositionAtOffset(0, posLat);
1524 }
1525 } else {
1526 p2 = myLane->geometryPositionAtOffset(0, posLat);
1527 }
1528 }
1529 double result = (p1 != p2 ? p2.angleTo2D(p1) :
1531
1532 result += lefthandSign * myLaneChangeModel->calcAngleOffset();
1533
1534#ifdef DEBUG_FURTHER
1535 if (DEBUG_COND) {
1536 std::cout << SIMTIME << " computeAngle veh=" << getID() << " p1=" << p1 << " p2=" << p2 << " angle=" << RAD2DEG(result) << " naviDegree=" << GeomHelper::naviDegree(result) << "\n";
1537 }
1538#endif
1539 return result;
1540}
1541
1542
1543const Position
1545 const double posLat = MSGlobals::gLefthand ? myState.myPosLat : -myState.myPosLat;
1546 Position result;
1547 if (myState.myPos >= myType->getLength()) {
1548 // vehicle is fully on the new lane
1550 } else {
1552 // special case where the target lane has no predecessor
1553#ifdef DEBUG_FURTHER
1554 if (DEBUG_COND) {
1555 std::cout << " getBackPosition veh=" << getID() << " specialCase using myLane=" << myLane->getID() << " pos=0 posLat=" << myState.myPosLat << " result=" << myLane->geometryPositionAtOffset(0, posLat) << "\n";
1556 }
1557#endif
1558 result = myLane->geometryPositionAtOffset(0, posLat);
1559 } else {
1560#ifdef DEBUG_FURTHER
1561 if (DEBUG_COND) {
1562 std::cout << " getBackPosition veh=" << getID() << " myLane=" << myLane->getID() << " further=" << toString(myFurtherLanes) << " myFurtherLanesPosLat=" << toString(myFurtherLanesPosLat) << "\n";
1563 }
1564#endif
1565 if (myFurtherLanes.size() > 0 && !myLaneChangeModel->isChangingLanes()) {
1566 // truncate to 0 if vehicle starts on an edge that is shorter than its length
1567 const double backPos = MAX2(0.0, getBackPositionOnLane(myFurtherLanes.back()));
1568 result = myFurtherLanes.back()->geometryPositionAtOffset(backPos, -myFurtherLanesPosLat.back() * (MSGlobals::gLefthand ? -1 : 1));
1569 } else {
1570 result = myLane->geometryPositionAtOffset(0, posLat);
1571 }
1572 }
1573 }
1575 interpolateLateralZ(result, myState.myPos - myType->getLength(), posLat);
1576 }
1577 return result;
1578}
1579
1580
1581bool
1583 return !isStopped() && !myStops.empty() && myLane != nullptr && &myStops.front().lane->getEdge() == &myLane->getEdge();
1584}
1585
1586bool
1588 return isStopped() && myStops.front().lane == myLane;
1589}
1590
1591bool
1592MSVehicle::keepStopping(bool afterProcessing) const {
1593 if (isStopped()) {
1594 // when coming out of vehicleTransfer we must shift the time forward
1595 return (myStops.front().duration - (afterProcessing ? DELTA_T : 0) > 0 || isStoppedTriggered() || myStops.front().pars.collision
1596 || myStops.front().pars.breakDown || (myStops.front().getSpeed() > 0
1597 && (myState.myPos < MIN2(myStops.front().pars.endPos, myStops.front().lane->getLength() - POSITION_EPS))
1598 && (myStops.front().pars.parking == ParkingType::ONROAD || getSpeed() >= SUMO_const_haltingSpeed)));
1599 } else {
1600 return false;
1601 }
1602}
1603
1604
1607 if (isStopped()) {
1608 return myStops.front().duration;
1609 }
1610 return 0;
1611}
1612
1613
1616 return (myStops.empty() || !myStops.front().pars.collision) ? myCollisionImmunity : MAX2((SUMOTime)0, myStops.front().duration);
1617}
1618
1619
1620bool
1622 return isStopped() && !myStops.empty() && myStops.front().pars.breakDown;
1623}
1624
1625
1626bool
1628 return myCollisionImmunity > 0;
1629}
1630
1631
1632double
1633MSVehicle::processNextStop(double currentVelocity) {
1634 if (myStops.empty()) {
1635 // no stops; pass
1636 return currentVelocity;
1637 }
1638
1639#ifdef DEBUG_STOPS
1640 if (DEBUG_COND) {
1641 std::cout << "\nPROCESS_NEXT_STOP\n" << SIMTIME << " vehicle '" << getID() << "'" << std::endl;
1642 }
1643#endif
1644
1645 MSStop& stop = myStops.front();
1647 if (stop.reached) {
1648 stop.duration -= getActionStepLength();
1649
1650#ifdef DEBUG_STOPS
1651 if (DEBUG_COND) {
1652 std::cout << SIMTIME << " vehicle '" << getID() << "' reached stop.\n"
1653 << "Remaining duration: " << STEPS2TIME(stop.duration) << std::endl;
1654 if (stop.getSpeed() > 0) {
1655 std::cout << " waypointSpeed=" << stop.getSpeed() << " vehPos=" << myState.myPos << " endPos=" << stop.pars.endPos << "\n";
1656 }
1657 }
1658#endif
1659 if (stop.duration <= 0 && stop.pars.join != "") {
1660 // join this train (part) to another one
1661 MSVehicle* joinVeh = dynamic_cast<MSVehicle*>(MSNet::getInstance()->getVehicleControl().getVehicle(stop.pars.join));
1662 if (joinVeh && joinVeh->hasDeparted() && (joinVeh->joinTrainPart(this) || joinVeh->joinTrainPartFront(this))) {
1663 stop.joinTriggered = false;
1667 }
1668 // avoid collision warning before this vehicle is removed (joinVeh was already made longer)
1670 // mark this vehicle as arrived
1672 const_cast<SUMOVehicleParameter*>(myParameter)->arrivalEdge = getRoutePosition();
1673 // handle transportables that want to continue in the other vehicle
1674 if (myPersonDevice != nullptr) {
1676 }
1677 if (myContainerDevice != nullptr) {
1679 }
1680 }
1681 }
1682 boardTransportables(stop);
1683 if (time > stop.endBoarding) {
1684 // for taxi: cancel customers
1685 MSDevice_Taxi* taxiDevice = static_cast<MSDevice_Taxi*>(getDevice(typeid(MSDevice_Taxi)));
1686 if (taxiDevice != nullptr) {
1687 // may invalidate stops including the current reference
1688 taxiDevice->cancelCurrentCustomers();
1690 return currentVelocity;
1691 }
1692 }
1693 if (!keepStopping() && isOnRoad()) {
1694#ifdef DEBUG_STOPS
1695 if (DEBUG_COND) {
1696 std::cout << SIMTIME << " vehicle '" << getID() << "' resumes from stopping." << std::endl;
1697 }
1698#endif
1700 if (isRail() && hasStops()) {
1701 // stay on the current lane in case of a double stop
1702 const MSStop& nextStop = getNextStop();
1703 if (nextStop.edge == myCurrEdge) {
1704 const double stopSpeed = getCarFollowModel().stopSpeed(this, getSpeed(), nextStop.pars.endPos - myState.myPos);
1705 //std::cout << SIMTIME << " veh=" << getID() << " resumedFromStopping currentVelocity=" << currentVelocity << " stopSpeed=" << stopSpeed << "\n";
1706 return stopSpeed;
1707 }
1708 }
1709 } else {
1710 if (stop.triggered) {
1711 if (getVehicleType().getPersonCapacity() == getPersonNumber()) {
1712 WRITE_WARNINGF(TL("Vehicle '%' ignores triggered stop on lane '%' due to capacity constraints."), getID(), stop.lane->getID());
1713 stop.triggered = false;
1714 } else if (!myAmRegisteredAsWaiting && stop.duration <= DELTA_T) {
1715 // we can only register after waiting for one step. otherwise we might falsely signal a deadlock
1718#ifdef DEBUG_STOPS
1719 if (DEBUG_COND) {
1720 std::cout << SIMTIME << " vehicle '" << getID() << "' registers as waiting for person." << std::endl;
1721 }
1722#endif
1723 }
1724 }
1725 if (stop.containerTriggered) {
1726 if (getVehicleType().getContainerCapacity() == getContainerNumber()) {
1727 WRITE_WARNINGF(TL("Vehicle '%' ignores container triggered stop on lane '%' due to capacity constraints."), getID(), stop.lane->getID());
1728 stop.containerTriggered = false;
1729 } else if (stop.containerTriggered && !myAmRegisteredAsWaiting && stop.duration <= DELTA_T) {
1730 // we can only register after waiting for one step. otherwise we might falsely signal a deadlock
1733#ifdef DEBUG_STOPS
1734 if (DEBUG_COND) {
1735 std::cout << SIMTIME << " vehicle '" << getID() << "' registers as waiting for container." << std::endl;
1736 }
1737#endif
1738 }
1739 }
1740 // joining only takes place after stop duration is over
1742 && stop.duration <= (stop.pars.extension >= 0 ? -stop.pars.extension : 0)) {
1743 if (stop.pars.extension >= 0) {
1744 WRITE_WARNINGF(TL("Vehicle '%' aborts joining after extension of %s at time %."), getID(), STEPS2TIME(stop.pars.extension), time2string(SIMSTEP));
1745 stop.joinTriggered = false;
1746 } else {
1747 // keep stopping indefinitely but ensure that simulation terminates
1750 }
1751 }
1752 if (stop.getSpeed() > 0) {
1753 //waypoint mode
1754 if (stop.duration == 0) {
1755 return stop.getSpeed();
1756 } else {
1757 // stop for 'until' (computed in planMove)
1758 return currentVelocity;
1759 }
1760 } else {
1761 // brake
1763 return 0;
1764 } else {
1765 // ballistic:
1766 return getSpeed() - getCarFollowModel().getMaxDecel();
1767 }
1768 }
1769 }
1770 } else {
1771
1772#ifdef DEBUG_STOPS
1773 if (DEBUG_COND) {
1774 std::cout << SIMTIME << " vehicle '" << getID() << "' hasn't reached next stop." << std::endl;
1775 }
1776#endif
1777 //std::cout << SIMTIME << " myStopDist=" << myStopDist << " bGap=" << getBrakeGap(myLane->getVehicleMaxSpeed(this)) << "\n";
1778 if (stop.pars.onDemand && !stop.skipOnDemand && myStopDist <= getCarFollowModel().brakeGap(myLane->getVehicleMaxSpeed(this))) {
1779 MSNet* const net = MSNet::getInstance();
1780 const bool noExits = ((myPersonDevice == nullptr || !myPersonDevice->anyLeavingAtStop(stop))
1781 && (myContainerDevice == nullptr || !myContainerDevice->anyLeavingAtStop(stop)));
1782 const bool noEntries = ((!net->hasPersons() || !net->getPersonControl().hasAnyWaiting(stop.getEdge(), this))
1783 && (!net->hasContainers() || !net->getContainerControl().hasAnyWaiting(stop.getEdge(), this)));
1784 if (noExits && noEntries) {
1785 //std::cout << " skipOnDemand\n";
1786 stop.skipOnDemand = true;
1787 }
1788 }
1789 // is the next stop on the current lane?
1790 if (stop.edge == myCurrEdge) {
1791 // get the stopping position
1792 bool useStoppingPlace = stop.busstop != nullptr || stop.containerstop != nullptr || stop.parkingarea != nullptr;
1793 bool fitsOnStoppingPlace = true;
1794 if (!stop.skipOnDemand) { // no need to check available space if we skip it anyway
1795 if (stop.busstop != nullptr) {
1796 fitsOnStoppingPlace &= stop.busstop->fits(myState.myPos, *this);
1797 }
1798 if (stop.containerstop != nullptr) {
1799 fitsOnStoppingPlace &= stop.containerstop->fits(myState.myPos, *this);
1800 }
1801 // if the stop is a parking area we check if there is a free position on the area
1802 if (stop.parkingarea != nullptr) {
1803 fitsOnStoppingPlace &= myState.myPos > stop.parkingarea->getBeginLanePosition();
1804 if (stop.parkingarea->getOccupancy() >= stop.parkingarea->getCapacity()) {
1805 fitsOnStoppingPlace = false;
1806 // trigger potential parkingZoneReroute
1807 MSParkingArea* oldParkingArea = stop.parkingarea;
1808 for (MSMoveReminder* rem : myLane->getMoveReminders()) {
1809 if (rem->isParkingRerouter()) {
1810 rem->notifyEnter(*this, MSMoveReminder::NOTIFICATION_PARKING_REROUTE, myLane);
1811 }
1812 }
1813 if (myStops.empty() || myStops.front().parkingarea != oldParkingArea) {
1814 // rerouted, keep driving
1815 return currentVelocity;
1816 }
1817 } else if (stop.parkingarea->getOccupancyIncludingReservations(this) >= stop.parkingarea->getCapacity()) {
1818 fitsOnStoppingPlace = false;
1819 } else if (stop.parkingarea->parkOnRoad() && stop.parkingarea->getLotIndex(this) < 0) {
1820 fitsOnStoppingPlace = false;
1821 }
1822 }
1823 }
1824 const double targetPos = myState.myPos + myStopDist + (stop.getSpeed() > 0 ? (stop.pars.startPos - stop.pars.endPos) : 0);
1825 const double reachedThreshold = (useStoppingPlace ? targetPos - STOPPING_PLACE_OFFSET : stop.getReachedThreshold()) - NUMERICAL_EPS;
1826#ifdef DEBUG_STOPS
1827 if (DEBUG_COND) {
1828 std::cout << " pos=" << myState.pos() << " speed=" << currentVelocity << " targetPos=" << targetPos << " fits=" << fitsOnStoppingPlace
1829 << " reachedThresh=" << reachedThreshold
1830 << " myLane=" << Named::getIDSecure(myLane)
1831 << " stopLane=" << Named::getIDSecure(stop.lane)
1832 << "\n";
1833 }
1834#endif
1835 const bool posReached = myState.pos() >= reachedThreshold && currentVelocity <= stop.getSpeed() + SUMO_const_haltingSpeed && myLane == stop.lane;
1836 if (posReached && !fitsOnStoppingPlace && MSStopOut::active()) {
1837 MSStopOut::getInstance()->stopBlocked(this, time);
1838 }
1839 if (fitsOnStoppingPlace && posReached && (!MSGlobals::gModelParkingManoeuver || myManoeuvre.entryManoeuvreIsComplete(this))) {
1840 // ok, we may stop (have reached the stop) and either we are not modelling maneuvering or have completed entry
1841 stop.reached = true;
1842 if (!stop.startedFromState) {
1843 stop.pars.started = time;
1844 }
1845#ifdef DEBUG_STOPS
1846 if (DEBUG_COND) {
1847 std::cout << SIMTIME << " vehicle '" << getID() << "' reached next stop." << std::endl;
1848 }
1849#endif
1850 if (MSStopOut::active()) {
1852 }
1853 myLane->getEdge().addWaiting(this);
1856 // compute stopping time
1857 stop.duration = stop.getMinDuration(time);
1858 stop.endBoarding = stop.pars.extension >= 0 ? time + stop.duration + stop.pars.extension : SUMOTime_MAX;
1859 MSDevice_Taxi* taxiDevice = static_cast<MSDevice_Taxi*>(getDevice(typeid(MSDevice_Taxi)));
1860 if (taxiDevice != nullptr && stop.pars.extension >= 0) {
1861 // earliestPickupTime is set with waitUntil
1862 stop.endBoarding = MAX2(time, stop.pars.waitUntil) + stop.pars.extension;
1863 }
1864 if (stop.getSpeed() > 0) {
1865 // ignore duration parameter in waypoint mode unless 'until' or 'ended' are set
1866 if (stop.getUntil() > time) {
1867 stop.duration = stop.getUntil() - time;
1868 } else {
1869 stop.duration = 0;
1870 }
1871 }
1872 if (stop.busstop != nullptr) {
1873 // let the bus stop know the vehicle
1874 stop.busstop->enter(this, stop.pars.parking == ParkingType::OFFROAD);
1875 }
1876 if (stop.containerstop != nullptr) {
1877 // let the container stop know the vehicle
1879 }
1880 if (stop.parkingarea != nullptr && stop.getSpeed() <= 0) {
1881 // let the parking area know the vehicle
1882 stop.parkingarea->enter(this, stop.pars.parking == ParkingType::OFFROAD);
1883 }
1884 if (stop.chargingStation != nullptr) {
1885 // let the container stop know the vehicle
1887 }
1888
1889 if (stop.pars.tripId != "") {
1890 ((SUMOVehicleParameter&)getParameter()).setParameter("tripId", stop.pars.tripId);
1891 }
1892 if (stop.pars.line != "") {
1893 ((SUMOVehicleParameter&)getParameter()).line = stop.pars.line;
1894 }
1895 if (stop.pars.split != "") {
1896 // split the train
1897 MSVehicle* splitVeh = dynamic_cast<MSVehicle*>(MSNet::getInstance()->getVehicleControl().getVehicle(stop.pars.split));
1898 if (splitVeh == nullptr) {
1899 WRITE_WARNINGF(TL("Vehicle '%' to split from vehicle '%' is not known. time=%."), stop.pars.split, getID(), SIMTIME)
1900 } else {
1902 splitVeh->getRoute().getEdges()[0]->removeWaiting(splitVeh);
1904 const double newLength = MAX2(myType->getLength() - splitVeh->getVehicleType().getLength(),
1906 getSingularType().setLength(newLength);
1907 // handle transportables that want to continue in the split part
1908 if (myPersonDevice != nullptr) {
1910 }
1911 if (myContainerDevice != nullptr) {
1913 }
1915 const double backShift = splitVeh->getLength() + getVehicleType().getMinGap();
1916 myState.myPos -= backShift;
1917 myState.myBackPos -= backShift;
1918 }
1919 }
1920 }
1921
1922 boardTransportables(stop);
1923 if (stop.pars.posLat != INVALID_DOUBLE) {
1924 myState.myPosLat = stop.pars.posLat;
1925 }
1926 }
1927 }
1928 }
1929 return currentVelocity;
1930}
1931
1932
1933void
1935 if (stop.skipOnDemand) {
1936 return;
1937 }
1938 // we have reached the stop
1939 // any waiting persons may board now
1941 MSNet* const net = MSNet::getInstance();
1942 const bool boarded = (time <= stop.endBoarding
1943 && net->hasPersons()
1945 && stop.numExpectedPerson == 0);
1946 // load containers
1947 const bool loaded = (time <= stop.endBoarding
1948 && net->hasContainers()
1950 && stop.numExpectedContainer == 0);
1951
1952 bool unregister = false;
1953 if (time > stop.endBoarding) {
1954 stop.triggered = false;
1955 stop.containerTriggered = false;
1957 unregister = true;
1959 }
1960 }
1961 if (boarded) {
1962 // the triggering condition has been fulfilled. Maybe we want to wait a bit longer for additional riders (car pooling)
1964 unregister = true;
1965 }
1966 stop.triggered = false;
1968 }
1969 if (loaded) {
1970 // the triggering condition has been fulfilled
1972 unregister = true;
1973 }
1974 stop.containerTriggered = false;
1976 }
1977
1978 if (unregister) {
1980#ifdef DEBUG_STOPS
1981 if (DEBUG_COND) {
1982 std::cout << SIMTIME << " vehicle '" << getID() << "' unregisters as waiting for transportable." << std::endl;
1983 }
1984#endif
1985 }
1986}
1987
1988bool
1990 // check if veh is close enough to be joined to the rear of this vehicle
1991 MSLane* backLane = myFurtherLanes.size() == 0 ? myLane : myFurtherLanes.back();
1992 double gap = getBackPositionOnLane() - veh->getPositionOnLane();
1993 if (isStopped() && myStops.begin()->duration <= DELTA_T && myStops.begin()->joinTriggered && backLane == veh->getLane()
1994 && gap >= 0 && gap <= getVehicleType().getMinGap() + 1) {
1995 const double newLength = myType->getLength() + veh->getVehicleType().getLength();
1996 getSingularType().setLength(newLength);
1997 myStops.begin()->joinTriggered = false;
2001 }
2002 return true;
2003 } else {
2004 return false;
2005 }
2006}
2007
2008
2009bool
2011 // check if veh is close enough to be joined to the front of this vehicle
2012 MSLane* backLane = veh->myFurtherLanes.size() == 0 ? veh->myLane : veh->myFurtherLanes.back();
2013 double gap = veh->getBackPositionOnLane(backLane) - getPositionOnLane();
2014 if (isStopped() && myStops.begin()->duration <= DELTA_T && myStops.begin()->joinTriggered && backLane == getLane()
2015 && gap >= 0 && gap <= getVehicleType().getMinGap() + 1) {
2016 double skippedLaneLengths = 0;
2017 if (veh->myFurtherLanes.size() > 0) {
2018 skippedLaneLengths += getLane()->getLength();
2019 // this vehicle must be moved to the lane of veh
2020 // ensure that lane and furtherLanes of veh match our route
2021 int routeIndex = getRoutePosition();
2022 if (myLane->isInternal()) {
2023 routeIndex++;
2024 }
2025 for (int i = (int)veh->myFurtherLanes.size() - 1; i >= 0; i--) {
2026 MSEdge* edge = &veh->myFurtherLanes[i]->getEdge();
2027 if (edge->isInternal()) {
2028 continue;
2029 }
2030 if (!edge->isInternal() && edge != myRoute->getEdges()[routeIndex]) {
2031 std::string warn = TL("Cannot join vehicle '%' to vehicle '%' due to incompatible routes. time=%.");
2032 WRITE_WARNINGF(warn, veh->getID(), getID(), time2string(SIMSTEP));
2033 return false;
2034 }
2035 routeIndex++;
2036 }
2037 if (veh->getCurrentEdge()->getNormalSuccessor() != myRoute->getEdges()[routeIndex]) {
2038 std::string warn = TL("Cannot join vehicle '%' to vehicle '%' due to incompatible routes. time=%.");
2039 WRITE_WARNINGF(warn, veh->getID(), getID(), time2string(SIMSTEP));
2040 return false;
2041 }
2042 for (int i = (int)veh->myFurtherLanes.size() - 2; i >= 0; i--) {
2043 skippedLaneLengths += veh->myFurtherLanes[i]->getLength();
2044 }
2045 }
2046
2047 const double newLength = myType->getLength() + veh->getVehicleType().getLength();
2048 getSingularType().setLength(newLength);
2049 // lane will be advanced just as for regular movement
2050 myState.myPos = skippedLaneLengths + veh->getPositionOnLane();
2051 myStops.begin()->joinTriggered = false;
2055 }
2056 return true;
2057 } else {
2058 return false;
2059 }
2060}
2061
2062double
2063MSVehicle::getBrakeGap(bool delayed) const {
2064 return getCarFollowModel().brakeGap(getSpeed(), getCarFollowModel().getMaxDecel(), delayed ? getCarFollowModel().getHeadwayTime() : 0);
2065}
2066
2067
2068bool
2071 if (myActionStep) {
2072 myLastActionTime = t;
2073 }
2074 return myActionStep;
2075}
2076
2077
2078void
2079MSVehicle::resetActionOffset(const SUMOTime timeUntilNextAction) {
2080 myLastActionTime = MSNet::getInstance()->getCurrentTimeStep() + timeUntilNextAction;
2081}
2082
2083
2084void
2085MSVehicle::updateActionOffset(const SUMOTime oldActionStepLength, const SUMOTime newActionStepLength) {
2087 SUMOTime timeSinceLastAction = now - myLastActionTime;
2088 if (timeSinceLastAction == 0) {
2089 // Action was scheduled now, may be delayed be new action step length
2090 timeSinceLastAction = oldActionStepLength;
2091 }
2092 if (timeSinceLastAction >= newActionStepLength) {
2093 // Action point required in this step
2094 myLastActionTime = now;
2095 } else {
2096 SUMOTime timeUntilNextAction = newActionStepLength - timeSinceLastAction;
2097 resetActionOffset(timeUntilNextAction);
2098 }
2099}
2100
2101
2102
2103void
2104MSVehicle::planMove(const SUMOTime t, const MSLeaderInfo& ahead, const double lengthsInFront) {
2105#ifdef DEBUG_PLAN_MOVE
2106 if (DEBUG_COND) {
2107 std::cout
2108 << "\nPLAN_MOVE\n"
2109 << SIMTIME
2110 << std::setprecision(gPrecision)
2111 << " veh=" << getID()
2112 << " lane=" << myLane->getID()
2113 << " pos=" << getPositionOnLane()
2114 << " posLat=" << getLateralPositionOnLane()
2115 << " speed=" << getSpeed()
2116 << "\n";
2117 }
2118#endif
2119 // Update the driver state
2120 if (hasDriverState()) {
2122 setActionStepLength(myDriverState->getDriverState()->getActionStepLength(), false);
2123 }
2124
2125 if (!checkActionStep(t)) {
2126#ifdef DEBUG_ACTIONSTEPS
2127 if (DEBUG_COND) {
2128 std::cout << STEPS2TIME(t) << " vehicle '" << getID() << "' skips action." << std::endl;
2129 }
2130#endif
2131 // During non-action passed drive items still need to be removed
2132 // @todo rather work with updating myCurrentDriveItem (refs #3714)
2134 return;
2135 } else {
2136#ifdef DEBUG_ACTIONSTEPS
2137 if (DEBUG_COND) {
2138 std::cout << STEPS2TIME(t) << " vehicle = '" << getID() << "' takes action." << std::endl;
2139 }
2140#endif
2142 if (myInfluencer != nullptr) {
2144 }
2146#ifdef DEBUG_PLAN_MOVE
2147 if (DEBUG_COND) {
2148 DriveItemVector::iterator i;
2149 for (i = myLFLinkLanes.begin(); i != myLFLinkLanes.end(); ++i) {
2150 std::cout
2151 << " vPass=" << (*i).myVLinkPass
2152 << " vWait=" << (*i).myVLinkWait
2153 << " linkLane=" << ((*i).myLink == 0 ? "NULL" : (*i).myLink->getViaLaneOrLane()->getID())
2154 << " request=" << (*i).mySetRequest
2155 << "\n";
2156 }
2157 }
2158#endif
2159 checkRewindLinkLanes(lengthsInFront, myLFLinkLanes);
2161 // ideally would only do this with the call inside planMoveInternal - but that needs a const method
2162 // so this is a kludge here - nuisance as it adds an extra check in a busy loop
2166 }
2167 }
2168 }
2170}
2171
2172
2173bool
2174MSVehicle::brakeForOverlap(const MSLink* link, const MSLane* lane) const {
2175 // @review needed
2176 //const double futurePosLat = getLateralPositionOnLane() + link->getLateralShift();
2177 //const double overlap = getLateralOverlap(futurePosLat, link->getViaLaneOrLane());
2178 //const double edgeWidth = link->getViaLaneOrLane()->getEdge().getWidth();
2179 const double futurePosLat = getLateralPositionOnLane() + (
2180 lane != myLane && lane->isInternal() ? lane->getIncomingLanes()[0].viaLink->getLateralShift() : 0);
2181 const double overlap = getLateralOverlap(futurePosLat, lane);
2182 const double edgeWidth = lane->getEdge().getWidth();
2183 const bool result = (overlap > POSITION_EPS
2184 // do not get stuck on narrow edges
2185 && getVehicleType().getWidth() <= edgeWidth
2186 && link->getViaLane() == nullptr
2187 // this is the exit link of a junction. The normal edge should support the shadow
2188 && ((myLaneChangeModel->getShadowLane(link->getLane()) == nullptr)
2189 // the shadow lane must be permitted
2190 || !myLaneChangeModel->getShadowLane(link->getLane())->allowsVehicleClass(getVClass())
2191 // the internal lane after an internal junction has no parallel lane. make sure there is no shadow before continuing
2192 || (lane->getEdge().isInternal() && lane->getIncomingLanes()[0].lane->getEdge().isInternal()))
2193 // ignore situations where the shadow lane is part of a double-connection with the current lane
2194 && (myLaneChangeModel->getShadowLane() == nullptr
2195 || myLaneChangeModel->getShadowLane()->getLinkCont().size() == 0
2196 || myLaneChangeModel->getShadowLane()->getLinkCont().front()->getLane() != link->getLane())
2197 // emergency vehicles may do some crazy stuff
2199
2200#ifdef DEBUG_PLAN_MOVE
2201 if (DEBUG_COND) {
2202 std::cout << SIMTIME << " veh=" << getID() << " link=" << link->getDescription() << " lane=" << lane->getID()
2203 << " linkLane=" << link->getLane()->getID()
2204 << " shadowLane=" << Named::getIDSecure(myLaneChangeModel->getShadowLane())
2205 << " shift=" << link->getLateralShift()
2206 << " fpLat=" << futurePosLat << " overlap=" << overlap << " w=" << getVehicleType().getWidth()
2207 << " shadowLane=" << Named::getIDSecure(myLaneChangeModel->getShadowLane(link->getLane()))
2208 << " result=" << result << "\n";
2209 }
2210#endif
2211 return result;
2212}
2213
2214
2215
2216void
2217MSVehicle::planMoveInternal(const SUMOTime t, MSLeaderInfo ahead, DriveItemVector& lfLinks, double& newStopDist, std::pair<double, const MSLink*>& nextTurn) const {
2218 lfLinks.clear();
2219 newStopDist = std::numeric_limits<double>::max();
2220 //
2221 const MSCFModel& cfModel = getCarFollowModel();
2222 const double vehicleLength = getVehicleType().getLength();
2223 const double maxV = cfModel.maxNextSpeed(myState.mySpeed, this);
2224 const double maxVD = MAX2(getMaxSpeed(), MIN2(maxV, getDesiredMaxSpeed()));
2225 const bool opposite = myLaneChangeModel->isOpposite();
2226 // maxVD is possibly higher than vType-maxSpeed and in this case laneMaxV may be higher as well
2227 double laneMaxV = myLane->getVehicleMaxSpeed(this, maxVD);
2228 const double vMinComfortable = cfModel.minNextSpeed(getSpeed(), this);
2229 double lateralShift = 0;
2230 if (isRail()) {
2231 // speed limits must hold for the whole length of the train
2232 for (MSLane* l : myFurtherLanes) {
2233 laneMaxV = MIN2(laneMaxV, l->getVehicleMaxSpeed(this, maxVD));
2234#ifdef DEBUG_PLAN_MOVE
2235 if (DEBUG_COND) {
2236 std::cout << " laneMaxV=" << laneMaxV << " lane=" << l->getID() << "\n";
2237 }
2238#endif
2239 }
2240 }
2241 // speed limits are not emergencies (e.g. when the limit changes suddenly due to TraCI or a variableSpeedSignal)
2242 laneMaxV = MAX2(laneMaxV, vMinComfortable);
2244 laneMaxV = std::numeric_limits<double>::max();
2245 }
2246 // v is the initial maximum velocity of this vehicle in this step
2247 double v = cfModel.maximumLaneSpeedCF(this, maxV, laneMaxV);
2248 // if we are modelling parking then we dawdle until the manoeuvre is complete - by setting a very low max speed
2249 // in practice this only applies to exit manoeuvre because entry manoeuvre just delays setting stop.reached - when the vehicle is virtually stopped
2252 }
2253
2254 if (myInfluencer != nullptr) {
2255 const double vMin = MAX2(0., cfModel.minNextSpeed(myState.mySpeed, this));
2256#ifdef DEBUG_TRACI
2257 if (DEBUG_COND) {
2258 std::cout << SIMTIME << " veh=" << getID() << " speedBeforeTraci=" << v;
2259 }
2260#endif
2261 v = myInfluencer->influenceSpeed(t, v, v, vMin, maxV);
2262#ifdef DEBUG_TRACI
2263 if (DEBUG_COND) {
2264 std::cout << " influencedSpeed=" << v;
2265 }
2266#endif
2267 v = myInfluencer->gapControlSpeed(t, this, v, v, vMin, maxV);
2268#ifdef DEBUG_TRACI
2269 if (DEBUG_COND) {
2270 std::cout << " gapControlSpeed=" << v << "\n";
2271 }
2272#endif
2273 }
2274 // all links within dist are taken into account (potentially)
2275 const double dist = SPEED2DIST(maxV) + cfModel.brakeGap(maxV);
2276
2277 const std::vector<MSLane*>& bestLaneConts = getBestLanesContinuation();
2278#ifdef DEBUG_PLAN_MOVE
2279 if (DEBUG_COND) {
2280 std::cout << " dist=" << dist << " bestLaneConts=" << toString(bestLaneConts)
2281 << "\n maxV=" << maxV << " laneMaxV=" << laneMaxV << " v=" << v << "\n";
2282 }
2283#endif
2284 assert(bestLaneConts.size() > 0);
2285 bool hadNonInternal = false;
2286 // the distance already "seen"; in the following always up to the end of the current "lane"
2287 double seen = opposite ? myState.myPos : myLane->getLength() - myState.myPos;
2288 nextTurn.first = seen;
2289 nextTurn.second = nullptr;
2290 bool encounteredTurn = (MSGlobals::gLateralResolution <= 0); // next turn is only needed for sublane
2291 double seenNonInternal = 0;
2292 double seenInternal = myLane->isInternal() ? seen : 0;
2293 double vLinkPass = MIN2(cfModel.estimateSpeedAfterDistance(seen, v, cfModel.getMaxAccel()), laneMaxV); // upper bound
2294 int view = 0;
2295 DriveProcessItem* lastLink = nullptr;
2296 bool slowedDownForMinor = false; // whether the vehicle already had to slow down on approach to a minor link
2297 double mustSeeBeforeReversal = 0;
2298 // iterator over subsequent lanes and fill lfLinks until stopping distance or stopped
2299 const MSLane* lane = opposite ? myLane->getParallelOpposite() : myLane;
2300 assert(lane != 0);
2301 const MSLane* leaderLane = myLane;
2302 bool foundRailSignal = !isRail();
2303 bool planningToStop = false;
2304#ifdef PARALLEL_STOPWATCH
2305 myLane->getStopWatch()[0].start();
2306#endif
2307
2308 // optionally slow down to match arrival time
2309 const double sfp = getVehicleType().getParameter().speedFactorPremature;
2310 if (v > vMinComfortable && hasStops() && myStops.front().pars.arrival >= 0 && sfp > 0
2311 && v > myLane->getSpeedLimit() * sfp
2312 && !myStops.front().reached) {
2313 const double vSlowDown = slowDownForSchedule(vMinComfortable);
2314 v = MIN2(v, vSlowDown);
2315 }
2316 auto stopIt = myStops.begin();
2317 while (true) {
2318 // check leader on lane
2319 // leader is given for the first edge only
2320 if (opposite &&
2321 (leaderLane->getVehicleNumberWithPartials() > 1
2322 || (leaderLane != myLane && leaderLane->getVehicleNumber() > 0))) {
2323 ahead.clear();
2324 // find opposite-driving leader that must be respected on the currently looked at lane
2325 // (only looking at one lane at a time)
2326 const double backOffset = leaderLane == myLane ? getPositionOnLane() : leaderLane->getLength();
2327 const double gapOffset = leaderLane == myLane ? 0 : seen - leaderLane->getLength();
2328 const MSLeaderDistanceInfo cands = leaderLane->getFollowersOnConsecutive(this, backOffset, true, backOffset, MSLane::MinorLinkMode::FOLLOW_NEVER);
2329 MSLeaderDistanceInfo oppositeLeaders(leaderLane->getWidth(), this, 0.);
2330 const double minTimeToLeaveLane = MSGlobals::gSublane ? MAX2(TS, (0.5 * myLane->getWidth() - getLateralPositionOnLane()) / getVehicleType().getMaxSpeedLat()) : TS;
2331 for (int i = 0; i < cands.numSublanes(); i++) {
2332 CLeaderDist cand = cands[i];
2333 if (cand.first != 0) {
2334 if ((cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() != leaderLane)
2335 || (!cand.first->myLaneChangeModel->isOpposite() && cand.first->getLaneChangeModel().getShadowLane() == leaderLane)) {
2336 // respect leaders that also drive in the opposite direction (fully or with some overlap)
2337 oppositeLeaders.addLeader(cand.first, cand.second + gapOffset - getVehicleType().getMinGap() + cand.first->getVehicleType().getMinGap() - cand.first->getVehicleType().getLength());
2338 } else {
2339 // avoid frontal collision
2340 const bool assumeStopped = cand.first->isStopped() || cand.first->getWaitingSeconds() > 1;
2341 const double predMaxDist = cand.first->getSpeed() + (assumeStopped ? 0 : cand.first->getCarFollowModel().getMaxAccel()) * minTimeToLeaveLane;
2342 if (cand.second >= 0 && (cand.second - v * minTimeToLeaveLane - predMaxDist < 0 || assumeStopped)) {
2343 oppositeLeaders.addLeader(cand.first, cand.second + gapOffset - predMaxDist - getVehicleType().getMinGap());
2344 }
2345 }
2346 }
2347 }
2348#ifdef DEBUG_PLAN_MOVE
2349 if (DEBUG_COND) {
2350 std::cout << " leaderLane=" << leaderLane->getID() << " gapOffset=" << gapOffset << " minTimeToLeaveLane=" << minTimeToLeaveLane
2351 << " cands=" << cands.toString() << " oppositeLeaders=" << oppositeLeaders.toString() << "\n";
2352 }
2353#endif
2354 adaptToLeaderDistance(oppositeLeaders, 0, seen, lastLink, v, vLinkPass);
2355 } else {
2357 const double rightOL = getRightSideOnLane(lane) + lateralShift;
2358 const double leftOL = getLeftSideOnLane(lane) + lateralShift;
2359 const bool outsideLeft = leftOL > lane->getWidth();
2360#ifdef DEBUG_PLAN_MOVE
2361 if (DEBUG_COND) {
2362 std::cout << SIMTIME << " veh=" << getID() << " lane=" << lane->getID() << " rightOL=" << rightOL << " leftOL=" << leftOL << "\n";
2363 }
2364#endif
2365 if (rightOL < 0 || outsideLeft) {
2366 MSLeaderInfo outsideLeaders(lane->getWidth());
2367 // if ego is driving outside lane bounds we must consider
2368 // potential leaders that are also outside bounds
2369 int sublaneOffset = 0;
2370 if (outsideLeft) {
2371 sublaneOffset = MIN2(-1, -(int)ceil((leftOL - lane->getWidth()) / MSGlobals::gLateralResolution));
2372 } else {
2373 sublaneOffset = MAX2(1, (int)ceil(-rightOL / MSGlobals::gLateralResolution));
2374 }
2375 outsideLeaders.setSublaneOffset(sublaneOffset);
2376#ifdef DEBUG_PLAN_MOVE
2377 if (DEBUG_COND) {
2378 std::cout << SIMTIME << " veh=" << getID() << " lane=" << lane->getID() << " sublaneOffset=" << sublaneOffset << " outsideLeft=" << outsideLeft << "\n";
2379 }
2380#endif
2381 for (const MSVehicle* cand : lane->getVehiclesSecure()) {
2382 if ((lane != myLane || cand->getPositionOnLane() > getPositionOnLane())
2383 && ((!outsideLeft && cand->getLeftSideOnEdge() < 0)
2384 || (outsideLeft && cand->getLeftSideOnEdge() > lane->getEdge().getWidth()))) {
2385 outsideLeaders.addLeader(cand, true);
2386#ifdef DEBUG_PLAN_MOVE
2387 if (DEBUG_COND) {
2388 std::cout << " outsideLeader=" << cand->getID() << " ahead=" << outsideLeaders.toString() << "\n";
2389 }
2390#endif
2391 }
2392 }
2393 lane->releaseVehicles();
2394 if (outsideLeaders.hasVehicles()) {
2395 adaptToLeaders(outsideLeaders, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2396 }
2397 }
2398 }
2399 adaptToLeaders(ahead, lateralShift, seen, lastLink, leaderLane, v, vLinkPass);
2400 }
2401 if (lastLink != nullptr) {
2402 lastLink->myVLinkWait = MIN2(lastLink->myVLinkWait, v);
2403 }
2404#ifdef DEBUG_PLAN_MOVE
2405 if (DEBUG_COND) {
2406 std::cout << "\nv = " << v << "\n";
2407
2408 }
2409#endif
2410 // XXX efficiently adapt to shadow leaders using neighAhead by iteration over the whole edge in parallel (lanechanger-style)
2411 if (myLaneChangeModel->getShadowLane() != nullptr) {
2412 // also slow down for leaders on the shadowLane relative to the current lane
2413 const MSLane* shadowLane = myLaneChangeModel->getShadowLane(leaderLane);
2414 if (shadowLane != nullptr
2415 && (MSGlobals::gLateralResolution > 0 || getLateralOverlap() > POSITION_EPS
2416 // continous lane change cannot be stopped so we must adapt to the leader on the target lane
2418 if ((&shadowLane->getEdge() == &leaderLane->getEdge() || myLaneChangeModel->isOpposite())) {
2421 // ego posLat is added when retrieving sublanes but it
2422 // should be negated (subtract twice to compensate)
2423 latOffset = ((myLane->getWidth() + shadowLane->getWidth()) * 0.5
2424 - 2 * getLateralPositionOnLane());
2425
2426 }
2427 MSLeaderInfo shadowLeaders = shadowLane->getLastVehicleInformation(this, latOffset, lane->getLength() - seen);
2428#ifdef DEBUG_PLAN_MOVE
2430 std::cout << SIMTIME << " opposite veh=" << getID() << " shadowLane=" << shadowLane->getID() << " latOffset=" << latOffset << " shadowLeaders=" << shadowLeaders.toString() << "\n";
2431 }
2432#endif
2434 // ignore oncoming vehicles on the shadow lane
2435 shadowLeaders.removeOpposite(shadowLane);
2436 }
2437 const double turningDifference = MAX2(0.0, leaderLane->getLength() - shadowLane->getLength());
2438 adaptToLeaders(shadowLeaders, latOffset, seen - turningDifference, lastLink, shadowLane, v, vLinkPass);
2439 } else if (shadowLane == myLaneChangeModel->getShadowLane() && leaderLane == myLane) {
2440 // check for leader vehicles driving in the opposite direction on the opposite-direction shadow lane
2441 // (and thus in the same direction as ego)
2442 MSLeaderDistanceInfo shadowLeaders = shadowLane->getFollowersOnConsecutive(this, myLane->getOppositePos(getPositionOnLane()), true);
2443 const double latOffset = 0;
2444#ifdef DEBUG_PLAN_MOVE
2445 if (DEBUG_COND) {
2446 std::cout << SIMTIME << " opposite shadows veh=" << getID() << " shadowLane=" << shadowLane->getID()
2447 << " latOffset=" << latOffset << " shadowLeaders=" << shadowLeaders.toString() << "\n";
2448 }
2449#endif
2450 shadowLeaders.fixOppositeGaps(true);
2451#ifdef DEBUG_PLAN_MOVE
2452 if (DEBUG_COND) {
2453 std::cout << " shadowLeadersFixed=" << shadowLeaders.toString() << "\n";
2454 }
2455#endif
2456 adaptToLeaderDistance(shadowLeaders, latOffset, seen, lastLink, v, vLinkPass);
2457 }
2458 }
2459 }
2460 // adapt to pedestrians on the same lane
2461 if (lane->getEdge().getPersons().size() > 0 && lane->hasPedestrians()) {
2462 const double relativePos = lane->getLength() - seen;
2463#ifdef DEBUG_PLAN_MOVE
2464 if (DEBUG_COND) {
2465 std::cout << SIMTIME << " adapt to pedestrians on lane=" << lane->getID() << " relPos=" << relativePos << "\n";
2466 }
2467#endif
2468 const double stopTime = MAX2(1.0, ceil(getSpeed() / cfModel.getMaxDecel()));
2469 PersonDist leader = lane->nextBlocking(relativePos,
2470 getRightSideOnLane(lane), getRightSideOnLane(lane) + getVehicleType().getWidth(), stopTime);
2471 if (leader.first != 0) {
2472 const double stopSpeed = cfModel.stopSpeed(this, getSpeed(), leader.second - getVehicleType().getMinGap());
2473 v = MIN2(v, stopSpeed);
2474#ifdef DEBUG_PLAN_MOVE
2475 if (DEBUG_COND) {
2476 std::cout << SIMTIME << " pedLeader=" << leader.first->getID() << " dist=" << leader.second << " v=" << v << "\n";
2477 }
2478#endif
2479 }
2480 }
2481 if (lane->getBidiLane() != nullptr) {
2482 // adapt to pedestrians on the bidi lane
2483 const MSLane* bidiLane = lane->getBidiLane();
2484 if (bidiLane->getEdge().getPersons().size() > 0 && bidiLane->hasPedestrians()) {
2485 const double relativePos = seen;
2486#ifdef DEBUG_PLAN_MOVE
2487 if (DEBUG_COND) {
2488 std::cout << SIMTIME << " adapt to pedestrians on lane=" << lane->getID() << " relPos=" << relativePos << "\n";
2489 }
2490#endif
2491 const double stopTime = ceil(getSpeed() / cfModel.getMaxDecel());
2492 const double leftSideOnLane = bidiLane->getWidth() - getRightSideOnLane(lane);
2493 PersonDist leader = bidiLane->nextBlocking(relativePos,
2494 leftSideOnLane - getVehicleType().getWidth(), leftSideOnLane, stopTime, true);
2495 if (leader.first != 0) {
2496 const double stopSpeed = cfModel.stopSpeed(this, getSpeed(), leader.second - getVehicleType().getMinGap());
2497 v = MIN2(v, stopSpeed);
2498#ifdef DEBUG_PLAN_MOVE
2499 if (DEBUG_COND) {
2500 std::cout << SIMTIME << " pedLeader=" << leader.first->getID() << " dist=" << leader.second << " v=" << v << "\n";
2501 }
2502#endif
2503 }
2504 }
2505 }
2506 // adapt to vehicles blocked from (urgent) lane-changing
2507 if (!opposite && lane->getEdge().hasLaneChanger()) {
2508 const double vHelp = myLaneChangeModel->getCooperativeHelpSpeed(lane, seen);
2509#ifdef DEBUG_PLAN_MOVE
2510 if (DEBUG_COND && vHelp < v) {
2511 std::cout << SIMTIME << " applying cooperativeHelpSpeed v=" << vHelp << "\n";
2512 }
2513#endif
2514 v = MIN2(v, vHelp);
2515 }
2516
2517 // process all stops and waypoints on the current edge
2518 bool foundRealStop = false;
2519 while (stopIt != myStops.end()
2520 && ((&stopIt->lane->getEdge() == &lane->getEdge())
2521 || (stopIt->isOpposite && stopIt->lane->getEdge().getOppositeEdge() == &lane->getEdge()))
2522 // ignore stops that occur later in a looped route
2523 && stopIt->edge == myCurrEdge + view) {
2524 double stopDist = std::numeric_limits<double>::max();
2525 const MSStop& stop = *stopIt;
2526 const bool isFirstStop = stopIt == myStops.begin();
2527 stopIt++;
2528 if (!stop.reached || (stop.getSpeed() > 0 && keepStopping())) {
2529 // we are approaching a stop on the edge; must not drive further
2530 bool isWaypoint = stop.getSpeed() > 0;
2531 double endPos = stop.getEndPos(*this) + NUMERICAL_EPS;
2532 if (stop.parkingarea != nullptr) {
2533 // leave enough space so parking vehicles can exit
2534 const double brakePos = getBrakeGap() + lane->getLength() - seen;
2535 endPos = stop.parkingarea->getLastFreePosWithReservation(t, *this, brakePos);
2536 } else if (isWaypoint && !stop.reached) {
2537 endPos = stop.pars.startPos;
2538 }
2539 stopDist = seen + endPos - lane->getLength();
2540#ifdef DEBUG_STOPS
2541 if (DEBUG_COND) {
2542 std::cout << SIMTIME << " veh=" << getID() << " stopDist=" << stopDist << " stopLane=" << stop.lane->getID() << " stopEndPos=" << endPos << "\n";
2543 }
2544#endif
2545 // regular stops are not emergencies
2546 double stopSpeed = laneMaxV;
2547 if (isWaypoint) {
2548 bool waypointWithStop = false;
2549 if (stop.getUntil() > t) {
2550 // check if we have to slow down or even stop
2551 SUMOTime time2end = 0;
2552 if (stop.reached) {
2553 time2end = TIME2STEPS((stop.pars.endPos - myState.myPos) / stop.getSpeed());
2554 } else {
2555 time2end = TIME2STEPS(
2556 // time to reach waypoint start
2557 stopDist / ((getSpeed() + stop.getSpeed()) / 2)
2558 // time to reach waypoint end
2559 + (stop.pars.endPos - stop.pars.startPos) / stop.getSpeed());
2560 }
2561 if (stop.getUntil() > t + time2end) {
2562 // we need to stop
2563 double distToEnd = stopDist;
2564 if (!stop.reached) {
2565 distToEnd += stop.pars.endPos - stop.pars.startPos;
2566 }
2567 stopSpeed = MAX2(cfModel.stopSpeed(this, getSpeed(), distToEnd), vMinComfortable);
2568 waypointWithStop = true;
2569 }
2570 }
2571 if (stop.reached) {
2572 stopSpeed = MIN2(stop.getSpeed(), stopSpeed);
2573 if (myState.myPos >= stop.pars.endPos && !waypointWithStop) {
2574 stopDist = std::numeric_limits<double>::max();
2575 }
2576 } else {
2577 stopSpeed = MIN2(MAX2(cfModel.freeSpeed(this, getSpeed(), stopDist, stop.getSpeed()), vMinComfortable), stopSpeed);
2578 if (!stop.reached) {
2579 stopDist += stop.pars.endPos - stop.pars.startPos;
2580 }
2581 if (lastLink != nullptr) {
2582 lastLink->adaptLeaveSpeed(cfModel.freeSpeed(this, vLinkPass, endPos, stop.getSpeed(), false, MSCFModel::CalcReason::FUTURE));
2583 }
2584 }
2585 } else {
2586 stopSpeed = MAX2(cfModel.stopSpeed(this, getSpeed(), stopDist), vMinComfortable);
2587 if (lastLink != nullptr) {
2588 lastLink->adaptLeaveSpeed(cfModel.stopSpeed(this, vLinkPass, endPos, MSCFModel::CalcReason::FUTURE));
2589 }
2590 }
2591 v = MIN2(v, stopSpeed);
2592 if (lane->isInternal()) {
2593 std::vector<MSLink*>::const_iterator exitLink = MSLane::succLinkSec(*this, view + 1, *lane, bestLaneConts);
2594 assert(!lane->isLinkEnd(exitLink));
2595 bool dummySetRequest;
2596 double dummyVLinkWait;
2597 checkLinkLeaderCurrentAndParallel(*exitLink, lane, seen, lastLink, v, vLinkPass, dummyVLinkWait, dummySetRequest);
2598 }
2599
2600#ifdef DEBUG_PLAN_MOVE
2601 if (DEBUG_COND) {
2602 std::cout << "\n" << SIMTIME << " next stop: distance = " << stopDist << " requires stopSpeed = " << stopSpeed << "\n";
2603
2604 }
2605#endif
2606 if (isFirstStop) {
2607 newStopDist = stopDist;
2608 // if the vehicle is going to stop we don't need to look further
2609 // (except for trains that make use of further link-approach registration for safety purposes)
2610 if (!isWaypoint) {
2611 planningToStop = true;
2612 if (!isRail()) {
2613 lfLinks.emplace_back(v, stopDist);
2614 foundRealStop = true;
2615 break;
2616 }
2617 }
2618 }
2619 }
2620 }
2621 if (foundRealStop) {
2622 break;
2623 }
2624
2625 // move to next lane
2626 // get the next link used
2627 std::vector<MSLink*>::const_iterator link = MSLane::succLinkSec(*this, view + 1, *lane, bestLaneConts);
2628 if (lane->isLinkEnd(link) && myLaneChangeModel->hasBlueLight() && myCurrEdge != myRoute->end() - 1) {
2629 // emergency vehicle is on the wrong lane. Obtain the link that it would use from the correct turning lane
2630 const int currentIndex = lane->getIndex();
2631 const MSLane* bestJump = nullptr;
2632 for (const LaneQ& preb : getBestLanes()) {
2633 if (preb.allowsContinuation &&
2634 (bestJump == nullptr
2635 || abs(currentIndex - preb.lane->getIndex()) < abs(currentIndex - bestJump->getIndex()))) {
2636 bestJump = preb.lane;
2637 }
2638 }
2639 if (bestJump != nullptr) {
2640 const MSEdge* nextEdge = *(myCurrEdge + 1);
2641 for (auto cand_it = bestJump->getLinkCont().begin(); cand_it != bestJump->getLinkCont().end(); cand_it++) {
2642 if (&(*cand_it)->getLane()->getEdge() == nextEdge) {
2643 link = cand_it;
2644 break;
2645 }
2646 }
2647 }
2648 }
2649
2650 // Check whether this is a turn (to save info about the next upcoming turn)
2651 if (!encounteredTurn) {
2652 if (!lane->isLinkEnd(link) && lane->getLinkCont().size() > 1) {
2653 LinkDirection linkDir = (*link)->getDirection();
2654 switch (linkDir) {
2657 break;
2658 default:
2659 nextTurn.first = seen;
2660 nextTurn.second = *link;
2661 encounteredTurn = true;
2662#ifdef DEBUG_NEXT_TURN
2663 if (DEBUG_COND) {
2664 std::cout << SIMTIME << " veh '" << getID() << "' nextTurn: " << toString(linkDir)
2665 << " at " << nextTurn.first << "m." << std::endl;
2666 }
2667#endif
2668 }
2669 }
2670 }
2671
2672 // check whether the vehicle is on its final edge
2673 if (myCurrEdge + view + 1 == myRoute->end()
2674 || (myParameter->arrivalEdge >= 0 && getRoutePosition() + view == myParameter->arrivalEdge)) {
2675 const double arrivalSpeed = (myParameter->arrivalSpeedProcedure == ArrivalSpeedDefinition::GIVEN ?
2676 myParameter->arrivalSpeed : laneMaxV);
2677 // subtract the arrival speed from the remaining distance so we get one additional driving step with arrival speed
2678 // XXX: This does not work for ballistic update refs #2579
2679 const double distToArrival = seen + myArrivalPos - lane->getLength() - SPEED2DIST(arrivalSpeed);
2680 const double va = MAX2(NUMERICAL_EPS, cfModel.freeSpeed(this, getSpeed(), distToArrival, arrivalSpeed));
2681 v = MIN2(v, va);
2682 if (lastLink != nullptr) {
2683 lastLink->adaptLeaveSpeed(va);
2684 }
2685 lfLinks.push_back(DriveProcessItem(v, seen, lane->getEdge().isFringe() ? 1000 : 0));
2686 break;
2687 }
2688 // check whether the lane or the shadowLane is a dead end (allow some leeway on intersections)
2689 if (lane->isLinkEnd(link)
2690 || (MSGlobals::gSublane && brakeForOverlap(*link, lane))
2691 || (opposite && (*link)->getViaLaneOrLane()->getParallelOpposite() == nullptr
2693 double va = cfModel.stopSpeed(this, getSpeed(), seen);
2694 if (lastLink != nullptr) {
2695 lastLink->adaptLeaveSpeed(va);
2696 }
2699 } else {
2700 v = MIN2(va, v);
2701 }
2702#ifdef DEBUG_PLAN_MOVE
2703 if (DEBUG_COND) {
2704 std::cout << " braking for link end lane=" << lane->getID() << " seen=" << seen
2705 << " overlap=" << getLateralOverlap() << " va=" << va << " committed=" << myLaneChangeModel->getCommittedSpeed() << " v=" << v << "\n";
2706
2707 }
2708#endif
2709 if (lane->isLinkEnd(link)) {
2710 lfLinks.emplace_back(v, seen);
2711 break;
2712 }
2713 }
2714 lateralShift += (*link)->getLateralShift();
2715 const bool yellowOrRed = (*link)->haveRed() || (*link)->haveYellow();
2716 // We distinguish 3 cases when determining the point at which a vehicle stops:
2717 // - allway_stop: the vehicle should stop close to the stop line but may stop at larger distance
2718 // - red/yellow light: here the vehicle 'knows' that it will have priority eventually and does not need to stop on a precise spot
2719 // - other types of minor links: the vehicle needs to stop as close to the junction as necessary
2720 // to minimize the time window for passing the junction. If the
2721 // vehicle 'decides' to accelerate and cannot enter the junction in
2722 // the next step, new foes may appear and cause a collision (see #1096)
2723 // - major links: stopping point is irrelevant
2724 double laneStopOffset;
2725 const double majorStopOffset = MAX2(getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_STOPLINE_GAP, DIST_TO_STOPLINE_EXPECT_PRIORITY), lane->getVehicleStopOffset(this));
2726 // override low desired decel at yellow and red
2727 const double stopDecel = yellowOrRed && !isRail() ? MAX2(MIN2(MSGlobals::gTLSYellowMinDecel, cfModel.getEmergencyDecel()), cfModel.getMaxDecel()) : cfModel.getMaxDecel();
2728 const double brakeDist = cfModel.brakeGap(myState.mySpeed, stopDecel, 0);
2729 const bool canBrakeBeforeLaneEnd = seen >= brakeDist;
2730 const bool canBrakeBeforeStopLine = seen - lane->getVehicleStopOffset(this) >= brakeDist;
2731 if (yellowOrRed) {
2732 // Wait at red traffic light with full distance if possible
2733 laneStopOffset = majorStopOffset;
2734 } else if ((*link)->havePriority()) {
2735 // On priority link, we should never stop below visibility distance
2736 laneStopOffset = MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, majorStopOffset);
2737 } else {
2738 double minorStopOffset = MAX2(lane->getVehicleStopOffset(this),
2739 getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_STOPLINE_CROSSING_GAP, MSPModel::SAFETY_GAP) - (*link)->getDistToFoePedCrossing());
2740#ifdef DEBUG_PLAN_MOVE
2741 if (DEBUG_COND) {
2742 std::cout << " minorStopOffset=" << minorStopOffset << " distToFoePedCrossing=" << (*link)->getDistToFoePedCrossing() << "\n";
2743 }
2744#endif
2745 if ((*link)->getState() == LINKSTATE_ALLWAY_STOP) {
2746 minorStopOffset = MAX2(minorStopOffset, getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_STOPLINE_GAP, 0));
2747 } else {
2748 minorStopOffset = MAX2(minorStopOffset, getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_STOPLINE_GAP_MINOR, 0));
2749 }
2750 // On minor link, we should likewise never stop below visibility distance
2751 laneStopOffset = MIN2((*link)->getFoeVisibilityDistance() - POSITION_EPS, minorStopOffset);
2752 }
2753#ifdef DEBUG_PLAN_MOVE
2754 if (DEBUG_COND) {
2755 std::cout << SIMTIME << " veh=" << getID() << " desired stopOffset on lane '" << lane->getID() << "' is " << laneStopOffset << "\n";
2756 }
2757#endif
2758 if (canBrakeBeforeLaneEnd) {
2759 // avoid emergency braking if possible
2760 laneStopOffset = MIN2(laneStopOffset, seen - brakeDist);
2761 }
2762 laneStopOffset = MAX2(POSITION_EPS, laneStopOffset);
2763 double stopDist = MAX2(0., seen - laneStopOffset);
2764 if (yellowOrRed && getDevice(typeid(MSDevice_GLOSA)) != nullptr
2765 && static_cast<MSDevice_GLOSA*>(getDevice(typeid(MSDevice_GLOSA)))->getOverrideSafety()
2766 && static_cast<MSDevice_GLOSA*>(getDevice(typeid(MSDevice_GLOSA)))->isSpeedAdviceActive()) {
2767 stopDist = std::numeric_limits<double>::max();
2768 }
2769 if (newStopDist != std::numeric_limits<double>::max()) {
2770 stopDist = MAX2(stopDist, newStopDist);
2771 }
2772#ifdef DEBUG_PLAN_MOVE
2773 if (DEBUG_COND) {
2774 std::cout << SIMTIME << " veh=" << getID() << " effective stopOffset on lane '" << lane->getID()
2775 << "' is " << laneStopOffset << " (-> stopDist=" << stopDist << ")" << std::endl;
2776 }
2777#endif
2778 if (isRail()
2779 && !lane->isInternal()) {
2780 // check for train direction reversal
2781 if (lane->getBidiLane() != nullptr
2782 && (*link)->getLane()->getBidiLane() == lane) {
2783 double vMustReverse = getCarFollowModel().stopSpeed(this, getSpeed(), seen - POSITION_EPS);
2784 if (seen < 1) {
2785 mustSeeBeforeReversal = 2 * seen + getLength();
2786 }
2787 v = MIN2(v, vMustReverse);
2788 }
2789 // signal that is passed in the current step does not count
2790 foundRailSignal |= ((*link)->getTLLogic() != nullptr
2791 && (*link)->getTLLogic()->getLogicType() == TrafficLightType::RAIL_SIGNAL
2792 && seen > SPEED2DIST(v));
2793 }
2794
2795 bool canReverseEventually = false;
2796 const double vReverse = checkReversal(canReverseEventually, laneMaxV, seen);
2797 v = MIN2(v, vReverse);
2798#ifdef DEBUG_PLAN_MOVE
2799 if (DEBUG_COND) {
2800 std::cout << SIMTIME << " veh=" << getID() << " canReverseEventually=" << canReverseEventually << " v=" << v << "\n";
2801 }
2802#endif
2803
2804 // check whether we need to slow down in order to finish a continuous lane change
2806 if ( // slow down to finish lane change before a turn lane
2807 ((*link)->getDirection() == LinkDirection::LEFT || (*link)->getDirection() == LinkDirection::RIGHT) ||
2808 // slow down to finish lane change before the shadow lane ends
2809 (myLaneChangeModel->getShadowLane() != nullptr &&
2810 (*link)->getViaLaneOrLane()->getParallelLane(myLaneChangeModel->getShadowDirection()) == nullptr)) {
2811 // XXX maybe this is too harsh. Vehicles could cut some corners here
2812 const double timeRemaining = STEPS2TIME(myLaneChangeModel->remainingTime());
2813 assert(timeRemaining != 0);
2814 // XXX: Euler-logic (#860), but I couldn't identify problems from this yet (Leo). Refs. #2575
2815 const double va = MAX2(cfModel.stopSpeed(this, getSpeed(), seen - POSITION_EPS),
2816 (seen - POSITION_EPS) / timeRemaining);
2817#ifdef DEBUG_PLAN_MOVE
2818 if (DEBUG_COND) {
2819 std::cout << SIMTIME << " veh=" << getID() << " slowing down to finish continuous change before"
2820 << " link=" << (*link)->getViaLaneOrLane()->getID()
2821 << " timeRemaining=" << timeRemaining
2822 << " v=" << v
2823 << " va=" << va
2824 << std::endl;
2825 }
2826#endif
2827 v = MIN2(va, v);
2828 }
2829 }
2830
2831 // - always issue a request to leave the intersection we are currently on
2832 const bool leavingCurrentIntersection = myLane->getEdge().isInternal() && lastLink == nullptr;
2833 // - do not issue a request to enter an intersection after we already slowed down for an earlier one
2834 const bool abortRequestAfterMinor = slowedDownForMinor && (*link)->getInternalLaneBefore() == nullptr;
2835 // - even if red, if we cannot break we should issue a request
2836 bool setRequest = (v > NUMERICAL_EPS_SPEED && !abortRequestAfterMinor) || (leavingCurrentIntersection);
2837
2838 double stopSpeed = cfModel.stopSpeed(this, getSpeed(), stopDist, stopDecel, MSCFModel::CalcReason::CURRENT_WAIT);
2839 double vLinkWait = MIN2(v, stopSpeed);
2840#ifdef DEBUG_PLAN_MOVE
2841 if (DEBUG_COND) {
2842 std::cout
2843 << " stopDist=" << stopDist
2844 << " stopDecel=" << stopDecel
2845 << " vLinkWait=" << vLinkWait
2846 << " brakeDist=" << brakeDist
2847 << " seen=" << seen
2848 << " leaveIntersection=" << leavingCurrentIntersection
2849 << " setRequest=" << setRequest
2850 //<< std::setprecision(16)
2851 //<< " v=" << v
2852 //<< " speedEps=" << NUMERICAL_EPS_SPEED
2853 //<< std::setprecision(gPrecision)
2854 << "\n";
2855 }
2856#endif
2857
2858 if (yellowOrRed && canBrakeBeforeStopLine && !ignoreRed(*link, canBrakeBeforeStopLine) && seen >= mustSeeBeforeReversal) {
2859 if (lane->isInternal()) {
2860 checkLinkLeaderCurrentAndParallel(*link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
2861 }
2862 // arrivalSpeed / arrivalTime when braking for red light is only relevent for rail signal switching
2863 const SUMOTime arrivalTime = getArrivalTime(t, seen, v, vLinkPass);
2864 // the vehicle is able to brake in front of a yellow/red traffic light
2865 lfLinks.push_back(DriveProcessItem(*link, v, vLinkWait, false, arrivalTime, vLinkWait, 0, seen, -1));
2866 //lfLinks.push_back(DriveProcessItem(0, vLinkWait, vLinkWait, false, 0, 0, stopDist));
2867 break;
2868 }
2869
2870 const MSLink* entryLink = (*link)->getCorrespondingEntryLink();
2871 if (entryLink->haveRed() && ignoreRed(*link, canBrakeBeforeStopLine) && STEPS2TIME(t - entryLink->getLastStateChange()) > 2) {
2872 // restrict speed when ignoring a red light
2873 const double redSpeed = MIN2(v, getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_DRIVE_RED_SPEED, v));
2874 const double va = MAX2(redSpeed, cfModel.freeSpeed(this, getSpeed(), seen, redSpeed));
2875 v = MIN2(va, v);
2876#ifdef DEBUG_PLAN_MOVE
2877 if (DEBUG_COND) std::cout
2878 << " ignoreRed spent=" << STEPS2TIME(t - (*link)->getLastStateChange())
2879 << " redSpeed=" << redSpeed
2880 << " va=" << va
2881 << " v=" << v
2882 << "\n";
2883#endif
2884 }
2885
2886 checkLinkLeaderCurrentAndParallel(*link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
2887
2888 if (lastLink != nullptr) {
2889 lastLink->adaptLeaveSpeed(laneMaxV);
2890 }
2891 double arrivalSpeed = vLinkPass;
2892 // vehicles should decelerate when approaching a minor link
2893 // - unless they are close enough to have clear visibility of all relevant foe lanes and may start to accelerate again
2894 // - and unless they are so close that stopping is impossible (i.e. when a green light turns to yellow when close to the junction)
2895
2896 // whether the vehicle/driver is close enough to the link to see all possible foes #2123
2897 const double visibilityDistance = (*link)->getFoeVisibilityDistance();
2898 const double determinedFoePresence = seen <= visibilityDistance;
2899// // VARIANT: account for time needed to recognize whether relevant vehicles are on the foe lanes. (Leo)
2900// double foeRecognitionTime = 0.0;
2901// double determinedFoePresence = seen < visibilityDistance - myState.mySpeed*foeRecognitionTime;
2902
2903#ifdef DEBUG_PLAN_MOVE
2904 if (DEBUG_COND) {
2905 std::cout << " approaching link=" << (*link)->getViaLaneOrLane()->getID() << " prio=" << (*link)->havePriority() << " seen=" << seen << " visibilityDistance=" << visibilityDistance << " brakeDist=" << brakeDist << "\n";
2906 }
2907#endif
2908
2909 const bool couldBrakeForMinor = !(*link)->havePriority() && brakeDist < seen && !(*link)->lastWasContMajor();
2910 if (couldBrakeForMinor && !determinedFoePresence) {
2911 // vehicle decelerates just enough to be able to stop if necessary and then accelerates
2912 double maxSpeedAtVisibilityDist = cfModel.maximumSafeStopSpeed(visibilityDistance, cfModel.getMaxDecel(), myState.mySpeed, false, 0., false);
2913 // XXX: estimateSpeedAfterDistance does not use euler-logic (thus returns a lower value than possible here...)
2914 double maxArrivalSpeed = cfModel.estimateSpeedAfterDistance(visibilityDistance, maxSpeedAtVisibilityDist, cfModel.getMaxAccel());
2915 arrivalSpeed = MIN2(vLinkPass, maxArrivalSpeed);
2916 slowedDownForMinor = true;
2917#ifdef DEBUG_PLAN_MOVE
2918 if (DEBUG_COND) {
2919 std::cout << " slowedDownForMinor maxSpeedAtVisDist=" << maxSpeedAtVisibilityDist << " maxArrivalSpeed=" << maxArrivalSpeed << " arrivalSpeed=" << arrivalSpeed << "\n";
2920 }
2921#endif
2922 } else if ((*link)->getState() == LINKSTATE_EQUAL && myWaitingTime > 0) {
2923 // check for deadlock (circular yielding)
2924 //std::cout << SIMTIME << " veh=" << getID() << " check rbl-deadlock\n";
2925 std::pair<const SUMOVehicle*, const MSLink*> blocker = (*link)->getFirstApproachingFoe(*link);
2926 //std::cout << " blocker=" << Named::getIDSecure(blocker.first) << "\n";
2927 int n = 100;
2928 while (blocker.second != nullptr && blocker.second != *link && n > 0) {
2929 blocker = blocker.second->getFirstApproachingFoe(*link);
2930 n--;
2931 //std::cout << " blocker=" << Named::getIDSecure(blocker.first) << "\n";
2932 }
2933 if (n == 0) {
2934 WRITE_WARNINGF(TL("Suspicious right_before_left junction '%'."), lane->getEdge().getToJunction()->getID());
2935 }
2936 //std::cout << " blockerLink=" << blocker.second << " link=" << *link << "\n";
2937 if (blocker.second == *link) {
2938 const double threshold = (*link)->getDirection() == LinkDirection::STRAIGHT ? 0.25 : 0.75;
2939 if (RandHelper::rand(getRNG()) < threshold) {
2940 //std::cout << " abort request, threshold=" << threshold << "\n";
2941 setRequest = false;
2942 }
2943 }
2944 }
2945
2946 const SUMOTime arrivalTime = getArrivalTime(t, seen, v, arrivalSpeed);
2947 if (couldBrakeForMinor && determinedFoePresence && (*link)->getLane()->getEdge().isRoundabout()) {
2948 const bool wasOpened = (*link)->opened(arrivalTime, arrivalSpeed, arrivalSpeed,
2950 getCarFollowModel().getMaxDecel(),
2952 nullptr, false, this);
2953 if (!wasOpened) {
2954 slowedDownForMinor = true;
2955 }
2956#ifdef DEBUG_PLAN_MOVE
2957 if (DEBUG_COND) {
2958 std::cout << " slowedDownForMinor at roundabout=" << (!wasOpened) << "\n";
2959 }
2960#endif
2961 }
2962
2963 // compute arrival speed and arrival time if vehicle starts braking now
2964 // if stopping is possible, arrivalTime can be arbitrarily large. A small value keeps fractional times (impatience) meaningful
2965 double arrivalSpeedBraking = 0;
2966 const double bGap = cfModel.brakeGap(v);
2967 if (seen < bGap && !isStopped() && !planningToStop) { // XXX: should this use the current speed (at least for the ballistic case)? (Leo) Refs. #2575
2968 // vehicle cannot come to a complete stop in time
2970 arrivalSpeedBraking = cfModel.getMinimalArrivalSpeedEuler(seen, v);
2971 // due to discrete/continuous mismatch (when using Euler update) we have to ensure that braking actually helps
2972 arrivalSpeedBraking = MIN2(arrivalSpeedBraking, arrivalSpeed);
2973 } else {
2974 arrivalSpeedBraking = cfModel.getMinimalArrivalSpeed(seen, myState.mySpeed);
2975 }
2976 }
2977
2978 // estimate leave speed for passing time computation
2979 // l=linkLength, a=accel, t=continuousTime, v=vLeave
2980 // l=v*t + 0.5*a*t^2, solve for t and multiply with a, then add v
2981 const double estimatedLeaveSpeed = MIN2((*link)->getViaLaneOrLane()->getVehicleMaxSpeed(this, maxVD),
2982 getCarFollowModel().estimateSpeedAfterDistance((*link)->getLength(), arrivalSpeed, getVehicleType().getCarFollowModel().getMaxAccel()));
2983 lfLinks.push_back(DriveProcessItem(*link, v, vLinkWait, setRequest,
2984 arrivalTime, arrivalSpeed,
2985 arrivalSpeedBraking,
2986 seen, estimatedLeaveSpeed));
2987 if ((*link)->getViaLane() == nullptr) {
2988 hadNonInternal = true;
2989 ++view;
2990 }
2991#ifdef DEBUG_PLAN_MOVE
2992 if (DEBUG_COND) {
2993 std::cout << " checkAbort setRequest=" << setRequest << " v=" << v << " seen=" << seen << " dist=" << dist
2994 << " seenNonInternal=" << seenNonInternal
2995 << " seenInternal=" << seenInternal << " length=" << vehicleLength << "\n";
2996 }
2997#endif
2998 // we need to look ahead far enough to see available space for checkRewindLinkLanes
2999 if ((!setRequest || v <= 0 || seen > dist) && hadNonInternal && seenNonInternal > MAX2(vehicleLength * CRLL_LOOK_AHEAD, vehicleLength + seenInternal) && foundRailSignal) {
3000 break;
3001 }
3002 // get the following lane
3003 lane = (*link)->getViaLaneOrLane();
3004 laneMaxV = lane->getVehicleMaxSpeed(this, maxVD);
3006 laneMaxV = std::numeric_limits<double>::max();
3007 }
3008 // the link was passed
3009 // compute the velocity to use when the link is not blocked by other vehicles
3010 // the vehicle shall be not faster when reaching the next lane than allowed
3011 // speed limits are not emergencies (e.g. when the limit changes suddenly due to TraCI or a variableSpeedSignal)
3012 const double va = MAX2(cfModel.freeSpeed(this, getSpeed(), seen, laneMaxV), vMinComfortable);
3013 v = MIN2(va, v);
3014#ifdef DEBUG_PLAN_MOVE
3015 if (DEBUG_COND) {
3016 std::cout << " laneMaxV=" << laneMaxV << " freeSpeed=" << va << " v=" << v << "\n";
3017 }
3018#endif
3019 if (lane->getEdge().isInternal()) {
3020 seenInternal += lane->getLength();
3021 } else {
3022 seenNonInternal += lane->getLength();
3023 }
3024 // do not restrict results to the current vehicle to allow caching for the current time step
3025 leaderLane = opposite ? lane->getParallelOpposite() : lane;
3026 if (leaderLane == nullptr) {
3027
3028 break;
3029 }
3030 ahead = opposite ? MSLeaderInfo(leaderLane->getWidth()) : leaderLane->getLastVehicleInformation(nullptr, 0);
3031 seen += lane->getLength();
3032 vLinkPass = MIN2(cfModel.estimateSpeedAfterDistance(lane->getLength(), v, cfModel.getMaxAccel()), laneMaxV); // upper bound
3033 lastLink = &lfLinks.back();
3034 }
3035
3036//#ifdef DEBUG_PLAN_MOVE
3037// if(DEBUG_COND){
3038// std::cout << "planMoveInternal found safe speed v = " << v << std::endl;
3039// }
3040//#endif
3041
3042#ifdef PARALLEL_STOPWATCH
3043 myLane->getStopWatch()[0].stop();
3044#endif
3045}
3046
3047
3048double
3049MSVehicle::slowDownForSchedule(double vMinComfortable) const {
3050 const double sfp = getVehicleType().getParameter().speedFactorPremature;
3051 const MSStop& stop = myStops.front();
3052 std::pair<double, double> timeDist = estimateTimeToNextStop();
3053 double arrivalDelay = SIMTIME + timeDist.first - STEPS2TIME(stop.pars.arrival);
3054 double t = STEPS2TIME(stop.pars.arrival - SIMSTEP);
3057 arrivalDelay += STEPS2TIME(stop.pars.arrival - flexStart);
3058 t = STEPS2TIME(flexStart - SIMSTEP);
3059 } else if (stop.pars.started >= 0 && MSGlobals::gUseStopStarted) {
3060 arrivalDelay += STEPS2TIME(stop.pars.arrival - stop.pars.started);
3061 t = STEPS2TIME(stop.pars.started - SIMSTEP);
3062 }
3063 if (arrivalDelay < 0 && sfp < getChosenSpeedFactor()) {
3064 // we can slow down to better match the schedule (and increase energy efficiency)
3065 const double vSlowDownMin = MAX2(myLane->getSpeedLimit() * sfp, vMinComfortable);
3066 const double s = timeDist.second;
3067 const double b = getCarFollowModel().getMaxDecel();
3068 // x = speed for arriving in t seconds
3069 // u = time at full speed
3070 // u * x + (t - u) * 0.5 * x = s
3071 // t - u = x / b
3072 // eliminate u, solve x
3073 const double radicand = 4 * t * t * b * b - 8 * s * b;
3074 const double x = radicand >= 0 ? t * b - sqrt(radicand) * 0.5 : vSlowDownMin;
3075 double vSlowDown = x < vSlowDownMin ? vSlowDownMin : x;
3076#ifdef DEBUG_PLAN_MOVE
3077 if (DEBUG_COND) {
3078 std::cout << SIMTIME << " veh=" << getID() << " ad=" << arrivalDelay << " t=" << t << " vsm=" << vSlowDownMin
3079 << " r=" << radicand << " vs=" << vSlowDown << "\n";
3080 }
3081#endif
3082 return vSlowDown;
3083 } else if (arrivalDelay > 0 && sfp > getChosenSpeedFactor()) {
3084 // in principle we could up to catch up with the schedule
3085 // but at this point we can only lower the speed, the
3086 // information would have to be used when computing getVehicleMaxSpeed
3087 }
3088 return getMaxSpeed();
3089}
3090
3092MSVehicle::getArrivalTime(SUMOTime t, double seen, double v, double arrivalSpeed) const {
3093 const MSCFModel& cfModel = getCarFollowModel();
3094 SUMOTime arrivalTime;
3096 // @note intuitively it would make sense to compare arrivalSpeed with getSpeed() instead of v
3097 // however, due to the current position update rule (ticket #860) the vehicle moves with v in this step
3098 // subtract DELTA_T because t is the time at the end of this step and the movement is not carried out yet
3099 arrivalTime = t - DELTA_T + cfModel.getMinimalArrivalTime(seen, v, arrivalSpeed);
3100 } else {
3101 arrivalTime = t - DELTA_T + cfModel.getMinimalArrivalTime(seen, myState.mySpeed, arrivalSpeed);
3102 }
3103 if (isStopped()) {
3104 arrivalTime += MAX2((SUMOTime)0, myStops.front().duration);
3105 }
3106 return arrivalTime;
3107}
3108
3109
3110void
3111MSVehicle::adaptToLeaders(const MSLeaderInfo& ahead, double latOffset,
3112 const double seen, DriveProcessItem* const lastLink,
3113 const MSLane* const lane, double& v, double& vLinkPass) const {
3114 int rightmost;
3115 int leftmost;
3116 ahead.getSubLanes(this, latOffset, rightmost, leftmost);
3117#ifdef DEBUG_PLAN_MOVE
3118 if (DEBUG_COND) std::cout << SIMTIME
3119 << "\nADAPT_TO_LEADERS\nveh=" << getID()
3120 << " lane=" << lane->getID()
3121 << " latOffset=" << latOffset
3122 << " rm=" << rightmost
3123 << " lm=" << leftmost
3124 << " shift=" << ahead.getSublaneOffset()
3125 << " ahead=" << ahead.toString()
3126 << "\n";
3127#endif
3128 /*
3129 if (myLaneChangeModel->getCommittedSpeed() > 0) {
3130 v = MIN2(v, myLaneChangeModel->getCommittedSpeed());
3131 vLinkPass = MIN2(vLinkPass, myLaneChangeModel->getCommittedSpeed());
3132 #ifdef DEBUG_PLAN_MOVE
3133 if (DEBUG_COND) std::cout << " hasCommitted=" << myLaneChangeModel->getCommittedSpeed() << "\n";
3134 #endif
3135 return;
3136 }
3137 */
3138 for (int sublane = rightmost; sublane <= leftmost; ++sublane) {
3139 const MSVehicle* pred = ahead[sublane];
3140 if (pred != nullptr && pred != this) {
3141 // @todo avoid multiple adaptations to the same leader
3142 const double predBack = pred->getBackPositionOnLane(lane);
3143 double gap = (lastLink == nullptr
3144 ? predBack - myState.myPos - getVehicleType().getMinGap()
3145 : predBack + seen - lane->getLength() - getVehicleType().getMinGap());
3146 bool oncoming = false;
3148 if (pred->getLaneChangeModel().isOpposite() || lane == pred->getLaneChangeModel().getShadowLane()) {
3149 // ego might and leader are driving against lane
3150 gap = (lastLink == nullptr
3151 ? myState.myPos - predBack - getVehicleType().getMinGap()
3152 : predBack + seen - lane->getLength() - getVehicleType().getMinGap());
3153 } else {
3154 // ego and leader are driving in the same direction as lane (shadowlane for ego)
3155 gap = (lastLink == nullptr
3156 ? predBack - (myLane->getLength() - myState.myPos) - getVehicleType().getMinGap()
3157 : predBack + seen - lane->getLength() - getVehicleType().getMinGap());
3158 }
3159 } else if (pred->getLaneChangeModel().isOpposite() && pred->getLaneChangeModel().getShadowLane() != lane) {
3160 // must react to stopped / dangerous oncoming vehicles
3161 gap += -pred->getVehicleType().getLength() + getVehicleType().getMinGap() - MAX2(getVehicleType().getMinGap(), pred->getVehicleType().getMinGap());
3162 // try to avoid collision in the next second
3163 const double predMaxDist = pred->getSpeed() + pred->getCarFollowModel().getMaxAccel();
3164#ifdef DEBUG_PLAN_MOVE
3165 if (DEBUG_COND) {
3166 std::cout << " fixedGap=" << gap << " predMaxDist=" << predMaxDist << "\n";
3167 }
3168#endif
3169 if (gap < predMaxDist + getSpeed() || pred->getLane() == lane->getBidiLane()) {
3170 gap -= predMaxDist;
3171 }
3172 } else if (pred->getLane() == lane->getBidiLane()) {
3173 gap -= pred->getVehicleType().getLengthWithGap();
3174 oncoming = true;
3175 }
3176#ifdef DEBUG_PLAN_MOVE
3177 if (DEBUG_COND) {
3178 std::cout << " pred=" << pred->getID() << " predLane=" << pred->getLane()->getID() << " predPos=" << pred->getPositionOnLane() << " gap=" << gap << " predBack=" << predBack << " seen=" << seen << " lane=" << lane->getID() << " myLane=" << myLane->getID() << " lastLink=" << (lastLink == nullptr ? "NULL" : lastLink->myLink->getDescription()) << " oncoming=" << oncoming << "\n";
3179 }
3180#endif
3181 if (oncoming && gap >= 0) {
3182 adaptToOncomingLeader(std::make_pair(pred, gap), lastLink, v, vLinkPass);
3183 } else {
3184 adaptToLeader(std::make_pair(pred, gap), seen, lastLink, v, vLinkPass);
3185 }
3186 }
3187 }
3188}
3189
3190void
3192 double seen,
3193 DriveProcessItem* const lastLink,
3194 double& v, double& vLinkPass) const {
3195 int rightmost;
3196 int leftmost;
3197 ahead.getSubLanes(this, latOffset, rightmost, leftmost);
3198#ifdef DEBUG_PLAN_MOVE
3199 if (DEBUG_COND) std::cout << SIMTIME
3200 << "\nADAPT_TO_LEADERS_DISTANCE\nveh=" << getID()
3201 << " latOffset=" << latOffset
3202 << " rm=" << rightmost
3203 << " lm=" << leftmost
3204 << " ahead=" << ahead.toString()
3205 << "\n";
3206#endif
3207 for (int sublane = rightmost; sublane <= leftmost; ++sublane) {
3208 CLeaderDist predDist = ahead[sublane];
3209 const MSVehicle* pred = predDist.first;
3210 if (pred != nullptr && pred != this) {
3211#ifdef DEBUG_PLAN_MOVE
3212 if (DEBUG_COND) {
3213 std::cout << " pred=" << pred->getID() << " predLane=" << pred->getLane()->getID() << " predPos=" << pred->getPositionOnLane() << " gap=" << predDist.second << "\n";
3214 }
3215#endif
3216 adaptToLeader(predDist, seen, lastLink, v, vLinkPass);
3217 }
3218 }
3219}
3220
3221
3222void
3223MSVehicle::adaptToLeader(const std::pair<const MSVehicle*, double> leaderInfo,
3224 double seen,
3225 DriveProcessItem* const lastLink,
3226 double& v, double& vLinkPass) const {
3227 if (leaderInfo.first != 0) {
3228 if (ignoreFoe(leaderInfo.first)) {
3229#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3230 if (DEBUG_COND) {
3231 std::cout << " foe ignored\n";
3232 }
3233#endif
3234 return;
3235 }
3236 const MSCFModel& cfModel = getCarFollowModel();
3237 double vsafeLeader = 0;
3239 vsafeLeader = -std::numeric_limits<double>::max();
3240 }
3241 bool backOnRoute = true;
3242 if (leaderInfo.second < 0 && lastLink != nullptr && lastLink->myLink != nullptr) {
3243 backOnRoute = false;
3244 // this can either be
3245 // a) a merging situation (leader back is is not our route) or
3246 // b) a minGap violation / collision
3247 MSLane* current = lastLink->myLink->getViaLaneOrLane();
3248 if (leaderInfo.first->getBackLane() == current) {
3249 backOnRoute = true;
3250 } else {
3251 for (MSLane* lane : getBestLanesContinuation()) {
3252 if (lane == current) {
3253 break;
3254 }
3255 if (leaderInfo.first->getBackLane() == lane) {
3256 backOnRoute = true;
3257 }
3258 }
3259 }
3260#ifdef DEBUG_PLAN_MOVE
3261 if (DEBUG_COND) {
3262 std::cout << SIMTIME << " current=" << current->getID() << " leaderBackLane=" << leaderInfo.first->getBackLane()->getID() << " backOnRoute=" << backOnRoute << "\n";
3263 }
3264#endif
3265 if (!backOnRoute) {
3266 double stopDist = seen - current->getLength() - POSITION_EPS;
3267 if (lastLink->myLink->getInternalLaneBefore() != nullptr) {
3268 // do not drive onto the junction conflict area
3269 stopDist -= lastLink->myLink->getInternalLaneBefore()->getLength();
3270 }
3271 vsafeLeader = cfModel.stopSpeed(this, getSpeed(), stopDist);
3272 }
3273 }
3274 if (backOnRoute) {
3275 vsafeLeader = cfModel.followSpeed(this, getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3276 }
3277 if (lastLink != nullptr) {
3278 const double futureVSafe = cfModel.followSpeed(this, lastLink->accelV, leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first, MSCFModel::CalcReason::FUTURE);
3279 lastLink->adaptLeaveSpeed(futureVSafe);
3280#ifdef DEBUG_PLAN_MOVE
3281 if (DEBUG_COND) {
3282 std::cout << " vlinkpass=" << lastLink->myVLinkPass << " futureVSafe=" << futureVSafe << "\n";
3283 }
3284#endif
3285 }
3286 v = MIN2(v, vsafeLeader);
3287 vLinkPass = MIN2(vLinkPass, vsafeLeader);
3288#ifdef DEBUG_PLAN_MOVE
3289 if (DEBUG_COND) std::cout
3290 << SIMTIME
3291 //std::cout << std::setprecision(10);
3292 << " veh=" << getID()
3293 << " lead=" << leaderInfo.first->getID()
3294 << " leadSpeed=" << leaderInfo.first->getSpeed()
3295 << " gap=" << leaderInfo.second
3296 << " leadLane=" << leaderInfo.first->getLane()->getID()
3297 << " predPos=" << leaderInfo.first->getPositionOnLane()
3298 << " myLane=" << myLane->getID()
3299 << " v=" << v
3300 << " vSafeLeader=" << vsafeLeader
3301 << " vLinkPass=" << vLinkPass
3302 << "\n";
3303#endif
3304 }
3305}
3306
3307
3308void
3309MSVehicle::adaptToJunctionLeader(const std::pair<const MSVehicle*, double> leaderInfo,
3310 const double seen, DriveProcessItem* const lastLink,
3311 const MSLane* const lane, double& v, double& vLinkPass,
3312 double distToCrossing) const {
3313 if (leaderInfo.first != 0) {
3314 if (ignoreFoe(leaderInfo.first)) {
3315#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3316 if (DEBUG_COND) {
3317 std::cout << " junction foe ignored\n";
3318 }
3319#endif
3320 return;
3321 }
3322 const MSCFModel& cfModel = getCarFollowModel();
3323 double vsafeLeader = 0;
3325 vsafeLeader = -std::numeric_limits<double>::max();
3326 }
3327 if (leaderInfo.second >= 0) {
3328 if (hasDeparted()) {
3329 vsafeLeader = cfModel.followSpeed(this, getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3330 } else {
3331 // called in the context of MSLane::isInsertionSuccess
3332 vsafeLeader = cfModel.insertionFollowSpeed(this, getSpeed(), leaderInfo.second, leaderInfo.first->getSpeed(), leaderInfo.first->getCurrentApparentDecel(), leaderInfo.first);
3333 }
3334 } else if (leaderInfo.first != this) {
3335 // the leading, in-lapping vehicle is occupying the complete next lane
3336 // stop before entering this lane
3337 vsafeLeader = cfModel.stopSpeed(this, getSpeed(), seen - lane->getLength() - POSITION_EPS);
3338#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3339 if (DEBUG_COND) {
3340 std::cout << SIMTIME << " veh=" << getID() << " stopping before junction: lane=" << lane->getID() << " seen=" << seen
3341 << " laneLength=" << lane->getLength()
3342 << " stopDist=" << seen - lane->getLength() - POSITION_EPS
3343 << " vsafeLeader=" << vsafeLeader
3344 << " distToCrossing=" << distToCrossing
3345 << "\n";
3346 }
3347#endif
3348 }
3349 if (distToCrossing >= 0) {
3350 // can the leader still stop in the way?
3351 const double vStop = cfModel.stopSpeed(this, getSpeed(), distToCrossing - getVehicleType().getMinGap());
3352 if (leaderInfo.first == this) {
3353 // braking for pedestrian
3354 const double vStopCrossing = cfModel.stopSpeed(this, getSpeed(), distToCrossing);
3355 vsafeLeader = vStopCrossing;
3356#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3357 if (DEBUG_COND) {
3358 std::cout << " breaking for pedestrian distToCrossing=" << distToCrossing << " vStopCrossing=" << vStopCrossing << "\n";
3359 }
3360#endif
3361 if (lastLink != nullptr) {
3362 lastLink->adaptStopSpeed(vsafeLeader);
3363 }
3364 } else if (leaderInfo.second == -std::numeric_limits<double>::max()) {
3365 // drive up to the crossing point and stop
3366#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3367 if (DEBUG_COND) {
3368 std::cout << " stop at crossing point for critical leader vStop=" << vStop << "\n";
3369 };
3370#endif
3371 vsafeLeader = MAX2(vsafeLeader, vStop);
3372 } else {
3373 const double leaderDistToCrossing = distToCrossing - leaderInfo.second;
3374 // estimate the time at which the leader has gone past the crossing point
3375 const double leaderPastCPTime = leaderDistToCrossing / MAX2(leaderInfo.first->getSpeed(), SUMO_const_haltingSpeed);
3376 // reach distToCrossing after that time
3377 // avgSpeed * leaderPastCPTime = distToCrossing
3378 // ballistic: avgSpeed = (getSpeed + vFinal) / 2
3379 const double vFinal = MAX2(getSpeed(), 2 * (distToCrossing - getVehicleType().getMinGap()) / leaderPastCPTime - getSpeed());
3380 const double v2 = getSpeed() + ACCEL2SPEED((vFinal - getSpeed()) / leaderPastCPTime);
3381 vsafeLeader = MAX2(vsafeLeader, MIN2(v2, vStop));
3382#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3383 if (DEBUG_COND) {
3384 std::cout << " driving up to the crossing point (distToCrossing=" << distToCrossing << ")"
3385 << " leaderPastCPTime=" << leaderPastCPTime
3386 << " vFinal=" << vFinal
3387 << " v2=" << v2
3388 << " vStop=" << vStop
3389 << " vsafeLeader=" << vsafeLeader << "\n";
3390 }
3391#endif
3392 }
3393 }
3394 if (lastLink != nullptr) {
3395 lastLink->adaptLeaveSpeed(vsafeLeader);
3396 }
3397 v = MIN2(v, vsafeLeader);
3398 vLinkPass = MIN2(vLinkPass, vsafeLeader);
3399#ifdef DEBUG_PLAN_MOVE
3400 if (DEBUG_COND) std::cout
3401 << SIMTIME
3402 //std::cout << std::setprecision(10);
3403 << " veh=" << getID()
3404 << " lead=" << leaderInfo.first->getID()
3405 << " leadSpeed=" << leaderInfo.first->getSpeed()
3406 << " gap=" << leaderInfo.second
3407 << " leadLane=" << leaderInfo.first->getLane()->getID()
3408 << " predPos=" << leaderInfo.first->getPositionOnLane()
3409 << " seen=" << seen
3410 << " lane=" << lane->getID()
3411 << " myLane=" << myLane->getID()
3412 << " dTC=" << distToCrossing
3413 << " v=" << v
3414 << " vSafeLeader=" << vsafeLeader
3415 << " vLinkPass=" << vLinkPass
3416 << "\n";
3417#endif
3418 }
3419}
3420
3421
3422void
3423MSVehicle::adaptToOncomingLeader(const std::pair<const MSVehicle*, double> leaderInfo,
3424 DriveProcessItem* const lastLink,
3425 double& v, double& vLinkPass) const {
3426 if (leaderInfo.first != 0) {
3427 if (ignoreFoe(leaderInfo.first)) {
3428#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3429 if (DEBUG_COND) {
3430 std::cout << " oncoming foe ignored\n";
3431 }
3432#endif
3433 return;
3434 }
3435 const MSCFModel& cfModel = getCarFollowModel();
3436 const MSVehicle* lead = leaderInfo.first;
3437 const MSCFModel& cfModelL = lead->getCarFollowModel();
3438 // assume the leader reacts symmetrically (neither stopping instantly nor ignoring ego)
3439 const double leaderBrakeGap = cfModelL.brakeGap(lead->getSpeed(), cfModelL.getMaxDecel(), 0);
3440 const double egoBrakeGap = cfModel.brakeGap(getSpeed(), cfModel.getMaxDecel(), 0);
3441 const double gapSum = leaderBrakeGap + egoBrakeGap;
3442 // ensure that both vehicles can leave an intersection if they are currently on it
3443 double egoExit = getDistanceToLeaveJunction();
3444 const double leaderExit = lead->getDistanceToLeaveJunction();
3445 double gap = leaderInfo.second;
3446 if (egoExit + leaderExit < gap) {
3447 gap -= egoExit + leaderExit;
3448 } else {
3449 egoExit = 0;
3450 }
3451 // split any distance in excess of brakeGaps evenly
3452 const double freeGap = MAX2(0.0, gap - gapSum);
3453 const double splitGap = MIN2(gap, gapSum);
3454 // assume remaining distance is allocated in proportion to braking distance
3455 const double gapRatio = gapSum > 0 ? egoBrakeGap / gapSum : 0.5;
3456 const double vsafeLeader = cfModel.stopSpeed(this, getSpeed(), splitGap * gapRatio + egoExit + 0.5 * freeGap);
3457 if (lastLink != nullptr) {
3458 const double futureVSafe = cfModel.stopSpeed(this, lastLink->accelV, leaderInfo.second, MSCFModel::CalcReason::FUTURE);
3459 lastLink->adaptLeaveSpeed(futureVSafe);
3460#ifdef DEBUG_PLAN_MOVE
3461 if (DEBUG_COND) {
3462 std::cout << " vlinkpass=" << lastLink->myVLinkPass << " futureVSafe=" << futureVSafe << "\n";
3463 }
3464#endif
3465 }
3466 v = MIN2(v, vsafeLeader);
3467 vLinkPass = MIN2(vLinkPass, vsafeLeader);
3468#ifdef DEBUG_PLAN_MOVE
3469 if (DEBUG_COND) std::cout
3470 << SIMTIME
3471 //std::cout << std::setprecision(10);
3472 << " veh=" << getID()
3473 << " oncomingLead=" << lead->getID()
3474 << " leadSpeed=" << lead->getSpeed()
3475 << " gap=" << leaderInfo.second
3476 << " gap2=" << gap
3477 << " gapRatio=" << gapRatio
3478 << " leadLane=" << lead->getLane()->getID()
3479 << " predPos=" << lead->getPositionOnLane()
3480 << " myLane=" << myLane->getID()
3481 << " v=" << v
3482 << " vSafeLeader=" << vsafeLeader
3483 << " vLinkPass=" << vLinkPass
3484 << "\n";
3485#endif
3486 }
3487}
3488
3489
3490void
3491MSVehicle::checkLinkLeaderCurrentAndParallel(const MSLink* link, const MSLane* lane, double seen,
3492 DriveProcessItem* const lastLink, double& v, double& vLinkPass, double& vLinkWait, bool& setRequest) const {
3494 // we want to pass the link but need to check for foes on internal lanes
3495 checkLinkLeader(link, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest);
3496 if (myLaneChangeModel->getShadowLane() != nullptr) {
3497 const MSLink* const parallelLink = link->getParallelLink(myLaneChangeModel->getShadowDirection());
3498 if (parallelLink != nullptr) {
3499 checkLinkLeader(parallelLink, lane, seen, lastLink, v, vLinkPass, vLinkWait, setRequest, true);
3500 }
3501 }
3502 }
3503
3504}
3505
3506void
3507MSVehicle::checkLinkLeader(const MSLink* link, const MSLane* lane, double seen,
3508 DriveProcessItem* const lastLink, double& v, double& vLinkPass, double& vLinkWait, bool& setRequest,
3509 bool isShadowLink) const {
3510#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3511 if (DEBUG_COND) {
3512 gDebugFlag1 = true; // See MSLink::getLeaderInfo
3513 }
3514#endif
3515 const MSLink::LinkLeaders linkLeaders = link->getLeaderInfo(this, seen, nullptr, isShadowLink);
3516#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3517 if (DEBUG_COND) {
3518 gDebugFlag1 = false; // See MSLink::getLeaderInfo
3519 }
3520#endif
3521 for (MSLink::LinkLeaders::const_iterator it = linkLeaders.begin(); it != linkLeaders.end(); ++it) {
3522 // the vehicle to enter the junction first has priority
3523 const MSVehicle* leader = (*it).vehAndGap.first;
3524 if (leader == nullptr) {
3525 // leader is a pedestrian. Passing 'this' as a dummy.
3526#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3527 if (DEBUG_COND) {
3528 std::cout << SIMTIME << " veh=" << getID() << " is blocked on link to " << link->getViaLaneOrLane()->getID() << " by pedestrian. dist=" << it->distToCrossing << "\n";
3529 }
3530#endif
3533#ifdef DEBUG_PLAN_MOVE
3534 if (DEBUG_COND) {
3535 std::cout << SIMTIME << " veh=" << getID() << " is ignoring pedestrian (jmIgnoreJunctionFoeProb)\n";
3536 }
3537#endif
3538 continue;
3539 }
3540 adaptToJunctionLeader(std::make_pair(this, -1), seen, lastLink, lane, v, vLinkPass, it->distToCrossing);
3541 // if blocked by a pedestrian for too long we must yield our request
3543 setRequest = false;
3544#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3545 if (DEBUG_COND) {
3546 std::cout << " aborting request\n";
3547 }
3548#endif
3549 }
3550 } else if (isLeader(link, leader, (*it).vehAndGap.second) || (*it).inTheWay()) {
3553#ifdef DEBUG_PLAN_MOVE
3554 if (DEBUG_COND) {
3555 std::cout << SIMTIME << " veh=" << getID() << " is ignoring linkLeader=" << leader->getID() << " (jmIgnoreJunctionFoeProb)\n";
3556 }
3557#endif
3558 continue;
3559 }
3561 // sibling link (XXX: could also be partial occupator where this check fails)
3562 &leader->getLane()->getEdge() == &lane->getEdge()) {
3563 // check for sublane obstruction (trivial for sibling link leaders)
3564 const MSLane* conflictLane = link->getInternalLaneBefore();
3565 MSLeaderInfo linkLeadersAhead = MSLeaderInfo(conflictLane->getWidth());
3566 linkLeadersAhead.addLeader(leader, false, 0); // assume sibling lane has the same geometry as the leader lane
3567 const double latOffset = isShadowLink ? (getLane()->getRightSideOnEdge() - myLaneChangeModel->getShadowLane()->getRightSideOnEdge()) : 0;
3568 // leader is neither on lane nor conflictLane (the conflict is only established geometrically)
3569 adaptToLeaders(linkLeadersAhead, latOffset, seen, lastLink, leader->getLane(), v, vLinkPass);
3570#ifdef DEBUG_PLAN_MOVE
3571 if (DEBUG_COND) {
3572 std::cout << SIMTIME << " veh=" << getID()
3573 << " siblingFoe link=" << link->getViaLaneOrLane()->getID()
3574 << " isShadowLink=" << isShadowLink
3575 << " lane=" << lane->getID()
3576 << " foe=" << leader->getID()
3577 << " foeLane=" << leader->getLane()->getID()
3578 << " latOffset=" << latOffset
3579 << " latOffsetFoe=" << leader->getLatOffset(lane)
3580 << " linkLeadersAhead=" << linkLeadersAhead.toString()
3581 << "\n";
3582 }
3583#endif
3584 } else {
3585#ifdef DEBUG_PLAN_MOVE
3586 if (DEBUG_COND) {
3587 std::cout << SIMTIME << " veh=" << getID() << " linkLeader=" << leader->getID() << " gap=" << it->vehAndGap.second
3588 << " ET=" << myJunctionEntryTime << " lET=" << leader->myJunctionEntryTime
3589 << " ETN=" << myJunctionEntryTimeNeverYield << " lETN=" << leader->myJunctionEntryTimeNeverYield
3590 << " CET=" << myJunctionConflictEntryTime << " lCET=" << leader->myJunctionConflictEntryTime
3591 << "\n";
3592 }
3593#endif
3594 adaptToJunctionLeader(it->vehAndGap, seen, lastLink, lane, v, vLinkPass, it->distToCrossing);
3595 }
3596 if (lastLink != nullptr) {
3597 // we are not yet on the junction with this linkLeader.
3598 // at least we can drive up to the previous link and stop there
3599 v = MAX2(v, lastLink->myVLinkWait);
3600 }
3601 // if blocked by a leader from the same or next lane we must yield our request
3602 // also, if blocked by a stopped or blocked leader
3604 //&& leader->getSpeed() < SUMO_const_haltingSpeed
3606 || leader->getLane()->getLogicalPredecessorLane() == myLane
3607 || leader->isStopped()
3609 setRequest = false;
3610#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3611 if (DEBUG_COND) {
3612 std::cout << " aborting request\n";
3613 }
3614#endif
3615 if (lastLink != nullptr && leader->getLane()->getLogicalPredecessorLane() == myLane) {
3616 // we are not yet on the junction so must abort that request as well
3617 // (or maybe we are already on the junction and the leader is a partial occupator beyond)
3618 lastLink->mySetRequest = false;
3619#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3620 if (DEBUG_COND) {
3621 std::cout << " aborting previous request\n";
3622 }
3623#endif
3624 }
3625 }
3626 }
3627#ifdef DEBUG_PLAN_MOVE_LEADERINFO
3628 else {
3629 if (DEBUG_COND) {
3630 std::cout << SIMTIME << " veh=" << getID() << " ignoring leader " << leader->getID() << " gap=" << (*it).vehAndGap.second << " dtC=" << (*it).distToCrossing
3631 << " ET=" << myJunctionEntryTime << " lET=" << leader->myJunctionEntryTime
3632 << " ETN=" << myJunctionEntryTimeNeverYield << " lETN=" << leader->myJunctionEntryTimeNeverYield
3633 << " CET=" << myJunctionConflictEntryTime << " lCET=" << leader->myJunctionConflictEntryTime
3634 << "\n";
3635 }
3636 }
3637#endif
3638 }
3639 // if this is the link between two internal lanes we may have to slow down for pedestrians
3640 vLinkWait = MIN2(vLinkWait, v);
3641}
3642
3643
3644double
3645MSVehicle::getDeltaPos(const double accel) const {
3646 double vNext = myState.mySpeed + ACCEL2SPEED(accel);
3648 // apply implicit Euler positional update
3649 return SPEED2DIST(MAX2(vNext, 0.));
3650 } else {
3651 // apply ballistic update
3652 if (vNext >= 0) {
3653 // assume constant acceleration during this time step
3654 return SPEED2DIST(myState.mySpeed + 0.5 * ACCEL2SPEED(accel));
3655 } else {
3656 // negative vNext indicates a stop within the middle of time step
3657 // The corresponding stop time is s = mySpeed/deceleration \in [0,dt], and the
3658 // covered distance is therefore deltaPos = mySpeed*s - 0.5*deceleration*s^2.
3659 // Here, deceleration = (myState.mySpeed - vNext)/dt is the constant deceleration
3660 // until the vehicle stops.
3661 return -SPEED2DIST(0.5 * myState.mySpeed * myState.mySpeed / ACCEL2SPEED(accel));
3662 }
3663 }
3664}
3665
3666void
3667MSVehicle::processLinkApproaches(double& vSafe, double& vSafeMin, double& vSafeMinDist) {
3668
3669 // Speed limit due to zipper merging
3670 double vSafeZipper = std::numeric_limits<double>::max();
3671
3672 myHaveToWaitOnNextLink = false;
3673 bool canBrakeVSafeMin = false;
3674
3675 // Get safe velocities from DriveProcessItems.
3676 assert(myLFLinkLanes.size() != 0 || isRemoteControlled());
3677 for (const DriveProcessItem& dpi : myLFLinkLanes) {
3678 MSLink* const link = dpi.myLink;
3679
3680#ifdef DEBUG_EXEC_MOVE
3681 if (DEBUG_COND) {
3682 std::cout
3683 << SIMTIME
3684 << " veh=" << getID()
3685 << " link=" << (link == 0 ? "NULL" : link->getViaLaneOrLane()->getID())
3686 << " req=" << dpi.mySetRequest
3687 << " vP=" << dpi.myVLinkPass
3688 << " vW=" << dpi.myVLinkWait
3689 << " d=" << dpi.myDistance
3690 << "\n";
3691 gDebugFlag1 = true; // See MSLink_DEBUG_OPENED
3692 }
3693#endif
3694
3695 // the vehicle must change the lane on one of the next lanes (XXX: refs to code further below???, Leo)
3696 if (link != nullptr && dpi.mySetRequest) {
3697
3698 const LinkState ls = link->getState();
3699 // vehicles should brake when running onto a yellow light if the distance allows to halt in front
3700 const bool yellow = link->haveYellow();
3701 const bool canBrake = (dpi.myDistance > getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getMaxDecel(), 0.)
3703 assert(link->getLaneBefore() != nullptr);
3704 const bool beyondStopLine = dpi.myDistance < link->getLaneBefore()->getVehicleStopOffset(this);
3705 const bool ignoreRedLink = ignoreRed(link, canBrake) || beyondStopLine;
3706 if (yellow && canBrake && !ignoreRedLink) {
3707 vSafe = dpi.myVLinkWait;
3709#ifdef DEBUG_CHECKREWINDLINKLANES
3710 if (DEBUG_COND) {
3711 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (yellow)\n";
3712 }
3713#endif
3714 break;
3715 }
3716 const bool influencerPrio = (myInfluencer != nullptr && !myInfluencer->getRespectJunctionPriority());
3717 MSLink::BlockingFoes collectFoes;
3718 bool opened = (yellow || influencerPrio
3719 || link->opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3721 canBrake ? getImpatience() : 1,
3724 ls == LINKSTATE_ZIPPER ? &collectFoes : nullptr,
3725 ignoreRedLink, this, dpi.myDistance));
3726 if (opened && myLaneChangeModel->getShadowLane() != nullptr) {
3727 const MSLink* const parallelLink = dpi.myLink->getParallelLink(myLaneChangeModel->getShadowDirection());
3728 if (parallelLink != nullptr) {
3729 const double shadowLatPos = getLateralPositionOnLane() - myLaneChangeModel->getShadowDirection() * 0.5 * (
3731 opened = yellow || influencerPrio || (opened && parallelLink->opened(dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
3734 getWaitingTimeFor(link), shadowLatPos, nullptr,
3735 ignoreRedLink, this, dpi.myDistance));
3736#ifdef DEBUG_EXEC_MOVE
3737 if (DEBUG_COND) {
3738 std::cout << SIMTIME
3739 << " veh=" << getID()
3740 << " shadowLane=" << myLaneChangeModel->getShadowLane()->getID()
3741 << " shadowDir=" << myLaneChangeModel->getShadowDirection()
3742 << " parallelLink=" << (parallelLink == 0 ? "NULL" : parallelLink->getViaLaneOrLane()->getID())
3743 << " opened=" << opened
3744 << "\n";
3745 }
3746#endif
3747 }
3748 }
3749 // vehicles should decelerate when approaching a minor link
3750#ifdef DEBUG_EXEC_MOVE
3751 if (DEBUG_COND) {
3752 std::cout << SIMTIME
3753 << " opened=" << opened
3754 << " influencerPrio=" << influencerPrio
3755 << " linkPrio=" << link->havePriority()
3756 << " lastContMajor=" << link->lastWasContMajor()
3757 << " isCont=" << link->isCont()
3758 << " ignoreRed=" << ignoreRedLink
3759 << "\n";
3760 }
3761#endif
3762 double visibilityDistance = link->getFoeVisibilityDistance();
3763 bool determinedFoePresence = dpi.myDistance <= visibilityDistance;
3764 if (opened && !influencerPrio && !link->havePriority() && !link->lastWasContMajor() && !link->isCont() && !ignoreRedLink) {
3765 if (!determinedFoePresence && (canBrake || !yellow)) {
3766 vSafe = dpi.myVLinkWait;
3768#ifdef DEBUG_CHECKREWINDLINKLANES
3769 if (DEBUG_COND) {
3770 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (minor)\n";
3771 }
3772#endif
3773 break;
3774 } else {
3775 // past the point of no return. we need to drive fast enough
3776 // to make it across the link. However, minor slowdowns
3777 // should be permissible to follow leading traffic safely
3778 // basically, this code prevents dawdling
3779 // (it's harder to do this later using
3780 // SUMO_ATTR_JM_SIGMA_MINOR because we don't know whether the
3781 // vehicle is already too close to stop at that part of the code)
3782 //
3783 // XXX: There is a problem in subsecond simulation: If we cannot
3784 // make it across the minor link in one step, new traffic
3785 // could appear on a major foe link and cause a collision. Refs. #1845, #2123
3786 vSafeMinDist = dpi.myDistance; // distance that must be covered
3788 vSafeMin = MIN3((double)DIST2SPEED(vSafeMinDist + POSITION_EPS), dpi.myVLinkPass, getCarFollowModel().maxNextSafeMin(getSpeed(), this));
3789 } else {
3790 vSafeMin = MIN3((double)DIST2SPEED(2 * vSafeMinDist + NUMERICAL_EPS) - getSpeed(), dpi.myVLinkPass, getCarFollowModel().maxNextSafeMin(getSpeed(), this));
3791 }
3792 canBrakeVSafeMin = canBrake;
3793#ifdef DEBUG_EXEC_MOVE
3794 if (DEBUG_COND) {
3795 std::cout << " vSafeMin=" << vSafeMin << " vSafeMinDist=" << vSafeMinDist << " canBrake=" << canBrake << "\n";
3796 }
3797#endif
3798 }
3799 }
3800 // have waited; may pass if opened...
3801 if (opened) {
3802 vSafe = dpi.myVLinkPass;
3803 if (vSafe < getCarFollowModel().getMaxDecel() && vSafe <= dpi.myVLinkWait && vSafe < getCarFollowModel().maxNextSpeed(getSpeed(), this)) {
3804 // this vehicle is probably not gonna drive across the next junction (heuristic)
3806#ifdef DEBUG_CHECKREWINDLINKLANES
3807 if (DEBUG_COND) {
3808 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (very slow)\n";
3809 }
3810#endif
3811 }
3812 if (link->mustStop() && determinedFoePresence && myHaveStoppedFor == nullptr) {
3813 myHaveStoppedFor = link;
3814 }
3815 } else if (link->getState() == LINKSTATE_ZIPPER) {
3816 vSafeZipper = MIN2(vSafeZipper,
3817 link->getZipperSpeed(this, dpi.myDistance, dpi.myVLinkPass, dpi.myArrivalTime, &collectFoes));
3818 } else if (!canBrake
3819 // always brake hard for traffic lights (since an emergency stop is necessary anyway)
3820 && link->getTLLogic() == nullptr
3821 // cannot brake even with emergency deceleration
3822 && dpi.myDistance < getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getEmergencyDecel(), 0.)) {
3823#ifdef DEBUG_EXEC_MOVE
3824 if (DEBUG_COND) {
3825 std::cout << SIMTIME << " too fast to brake for closed link\n";
3826 }
3827#endif
3828 vSafe = dpi.myVLinkPass;
3829 } else {
3830 vSafe = dpi.myVLinkWait;
3832#ifdef DEBUG_CHECKREWINDLINKLANES
3833 if (DEBUG_COND) {
3834 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (closed)\n";
3835 }
3836#endif
3837#ifdef DEBUG_EXEC_MOVE
3838 if (DEBUG_COND) {
3839 std::cout << SIMTIME << " braking for closed link=" << link->getViaLaneOrLane()->getID() << "\n";
3840 }
3841#endif
3842 break;
3843 }
3845 // request was renewed, restoring entry time
3846 // @note: using myJunctionEntryTimeNeverYield could lead to inconsistencies with other vehicles already on the junction
3848 }
3849 } else {
3850 if (link != nullptr && link->getInternalLaneBefore() != nullptr && myLane->isInternal() && link->getJunction() == myLane->getEdge().getToJunction()) {
3851 // blocked on the junction. yield request so other vehicles may
3852 // become junction leader
3853#ifdef DEBUG_EXEC_MOVE
3854 if (DEBUG_COND) {
3855 std::cout << SIMTIME << " resetting junctionEntryTime at junction '" << link->getJunction()->getID() << "' beause of non-request exitLink\n";
3856 }
3857#endif
3860 }
3861 // we have: i->link == 0 || !i->setRequest
3862 vSafe = dpi.myVLinkWait;
3863 if (link != nullptr || myStopDist < (myLane->getLength() - getPositionOnLane())) {
3864 if (vSafe < getSpeed()) {
3866#ifdef DEBUG_CHECKREWINDLINKLANES
3867 if (DEBUG_COND) {
3868 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (no request, braking) vSafe=" << vSafe << "\n";
3869 }
3870#endif
3871 } else if (vSafe < SUMO_const_haltingSpeed) {
3873#ifdef DEBUG_CHECKREWINDLINKLANES
3874 if (DEBUG_COND) {
3875 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (no request, stopping)\n";
3876 }
3877#endif
3878 }
3879 }
3880 if (link == nullptr && myLFLinkLanes.size() == 1
3881 && getBestLanesContinuation().size() > 1
3882 && getBestLanesContinuation()[1]->hadPermissionChanges()
3883 && myLane->getFirstAnyVehicle() == this) {
3884 // temporal lane closing without notification, visible to the
3885 // vehicle at the front of the queue
3886 updateBestLanes(true);
3887 //std::cout << SIMTIME << " veh=" << getID() << " updated bestLanes=" << toString(getBestLanesContinuation()) << "\n";
3888 }
3889 break;
3890 }
3891 }
3892
3893//#ifdef DEBUG_EXEC_MOVE
3894// if (DEBUG_COND) {
3895// std::cout << "\nvCurrent = " << toString(getSpeed(), 24) << "" << std::endl;
3896// std::cout << "vSafe = " << toString(vSafe, 24) << "" << std::endl;
3897// std::cout << "vSafeMin = " << toString(vSafeMin, 24) << "" << std::endl;
3898// std::cout << "vSafeMinDist = " << toString(vSafeMinDist, 24) << "" << std::endl;
3899//
3900// double gap = getLeader().second;
3901// std::cout << "gap = " << toString(gap, 24) << std::endl;
3902// std::cout << "vSafeStoppedLeader = " << toString(getCarFollowModel().stopSpeed(this, getSpeed(), gap, MSCFModel::CalcReason::FUTURE), 24)
3903// << "\n" << std::endl;
3904// }
3905//#endif
3906
3907 if ((MSGlobals::gSemiImplicitEulerUpdate && vSafe + NUMERICAL_EPS < vSafeMin)
3908 || (!MSGlobals::gSemiImplicitEulerUpdate && (vSafe + NUMERICAL_EPS < vSafeMin && vSafeMin != 0))) { // this might be good for the euler case as well
3909 // XXX: (Leo) This often called stopSpeed with vSafeMinDist==0 (for the ballistic update), since vSafe can become negative
3910 // For the Euler update the term '+ NUMERICAL_EPS' prevented a call here... Recheck, consider of -INVALID_SPEED instead of 0 to indicate absence of vSafeMin restrictions. Refs. #2577
3911#ifdef DEBUG_EXEC_MOVE
3912 if (DEBUG_COND) {
3913 std::cout << "vSafeMin Problem? vSafe=" << vSafe << " vSafeMin=" << vSafeMin << " vSafeMinDist=" << vSafeMinDist << std::endl;
3914 }
3915#endif
3916 if (canBrakeVSafeMin && vSafe < getSpeed()) {
3917 // cannot drive across a link so we need to stop before it
3918 vSafe = MIN2(vSafe, MAX2(getCarFollowModel().minNextSpeed(getSpeed(), this),
3919 getCarFollowModel().stopSpeed(this, getSpeed(), vSafeMinDist)));
3920 vSafeMin = 0;
3922#ifdef DEBUG_CHECKREWINDLINKLANES
3923 if (DEBUG_COND) {
3924 std::cout << SIMTIME << " veh=" << getID() << " haveToWait (vSafe=" << vSafe << " < vSafeMin=" << vSafeMin << ")\n";
3925 }
3926#endif
3927 } else {
3928 // if the link is yellow or visibility distance is large
3929 // then we might not make it across the link in one step anyway..
3930 // Possibly, the lane after the intersection has a lower speed limit so
3931 // we really need to drive slower already
3932 // -> keep driving without dawdling
3933 vSafeMin = vSafe;
3934 }
3935 }
3936
3937 // vehicles inside a roundabout should maintain their requests
3938 if (myLane->getEdge().isRoundabout()) {
3939 myHaveToWaitOnNextLink = false;
3940 }
3941
3942 vSafe = MIN2(vSafe, vSafeZipper);
3943}
3944
3945
3946double
3947MSVehicle::processTraCISpeedControl(double vSafe, double vNext) {
3948 if (myInfluencer != nullptr) {
3950#ifdef DEBUG_TRACI
3951 if DEBUG_COND2(this) {
3952 std::cout << SIMTIME << " MSVehicle::processTraCISpeedControl() for vehicle '" << getID() << "'"
3953 << " vSafe=" << vSafe << " (init)vNext=" << vNext << " keepStopping=" << keepStopping();
3954 }
3955#endif
3958 }
3959 const double vMax = getVehicleType().getCarFollowModel().maxNextSpeed(myState.mySpeed, this);
3962 vMin = MAX2(0., vMin);
3963 }
3964 vNext = myInfluencer->influenceSpeed(MSNet::getInstance()->getCurrentTimeStep(), vNext, vSafe, vMin, vMax);
3965 if (keepStopping() && myStops.front().getSpeed() == 0) {
3966 // avoid driving while stopped (unless it's actually a waypoint
3967 vNext = myInfluencer->getOriginalSpeed();
3968 }
3969#ifdef DEBUG_TRACI
3970 if DEBUG_COND2(this) {
3971 std::cout << " (processed)vNext=" << vNext << std::endl;
3972 }
3973#endif
3974 }
3975 return vNext;
3976}
3977
3978
3979void
3981#ifdef DEBUG_ACTIONSTEPS
3982 if (DEBUG_COND) {
3983 std::cout << SIMTIME << " veh=" << getID() << " removePassedDriveItems()\n"
3984 << " Current items: ";
3985 for (auto& j : myLFLinkLanes) {
3986 if (j.myLink == 0) {
3987 std::cout << "\n Stop at distance " << j.myDistance;
3988 } else {
3989 const MSLane* to = j.myLink->getViaLaneOrLane();
3990 const MSLane* from = j.myLink->getLaneBefore();
3991 std::cout << "\n Link at distance " << j.myDistance << ": '"
3992 << (from == 0 ? "NONE" : from->getID()) << "' -> '" << (to == 0 ? "NONE" : to->getID()) << "'";
3993 }
3994 }
3995 std::cout << "\n myNextDriveItem: ";
3996 if (myLFLinkLanes.size() != 0) {
3997 if (myNextDriveItem->myLink == 0) {
3998 std::cout << "\n Stop at distance " << myNextDriveItem->myDistance;
3999 } else {
4000 const MSLane* to = myNextDriveItem->myLink->getViaLaneOrLane();
4001 const MSLane* from = myNextDriveItem->myLink->getLaneBefore();
4002 std::cout << "\n Link at distance " << myNextDriveItem->myDistance << ": '"
4003 << (from == 0 ? "NONE" : from->getID()) << "' -> '" << (to == 0 ? "NONE" : to->getID()) << "'";
4004 }
4005 }
4006 std::cout << std::endl;
4007 }
4008#endif
4009 for (auto j = myLFLinkLanes.begin(); j != myNextDriveItem; ++j) {
4010#ifdef DEBUG_ACTIONSTEPS
4011 if (DEBUG_COND) {
4012 std::cout << " Removing item: ";
4013 if (j->myLink == 0) {
4014 std::cout << "Stop at distance " << j->myDistance;
4015 } else {
4016 const MSLane* to = j->myLink->getViaLaneOrLane();
4017 const MSLane* from = j->myLink->getLaneBefore();
4018 std::cout << "Link at distance " << j->myDistance << ": '"
4019 << (from == 0 ? "NONE" : from->getID()) << "' -> '" << (to == 0 ? "NONE" : to->getID()) << "'";
4020 }
4021 std::cout << std::endl;
4022 }
4023#endif
4024 if (j->myLink != nullptr) {
4025 j->myLink->removeApproaching(this);
4026 }
4027 }
4030}
4031
4032
4033void
4035#ifdef DEBUG_ACTIONSTEPS
4036 if (DEBUG_COND) {
4037 std::cout << SIMTIME << " updateDriveItems(), veh='" << getID() << "' (lane: '" << getLane()->getID() << "')\nCurrent drive items:" << std::endl;
4038 for (const auto& dpi : myLFLinkLanes) {
4039 std::cout
4040 << " vPass=" << dpi.myVLinkPass
4041 << " vWait=" << dpi.myVLinkWait
4042 << " linkLane=" << (dpi.myLink == 0 ? "NULL" : dpi.myLink->getViaLaneOrLane()->getID())
4043 << " request=" << dpi.mySetRequest
4044 << "\n";
4045 }
4046 std::cout << " myNextDriveItem's linked lane: " << (myNextDriveItem->myLink == 0 ? "NULL" : myNextDriveItem->myLink->getViaLaneOrLane()->getID()) << std::endl;
4047 }
4048#endif
4049 if (myLFLinkLanes.size() == 0) {
4050 // nothing to update
4051 return;
4052 }
4053 const MSLink* nextPlannedLink = nullptr;
4054// auto i = myLFLinkLanes.begin();
4055 auto i = myNextDriveItem;
4056 while (i != myLFLinkLanes.end() && nextPlannedLink == nullptr) {
4057 nextPlannedLink = i->myLink;
4058 ++i;
4059 }
4060
4061 if (nextPlannedLink == nullptr) {
4062 // No link for upcoming item -> no need for an update
4063#ifdef DEBUG_ACTIONSTEPS
4064 if (DEBUG_COND) {
4065 std::cout << "Found no link-related drive item." << std::endl;
4066 }
4067#endif
4068 return;
4069 }
4070
4071 if (getLane() == nextPlannedLink->getLaneBefore()) {
4072 // Current lane approaches the stored next link, i.e. no LC happend and no update is required.
4073#ifdef DEBUG_ACTIONSTEPS
4074 if (DEBUG_COND) {
4075 std::cout << "Continuing on planned lane sequence, no update required." << std::endl;
4076 }
4077#endif
4078 return;
4079 }
4080 // Lane must have been changed, determine the change direction
4081 const MSLink* parallelLink = nextPlannedLink->getParallelLink(1);
4082 if (parallelLink != nullptr && parallelLink->getLaneBefore() == getLane()) {
4083 // lcDir = 1;
4084 } else {
4085 parallelLink = nextPlannedLink->getParallelLink(-1);
4086 if (parallelLink != nullptr && parallelLink->getLaneBefore() == getLane()) {
4087 // lcDir = -1;
4088 } else {
4089 // If the vehicle's current lane is not the approaching lane for the next
4090 // drive process item's link, it is expected to lead to a parallel link,
4091 // XXX: What if the lc was an overtaking maneuver and there is no upcoming link?
4092 // Then a stop item should be scheduled! -> TODO!
4093 //assert(false);
4094 return;
4095 }
4096 }
4097#ifdef DEBUG_ACTIONSTEPS
4098 if (DEBUG_COND) {
4099 std::cout << "Changed lane. Drive items will be updated along the current lane continuation." << std::endl;
4100 }
4101#endif
4102 // Trace link sequence along current best lanes and transfer drive items to the corresponding links
4103// DriveItemVector::iterator driveItemIt = myLFLinkLanes.begin();
4104 DriveItemVector::iterator driveItemIt = myNextDriveItem;
4105 // In the loop below, lane holds the currently considered lane on the vehicles continuation (including internal lanes)
4106 const MSLane* lane = myLane;
4107 assert(myLane == parallelLink->getLaneBefore());
4108 // *lit is a pointer to the next lane in best continuations for the current lane (always non-internal)
4109 std::vector<MSLane*>::const_iterator bestLaneIt = getBestLanesContinuation().begin() + 1;
4110 // Pointer to the new link for the current drive process item
4111 MSLink* newLink = nullptr;
4112 while (driveItemIt != myLFLinkLanes.end()) {
4113 if (driveItemIt->myLink == nullptr) {
4114 // Items not related to a specific link are not updated
4115 // (XXX: when a stop item corresponded to a dead end, which is overcome by the LC that made
4116 // the update necessary, this may slow down the vehicle's continuation on the new lane...)
4117 ++driveItemIt;
4118 continue;
4119 }
4120 // Continuation links for current best lanes are less than for the former drive items (myLFLinkLanes)
4121 // We just remove the leftover link-items, as they cannot be mapped to new links.
4122 if (bestLaneIt == getBestLanesContinuation().end()) {
4123#ifdef DEBUG_ACTIONSTEPS
4124 if (DEBUG_COND) {
4125 std::cout << "Reached end of the new continuation sequence. Erasing leftover link-items." << std::endl;
4126 }
4127#endif
4128 while (driveItemIt != myLFLinkLanes.end()) {
4129 if (driveItemIt->myLink == nullptr) {
4130 ++driveItemIt;
4131 continue;
4132 } else {
4133 driveItemIt->myLink->removeApproaching(this);
4134 driveItemIt = myLFLinkLanes.erase(driveItemIt);
4135 }
4136 }
4137 break;
4138 }
4139 // Do the actual link-remapping for the item. And un/register approaching information on the corresponding links
4140 const MSLane* const target = *bestLaneIt;
4141 assert(!target->isInternal());
4142 newLink = nullptr;
4143 for (MSLink* const link : lane->getLinkCont()) {
4144 if (link->getLane() == target) {
4145 newLink = link;
4146 break;
4147 }
4148 }
4149
4150 if (newLink == driveItemIt->myLink) {
4151 // new continuation merged into previous - stop update
4152#ifdef DEBUG_ACTIONSTEPS
4153 if (DEBUG_COND) {
4154 std::cout << "Old and new continuation sequences merge at link\n"
4155 << "'" << newLink->getLaneBefore()->getID() << "'->'" << newLink->getViaLaneOrLane()->getID() << "'"
4156 << "\nNo update beyond merge required." << std::endl;
4157 }
4158#endif
4159 break;
4160 }
4161
4162#ifdef DEBUG_ACTIONSTEPS
4163 if (DEBUG_COND) {
4164 std::cout << "lane=" << lane->getID() << "\nUpdating link\n '" << driveItemIt->myLink->getLaneBefore()->getID() << "'->'" << driveItemIt->myLink->getViaLaneOrLane()->getID() << "'"
4165 << "==> " << "'" << newLink->getLaneBefore()->getID() << "'->'" << newLink->getViaLaneOrLane()->getID() << "'" << std::endl;
4166 }
4167#endif
4168 newLink->setApproaching(this, driveItemIt->myLink->getApproaching(this));
4169 driveItemIt->myLink->removeApproaching(this);
4170 driveItemIt->myLink = newLink;
4171 lane = newLink->getViaLaneOrLane();
4172 ++driveItemIt;
4173 if (!lane->isInternal()) {
4174 ++bestLaneIt;
4175 }
4176 }
4177#ifdef DEBUG_ACTIONSTEPS
4178 if (DEBUG_COND) {
4179 std::cout << "Updated drive items:" << std::endl;
4180 for (const auto& dpi : myLFLinkLanes) {
4181 std::cout
4182 << " vPass=" << dpi.myVLinkPass
4183 << " vWait=" << dpi.myVLinkWait
4184 << " linkLane=" << (dpi.myLink == 0 ? "NULL" : dpi.myLink->getViaLaneOrLane()->getID())
4185 << " request=" << dpi.mySetRequest
4186 << "\n";
4187 }
4188 }
4189#endif
4190}
4191
4192
4193void
4195 // To avoid casual blinking brake lights at high speeds due to dawdling of the
4196 // leading vehicle, we don't show brake lights when the deceleration could be caused
4197 // by frictional forces and air resistance (i.e. proportional to v^2, coefficient could be adapted further)
4198 double pseudoFriction = (0.05 + 0.005 * getSpeed()) * getSpeed();
4199 bool brakelightsOn = vNext < getSpeed() - ACCEL2SPEED(pseudoFriction);
4200
4201 if (vNext <= SUMO_const_haltingSpeed) {
4202 brakelightsOn = true;
4203 }
4204 if (brakelightsOn && !isStopped()) {
4206 } else {
4208 }
4209}
4210
4211
4212void
4217 } else {
4218 myWaitingTime = 0;
4220 if (hasInfluencer()) {
4222 }
4223 }
4224}
4225
4226
4227void
4229 // update time loss (depends on the updated edge)
4230 if (!isStopped()) {
4231 const double vmax = myLane->getVehicleMaxSpeed(this);
4232 if (vmax > 0) {
4233 myTimeLoss += TS * (vmax - vNext) / vmax;
4234 }
4235 }
4236}
4237
4238
4239double
4240MSVehicle::checkReversal(bool& canReverse, double speedThreshold, double seen) const {
4241 const bool stopOk = (myStops.empty() || myStops.front().edge != myCurrEdge
4242 || (myStops.front().getSpeed() > 0 && myState.myPos > myStops.front().pars.endPos - 2 * POSITION_EPS));
4243#ifdef DEBUG_REVERSE_BIDI
4244 if (DEBUG_COND) std::cout << SIMTIME << " checkReversal lane=" << myLane->getID()
4245 << " pos=" << myState.myPos
4246 << " speed=" << std::setprecision(6) << getPreviousSpeed() << std::setprecision(gPrecision)
4247 << " speedThreshold=" << speedThreshold
4248 << " seen=" << seen
4249 << " isRail=" << isRail()
4250 << " speedOk=" << (getPreviousSpeed() <= speedThreshold)
4251 << " posOK=" << (myState.myPos <= myLane->getLength())
4252 << " normal=" << !myLane->isInternal()
4253 << " routeOK=" << ((myCurrEdge + 1) != myRoute->end())
4254 << " bidi=" << (myLane->getEdge().getBidiEdge() == *(myCurrEdge + 1))
4255 << " stopOk=" << stopOk
4256 << "\n";
4257#endif
4258 if ((getVClass() & SVC_RAIL_CLASSES) != 0
4259 && getPreviousSpeed() <= speedThreshold
4260 && myState.myPos <= myLane->getLength()
4261 && !myLane->isInternal()
4262 && (myCurrEdge + 1) != myRoute->end()
4263 && myLane->getEdge().getBidiEdge() == *(myCurrEdge + 1)
4264 // ensure there are no further stops on this edge
4265 && stopOk
4266 ) {
4267 //if (isSelected()) std::cout << " check1 passed\n";
4268
4269 // ensure that the vehicle is fully on bidi edges that allow reversal
4270 const int neededFutureRoute = 1 + (int)(MSGlobals::gUsingInternalLanes
4271 ? myFurtherLanes.size()
4272 : ceil((double)myFurtherLanes.size() / 2.0));
4273 const int remainingRoute = int(myRoute->end() - myCurrEdge) - 1;
4274 if (remainingRoute < neededFutureRoute) {
4275#ifdef DEBUG_REVERSE_BIDI
4276 if (DEBUG_COND) {
4277 std::cout << " fail: remainingEdges=" << ((int)(myRoute->end() - myCurrEdge)) << " further=" << myFurtherLanes.size() << "\n";
4278 }
4279#endif
4280 return getMaxSpeed();
4281 }
4282 //if (isSelected()) std::cout << " check2 passed\n";
4283
4284 // ensure that the turn-around connection exists from the current edge to its bidi-edge
4285 const MSEdgeVector& succ = myLane->getEdge().getSuccessors();
4286 if (std::find(succ.begin(), succ.end(), myLane->getEdge().getBidiEdge()) == succ.end()) {
4287#ifdef DEBUG_REVERSE_BIDI
4288 if (DEBUG_COND) {
4289 std::cout << " noTurn (bidi=" << myLane->getEdge().getBidiEdge()->getID() << " succ=" << toString(succ) << "\n";
4290 }
4291#endif
4292 return getMaxSpeed();
4293 }
4294 //if (isSelected()) std::cout << " check3 passed\n";
4295
4296 // ensure that the vehicle front will not move past a stop on the bidi edge of the current edge
4297 if (!myStops.empty() && myStops.front().edge == (myCurrEdge + 1)) {
4298 const double stopPos = myStops.front().getEndPos(*this);
4299 const double brakeDist = getCarFollowModel().brakeGap(getSpeed(), getCarFollowModel().getMaxDecel(), 0);
4300 const double newPos = myLane->getLength() - (getBackPositionOnLane() + brakeDist);
4301 if (newPos > stopPos) {
4302#ifdef DEBUG_REVERSE_BIDI
4303 if (DEBUG_COND) {
4304 std::cout << " reversal would go past stop on " << myLane->getBidiLane()->getID() << "\n";
4305 }
4306#endif
4307 if (seen > MAX2(brakeDist, 1.0)) {
4308 return getMaxSpeed();
4309 } else {
4310#ifdef DEBUG_REVERSE_BIDI
4311 if (DEBUG_COND) {
4312 std::cout << " train is too long, skipping stop at " << stopPos << " cannot be avoided\n";
4313 }
4314#endif
4315 }
4316 }
4317 }
4318 //if (isSelected()) std::cout << " check4 passed\n";
4319
4320 // ensure that bidi-edges exist for all further edges
4321 // and that no stops will be skipped when reversing
4322 // and that the train will not be on top of a red rail signal after reversal
4323 const MSLane* bidi = myLane->getBidiLane();
4324 int view = 2;
4325 for (MSLane* further : myFurtherLanes) {
4326 if (!further->getEdge().isInternal()) {
4327 if (further->getEdge().getBidiEdge() != *(myCurrEdge + view)) {
4328#ifdef DEBUG_REVERSE_BIDI
4329 if (DEBUG_COND) {
4330 std::cout << " noBidi view=" << view << " further=" << further->getID() << " furtherBidi=" << Named::getIDSecure(further->getEdge().getBidiEdge()) << " future=" << (*(myCurrEdge + view))->getID() << "\n";
4331 }
4332#endif
4333 return getMaxSpeed();
4334 }
4335 const MSLane* nextBidi = further->getBidiLane();
4336 const MSLink* toNext = bidi->getLinkTo(nextBidi);
4337 if (toNext == nullptr) {
4338 // can only happen if the route is invalid
4339 return getMaxSpeed();
4340 }
4341 if (toNext->haveRed()) {
4342#ifdef DEBUG_REVERSE_BIDI
4343 if (DEBUG_COND) {
4344 std::cout << " do not reverse on a red signal\n";
4345 }
4346#endif
4347 return getMaxSpeed();
4348 }
4349 bidi = nextBidi;
4350 if (!myStops.empty() && myStops.front().edge == (myCurrEdge + view)) {
4351 const double brakeDist = getCarFollowModel().brakeGap(getSpeed(), getCarFollowModel().getMaxDecel(), 0);
4352 const double stopPos = myStops.front().getEndPos(*this);
4353 const double newPos = further->getLength() - (getBackPositionOnLane(further) + brakeDist);
4354 if (newPos > stopPos) {
4355#ifdef DEBUG_REVERSE_BIDI
4356 if (DEBUG_COND) {
4357 std::cout << " reversal would go past stop on further-opposite lane " << further->getBidiLane()->getID() << "\n";
4358 }
4359#endif
4360 if (seen > MAX2(brakeDist, 1.0)) {
4361 canReverse = false;
4362 return getMaxSpeed();
4363 } else {
4364#ifdef DEBUG_REVERSE_BIDI
4365 if (DEBUG_COND) {
4366 std::cout << " train is too long, skipping stop at " << stopPos << " cannot be avoided\n";
4367 }
4368#endif
4369 }
4370 }
4371 }
4372 view++;
4373 }
4374 }
4375 // reverse as soon as comfortably possible
4376 const double vMinComfortable = getCarFollowModel().minNextSpeed(getSpeed(), this);
4377#ifdef DEBUG_REVERSE_BIDI
4378 if (DEBUG_COND) {
4379 std::cout << SIMTIME << " seen=" << seen << " vReverseOK=" << vMinComfortable << "\n";
4380 }
4381#endif
4382 canReverse = true;
4383 return vMinComfortable;
4384 }
4385 return getMaxSpeed();
4386}
4387
4388
4389void
4390MSVehicle::processLaneAdvances(std::vector<MSLane*>& passedLanes, std::string& emergencyReason) {
4391 for (std::vector<MSLane*>::reverse_iterator i = myFurtherLanes.rbegin(); i != myFurtherLanes.rend(); ++i) {
4392 passedLanes.push_back(*i);
4393 }
4394 if (passedLanes.size() == 0 || passedLanes.back() != myLane) {
4395 passedLanes.push_back(myLane);
4396 }
4397 // let trains reverse direction
4398 bool reverseTrain = false;
4399 checkReversal(reverseTrain);
4400 if (reverseTrain) {
4401 // Train is 'reversing' so toggle the logical state
4403 // add some slack to ensure that the back of train does appear looped
4404 myState.myPos += 2 * (myLane->getLength() - myState.myPos) + myType->getLength() + NUMERICAL_EPS;
4405 myState.mySpeed = 0;
4406#ifdef DEBUG_REVERSE_BIDI
4407 if (DEBUG_COND) {
4408 std::cout << SIMTIME << " reversing train=" << getID() << " newPos=" << myState.myPos << "\n";
4409 }
4410#endif
4411 }
4412 // move on lane(s)
4413 if (myState.myPos > myLane->getLength()) {
4414 // The vehicle has moved at least to the next lane (maybe it passed even more than one)
4415 if (myCurrEdge != myRoute->end() - 1) {
4416 MSLane* approachedLane = myLane;
4417 // move the vehicle forward
4419 while (myNextDriveItem != myLFLinkLanes.end() && approachedLane != nullptr && myState.myPos > approachedLane->getLength()) {
4420 const MSLink* link = myNextDriveItem->myLink;
4421 const double linkDist = myNextDriveItem->myDistance;
4423 // check whether the vehicle was allowed to enter lane
4424 // otherwise it is decelerated and we do not need to test for it's
4425 // approach on the following lanes when a lane changing is performed
4426 // proceed to the next lane
4427 if (approachedLane->mustCheckJunctionCollisions()) {
4428 // vehicle moves past approachedLane within a single step, collision checking must still be done
4430 }
4431 if (link != nullptr) {
4432 if ((getVClass() & SVC_RAIL_CLASSES) != 0
4433 && !myLane->isInternal()
4434 && myLane->getBidiLane() != nullptr
4435 && link->getLane()->getBidiLane() == myLane
4436 && !reverseTrain) {
4437 emergencyReason = " because it must reverse direction";
4438 approachedLane = nullptr;
4439 break;
4440 }
4441 if ((getVClass() & SVC_RAIL_CLASSES) != 0
4442 && myState.myPos < myLane->getLength() + NUMERICAL_EPS
4443 && hasStops() && getNextStop().edge == myCurrEdge) {
4444 // avoid skipping stop due to numerical instability
4445 // this is a special case for rail vehicles because they
4446 // continue myLFLinkLanes past stops
4447 approachedLane = myLane;
4449 break;
4450 }
4451 approachedLane = link->getViaLaneOrLane();
4453 bool beyondStopLine = linkDist < link->getLaneBefore()->getVehicleStopOffset(this);
4454 if (link->haveRed() && !ignoreRed(link, false) && !beyondStopLine && !reverseTrain) {
4455 emergencyReason = " because of a red traffic light";
4456 break;
4457 }
4458 }
4459 if (reverseTrain && approachedLane->isInternal()) {
4460 // avoid getting stuck on a slow turn-around internal lane
4461 myState.myPos += approachedLane->getLength();
4462 }
4463 } else if (myState.myPos < myLane->getLength() + NUMERICAL_EPS) {
4464 // avoid warning due to numerical instability
4465 approachedLane = myLane;
4467 } else if (reverseTrain) {
4468 approachedLane = (*(myCurrEdge + 1))->getLanes()[0];
4469 link = myLane->getLinkTo(approachedLane);
4470 assert(link != 0);
4471 while (link->getViaLane() != nullptr) {
4472 link = link->getViaLane()->getLinkCont()[0];
4473 }
4475 } else {
4476 emergencyReason = " because there is no connection to the next edge";
4477 approachedLane = nullptr;
4478 break;
4479 }
4480 if (approachedLane != myLane && approachedLane != nullptr) {
4483 assert(myState.myPos > 0);
4484 enterLaneAtMove(approachedLane);
4485 if (link->isEntryLink()) {
4488 myHaveStoppedFor = nullptr;
4489 }
4490 if (link->isConflictEntryLink()) {
4492 // renew yielded request
4494 }
4495 if (link->isExitLink()) {
4496 // passed junction, reset for approaching the next one
4500 }
4501#ifdef DEBUG_PLAN_MOVE_LEADERINFO
4502 if (DEBUG_COND) {
4503 std::cout << "Update junctionTimes link=" << link->getViaLaneOrLane()->getID()
4504 << " entry=" << link->isEntryLink() << " conflict=" << link->isConflictEntryLink() << " exit=" << link->isExitLink()
4505 << " ET=" << myJunctionEntryTime
4506 << " ETN=" << myJunctionEntryTimeNeverYield
4507 << " CET=" << myJunctionConflictEntryTime
4508 << "\n";
4509 }
4510#endif
4511 if (hasArrivedInternal()) {
4512 break;
4513 }
4516 // abort lane change
4517 WRITE_WARNING("Vehicle '" + getID() + "' could not finish continuous lane change (turn lane) time=" +
4518 time2string(MSNet::getInstance()->getCurrentTimeStep()) + ".");
4520 }
4521 }
4522 if (approachedLane->getEdge().isVaporizing()) {
4524 break;
4525 }
4526 passedLanes.push_back(approachedLane);
4527 }
4528 }
4529 // NOTE: Passed drive items will be erased in the next simstep's planMove()
4530
4531#ifdef DEBUG_ACTIONSTEPS
4532 if (DEBUG_COND && myNextDriveItem != myLFLinkLanes.begin()) {
4533 std::cout << "Updated drive items:" << std::endl;
4534 for (DriveItemVector::iterator i = myLFLinkLanes.begin(); i != myLFLinkLanes.end(); ++i) {
4535 std::cout
4536 << " vPass=" << (*i).myVLinkPass
4537 << " vWait=" << (*i).myVLinkWait
4538 << " linkLane=" << ((*i).myLink == 0 ? "NULL" : (*i).myLink->getViaLaneOrLane()->getID())
4539 << " request=" << (*i).mySetRequest
4540 << "\n";
4541 }
4542 }
4543#endif
4544 } else if (!hasArrivedInternal() && myState.myPos < myLane->getLength() + NUMERICAL_EPS) {
4545 // avoid warning due to numerical instability when stopping at the end of the route
4547 }
4548
4549 }
4550}
4551
4552
4553
4554bool
4556#ifdef DEBUG_EXEC_MOVE
4557 if (DEBUG_COND) {
4558 std::cout << "\nEXECUTE_MOVE\n"
4559 << SIMTIME
4560 << " veh=" << getID()
4561 << " speed=" << getSpeed() // toString(getSpeed(), 24)
4562 << std::endl;
4563 }
4564#endif
4565
4566
4567 // Maximum safe velocity
4568 double vSafe = std::numeric_limits<double>::max();
4569 // Minimum safe velocity (lower bound).
4570 double vSafeMin = -std::numeric_limits<double>::max();
4571 // The distance to a link, which should either be crossed this step
4572 // or in front of which we need to stop.
4573 double vSafeMinDist = 0;
4574
4575 if (myActionStep) {
4576 // Actuate control (i.e. choose bounds for safe speed in current simstep (euler), resp. after current sim step (ballistic))
4577 processLinkApproaches(vSafe, vSafeMin, vSafeMinDist);
4578#ifdef DEBUG_ACTIONSTEPS
4579 if (DEBUG_COND) {
4580 std::cout << SIMTIME << " vehicle '" << getID() << "'\n"
4581 " vsafe from processLinkApproaches(): vsafe " << vSafe << std::endl;
4582 }
4583#endif
4584 } else {
4585 // Continue with current acceleration
4586 vSafe = getSpeed() + ACCEL2SPEED(myAcceleration);
4587#ifdef DEBUG_ACTIONSTEPS
4588 if (DEBUG_COND) {
4589 std::cout << SIMTIME << " vehicle '" << getID() << "' skips processLinkApproaches()\n"
4590 " continues with constant accel " << myAcceleration << "...\n"
4591 << "speed: " << getSpeed() << " -> " << vSafe << std::endl;
4592 }
4593#endif
4594 }
4595
4596
4597//#ifdef DEBUG_EXEC_MOVE
4598// if (DEBUG_COND) {
4599// std::cout << "vSafe = " << toString(vSafe,12) << "\n" << std::endl;
4600// }
4601//#endif
4602
4603 // Determine vNext = speed after current sim step (ballistic), resp. in current simstep (euler)
4604 // Call to finalizeSpeed applies speed reduction due to dawdling / lane changing but ensures minimum safe speed
4605 double vNext = vSafe;
4606 const double rawAccel = SPEED2ACCEL(MAX2(vNext, 0.) - myState.mySpeed);
4607 if (vNext <= SUMO_const_haltingSpeed * TS && myWaitingTime > MSGlobals::gStartupWaitThreshold && rawAccel <= accelThresholdForWaiting() && myActionStep) {
4609 } else if (isStopped()) {
4610 // do not apply startupDelay for waypoints
4611 if (getCarFollowModel().startupDelayStopped() && getNextStop().pars.speed <= 0) {
4613 } else {
4614 // do not apply startupDelay but signal that a stop has taken place
4616 }
4617 } else {
4618 // identify potential startup (before other effects reduce the speed again)
4620 }
4621 if (myActionStep) {
4622 vNext = getCarFollowModel().finalizeSpeed(this, vSafe);
4623 if (vNext > 0) {
4624 vNext = MAX2(vNext, vSafeMin);
4625 }
4626 }
4627 // (Leo) to avoid tiny oscillations (< 1e-10) of vNext in a standing vehicle column (observed for ballistic update), we cap off vNext
4628 // (We assure to do this only for vNext<<NUMERICAL_EPS since otherwise this would nullify the workaround for #2995
4629 // (Jakob) We also need to make sure to reach a stop at the start of the next edge
4630 if (fabs(vNext) < NUMERICAL_EPS_SPEED && (myStopDist > POSITION_EPS || (hasStops() && myCurrEdge == getNextStop().edge))) {
4631 vNext = 0.;
4632 }
4633#ifdef DEBUG_EXEC_MOVE
4634 if (DEBUG_COND) {
4635 std::cout << SIMTIME << " finalizeSpeed vSafe=" << vSafe << " vSafeMin=" << (vSafeMin == -std::numeric_limits<double>::max() ? "-Inf" : toString(vSafeMin))
4636 << " vNext=" << vNext << " (i.e. accel=" << SPEED2ACCEL(vNext - getSpeed()) << ")" << std::endl;
4637 }
4638#endif
4639
4640 // vNext may be higher than vSafe without implying a bug:
4641 // - when approaching a green light that suddenly switches to yellow
4642 // - when using unregulated junctions
4643 // - when using tau < step-size
4644 // - when using unsafe car following models
4645 // - when using TraCI and some speedMode / laneChangeMode settings
4646 //if (vNext > vSafe + NUMERICAL_EPS) {
4647 // WRITE_WARNING("vehicle '" + getID() + "' cannot brake hard enough to reach safe speed "
4648 // + toString(vSafe, 4) + ", moving at " + toString(vNext, 4) + " instead. time="
4649 // + time2string(MSNet::getInstance()->getCurrentTimeStep()) + ".");
4650 //}
4651
4653 vNext = MAX2(vNext, 0.);
4654 } else {
4655 // (Leo) Ballistic: negative vNext can be used to indicate a stop within next step.
4656 }
4657
4658 // Check for speed advices from the traci client
4659 vNext = processTraCISpeedControl(vSafe, vNext);
4660
4661 // the acceleration of a vehicle equipped with the elecHybrid device is restricted by the maximal power of the electric drive as well
4662 MSDevice_ElecHybrid* elecHybridOfVehicle = dynamic_cast<MSDevice_ElecHybrid*>(getDevice(typeid(MSDevice_ElecHybrid)));
4663 if (elecHybridOfVehicle != nullptr) {
4664 // this is the consumption given by the car following model-computed acceleration
4665 elecHybridOfVehicle->setConsum(elecHybridOfVehicle->consumption(*this, (vNext - this->getSpeed()) / TS, vNext));
4666 // but the maximum power of the electric motor may be lower
4667 // it needs to be converted from [W] to [Wh/s] (3600s / 1h) so that TS can be taken into account
4668 double maxPower = getEmissionParameters()->getDoubleOptional(SUMO_ATTR_MAXIMUMPOWER, 100000.) / 3600;
4669 if (elecHybridOfVehicle->getConsum() / TS > maxPower) {
4670 // no, we cannot accelerate that fast, recompute the maximum possible acceleration
4671 double accel = elecHybridOfVehicle->acceleration(*this, maxPower, this->getSpeed());
4672 // and update the speed of the vehicle
4673 vNext = MIN2(vNext, this->getSpeed() + accel * TS);
4674 vNext = MAX2(vNext, 0.);
4675 // and set the vehicle consumption to reflect this
4676 elecHybridOfVehicle->setConsum(elecHybridOfVehicle->consumption(*this, (vNext - this->getSpeed()) / TS, vNext));
4677 }
4678 }
4679
4680 setBrakingSignals(vNext);
4681
4682 // update position and speed
4683 int oldLaneOffset = myLane->getEdge().getNumLanes() - myLane->getIndex();
4684 const MSLane* oldLaneMaybeOpposite = myLane;
4686 // transform to the forward-direction lane, move and then transform back
4689 }
4690 updateState(vNext);
4691 updateWaitingTime(vNext);
4692
4693 // Lanes, which the vehicle touched at some moment of the executed simstep
4694 std::vector<MSLane*> passedLanes;
4695 // remember previous lane (myLane is updated in processLaneAdvances)
4696 const MSLane* oldLane = myLane;
4697 // Reason for a possible emergency stop
4698 std::string emergencyReason;
4699 processLaneAdvances(passedLanes, emergencyReason);
4700
4701 updateTimeLoss(vNext);
4703
4705 if (myState.myPos > myLane->getLength()) {
4706 if (emergencyReason == "") {
4707 emergencyReason = TL(" for unknown reasons");
4708 }
4709 WRITE_WARNINGF(TL("Vehicle '%' performs emergency stop at the end of lane '%'% (decel=%, offset=%), time=%."),
4710 getID(), myLane->getID(), emergencyReason, myAcceleration - myState.mySpeed,
4715 myState.mySpeed = 0;
4716 myAcceleration = 0;
4717 }
4718 const MSLane* oldBackLane = getBackLane();
4720 passedLanes.clear(); // ignore back occupation
4721 }
4722#ifdef DEBUG_ACTIONSTEPS
4723 if (DEBUG_COND) {
4724 std::cout << SIMTIME << " veh '" << getID() << "' updates further lanes." << std::endl;
4725 }
4726#endif
4728 if (passedLanes.size() > 1 && isRail()) {
4729 for (auto pi = passedLanes.rbegin(); pi != passedLanes.rend(); ++pi) {
4730 MSLane* pLane = *pi;
4731 if (pLane != myLane && std::find(myFurtherLanes.begin(), myFurtherLanes.end(), pLane) == myFurtherLanes.end()) {
4733 }
4734 }
4735 }
4736 // bestLanes need to be updated before lane changing starts. NOTE: This call is also a presumption for updateDriveItems()
4738 if (myLane != oldLane || oldBackLane != getBackLane()) {
4739 if (myLaneChangeModel->getShadowLane() != nullptr || getLateralOverlap() > POSITION_EPS) {
4740 // shadow lane must be updated if the front or back lane changed
4741 // either if we already have a shadowLane or if there is lateral overlap
4743 }
4745 // The vehicles target lane must be also be updated if the front or back lane changed
4747 }
4748 }
4749 setBlinkerInformation(); // needs updated bestLanes
4750 //change the blue light only for emergency vehicles SUMOVehicleClass
4752 setEmergencyBlueLight(MSNet::getInstance()->getCurrentTimeStep());
4753 }
4754 // must be done before angle computation
4755 // State needs to be reset for all vehicles before the next call to MSEdgeControl::changeLanes
4756 if (myActionStep) {
4757 // check (#2681): Can this be skipped?
4759 } else {
4761#ifdef DEBUG_ACTIONSTEPS
4762 if (DEBUG_COND) {
4763 std::cout << SIMTIME << " veh '" << getID() << "' skips LCM->prepareStep()." << std::endl;
4764 }
4765#endif
4766 }
4769 }
4770
4771#ifdef DEBUG_EXEC_MOVE
4772 if (DEBUG_COND) {
4773 std::cout << SIMTIME << " executeMove finished veh=" << getID() << " lane=" << myLane->getID() << " myPos=" << getPositionOnLane() << " myPosLat=" << getLateralPositionOnLane() << "\n";
4774 gDebugFlag1 = false; // See MSLink_DEBUG_OPENED
4775 }
4776#endif
4778 // transform back to the opposite-direction lane
4779 MSLane* newOpposite = nullptr;
4780 const MSEdge* newOppositeEdge = myLane->getEdge().getOppositeEdge();
4781 if (newOppositeEdge != nullptr) {
4782 newOpposite = newOppositeEdge->getLanes()[newOppositeEdge->getNumLanes() - MAX2(1, oldLaneOffset)];
4783#ifdef DEBUG_EXEC_MOVE
4784 if (DEBUG_COND) {
4785 std::cout << SIMTIME << " newOppositeEdge=" << newOppositeEdge->getID() << " oldLaneOffset=" << oldLaneOffset << " leftMost=" << newOppositeEdge->getNumLanes() - 1 << " newOpposite=" << Named::getIDSecure(newOpposite) << "\n";
4786 }
4787#endif
4788 }
4789 if (newOpposite == nullptr) {
4791 // unusual overtaking at junctions is ok for emergency vehicles
4792 WRITE_WARNINGF(TL("Unexpected end of opposite lane for vehicle '%' at lane '%', time=%."),
4794 }
4796 if (myState.myPos < getLength()) {
4797 // further lanes is always cleared during opposite driving
4798 MSLane* oldOpposite = oldLane->getOpposite();
4799 if (oldOpposite != nullptr) {
4800 myFurtherLanes.push_back(oldOpposite);
4801 myFurtherLanesPosLat.push_back(0);
4802 // small value since the lane is going in the other direction
4805 } else {
4806 SOFT_ASSERT(false);
4807 }
4808 }
4809 } else {
4811 myLane = newOpposite;
4812 oldLane = oldLaneMaybeOpposite;
4813 //std::cout << SIMTIME << " updated myLane=" << Named::getIDSecure(myLane) << " oldLane=" << oldLane->getID() << "\n";
4816 }
4817 }
4819 // Return whether the vehicle did move to another lane
4820 return myLane != oldLane;
4821}
4822
4823void
4825 myState.myPos += dist;
4828
4829 const std::vector<const MSLane*> lanes = getUpcomingLanesUntil(dist);
4831 for (int i = 0; i < (int)lanes.size(); i++) {
4832 MSLink* link = nullptr;
4833 if (i + 1 < (int)lanes.size()) {
4834 const MSLane* const to = lanes[i + 1];
4835 const bool internal = to->isInternal();
4836 for (MSLink* const l : lanes[i]->getLinkCont()) {
4837 if ((internal && l->getViaLane() == to) || (!internal && l->getLane() == to)) {
4838 link = l;
4839 break;
4840 }
4841 }
4842 }
4843 myLFLinkLanes.emplace_back(link, getSpeed(), getSpeed(), true, t, getSpeed(), 0, 0, dist);
4844 }
4845 // minimum execute move:
4846 std::vector<MSLane*> passedLanes;
4847 // Reason for a possible emergency stop
4848 if (lanes.size() > 1) {
4850 }
4851 std::string emergencyReason;
4852 processLaneAdvances(passedLanes, emergencyReason);
4853#ifdef DEBUG_EXTRAPOLATE_DEPARTPOS
4854 if (DEBUG_COND) {
4855 std::cout << SIMTIME << " veh=" << getID() << " executeFractionalMove dist=" << dist
4856 << " passedLanes=" << toString(passedLanes) << " lanes=" << toString(lanes)
4857 << " finalPos=" << myState.myPos
4858 << " speed=" << getSpeed()
4859 << " myFurtherLanes=" << toString(myFurtherLanes)
4860 << "\n";
4861 }
4862#endif
4864 if (lanes.size() > 1) {
4865 for (std::vector<MSLane*>::iterator i = myFurtherLanes.begin(); i != myFurtherLanes.end(); ++i) {
4866#ifdef DEBUG_FURTHER
4867 if (DEBUG_COND) {
4868 std::cout << SIMTIME << " leaveLane \n";
4869 }
4870#endif
4871 (*i)->resetPartialOccupation(this);
4872 }
4873 myFurtherLanes.clear();
4874 myFurtherLanesPosLat.clear();
4876 }
4877}
4878
4879
4880void
4881MSVehicle::updateState(double vNext, bool parking) {
4882 // update position and speed
4883 double deltaPos; // positional change
4885 // euler
4886 deltaPos = SPEED2DIST(vNext);
4887 } else {
4888 // ballistic
4889 deltaPos = getDeltaPos(SPEED2ACCEL(vNext - myState.mySpeed));
4890 }
4891
4892 // the *mean* acceleration during the next step (probably most appropriate for emission calculation)
4893 // NOTE: for the ballistic update vNext may be negative, indicating a stop.
4895
4896#ifdef DEBUG_EXEC_MOVE
4897 if (DEBUG_COND) {
4898 std::cout << SIMTIME << " updateState() for veh '" << getID() << "': deltaPos=" << deltaPos
4899 << " pos=" << myState.myPos << " newPos=" << myState.myPos + deltaPos << std::endl;
4900 }
4901#endif
4902 double decelPlus = -myAcceleration - getCarFollowModel().getMaxDecel() - NUMERICAL_EPS;
4903 if (decelPlus > 0) {
4904 const double previousAcceleration = SPEED2ACCEL(myState.mySpeed - myState.myPreviousSpeed);
4905 if (myAcceleration + NUMERICAL_EPS < previousAcceleration) {
4906 // vehicle brakes beyond wished maximum deceleration (only warn at the start of the braking manoeuvre)
4907 decelPlus += 2 * NUMERICAL_EPS;
4908 const double emergencyFraction = decelPlus / MAX2(NUMERICAL_EPS, getCarFollowModel().getEmergencyDecel() - getCarFollowModel().getMaxDecel());
4909 if (emergencyFraction >= MSGlobals::gEmergencyDecelWarningThreshold) {
4910 WRITE_WARNINGF(TL("Vehicle '%' performs emergency braking on lane '%' with decel=%, wished=%, severity=%, time=%."),
4911 //+ " decelPlus=" + toString(decelPlus)
4912 //+ " prevAccel=" + toString(previousAcceleration)
4913 //+ " reserve=" + toString(MAX2(NUMERICAL_EPS, getCarFollowModel().getEmergencyDecel() - getCarFollowModel().getMaxDecel()))
4914 getID(), myLane->getID(), -myAcceleration, getCarFollowModel().getMaxDecel(), emergencyFraction, time2string(SIMSTEP));
4916 }
4917 }
4918 }
4919
4921 myState.mySpeed = MAX2(vNext, 0.);
4922
4923 if (isRemoteControlled()) {
4924 deltaPos = myInfluencer->implicitDeltaPosRemote(this);
4925 }
4926
4927 myState.myPos += deltaPos;
4928 myState.myLastCoveredDist = deltaPos;
4929 myNextTurn.first -= deltaPos;
4930
4931 if (!parking) {
4933 }
4934}
4935
4936void
4938 updateState(0, true);
4939 // deboard while parked
4940 if (myPersonDevice != nullptr) {
4942 }
4943 if (myContainerDevice != nullptr) {
4945 }
4946 for (MSVehicleDevice* const dev : myDevices) {
4947 dev->notifyParking();
4948 }
4949}
4950
4951
4952void
4958
4959
4960const MSLane*
4962 if (myFurtherLanes.size() > 0) {
4963 return myFurtherLanes.back();
4964 } else {
4965 return myLane;
4966 }
4967}
4968
4969
4970double
4971MSVehicle::updateFurtherLanes(std::vector<MSLane*>& furtherLanes, std::vector<double>& furtherLanesPosLat,
4972 const std::vector<MSLane*>& passedLanes) {
4973#ifdef DEBUG_SETFURTHER
4974 if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID()
4975 << " updateFurtherLanes oldFurther=" << toString(furtherLanes)
4976 << " oldFurtherPosLat=" << toString(furtherLanesPosLat)
4977 << " passed=" << toString(passedLanes)
4978 << "\n";
4979#endif
4980 for (MSLane* further : furtherLanes) {
4981 further->resetPartialOccupation(this);
4982 if (further->getBidiLane() != nullptr
4983 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
4984 further->getBidiLane()->resetPartialOccupation(this);
4985 }
4986 }
4987
4988 std::vector<MSLane*> newFurther;
4989 std::vector<double> newFurtherPosLat;
4990 double backPosOnPreviousLane = myState.myPos - getLength();
4991 bool widthShift = myFurtherLanesPosLat.size() > myFurtherLanes.size();
4992 if (passedLanes.size() > 1) {
4993 // There are candidates for further lanes. (passedLanes[-1] is the current lane, or current shadow lane in context of updateShadowLanes())
4994 std::vector<MSLane*>::const_iterator fi = furtherLanes.begin();
4995 std::vector<double>::const_iterator fpi = furtherLanesPosLat.begin();
4996 for (auto pi = passedLanes.rbegin() + 1; pi != passedLanes.rend() && backPosOnPreviousLane < 0; ++pi) {
4997 // As long as vehicle back reaches into passed lane, add it to the further lanes
4998 MSLane* further = *pi;
4999 newFurther.push_back(further);
5000 backPosOnPreviousLane += further->setPartialOccupation(this);
5001 if (further->getBidiLane() != nullptr
5002 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5003 further->getBidiLane()->setPartialOccupation(this);
5004 }
5005 if (fi != furtherLanes.end() && further == *fi) {
5006 // Lateral position on this lane is already known. Assume constant and use old value.
5007 newFurtherPosLat.push_back(*fpi);
5008 ++fi;
5009 ++fpi;
5010 } else {
5011 // The lane *pi was not in furtherLanes before.
5012 // If it is downstream, we assume as lateral position the current position
5013 // If it is a new lane upstream (can appear as shadow further in case of LC-maneuvering, e.g.)
5014 // we assign the last known lateral position.
5015 if (newFurtherPosLat.size() == 0) {
5016 if (widthShift) {
5017 newFurtherPosLat.push_back(myFurtherLanesPosLat.back());
5018 } else {
5019 newFurtherPosLat.push_back(myState.myPosLat);
5020 }
5021 } else {
5022 newFurtherPosLat.push_back(newFurtherPosLat.back());
5023 }
5024 }
5025#ifdef DEBUG_SETFURTHER
5026 if (DEBUG_COND) {
5027 std::cout << SIMTIME << " updateFurtherLanes \n"
5028 << " further lane '" << further->getID() << "' backPosOnPreviousLane=" << backPosOnPreviousLane
5029 << std::endl;
5030 }
5031#endif
5032 }
5033 furtherLanes = newFurther;
5034 furtherLanesPosLat = newFurtherPosLat;
5035 } else {
5036 furtherLanes.clear();
5037 furtherLanesPosLat.clear();
5038 }
5039#ifdef DEBUG_SETFURTHER
5040 if (DEBUG_COND) std::cout
5041 << " newFurther=" << toString(furtherLanes)
5042 << " newFurtherPosLat=" << toString(furtherLanesPosLat)
5043 << " newBackPos=" << backPosOnPreviousLane
5044 << "\n";
5045#endif
5046 return backPosOnPreviousLane;
5047}
5048
5049
5050double
5051MSVehicle::getBackPositionOnLane(const MSLane* lane, bool calledByGetPosition) const {
5052#ifdef DEBUG_FURTHER
5053 if (DEBUG_COND) {
5054 std::cout << SIMTIME
5055 << " getBackPositionOnLane veh=" << getID()
5056 << " lane=" << Named::getIDSecure(lane)
5057 << " cbgP=" << calledByGetPosition
5058 << " pos=" << myState.myPos
5059 << " backPos=" << myState.myBackPos
5060 << " myLane=" << myLane->getID()
5061 << " myLaneBidi=" << Named::getIDSecure(myLane->getBidiLane())
5062 << " further=" << toString(myFurtherLanes)
5063 << " furtherPosLat=" << toString(myFurtherLanesPosLat)
5064 << "\n shadowLane=" << Named::getIDSecure(myLaneChangeModel->getShadowLane())
5065 << " shadowFurther=" << toString(myLaneChangeModel->getShadowFurtherLanes())
5066 << " shadowFurtherPosLat=" << toString(myLaneChangeModel->getShadowFurtherLanesPosLat())
5067 << "\n targetLane=" << Named::getIDSecure(myLaneChangeModel->getTargetLane())
5068 << " furtherTargets=" << toString(myLaneChangeModel->getFurtherTargetLanes())
5069 << std::endl;
5070 }
5071#endif
5072 if (lane == myLane
5073 || lane == myLaneChangeModel->getShadowLane()
5074 || lane == myLaneChangeModel->getTargetLane()) {
5076 if (lane == myLaneChangeModel->getShadowLane()) {
5077 return lane->getLength() - myState.myPos - myType->getLength();
5078 } else {
5079 return myState.myPos + (calledByGetPosition ? -1 : 1) * myType->getLength();
5080 }
5081 } else if (&lane->getEdge() != &myLane->getEdge()) {
5082 return lane->getLength() - myState.myPos + (calledByGetPosition ? -1 : 1) * myType->getLength();
5083 } else {
5084 // account for parallel lanes of different lengths in the most conservative manner (i.e. while turning)
5085 return myState.myPos - myType->getLength() + MIN2(0.0, lane->getLength() - myLane->getLength());
5086 }
5087 } else if (lane == myLane->getBidiLane()) {
5088 return lane->getLength() - myState.myPos + myType->getLength() * (calledByGetPosition ? -1 : 1);
5089 } else if (myFurtherLanes.size() > 0 && lane == myFurtherLanes.back()) {
5090 return myState.myBackPos;
5091 } else if ((myLaneChangeModel->getShadowFurtherLanes().size() > 0 && lane == myLaneChangeModel->getShadowFurtherLanes().back())
5092 || (myLaneChangeModel->getFurtherTargetLanes().size() > 0 && lane == myLaneChangeModel->getFurtherTargetLanes().back())) {
5093 assert(myFurtherLanes.size() > 0);
5094 if (lane->getLength() == myFurtherLanes.back()->getLength()) {
5095 return myState.myBackPos;
5096 } else {
5097 // interpolate
5098 //if (DEBUG_COND) {
5099 //if (myFurtherLanes.back()->getLength() != lane->getLength()) {
5100 // std::cout << SIMTIME << " veh=" << getID() << " lane=" << lane->getID() << " further=" << myFurtherLanes.back()->getID()
5101 // << " len=" << lane->getLength() << " fLen=" << myFurtherLanes.back()->getLength()
5102 // << " backPos=" << myState.myBackPos << " result=" << myState.myBackPos / myFurtherLanes.back()->getLength() * lane->getLength() << "\n";
5103 //}
5104 return myState.myBackPos / myFurtherLanes.back()->getLength() * lane->getLength();
5105 }
5106 } else {
5107 //if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID() << " myFurtherLanes=" << toString(myFurtherLanes) << "\n";
5108 double leftLength = myType->getLength() - myState.myPos;
5109
5110 std::vector<MSLane*>::const_iterator i = myFurtherLanes.begin();
5111 while (leftLength > 0 && i != myFurtherLanes.end()) {
5112 leftLength -= (*i)->getLength();
5113 //if (DEBUG_COND) std::cout << " comparing i=" << (*i)->getID() << " lane=" << lane->getID() << "\n";
5114 if (*i == lane) {
5115 return -leftLength;
5116 } else if (*i == lane->getBidiLane()) {
5117 return lane->getLength() + leftLength - (calledByGetPosition ? 2 * myType->getLength() : 0);
5118 }
5119 ++i;
5120 }
5121 //if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID() << " myShadowFurtherLanes=" << toString(myLaneChangeModel->getShadowFurtherLanes()) << "\n";
5122 leftLength = myType->getLength() - myState.myPos;
5124 while (leftLength > 0 && i != myLaneChangeModel->getShadowFurtherLanes().end()) {
5125 leftLength -= (*i)->getLength();
5126 //if (DEBUG_COND) std::cout << " comparing i=" << (*i)->getID() << " lane=" << lane->getID() << "\n";
5127 if (*i == lane) {
5128 return -leftLength;
5129 }
5130 ++i;
5131 }
5132 //if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID() << " myFurtherTargetLanes=" << toString(myLaneChangeModel->getFurtherTargetLanes()) << "\n";
5133 leftLength = myType->getLength() - myState.myPos;
5134 i = getFurtherLanes().begin();
5135 const std::vector<MSLane*> furtherTargetLanes = myLaneChangeModel->getFurtherTargetLanes();
5136 auto j = furtherTargetLanes.begin();
5137 while (leftLength > 0 && j != furtherTargetLanes.end()) {
5138 leftLength -= (*i)->getLength();
5139 // if (DEBUG_COND) std::cout << " comparing i=" << (*i)->getID() << " lane=" << lane->getID() << "\n";
5140 if (*j == lane) {
5141 return -leftLength;
5142 }
5143 ++i;
5144 ++j;
5145 }
5146 WRITE_WARNING("Request backPos of vehicle '" + getID() + "' for invalid lane '" + Named::getIDSecure(lane)
5147 + "' time=" + time2string(MSNet::getInstance()->getCurrentTimeStep()) + ".")
5148 SOFT_ASSERT(false);
5149 return myState.myBackPos;
5150 }
5151}
5152
5153
5154double
5156 return getBackPositionOnLane(lane, true) + myType->getLength();
5157}
5158
5159
5160bool
5162 return lane == myLane || lane == myLaneChangeModel->getShadowLane() || lane == myLane->getBidiLane();
5163}
5164
5165
5166void
5167MSVehicle::checkRewindLinkLanes(const double lengthsInFront, DriveItemVector& lfLinks) const {
5169 double seenSpace = -lengthsInFront;
5170#ifdef DEBUG_CHECKREWINDLINKLANES
5171 if (DEBUG_COND) {
5172 std::cout << "\nCHECK_REWIND_LINKLANES\n" << " veh=" << getID() << " lengthsInFront=" << lengthsInFront << "\n";
5173 };
5174#endif
5175 bool foundStopped = false;
5176 // compute available space until a stopped vehicle is found
5177 // this is the sum of non-interal lane length minus in-between vehicle lengths
5178 for (int i = 0; i < (int)lfLinks.size(); ++i) {
5179 // skip unset links
5180 DriveProcessItem& item = lfLinks[i];
5181#ifdef DEBUG_CHECKREWINDLINKLANES
5182 if (DEBUG_COND) std::cout << SIMTIME
5183 << " link=" << (item.myLink == 0 ? "NULL" : item.myLink->getViaLaneOrLane()->getID())
5184 << " foundStopped=" << foundStopped;
5185#endif
5186 if (item.myLink == nullptr || foundStopped) {
5187 if (!foundStopped) {
5188 item.availableSpace += seenSpace;
5189 } else {
5190 item.availableSpace = seenSpace;
5191 }
5192#ifdef DEBUG_CHECKREWINDLINKLANES
5193 if (DEBUG_COND) {
5194 std::cout << " avail=" << item.availableSpace << "\n";
5195 }
5196#endif
5197 continue;
5198 }
5199 // get the next lane, determine whether it is an internal lane
5200 const MSLane* approachedLane = item.myLink->getViaLane();
5201 if (approachedLane != nullptr) {
5202 if (keepClear(item.myLink)) {
5203 seenSpace = seenSpace - approachedLane->getBruttoVehLenSum();
5204 if (approachedLane == myLane) {
5205 seenSpace += getVehicleType().getLengthWithGap();
5206 }
5207 } else {
5208 seenSpace = seenSpace + approachedLane->getSpaceTillLastStanding(this, foundStopped);// - approachedLane->getBruttoVehLenSum() + approachedLane->getLength();
5209 }
5210 item.availableSpace = seenSpace;
5211#ifdef DEBUG_CHECKREWINDLINKLANES
5212 if (DEBUG_COND) std::cout
5213 << " approached=" << approachedLane->getID()
5214 << " approachedBrutto=" << approachedLane->getBruttoVehLenSum()
5215 << " avail=" << item.availableSpace
5216 << " seenSpace=" << seenSpace
5217 << " hadStoppedVehicle=" << item.hadStoppedVehicle
5218 << " lengthsInFront=" << lengthsInFront
5219 << "\n";
5220#endif
5221 continue;
5222 }
5223 approachedLane = item.myLink->getLane();
5224 const MSVehicle* last = approachedLane->getLastAnyVehicle();
5225 if (last == nullptr || last == this) {
5226 if (approachedLane->getLength() > getVehicleType().getLength()
5227 || keepClear(item.myLink)) {
5228 seenSpace += approachedLane->getLength();
5229 }
5230 item.availableSpace = seenSpace;
5231#ifdef DEBUG_CHECKREWINDLINKLANES
5232 if (DEBUG_COND) {
5233 std::cout << " last=" << Named::getIDSecure(last) << " laneLength=" << approachedLane->getLength() << " avail=" << item.availableSpace << "\n";
5234 }
5235#endif
5236 } else {
5237 bool foundStopped2 = false;
5238 double spaceTillLastStanding = approachedLane->getSpaceTillLastStanding(this, foundStopped2);
5239 if (approachedLane->getBidiLane() != nullptr) {
5240 const MSVehicle* oncomingVeh = approachedLane->getBidiLane()->getFirstFullVehicle();
5241 if (oncomingVeh) {
5242 const double oncomingGap = approachedLane->getLength() - oncomingVeh->getPositionOnLane();
5243 const double oncomingBGap = oncomingVeh->getBrakeGap(true);
5244 // oncoming movement until ego enters the junction
5245 const double oncomingMove = STEPS2TIME(item.myArrivalTime - SIMSTEP) * oncomingVeh->getSpeed();
5246 const double spaceTillOncoming = oncomingGap - oncomingBGap - oncomingMove;
5247 spaceTillLastStanding = MIN2(spaceTillLastStanding, spaceTillOncoming);
5248 if (spaceTillOncoming <= getVehicleType().getLengthWithGap()) {
5249 foundStopped = true;
5250 }
5251#ifdef DEBUG_CHECKREWINDLINKLANES
5252 if (DEBUG_COND) {
5253 std::cout << " oVeh=" << oncomingVeh->getID()
5254 << " oGap=" << oncomingGap
5255 << " bGap=" << oncomingBGap
5256 << " mGap=" << oncomingMove
5257 << " sto=" << spaceTillOncoming;
5258 }
5259#endif
5260 }
5261 }
5262 seenSpace += spaceTillLastStanding;
5263 if (foundStopped2) {
5264 foundStopped = true;
5265 item.hadStoppedVehicle = true;
5266 }
5267 item.availableSpace = seenSpace;
5268 if (last->myHaveToWaitOnNextLink || last->isStopped()) {
5269 foundStopped = true;
5270 item.hadStoppedVehicle = true;
5271 }
5272#ifdef DEBUG_CHECKREWINDLINKLANES
5273 if (DEBUG_COND) std::cout
5274 << " approached=" << approachedLane->getID()
5275 << " last=" << last->getID()
5276 << " lastHasToWait=" << last->myHaveToWaitOnNextLink
5277 << " lastBrakeLight=" << last->signalSet(VEH_SIGNAL_BRAKELIGHT)
5278 << " lastBrakeGap=" << last->getCarFollowModel().brakeGap(last->getSpeed())
5279 << " lastGap=" << (last->getBackPositionOnLane(approachedLane) + last->getCarFollowModel().brakeGap(last->getSpeed()) - last->getSpeed() * last->getCarFollowModel().getHeadwayTime()
5280 // gap of last up to the next intersection
5281 - last->getVehicleType().getMinGap())
5282 << " stls=" << spaceTillLastStanding
5283 << " avail=" << item.availableSpace
5284 << " seenSpace=" << seenSpace
5285 << " foundStopped=" << foundStopped
5286 << " foundStopped2=" << foundStopped2
5287 << "\n";
5288#endif
5289 }
5290 }
5291
5292 // check which links allow continuation and add pass available to the previous item
5293 for (int i = ((int)lfLinks.size() - 1); i > 0; --i) {
5294 DriveProcessItem& item = lfLinks[i - 1];
5295 DriveProcessItem& nextItem = lfLinks[i];
5296 const bool canLeaveJunction = item.myLink->getViaLane() == nullptr || nextItem.myLink == nullptr || nextItem.mySetRequest;
5297 const bool opened = (item.myLink != nullptr
5298 && (canLeaveJunction || (
5299 // indirect bicycle turn
5300 nextItem.myLink != nullptr && nextItem.myLink->isInternalJunctionLink() && nextItem.myLink->haveRed()))
5301 && (
5302 item.myLink->havePriority()
5303 || i == 1 // the upcoming link (item 0) is checked in executeMove anyway. No need to use outdata approachData here
5305 || item.myLink->opened(item.myArrivalTime, item.myArrivalSpeed,
5308 bool allowsContinuation = (item.myLink == nullptr || item.myLink->isCont() || opened) && !item.hadStoppedVehicle;
5309#ifdef DEBUG_CHECKREWINDLINKLANES
5310 if (DEBUG_COND) std::cout
5311 << " link=" << (item.myLink == 0 ? "NULL" : item.myLink->getViaLaneOrLane()->getID())
5312 << " canLeave=" << canLeaveJunction
5313 << " opened=" << opened
5314 << " allowsContinuation=" << allowsContinuation
5315 << " foundStopped=" << foundStopped
5316 << "\n";
5317#endif
5318 if (!opened && item.myLink != nullptr) {
5319 foundStopped = true;
5320 if (i > 1) {
5321 DriveProcessItem& item2 = lfLinks[i - 2];
5322 if (item2.myLink != nullptr && item2.myLink->isCont()) {
5323 allowsContinuation = true;
5324 }
5325 }
5326 }
5327 if (allowsContinuation) {
5328 item.availableSpace = nextItem.availableSpace;
5329#ifdef DEBUG_CHECKREWINDLINKLANES
5330 if (DEBUG_COND) std::cout
5331 << " link=" << (item.myLink == nullptr ? "NULL" : item.myLink->getViaLaneOrLane()->getID())
5332 << " copy nextAvail=" << nextItem.availableSpace
5333 << "\n";
5334#endif
5335 }
5336 }
5337
5338 // find removalBegin
5339 int removalBegin = -1;
5340 for (int i = 0; foundStopped && i < (int)lfLinks.size() && removalBegin < 0; ++i) {
5341 // skip unset links
5342 const DriveProcessItem& item = lfLinks[i];
5343 if (item.myLink == nullptr) {
5344 continue;
5345 }
5346 /*
5347 double impatienceCorrection = MAX2(0., double(double(myWaitingTime)));
5348 if (seenSpace<getVehicleType().getLengthWithGap()-impatienceCorrection/10.&&nextSeenNonInternal!=0) {
5349 removalBegin = lastLinkToInternal;
5350 }
5351 */
5352
5353 const double leftSpace = item.availableSpace - getVehicleType().getLengthWithGap();
5354#ifdef DEBUG_CHECKREWINDLINKLANES
5355 if (DEBUG_COND) std::cout
5356 << SIMTIME
5357 << " veh=" << getID()
5358 << " link=" << (item.myLink == 0 ? "NULL" : item.myLink->getViaLaneOrLane()->getID())
5359 << " avail=" << item.availableSpace
5360 << " leftSpace=" << leftSpace
5361 << "\n";
5362#endif
5363 if (leftSpace < 0/* && item.myLink->willHaveBlockedFoe()*/) {
5364 double impatienceCorrection = 0;
5365 /*
5366 if(item.myLink->getState()==LINKSTATE_MINOR) {
5367 impatienceCorrection = MAX2(0., STEPS2TIME(myWaitingTime));
5368 }
5369 */
5370 // may ignore keepClear rules
5371 if (leftSpace < -impatienceCorrection / 10. && keepClear(item.myLink)) {
5372 removalBegin = i;
5373 }
5374 //removalBegin = i;
5375 }
5376 }
5377 // abort requests
5378 if (removalBegin != -1 && !(removalBegin == 0 && myLane->getEdge().isInternal())) {
5379 const double brakeGap = getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getMaxDecel(), 0.);
5380 while (removalBegin < (int)(lfLinks.size())) {
5381 DriveProcessItem& dpi = lfLinks[removalBegin];
5382 if (dpi.myLink == nullptr) {
5383 break;
5384 }
5385 dpi.myVLinkPass = dpi.myVLinkWait;
5386#ifdef DEBUG_CHECKREWINDLINKLANES
5387 if (DEBUG_COND) {
5388 std::cout << " removalBegin=" << removalBegin << " brakeGap=" << brakeGap << " dist=" << dpi.myDistance << " speed=" << myState.mySpeed << " a2s=" << ACCEL2SPEED(getCarFollowModel().getMaxDecel()) << "\n";
5389 }
5390#endif
5391 if (dpi.myDistance >= brakeGap + POSITION_EPS) {
5392 // always leave junctions after requesting to enter
5393 if (!dpi.myLink->isExitLink() || !lfLinks[removalBegin - 1].mySetRequest) {
5394 dpi.mySetRequest = false;
5395 }
5396 }
5397 ++removalBegin;
5398 }
5399 }
5400 }
5401}
5402
5403
5404void
5406 if (!myActionStep) {
5407 return;
5408 }
5410 for (DriveProcessItem& dpi : myLFLinkLanes) {
5411 if (dpi.myLink != nullptr) {
5412 if (dpi.myLink->getState() == LINKSTATE_ALLWAY_STOP) {
5413 dpi.myArrivalTime += (SUMOTime)RandHelper::rand((int)2, getRNG()); // tie braker
5414 }
5415 dpi.myLink->setApproaching(this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
5416 dpi.mySetRequest, dpi.myArrivalSpeedBraking, getWaitingTimeFor(dpi.myLink), dpi.myDistance, getLateralPositionOnLane());
5417 }
5418 }
5419 if (isRail()) {
5420 for (DriveProcessItem& dpi : myLFLinkLanes) {
5421 if (dpi.myLink != nullptr && dpi.myLink->getTLLogic() != nullptr && dpi.myLink->getTLLogic()->getLogicType() == TrafficLightType::RAIL_SIGNAL) {
5423 }
5424 }
5425 }
5426 if (myLaneChangeModel->getShadowLane() != nullptr) {
5427 // register on all shadow links
5428 for (const DriveProcessItem& dpi : myLFLinkLanes) {
5429 if (dpi.myLink != nullptr) {
5430 MSLink* parallelLink = dpi.myLink->getParallelLink(myLaneChangeModel->getShadowDirection());
5431 if (parallelLink == nullptr && getLaneChangeModel().isOpposite() && dpi.myLink->isEntryLink()) {
5432 // register on opposite direction entry link to warn foes at minor side road
5433 parallelLink = dpi.myLink->getOppositeDirectionLink();
5434 }
5435 if (parallelLink != nullptr) {
5436 const double latOffset = getLane()->getRightSideOnEdge() - myLaneChangeModel->getShadowLane()->getRightSideOnEdge();
5437 parallelLink->setApproaching(this, dpi.myArrivalTime, dpi.myArrivalSpeed, dpi.getLeaveSpeed(),
5438 dpi.mySetRequest, dpi.myArrivalSpeedBraking, getWaitingTimeFor(dpi.myLink), dpi.myDistance,
5439 latOffset);
5441 }
5442 }
5443 }
5444 }
5445#ifdef DEBUG_PLAN_MOVE
5446 if (DEBUG_COND) {
5447 std::cout << SIMTIME
5448 << " veh=" << getID()
5449 << " after checkRewindLinkLanes\n";
5450 for (DriveProcessItem& dpi : myLFLinkLanes) {
5451 std::cout
5452 << " vPass=" << dpi.myVLinkPass
5453 << " vWait=" << dpi.myVLinkWait
5454 << " linkLane=" << (dpi.myLink == 0 ? "NULL" : dpi.myLink->getViaLaneOrLane()->getID())
5455 << " request=" << dpi.mySetRequest
5456 << " atime=" << dpi.myArrivalTime
5457 << "\n";
5458 }
5459 }
5460#endif
5461}
5462
5463
5464void
5466 DriveProcessItem dpi(0, dist);
5467 dpi.myLink = link;
5468 const double arrivalSpeedBraking = getCarFollowModel().getMinimalArrivalSpeedEuler(dist, getSpeed());
5469 link->setApproaching(this, SUMOTime_MAX, 0, 0, false, arrivalSpeedBraking, 0, dpi.myDistance, 0);
5470 // ensure cleanup in the next step
5471 myLFLinkLanes.push_back(dpi);
5473}
5474
5475
5476void
5477MSVehicle::enterLaneAtMove(MSLane* enteredLane, bool onTeleporting) {
5478 myAmOnNet = !onTeleporting;
5479 // vaporizing edge?
5480 /*
5481 if (enteredLane->getEdge().isVaporizing()) {
5482 // yep, let's do the vaporization...
5483 myLane = enteredLane;
5484 return true;
5485 }
5486 */
5487 // Adjust MoveReminder offset to the next lane
5488 adaptLaneEntering2MoveReminder(*enteredLane);
5489 // set the entered lane as the current lane
5490 MSLane* oldLane = myLane;
5491 myLane = enteredLane;
5492 myLastBestLanesEdge = nullptr;
5493
5494 // internal edges are not a part of the route...
5495 if (!enteredLane->getEdge().isInternal()) {
5496 ++myCurrEdge;
5498 }
5499 if (myInfluencer != nullptr) {
5501 }
5502 if (!onTeleporting) {
5506 // transform lateral position when the lane width changes
5507 assert(oldLane != nullptr);
5508 const MSLink* const link = oldLane->getLinkTo(myLane);
5509 if (link != nullptr) {
5510 myState.myPosLat += link->getLateralShift();
5511 } else {
5513 }
5514 } else if (fabs(myState.myPosLat) > NUMERICAL_EPS) {
5515 const double overlap = MAX2(0.0, getLateralOverlap(myState.myPosLat, oldLane));
5516 const double range = (oldLane->getWidth() - getVehicleType().getWidth()) * 0.5 + overlap;
5517 const double range2 = (myLane->getWidth() - getVehicleType().getWidth()) * 0.5 + overlap;
5518 myState.myPosLat *= range2 / range;
5519 }
5520 if (myLane->getBidiLane() != nullptr && (!isRailway(getVClass()) || (myLane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5521 // railways don't need to "see" each other when moving in opposite directions on the same track (efficiency)
5522 // (unless the lane is shared with cars)
5524 }
5525 } else {
5526 // normal move() isn't called so reset position here. must be done
5527 // before calling reminders
5528 myState.myPos = 0;
5531 }
5532 // update via
5533 if (myParameter->via.size() > 0 && myLane->getEdge().getID() == myParameter->via.front()) {
5534 myParameter->via.erase(myParameter->via.begin());
5535 }
5536}
5537
5538
5539void
5541 myAmOnNet = true;
5542 myLane = enteredLane;
5544 // need to update myCurrentLaneInBestLanes
5546 // switch to and activate the new lane's reminders
5547 // keep OldLaneReminders
5548 for (std::vector< MSMoveReminder* >::const_iterator rem = enteredLane->getMoveReminders().begin(); rem != enteredLane->getMoveReminders().end(); ++rem) {
5549 addReminder(*rem);
5550 }
5552 MSLane* lane = myLane;
5553 double leftLength = getVehicleType().getLength() - myState.myPos;
5554 int deleteFurther = 0;
5555#ifdef DEBUG_SETFURTHER
5556 if (DEBUG_COND) {
5557 std::cout << SIMTIME << " enterLaneAtLaneChange entered=" << Named::getIDSecure(enteredLane) << " oldFurther=" << toString(myFurtherLanes) << "\n";
5558 }
5559#endif
5560 if (myLane->getBidiLane() != nullptr && (!isRailway(getVClass()) || (myLane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5561 // railways don't need to "see" each other when moving in opposite directions on the same track (efficiency)
5562 // (unless the lane is shared with cars)
5564 }
5565 for (int i = 0; i < (int)myFurtherLanes.size(); i++) {
5566 if (lane != nullptr) {
5568 }
5569#ifdef DEBUG_SETFURTHER
5570 if (DEBUG_COND) {
5571 std::cout << " enterLaneAtLaneChange i=" << i << " lane=" << Named::getIDSecure(lane) << " leftLength=" << leftLength << "\n";
5572 }
5573#endif
5574 if (leftLength > 0) {
5575 if (lane != nullptr) {
5577 if (myFurtherLanes[i]->getBidiLane() != nullptr
5578 && (!isRailway(getVClass()) || (myFurtherLanes[i]->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5579 myFurtherLanes[i]->getBidiLane()->resetPartialOccupation(this);
5580 }
5581 // lane changing onto longer lanes may reduce the number of
5582 // remaining further lanes
5583 myFurtherLanes[i] = lane;
5585 leftLength -= lane->setPartialOccupation(this);
5586 if (lane->getBidiLane() != nullptr
5587 && (!isRailway(getVClass()) || (lane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5588 lane->getBidiLane()->setPartialOccupation(this);
5589 }
5590 myState.myBackPos = -leftLength;
5591#ifdef DEBUG_SETFURTHER
5592 if (DEBUG_COND) {
5593 std::cout << SIMTIME << " newBackPos=" << myState.myBackPos << "\n";
5594 }
5595#endif
5596 } else {
5597 // keep the old values, but ensure there is no shadow
5600 }
5601 if (myState.myBackPos < 0) {
5602 myState.myBackPos += myFurtherLanes[i]->getLength();
5603 }
5604#ifdef DEBUG_SETFURTHER
5605 if (DEBUG_COND) {
5606 std::cout << SIMTIME << " i=" << i << " further=" << myFurtherLanes[i]->getID() << " newBackPos=" << myState.myBackPos << "\n";
5607 }
5608#endif
5609 }
5610 } else {
5611 myFurtherLanes[i]->resetPartialOccupation(this);
5612 if (myFurtherLanes[i]->getBidiLane() != nullptr
5613 && (!isRailway(getVClass()) || (myFurtherLanes[i]->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5614 myFurtherLanes[i]->getBidiLane()->resetPartialOccupation(this);
5615 }
5616 deleteFurther++;
5617 }
5618 }
5619 if (deleteFurther > 0) {
5620#ifdef DEBUG_SETFURTHER
5621 if (DEBUG_COND) {
5622 std::cout << SIMTIME << " veh=" << getID() << " shortening myFurtherLanes by " << deleteFurther << "\n";
5623 }
5624#endif
5625 myFurtherLanes.erase(myFurtherLanes.end() - deleteFurther, myFurtherLanes.end());
5626 myFurtherLanesPosLat.erase(myFurtherLanesPosLat.end() - deleteFurther, myFurtherLanesPosLat.end());
5627 }
5628#ifdef DEBUG_SETFURTHER
5629 if (DEBUG_COND) {
5630 std::cout << SIMTIME << " enterLaneAtLaneChange new furtherLanes=" << toString(myFurtherLanes)
5631 << " furterLanesPosLat=" << toString(myFurtherLanesPosLat) << "\n";
5632 }
5633#endif
5635}
5636
5637
5638void
5639MSVehicle::computeFurtherLanes(MSLane* enteredLane, double pos, bool collision) {
5640 // build the list of lanes the vehicle is lapping into
5641 if (!myLaneChangeModel->isOpposite()) {
5642 double leftLength = myType->getLength() - pos;
5643 MSLane* clane = enteredLane;
5644 int routeIndex = getRoutePosition();
5645 while (leftLength > 0) {
5646 if (routeIndex > 0 && clane->getEdge().isNormal()) {
5647 // get predecessor lane that corresponds to prior route
5648 routeIndex--;
5649 const MSEdge* fromRouteEdge = myRoute->getEdges()[routeIndex];
5650 MSLane* target = clane;
5651 clane = nullptr;
5652 for (auto ili : target->getIncomingLanes()) {
5653 if (ili.lane->getEdge().getNormalBefore() == fromRouteEdge) {
5654 clane = ili.lane;
5655 break;
5656 }
5657 }
5658 } else {
5659 clane = clane->getLogicalPredecessorLane();
5660 }
5661 if (clane == nullptr || clane == myLane || clane == myLane->getBidiLane()
5662 || (clane->isInternal() && (
5663 clane->getLinkCont()[0]->getDirection() == LinkDirection::TURN
5664 || clane->getLinkCont()[0]->getDirection() == LinkDirection::TURN_LEFTHAND))) {
5665 break;
5666 }
5667 if (!collision || std::find(myFurtherLanes.begin(), myFurtherLanes.end(), clane) == myFurtherLanes.end()) {
5668 myFurtherLanes.push_back(clane);
5670 clane->setPartialOccupation(this);
5671 if (clane->getBidiLane() != nullptr
5672 && (!isRailway(getVClass()) || (clane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5673 clane->getBidiLane()->setPartialOccupation(this);
5674 }
5675 }
5676 leftLength -= clane->getLength();
5677 }
5678 myState.myBackPos = -leftLength;
5679#ifdef DEBUG_SETFURTHER
5680 if (DEBUG_COND) {
5681 std::cout << SIMTIME << " computeFurtherLanes veh=" << getID() << " pos=" << pos << " myFurtherLanes=" << toString(myFurtherLanes) << " backPos=" << myState.myBackPos << "\n";
5682 }
5683#endif
5684 } else {
5685 // clear partial occupation
5686 for (MSLane* further : myFurtherLanes) {
5687#ifdef DEBUG_SETFURTHER
5688 if (DEBUG_COND) {
5689 std::cout << SIMTIME << " opposite: resetPartialOccupation " << further->getID() << " \n";
5690 }
5691#endif
5692 further->resetPartialOccupation(this);
5693 if (further->getBidiLane() != nullptr
5694 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5695 further->getBidiLane()->resetPartialOccupation(this);
5696 }
5697 }
5698 myFurtherLanes.clear();
5699 myFurtherLanesPosLat.clear();
5700 }
5701}
5702
5703
5704void
5705MSVehicle::enterLaneAtInsertion(MSLane* enteredLane, double pos, double speed, double posLat, MSMoveReminder::Notification notification) {
5706 myState = State(pos, speed, posLat, pos - getVehicleType().getLength(), hasDeparted() ? myState.myPreviousSpeed : speed);
5708 onDepart();
5709 }
5711 assert(myState.myPos >= 0);
5712 assert(myState.mySpeed >= 0);
5713 myLane = enteredLane;
5714 myAmOnNet = true;
5715 // schedule action for the next timestep
5717 if (notification != MSMoveReminder::NOTIFICATION_TELEPORT) {
5718 if (notification == MSMoveReminder::NOTIFICATION_PARKING && myInfluencer != nullptr) {
5719 drawOutsideNetwork(false);
5720 }
5721 // set and activate the new lane's reminders, teleports already did that at enterLaneAtMove
5722 for (std::vector< MSMoveReminder* >::const_iterator rem = enteredLane->getMoveReminders().begin(); rem != enteredLane->getMoveReminders().end(); ++rem) {
5723 addReminder(*rem);
5724 }
5725 activateReminders(notification, enteredLane);
5726 } else {
5727 myLastBestLanesEdge = nullptr;
5730 while (!myStops.empty() && myStops.front().edge == myCurrEdge && &myStops.front().lane->getEdge() == &myLane->getEdge()
5731 && myStops.front().pars.endPos < pos) {
5732 WRITE_WARNINGF(TL("Vehicle '%' skips stop on lane '%' time=%."), getID(), myStops.front().lane->getID(),
5733 time2string(MSNet::getInstance()->getCurrentTimeStep()));
5734 myStops.pop_front();
5735 }
5736 // avoid startup-effects after teleport
5738
5739 }
5740 computeFurtherLanes(enteredLane, pos);
5744 } else if (MSGlobals::gLaneChangeDuration > 0) {
5746 }
5747 if (notification != MSMoveReminder::NOTIFICATION_LOAD_STATE) {
5750 myAngle += M_PI;
5751 }
5752 }
5753 if (MSNet::getInstance()->hasPersons()) {
5754 for (MSLane* further : myFurtherLanes) {
5755 if (further->mustCheckJunctionCollisions()) {
5757 }
5758 }
5759 }
5760}
5761
5762
5763void
5764MSVehicle::leaveLane(const MSMoveReminder::Notification reason, const MSLane* approachedLane) {
5765 for (MoveReminderCont::iterator rem = myMoveReminders.begin(); rem != myMoveReminders.end();) {
5766 if (rem->first->notifyLeave(*this, myState.myPos + rem->second, reason, approachedLane)) {
5767#ifdef _DEBUG
5768 if (myTraceMoveReminders) {
5769 traceMoveReminder("notifyLeave", rem->first, rem->second, true);
5770 }
5771#endif
5772 ++rem;
5773 } else {
5774#ifdef _DEBUG
5775 if (myTraceMoveReminders) {
5776 traceMoveReminder("notifyLeave", rem->first, rem->second, false);
5777 }
5778#endif
5779 rem = myMoveReminders.erase(rem);
5780 }
5781 }
5785 && myLane != nullptr) {
5787 }
5788 if (myLane != nullptr && myLane->getBidiLane() != nullptr && myAmOnNet
5789 && (!isRailway(getVClass()) || (myLane->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5791 }
5793 // @note. In case of lane change, myFurtherLanes and partial occupation
5794 // are handled in enterLaneAtLaneChange()
5795 for (MSLane* further : myFurtherLanes) {
5796#ifdef DEBUG_FURTHER
5797 if (DEBUG_COND) {
5798 std::cout << SIMTIME << " leaveLane \n";
5799 }
5800#endif
5801 further->resetPartialOccupation(this);
5802 if (further->getBidiLane() != nullptr
5803 && (!isRailway(getVClass()) || (further->getPermissions() & ~SVC_RAIL_CLASSES) != 0)) {
5804 further->getBidiLane()->resetPartialOccupation(this);
5805 }
5806 }
5807 myFurtherLanes.clear();
5808 myFurtherLanesPosLat.clear();
5809 }
5811 myAmOnNet = false;
5812 myWaitingTime = 0;
5813 }
5815 myStopDist = std::numeric_limits<double>::max();
5816 if (myPastStops.back().speed <= 0) {
5817 WRITE_WARNINGF(TL("Vehicle '%' aborts stop."), getID());
5818 }
5819 }
5821 while (!myStops.empty() && myStops.front().edge == myCurrEdge && &myStops.front().lane->getEdge() == &myLane->getEdge()) {
5822 if (myStops.front().getSpeed() <= 0) {
5823 WRITE_WARNINGF(TL("Vehicle '%' skips stop on lane '%' time=%."), getID(), myStops.front().lane->getID(),
5824 time2string(MSNet::getInstance()->getCurrentTimeStep()))
5825 if (MSStopOut::active()) {
5826 // clean up if stopBlocked was called
5828 }
5829 myStops.pop_front();
5830 } else {
5831 MSStop& stop = myStops.front();
5832 // passed waypoint at the end of the lane
5833 if (!stop.reached) {
5834 if (MSStopOut::active()) {
5836 }
5837 stop.reached = true;
5838 // enter stopping place so leaveFrom works as expected
5839 if (stop.busstop != nullptr) {
5840 // let the bus stop know the vehicle
5841 stop.busstop->enter(this, stop.pars.parking == ParkingType::OFFROAD);
5842 }
5843 if (stop.containerstop != nullptr) {
5844 // let the container stop know the vehicle
5846 }
5847 // do not enter parkingarea!
5848 if (stop.chargingStation != nullptr) {
5849 // let the container stop know the vehicle
5851 }
5852 }
5854 }
5855 myStopDist = std::numeric_limits<double>::max();
5856 }
5857 }
5858}
5859
5860
5861void
5863 for (MoveReminderCont::iterator rem = myMoveReminders.begin(); rem != myMoveReminders.end();) {
5864 if (rem->first->notifyLeaveBack(*this, reason, leftLane)) {
5865#ifdef _DEBUG
5866 if (myTraceMoveReminders) {
5867 traceMoveReminder("notifyLeaveBack", rem->first, rem->second, true);
5868 }
5869#endif
5870 ++rem;
5871 } else {
5872#ifdef _DEBUG
5873 if (myTraceMoveReminders) {
5874 traceMoveReminder("notifyLeaveBack", rem->first, rem->second, false);
5875 }
5876#endif
5877 rem = myMoveReminders.erase(rem);
5878 }
5879 }
5880#ifdef DEBUG_MOVEREMINDERS
5881 if (DEBUG_COND) {
5882 std::cout << SIMTIME << " veh=" << getID() << " myReminders:";
5883 for (auto rem : myMoveReminders) {
5884 std::cout << rem.first->getDescription() << " ";
5885 }
5886 std::cout << "\n";
5887 }
5888#endif
5889}
5890
5891
5896
5897
5902
5903bool
5905 return (lane->isInternal()
5906 ? & (lane->getLinkCont()[0]->getLane()->getEdge()) != *(myCurrEdge + 1)
5907 : &lane->getEdge() != *myCurrEdge);
5908}
5909
5910const std::vector<MSVehicle::LaneQ>&
5912 return *myBestLanes.begin();
5913}
5914
5915
5916void
5917MSVehicle::updateBestLanes(bool forceRebuild, const MSLane* startLane) {
5918#ifdef DEBUG_BESTLANES
5919 if (DEBUG_COND) {
5920 std::cout << SIMTIME << " updateBestLanes veh=" << getID() << " force=" << forceRebuild << " startLane1=" << Named::getIDSecure(startLane) << " myLane=" << Named::getIDSecure(myLane) << "\n";
5921 }
5922#endif
5923 if (startLane == nullptr) {
5924 startLane = myLane;
5925 }
5926 assert(startLane != 0);
5928 // depending on the calling context, startLane might be the forward lane
5929 // or the reverse-direction lane. In the latter case we need to
5930 // transform it to the forward lane.
5931 if (isOppositeLane(startLane)) {
5932 // use leftmost lane of forward edge
5933 startLane = startLane->getEdge().getOppositeEdge()->getLanes().back();
5934 assert(startLane != 0);
5935#ifdef DEBUG_BESTLANES
5936 if (DEBUG_COND) {
5937 std::cout << " startLaneIsOpposite newStartLane=" << startLane->getID() << "\n";
5938 }
5939#endif
5940 }
5941 }
5942 if (forceRebuild) {
5943 myLastBestLanesEdge = nullptr;
5945 }
5946 if (myBestLanes.size() > 0 && !forceRebuild && myLastBestLanesEdge == &startLane->getEdge()) {
5948#ifdef DEBUG_BESTLANES
5949 if (DEBUG_COND) {
5950 std::cout << " only updateOccupancyAndCurrentBestLane\n";
5951 }
5952#endif
5953 return;
5954 }
5955 if (startLane->getEdge().isInternal()) {
5956 if (myBestLanes.size() == 0 || forceRebuild) {
5957 // rebuilt from previous non-internal lane (may backtrack twice if behind an internal junction)
5958 updateBestLanes(true, startLane->getLogicalPredecessorLane());
5959 }
5960 if (myLastBestLanesInternalLane == startLane && !forceRebuild) {
5961#ifdef DEBUG_BESTLANES
5962 if (DEBUG_COND) {
5963 std::cout << " nothing to do on internal\n";
5964 }
5965#endif
5966 return;
5967 }
5968 // adapt best lanes to fit the current internal edge:
5969 // keep the entries that are reachable from this edge
5970 const MSEdge* nextEdge = startLane->getNextNormal();
5971 assert(!nextEdge->isInternal());
5972 for (std::vector<std::vector<LaneQ> >::iterator it = myBestLanes.begin(); it != myBestLanes.end();) {
5973 std::vector<LaneQ>& lanes = *it;
5974 assert(lanes.size() > 0);
5975 if (&(lanes[0].lane->getEdge()) == nextEdge) {
5976 // keep those lanes which are successors of internal lanes from the edge of startLane
5977 std::vector<LaneQ> oldLanes = lanes;
5978 lanes.clear();
5979 const std::vector<MSLane*>& sourceLanes = startLane->getEdge().getLanes();
5980 for (std::vector<MSLane*>::const_iterator it_source = sourceLanes.begin(); it_source != sourceLanes.end(); ++it_source) {
5981 for (std::vector<LaneQ>::iterator it_lane = oldLanes.begin(); it_lane != oldLanes.end(); ++it_lane) {
5982 if ((*it_source)->getLinkCont()[0]->getLane() == (*it_lane).lane) {
5983 lanes.push_back(*it_lane);
5984 break;
5985 }
5986 }
5987 }
5988 assert(lanes.size() == startLane->getEdge().getLanes().size());
5989 // patch invalid bestLaneOffset and updated myCurrentLaneInBestLanes
5990 for (int i = 0; i < (int)lanes.size(); ++i) {
5991 if (i + lanes[i].bestLaneOffset < 0) {
5992 lanes[i].bestLaneOffset = -i;
5993 }
5994 if (i + lanes[i].bestLaneOffset >= (int)lanes.size()) {
5995 lanes[i].bestLaneOffset = (int)lanes.size() - i - 1;
5996 }
5997 assert(i + lanes[i].bestLaneOffset >= 0);
5998 assert(i + lanes[i].bestLaneOffset < (int)lanes.size());
5999 if (lanes[i].bestContinuations[0] != 0) {
6000 // patch length of bestContinuation to match expectations (only once)
6001 lanes[i].bestContinuations.insert(lanes[i].bestContinuations.begin(), (MSLane*)nullptr);
6002 }
6003 if (startLane->getLinkCont()[0]->getLane() == lanes[i].lane) {
6004 myCurrentLaneInBestLanes = lanes.begin() + i;
6005 }
6006 assert(&(lanes[i].lane->getEdge()) == nextEdge);
6007 }
6008 myLastBestLanesInternalLane = startLane;
6010#ifdef DEBUG_BESTLANES
6011 if (DEBUG_COND) {
6012 std::cout << " updated for internal\n";
6013 }
6014#endif
6015 return;
6016 } else {
6017 // remove passed edges
6018 it = myBestLanes.erase(it);
6019 }
6020 }
6021 assert(false); // should always find the next edge
6022 }
6023 // start rebuilding
6025 myLastBestLanesEdge = &startLane->getEdge();
6027
6028 // get information about the next stop
6029 MSRouteIterator nextStopEdge = myRoute->end();
6030 const MSLane* nextStopLane = nullptr;
6031 double nextStopPos = 0;
6032 bool nextStopIsWaypoint = false;
6033 if (!myStops.empty()) {
6034 const MSStop& nextStop = myStops.front();
6035 nextStopLane = nextStop.lane;
6036 if (nextStop.isOpposite) {
6037 // target leftmost lane in forward direction
6038 nextStopLane = nextStopLane->getEdge().getOppositeEdge()->getLanes().back();
6039 }
6040 nextStopEdge = nextStop.edge;
6041 nextStopPos = nextStop.pars.startPos;
6042 nextStopIsWaypoint = nextStop.getSpeed() > 0;
6043 }
6044 // myArrivalTime = -1 in the context of validating departSpeed with departLane=best
6045 if (myParameter->arrivalLaneProcedure >= ArrivalLaneDefinition::GIVEN && nextStopEdge == myRoute->end() && myArrivalLane >= 0) {
6046 nextStopEdge = (myRoute->end() - 1);
6047 nextStopLane = (*nextStopEdge)->getLanes()[myArrivalLane];
6048 nextStopPos = myArrivalPos;
6049 }
6050 if (nextStopEdge != myRoute->end()) {
6051 // make sure that the "wrong" lanes get a penalty. (penalty needs to be
6052 // large enough to overcome a magic threshold in MSLaneChangeModel::DK2004.cpp:383)
6053 nextStopPos = MAX2(POSITION_EPS, MIN2((double)nextStopPos, (double)(nextStopLane->getLength() - 2 * POSITION_EPS)));
6054 if (nextStopLane->isInternal()) {
6055 // switch to the correct lane before entering the intersection
6056 nextStopPos = (*nextStopEdge)->getLength();
6057 }
6058 }
6059
6060 // go forward along the next lanes;
6061 // trains do not have to deal with lane-changing for stops but their best
6062 // lanes lookahead is needed for rail signal control
6063 const bool continueAfterStop = nextStopIsWaypoint || isRailway(getVClass());
6064 int seen = 0;
6065 double seenLength = 0;
6066 bool progress = true;
6067 // bestLanes must cover the braking distance even when at the very end of the current lane to avoid unecessary slow down
6068 const double maxBrakeDist = startLane->getLength() + getCarFollowModel().getHeadwayTime() * getMaxSpeed() + getCarFollowModel().brakeGap(getMaxSpeed()) + getVehicleType().getMinGap();
6069 const double lookahead = getLaneChangeModel().getStrategicLookahead();
6070 for (MSRouteIterator ce = myCurrEdge; progress;) {
6071 std::vector<LaneQ> currentLanes;
6072 const std::vector<MSLane*>* allowed = nullptr;
6073 const MSEdge* nextEdge = nullptr;
6074 if (ce != myRoute->end() && ce + 1 != myRoute->end()) {
6075 nextEdge = *(ce + 1);
6076 allowed = (*ce)->allowedLanes(*nextEdge, myType->getVehicleClass());
6077 }
6078 const std::vector<MSLane*>& lanes = (*ce)->getLanes();
6079 for (std::vector<MSLane*>::const_iterator i = lanes.begin(); i != lanes.end(); ++i) {
6080 LaneQ q;
6081 MSLane* cl = *i;
6082 q.lane = cl;
6083 q.bestContinuations.push_back(cl);
6084 q.bestLaneOffset = 0;
6085 q.length = cl->allowsVehicleClass(myType->getVehicleClass()) ? (*ce)->getLength() : 0;
6086 q.currentLength = q.length;
6087 // if all lanes are forbidden (i.e. due to a dynamic closing) we want to express no preference
6088 q.allowsContinuation = allowed == nullptr || std::find(allowed->begin(), allowed->end(), cl) != allowed->end();
6089 q.occupation = 0;
6090 q.nextOccupation = 0;
6091 currentLanes.push_back(q);
6092 }
6093 //
6094 if (nextStopEdge == ce
6095 // already past the stop edge
6096 && !(ce == myCurrEdge && myLane != nullptr && myLane->isInternal())) {
6097 if (!nextStopLane->isInternal() && !continueAfterStop) {
6098 progress = false;
6099 }
6100 const MSLane* normalStopLane = nextStopLane->getNormalPredecessorLane();
6101 for (std::vector<LaneQ>::iterator q = currentLanes.begin(); q != currentLanes.end(); ++q) {
6102 if (nextStopLane != nullptr && normalStopLane != (*q).lane) {
6103 (*q).allowsContinuation = false;
6104 (*q).length = nextStopPos;
6105 (*q).currentLength = (*q).length;
6106 }
6107 }
6108 }
6109
6110 myBestLanes.push_back(currentLanes);
6111 ++seen;
6112 seenLength += currentLanes[0].lane->getLength();
6113 ++ce;
6114 if (lookahead >= 0) {
6115 progress &= (seen <= 2 || seenLength < lookahead); // custom (but we need to look at least one edge ahead)
6116 } else {
6117 progress &= (seen <= 4 || seenLength < MAX2(maxBrakeDist, 3000.0)); // motorway
6118 progress &= (seen <= 8 || seenLength < MAX2(maxBrakeDist, 200.0) || isRailway(getVClass())); // urban
6119 }
6120 progress &= ce != myRoute->end();
6121 /*
6122 if(progress) {
6123 progress &= (currentLanes.size()!=1||(*ce)->getLanes().size()!=1);
6124 }
6125 */
6126 }
6127
6128 // we are examining the last lane explicitly
6129 if (myBestLanes.size() != 0) {
6130 double bestLength = -1;
6131 // minimum and maximum lane index with best length
6132 int bestThisIndex = 0;
6133 int bestThisMaxIndex = 0;
6134 int index = 0;
6135 std::vector<LaneQ>& last = myBestLanes.back();
6136 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
6137 if ((*j).length > bestLength) {
6138 bestLength = (*j).length;
6139 bestThisIndex = index;
6140 bestThisMaxIndex = index;
6141 } else if ((*j).length == bestLength) {
6142 bestThisMaxIndex = index;
6143 }
6144 }
6145 index = 0;
6146 bool requiredChangeRightForbidden = false;
6147 int requireChangeToLeftForbidden = -1;
6148 for (std::vector<LaneQ>::iterator j = last.begin(); j != last.end(); ++j, ++index) {
6149 if ((*j).length < bestLength) {
6150 if (abs(bestThisIndex - index) < abs(bestThisMaxIndex - index)) {
6151 (*j).bestLaneOffset = bestThisIndex - index;
6152 } else {
6153 (*j).bestLaneOffset = bestThisMaxIndex - index;
6154 }
6155 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(getVClass())
6156 || !(*j).lane->getParallelLane(-1, false)->allowsVehicleClass(getVClass())
6157 || requiredChangeRightForbidden)) {
6158 // this lane and all further lanes to the left cannot be used
6159 requiredChangeRightForbidden = true;
6160 (*j).length = 0;
6161 } else if ((*j).bestLaneOffset > 0 && (!(*j).lane->allowsChangingLeft(getVClass())
6162 || !(*j).lane->getParallelLane(1, false)->allowsVehicleClass(getVClass()))) {
6163 // this lane and all previous lanes to the right cannot be used
6164 requireChangeToLeftForbidden = (*j).lane->getIndex();
6165 }
6166 }
6167 }
6168 for (int i = requireChangeToLeftForbidden; i >= 0; i--) {
6169 if (last[i].bestLaneOffset > 0) {
6170 last[i].length = 0;
6171 }
6172 }
6173#ifdef DEBUG_BESTLANES
6174 if (DEBUG_COND) {
6175 std::cout << " last edge=" << last.front().lane->getEdge().getID() << " (bestIndex=" << bestThisIndex << " bestMaxIndex=" << bestThisMaxIndex << "):\n";
6176 std::vector<LaneQ>& laneQs = myBestLanes.back();
6177 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
6178 std::cout << " lane=" << (*j).lane->getID() << " length=" << (*j).length << " bestOffset=" << (*j).bestLaneOffset << "\n";
6179 }
6180 }
6181#endif
6182 }
6183 // go backward through the lanes
6184 // track back best lane and compute the best prior lane(s)
6185 for (std::vector<std::vector<LaneQ> >::reverse_iterator i = myBestLanes.rbegin() + 1; i != myBestLanes.rend(); ++i) {
6186 std::vector<LaneQ>& nextLanes = (*(i - 1));
6187 std::vector<LaneQ>& clanes = (*i);
6188 MSEdge* const cE = &clanes[0].lane->getEdge();
6189 int index = 0;
6190 double bestConnectedLength = -1;
6191 double bestLength = -1;
6192 for (const LaneQ& j : nextLanes) {
6193 if (j.lane->isApproachedFrom(cE) && bestConnectedLength < j.length) {
6194 bestConnectedLength = j.length;
6195 }
6196 if (bestLength < j.length) {
6197 bestLength = j.length;
6198 }
6199 }
6200 // compute index of the best lane (highest length and least offset from the best next lane)
6201 int bestThisIndex = 0;
6202 int bestThisMaxIndex = 0;
6203 if (bestConnectedLength > 0) {
6204 index = 0;
6205 for (LaneQ& j : clanes) {
6206 const LaneQ* bestConnectedNext = nullptr;
6207 if (j.allowsContinuation) {
6208 for (const LaneQ& m : nextLanes) {
6209 if ((m.lane->allowsVehicleClass(getVClass()) || m.lane->hadPermissionChanges())
6210 && m.lane->isApproachedFrom(cE, j.lane)) {
6211 if (betterContinuation(bestConnectedNext, m)) {
6212 bestConnectedNext = &m;
6213 }
6214 }
6215 }
6216 if (bestConnectedNext != nullptr) {
6217 if (bestConnectedNext->length == bestConnectedLength && abs(bestConnectedNext->bestLaneOffset) < 2) {
6218 j.length += bestLength;
6219 } else {
6220 j.length += bestConnectedNext->length;
6221 }
6222 j.bestLaneOffset = bestConnectedNext->bestLaneOffset;
6223 }
6224 }
6225 if (bestConnectedNext != nullptr && (bestConnectedNext->allowsContinuation || bestConnectedNext->length > 0)) {
6226 copy(bestConnectedNext->bestContinuations.begin(), bestConnectedNext->bestContinuations.end(), back_inserter(j.bestContinuations));
6227 } else {
6228 j.allowsContinuation = false;
6229 }
6230 if (clanes[bestThisIndex].length < j.length
6231 || (clanes[bestThisIndex].length == j.length && abs(clanes[bestThisIndex].bestLaneOffset) > abs(j.bestLaneOffset))
6232 || (clanes[bestThisIndex].length == j.length && abs(clanes[bestThisIndex].bestLaneOffset) == abs(j.bestLaneOffset) &&
6233 nextLinkPriority(clanes[bestThisIndex].bestContinuations) < nextLinkPriority(j.bestContinuations))
6234 ) {
6235 bestThisIndex = index;
6236 bestThisMaxIndex = index;
6237 } else if (clanes[bestThisIndex].length == j.length
6238 && abs(clanes[bestThisIndex].bestLaneOffset) == abs(j.bestLaneOffset)
6239 && nextLinkPriority(clanes[bestThisIndex].bestContinuations) == nextLinkPriority(j.bestContinuations)) {
6240 bestThisMaxIndex = index;
6241 }
6242 index++;
6243 }
6244
6245 //vehicle with elecHybrid device prefers running under an overhead wire
6246 if (getDevice(typeid(MSDevice_ElecHybrid)) != nullptr) {
6247 index = 0;
6248 for (const LaneQ& j : clanes) {
6249 std::string overheadWireSegmentID = MSNet::getInstance()->getStoppingPlaceID(j.lane, j.currentLength / 2., SUMO_TAG_OVERHEAD_WIRE_SEGMENT);
6250 if (overheadWireSegmentID != "") {
6251 bestThisIndex = index;
6252 bestThisMaxIndex = index;
6253 }
6254 index++;
6255 }
6256 }
6257
6258 } else {
6259 // only needed in case of disconnected routes
6260 int bestNextIndex = 0;
6261 int bestDistToNeeded = (int) clanes.size();
6262 index = 0;
6263 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6264 if ((*j).allowsContinuation) {
6265 int nextIndex = 0;
6266 for (std::vector<LaneQ>::const_iterator m = nextLanes.begin(); m != nextLanes.end(); ++m, ++nextIndex) {
6267 if ((*m).lane->isApproachedFrom(cE, (*j).lane)) {
6268 if (bestDistToNeeded > abs((*m).bestLaneOffset)) {
6269 bestDistToNeeded = abs((*m).bestLaneOffset);
6270 bestThisIndex = index;
6271 bestThisMaxIndex = index;
6272 bestNextIndex = nextIndex;
6273 }
6274 }
6275 }
6276 }
6277 }
6278 clanes[bestThisIndex].length += nextLanes[bestNextIndex].length;
6279 copy(nextLanes[bestNextIndex].bestContinuations.begin(), nextLanes[bestNextIndex].bestContinuations.end(), back_inserter(clanes[bestThisIndex].bestContinuations));
6280
6281 }
6282 // set bestLaneOffset for all lanes
6283 index = 0;
6284 bool requiredChangeRightForbidden = false;
6285 int requireChangeToLeftForbidden = -1;
6286 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6287 if ((*j).length < clanes[bestThisIndex].length
6288 || ((*j).length == clanes[bestThisIndex].length && abs((*j).bestLaneOffset) > abs(clanes[bestThisIndex].bestLaneOffset))
6289 || (nextLinkPriority((*j).bestContinuations)) < nextLinkPriority(clanes[bestThisIndex].bestContinuations)
6290 ) {
6291 if (abs(bestThisIndex - index) < abs(bestThisMaxIndex - index)) {
6292 (*j).bestLaneOffset = bestThisIndex - index;
6293 } else {
6294 (*j).bestLaneOffset = bestThisMaxIndex - index;
6295 }
6296 if ((nextLinkPriority((*j).bestContinuations)) < nextLinkPriority(clanes[bestThisIndex].bestContinuations)) {
6297 // try to move away from the lower-priority lane before it ends
6298 (*j).length = (*j).currentLength;
6299 }
6300 if ((*j).bestLaneOffset < 0 && (!(*j).lane->allowsChangingRight(getVClass())
6301 || !(*j).lane->getParallelLane(-1, false)->allowsVehicleClass(getVClass())
6302 || requiredChangeRightForbidden)) {
6303 // this lane and all further lanes to the left cannot be used
6304 requiredChangeRightForbidden = true;
6305 if ((*j).length == (*j).currentLength) {
6306 (*j).length = 0;
6307 }
6308 } else if ((*j).bestLaneOffset > 0 && (!(*j).lane->allowsChangingLeft(getVClass())
6309 || !(*j).lane->getParallelLane(1, false)->allowsVehicleClass(getVClass()))) {
6310 // this lane and all previous lanes to the right cannot be used
6311 requireChangeToLeftForbidden = (*j).lane->getIndex();
6312 }
6313 } else {
6314 (*j).bestLaneOffset = 0;
6315 }
6316 }
6317 for (int idx = requireChangeToLeftForbidden; idx >= 0; idx--) {
6318 if (clanes[idx].length == clanes[idx].currentLength) {
6319 clanes[idx].length = 0;
6320 };
6321 }
6322
6323 //vehicle with elecHybrid device prefers running under an overhead wire
6324 if (static_cast<MSDevice_ElecHybrid*>(getDevice(typeid(MSDevice_ElecHybrid))) != 0) {
6325 index = 0;
6326 std::string overheadWireID = MSNet::getInstance()->getStoppingPlaceID(clanes[bestThisIndex].lane, (clanes[bestThisIndex].currentLength) / 2, SUMO_TAG_OVERHEAD_WIRE_SEGMENT);
6327 if (overheadWireID != "") {
6328 for (std::vector<LaneQ>::iterator j = clanes.begin(); j != clanes.end(); ++j, ++index) {
6329 (*j).bestLaneOffset = bestThisIndex - index;
6330 }
6331 }
6332 }
6333
6334#ifdef DEBUG_BESTLANES
6335 if (DEBUG_COND) {
6336 std::cout << " edge=" << cE->getID() << " (bestIndex=" << bestThisIndex << " bestMaxIndex=" << bestThisMaxIndex << "):\n";
6337 std::vector<LaneQ>& laneQs = clanes;
6338 for (std::vector<LaneQ>::iterator j = laneQs.begin(); j != laneQs.end(); ++j) {
6339 std::cout << " lane=" << (*j).lane->getID() << " length=" << (*j).length << " bestOffset=" << (*j).bestLaneOffset << " allowCont=" << (*j).allowsContinuation << "\n";
6340 }
6341 }
6342#endif
6343
6344 }
6346#ifdef DEBUG_BESTLANES
6347 if (DEBUG_COND) {
6348 std::cout << SIMTIME << " veh=" << getID() << " bestCont=" << toString(getBestLanesContinuation()) << "\n";
6349 }
6350#endif
6351}
6352
6353void
6355 if (myLane != nullptr) {
6357 }
6358}
6359
6360bool
6361MSVehicle::betterContinuation(const LaneQ* bestConnectedNext, const LaneQ& m) const {
6362 if (bestConnectedNext == nullptr) {
6363 return true;
6364 } else if (m.lane->getBidiLane() != nullptr && bestConnectedNext->lane->getBidiLane() == nullptr) {
6365 return false;
6366 } else if (bestConnectedNext->lane->getBidiLane() != nullptr && m.lane->getBidiLane() == nullptr) {
6367 return true;
6368 } else if (bestConnectedNext->length < m.length) {
6369 return true;
6370 } else if (bestConnectedNext->length == m.length) {
6371 if (abs(bestConnectedNext->bestLaneOffset) > abs(m.bestLaneOffset)) {
6372 return true;
6373 }
6374 const double contRight = getVehicleType().getParameter().getLCParam(SUMO_ATTR_LCA_CONTRIGHT, 1);
6375 if (contRight < 1
6376 // if we don't check for adjacency, the rightmost line will get
6377 // multiple chances to be better which leads to an uninituitve distribution
6378 && (m.lane->getIndex() - bestConnectedNext->lane->getIndex()) == 1
6379 && RandHelper::rand(getRNG()) > contRight) {
6380 return true;
6381 }
6382 }
6383 return false;
6384}
6385
6386
6387int
6388MSVehicle::nextLinkPriority(const std::vector<MSLane*>& conts) {
6389 if (conts.size() < 2) {
6390 return -1;
6391 } else {
6392 const MSLink* const link = conts[0]->getLinkTo(conts[1]);
6393 if (link != nullptr) {
6394 return link->havePriority() ? 1 : 0;
6395 } else {
6396 // disconnected route
6397 return -1;
6398 }
6399 }
6400}
6401
6402
6403void
6405 std::vector<LaneQ>& currLanes = *myBestLanes.begin();
6406 std::vector<LaneQ>::iterator i;
6407 for (i = currLanes.begin(); i != currLanes.end(); ++i) {
6408 double nextOccupation = 0;
6409 for (std::vector<MSLane*>::const_iterator j = (*i).bestContinuations.begin() + 1; j != (*i).bestContinuations.end(); ++j) {
6410 nextOccupation += (*j)->getBruttoVehLenSum();
6411 }
6412 (*i).nextOccupation = nextOccupation;
6413#ifdef DEBUG_BESTLANES
6414 if (DEBUG_COND) {
6415 std::cout << " lane=" << (*i).lane->getID() << " nextOccupation=" << nextOccupation << "\n";
6416 }
6417#endif
6418 if ((*i).lane == startLane) {
6420 }
6421 }
6422}
6423
6424
6425const std::vector<MSLane*>&
6427 if (myBestLanes.empty() || myBestLanes[0].empty()) {
6428 return myEmptyLaneVector;
6429 }
6430 return (*myCurrentLaneInBestLanes).bestContinuations;
6431}
6432
6433
6434const std::vector<MSLane*>&
6436 const MSLane* lane = l;
6437 // XXX: shouldn't this be a "while" to cover more than one internal lane? (Leo) Refs. #2575
6438 if (lane->getEdge().isInternal()) {
6439 // internal edges are not kept inside the bestLanes structure
6440 lane = lane->getLinkCont()[0]->getLane();
6441 }
6442 if (myBestLanes.size() == 0) {
6443 return myEmptyLaneVector;
6444 }
6445 for (std::vector<LaneQ>::const_iterator i = myBestLanes[0].begin(); i != myBestLanes[0].end(); ++i) {
6446 if ((*i).lane == lane) {
6447 return (*i).bestContinuations;
6448 }
6449 }
6450 return myEmptyLaneVector;
6451}
6452
6453const std::vector<const MSLane*>
6454MSVehicle::getUpcomingLanesUntil(double distance) const {
6455 std::vector<const MSLane*> lanes;
6456
6457 if (distance <= 0. || hasArrived()) {
6458 // WRITE_WARNINGF(TL("MSVehicle::getUpcomingLanesUntil(): distance ('%') should be greater than 0."), distance);
6459 return lanes;
6460 }
6461
6462 if (!myLaneChangeModel->isOpposite()) {
6463 distance += getPositionOnLane();
6464 } else {
6465 distance += myLane->getOppositePos(getPositionOnLane());
6466 }
6468 while (lane->isInternal() && (distance > 0.)) { // include initial internal lanes
6469 lanes.insert(lanes.end(), lane);
6470 distance -= lane->getLength();
6471 lane = lane->getLinkCont().front()->getViaLaneOrLane();
6472 }
6473
6474 const std::vector<MSLane*>& contLanes = getBestLanesContinuation();
6475 if (contLanes.empty()) {
6476 return lanes;
6477 }
6478 auto contLanesIt = contLanes.begin();
6479 MSRouteIterator routeIt = myCurrEdge; // keep track of covered edges in myRoute
6480 while (distance > 0.) {
6481 MSLane* l = nullptr;
6482 if (contLanesIt != contLanes.end()) {
6483 l = *contLanesIt;
6484 if (l != nullptr) {
6485 assert(l->getEdge().getID() == (*routeIt)->getLanes().front()->getEdge().getID());
6486 }
6487 ++contLanesIt;
6488 if (l != nullptr || myLane->isInternal()) {
6489 ++routeIt;
6490 }
6491 if (l == nullptr) {
6492 continue;
6493 }
6494 } else if (routeIt != myRoute->end()) { // bestLanes didn't get us far enough
6495 // choose left-most lane as default (avoid sidewalks, bike lanes etc)
6496 l = (*routeIt)->getLanes().back();
6497 ++routeIt;
6498 } else { // the search distance goes beyond our route
6499 break;
6500 }
6501
6502 assert(l != nullptr);
6503
6504 // insert internal lanes if applicable
6505 const MSLane* internalLane = lanes.size() > 0 ? lanes.back()->getInternalFollowingLane(l) : nullptr;
6506 while ((internalLane != nullptr) && internalLane->isInternal() && (distance > 0.)) {
6507 lanes.insert(lanes.end(), internalLane);
6508 distance -= internalLane->getLength();
6509 internalLane = internalLane->getLinkCont().front()->getViaLaneOrLane();
6510 }
6511 if (distance <= 0.) {
6512 break;
6513 }
6514
6515 lanes.insert(lanes.end(), l);
6516 distance -= l->getLength();
6517 }
6518
6519 return lanes;
6520}
6521
6522const std::vector<const MSLane*>
6523MSVehicle::getPastLanesUntil(double distance) const {
6524 std::vector<const MSLane*> lanes;
6525
6526 if (distance <= 0.) {
6527 // WRITE_WARNINGF(TL("MSVehicle::getPastLanesUntil(): distance ('%') should be greater than 0."), distance);
6528 return lanes;
6529 }
6530
6531 MSRouteIterator routeIt = myCurrEdge;
6532 if (!myLaneChangeModel->isOpposite()) {
6533 distance += myLane->getLength() - getPositionOnLane();
6534 } else {
6536 }
6538 while (lane->isInternal() && (distance > 0.)) { // include initial internal lanes
6539 lanes.insert(lanes.end(), lane);
6540 distance -= lane->getLength();
6541 lane = lane->getLogicalPredecessorLane();
6542 }
6543
6544 while (distance > 0.) {
6545 // choose left-most lane as default (avoid sidewalks, bike lanes etc)
6546 MSLane* l = (*routeIt)->getLanes().back();
6547
6548 // insert internal lanes if applicable
6549 const MSEdge* internalEdge = lanes.size() > 0 ? (*routeIt)->getInternalFollowingEdge(&(lanes.back()->getEdge()), getVClass()) : nullptr;
6550 const MSLane* internalLane = internalEdge != nullptr ? internalEdge->getLanes().front() : nullptr;
6551 std::vector<const MSLane*> internalLanes;
6552 while ((internalLane != nullptr) && internalLane->isInternal()) { // collect all internal successor lanes
6553 internalLanes.insert(internalLanes.begin(), internalLane);
6554 internalLane = internalLane->getLinkCont().front()->getViaLaneOrLane();
6555 }
6556 for (auto it = internalLanes.begin(); (it != internalLanes.end()) && (distance > 0.); ++it) { // check remaining distance in correct order
6557 lanes.insert(lanes.end(), *it);
6558 distance -= (*it)->getLength();
6559 }
6560 if (distance <= 0.) {
6561 break;
6562 }
6563
6564 lanes.insert(lanes.end(), l);
6565 distance -= l->getLength();
6566
6567 // NOTE: we're going backwards with the (bi-directional) Iterator
6568 // TODO: consider make reverse_iterator() when moving on to C++14 or later
6569 if (routeIt != myRoute->begin()) {
6570 --routeIt;
6571 } else { // we went backwards to begin() and already processed the first and final element
6572 break;
6573 }
6574 }
6575
6576 return lanes;
6577}
6578
6579
6580const std::vector<MSLane*>
6582 const std::vector<const MSLane*> routeLanes = getPastLanesUntil(myLane->getMaximumBrakeDist());
6583 std::vector<MSLane*> result;
6584 for (const MSLane* lane : routeLanes) {
6585 MSLane* opposite = lane->getOpposite();
6586 if (opposite != nullptr) {
6587 result.push_back(opposite);
6588 } else {
6589 break;
6590 }
6591 }
6592 return result;
6593}
6594
6595
6596int
6598 if (myBestLanes.empty() || myBestLanes[0].empty()) {
6599 return 0;
6600 } else {
6601 return (*myCurrentLaneInBestLanes).bestLaneOffset;
6602 }
6603}
6604
6605double
6607 if (myBestLanes.empty() || myBestLanes[0].empty()) {
6608 return -1;
6609 } else {
6610 return (*myCurrentLaneInBestLanes).length;
6611 }
6612}
6613
6614
6615
6616void
6617MSVehicle::adaptBestLanesOccupation(int laneIndex, double density) {
6618 std::vector<MSVehicle::LaneQ>& preb = myBestLanes.front();
6619 assert(laneIndex < (int)preb.size());
6620 preb[laneIndex].occupation = density + preb[laneIndex].nextOccupation;
6621}
6622
6623
6624void
6630
6631std::pair<const MSLane*, double>
6632MSVehicle::getLanePosAfterDist(double distance) const {
6633 if (distance == 0) {
6634 return std::make_pair(myLane, getPositionOnLane());
6635 }
6636 const std::vector<const MSLane*> lanes = getUpcomingLanesUntil(distance);
6637 distance += getPositionOnLane();
6638 for (const MSLane* lane : lanes) {
6639 if (lane->getLength() > distance) {
6640 return std::make_pair(lane, distance);
6641 }
6642 distance -= lane->getLength();
6643 }
6644 return std::make_pair(nullptr, -1);
6645}
6646
6647
6648double
6649MSVehicle::getDistanceToPosition(double destPos, const MSLane* destLane) const {
6650 if (isOnRoad() && destLane != nullptr) {
6651 return myRoute->getDistanceBetween(getPositionOnLane(), destPos, myLane, destLane);
6652 }
6653 return std::numeric_limits<double>::max();
6654}
6655
6656
6657std::pair<const MSVehicle* const, double>
6658MSVehicle::getLeader(double dist, bool considerCrossingFoes) const {
6659 if (myLane == nullptr) {
6660 return std::make_pair(static_cast<const MSVehicle*>(nullptr), -1);
6661 }
6662 if (dist == 0) {
6664 }
6665 const MSVehicle* lead = nullptr;
6666 const MSLane* lane = myLane; // ensure lane does not change between getVehiclesSecure and releaseVehicles;
6667 const MSLane::VehCont& vehs = lane->getVehiclesSecure();
6668 // vehicle might be outside the road network
6669 MSLane::VehCont::const_iterator it = std::find(vehs.begin(), vehs.end(), this);
6670 if (it != vehs.end() && it + 1 != vehs.end()) {
6671 lead = *(it + 1);
6672 }
6673 if (lead != nullptr) {
6674 std::pair<const MSVehicle* const, double> result(
6675 lead, lead->getBackPositionOnLane(myLane) - getPositionOnLane() - getVehicleType().getMinGap());
6676 lane->releaseVehicles();
6677 return result;
6678 }
6679 const double seen = myLane->getLength() - getPositionOnLane();
6680 const std::vector<MSLane*>& bestLaneConts = getBestLanesContinuation(myLane);
6681 std::pair<const MSVehicle* const, double> result = myLane->getLeaderOnConsecutive(dist, seen, getSpeed(), *this, bestLaneConts, considerCrossingFoes);
6682 lane->releaseVehicles();
6683 return result;
6684}
6685
6686
6687std::pair<const MSVehicle* const, double>
6688MSVehicle::getFollower(double dist) const {
6689 if (myLane == nullptr) {
6690 return std::make_pair(static_cast<const MSVehicle*>(nullptr), -1);
6691 }
6692 if (dist == 0) {
6693 dist = getCarFollowModel().brakeGap(myLane->getEdge().getSpeedLimit() * 2, 4.5, 0);
6694 }
6696}
6697
6698
6699double
6701 // calling getLeader with 0 would induce a dist calculation but we only want to look for the leaders on the current lane
6702 std::pair<const MSVehicle* const, double> leaderInfo = getLeader(-1);
6703 if (leaderInfo.first == nullptr || getSpeed() == 0) {
6704 return -1;
6705 }
6706 return (leaderInfo.second + getVehicleType().getMinGap()) / getSpeed();
6707}
6708
6709
6710void
6712 MSBaseVehicle::addTransportable(transportable);
6713 if (myStops.size() > 0 && myStops.front().reached) {
6714 if (transportable->isPerson()) {
6715 if (myStops.front().triggered && myStops.front().numExpectedPerson > 0) {
6716 myStops.front().numExpectedPerson -= (int)myStops.front().pars.awaitedPersons.count(transportable->getID());
6717 }
6718 } else {
6719 if (myStops.front().pars.containerTriggered && myStops.front().numExpectedContainer > 0) {
6720 myStops.front().numExpectedContainer -= (int)myStops.front().pars.awaitedContainers.count(transportable->getID());
6721 }
6722 }
6723 }
6724}
6725
6726
6727void
6730 int state = myLaneChangeModel->getOwnState();
6731 // do not set blinker for sublane changes or when blocked from changing to the right
6732 const bool blinkerManoeuvre = (((state & LCA_SUBLANE) == 0) && (
6733 (state & LCA_KEEPRIGHT) == 0 || (state & LCA_BLOCKED) == 0));
6737 // lane indices increase from left to right
6738 std::swap(left, right);
6739 }
6740 if ((state & LCA_LEFT) != 0 && blinkerManoeuvre) {
6741 switchOnSignal(left);
6742 } else if ((state & LCA_RIGHT) != 0 && blinkerManoeuvre) {
6743 switchOnSignal(right);
6744 } else if (myLaneChangeModel->isChangingLanes()) {
6746 switchOnSignal(left);
6747 } else {
6748 switchOnSignal(right);
6749 }
6750 } else {
6751 const MSLane* lane = getLane();
6752 std::vector<MSLink*>::const_iterator link = MSLane::succLinkSec(*this, 1, *lane, getBestLanesContinuation());
6753 if (link != lane->getLinkCont().end() && lane->getLength() - getPositionOnLane() < lane->getVehicleMaxSpeed(this) * (double) 7.) {
6754 switch ((*link)->getDirection()) {
6759 break;
6763 break;
6764 default:
6765 break;
6766 }
6767 }
6768 }
6769 // stopping related signals
6770 if (hasStops()
6771 && (myStops.begin()->reached ||
6773 && myStopDist < getCarFollowModel().brakeGap(myLane->getVehicleMaxSpeed(this), getCarFollowModel().getMaxDecel(), 3)))) {
6774 if (myStops.begin()->lane->getIndex() > 0 && myStops.begin()->lane->getParallelLane(-1)->allowsVehicleClass(getVClass())) {
6775 // not stopping on the right. Activate emergency blinkers
6777 } else if (!myStops.begin()->reached && (myStops.begin()->pars.parking == ParkingType::OFFROAD)) {
6778 // signal upcoming parking stop on the current lane when within braking distance (~2 seconds before braking)
6780 }
6781 }
6782 if (myInfluencer != nullptr && myInfluencer->getSignals() >= 0) {
6784 myInfluencer->setSignals(-1); // overwrite computed signals only once
6785 }
6786}
6787
6788void
6790
6791 //TODO look if timestep ist SIMSTEP
6792 if (currentTime % 1000 == 0) {
6795 } else {
6797 }
6798 }
6799}
6800
6801
6802int
6804 return myLane == nullptr ? -1 : myLane->getIndex();
6805}
6806
6807
6808void
6809MSVehicle::setTentativeLaneAndPosition(MSLane* lane, double pos, double posLat) {
6810 myLane = lane;
6811 myState.myPos = pos;
6812 myState.myPosLat = posLat;
6814}
6815
6816
6817double
6819 return myState.myPosLat + 0.5 * myLane->getWidth() - 0.5 * getVehicleType().getWidth();
6820}
6821
6822
6823double
6825 return myState.myPosLat + 0.5 * myLane->getWidth() + 0.5 * getVehicleType().getWidth();
6826}
6827
6828
6829double
6831 return myState.myPosLat + 0.5 * lane->getWidth() - 0.5 * getVehicleType().getWidth();
6832}
6833
6834
6835double
6837 return myState.myPosLat + 0.5 * lane->getWidth() + 0.5 * getVehicleType().getWidth();
6838}
6839
6840
6841double
6843 return getCenterOnEdge(lane) - 0.5 * getVehicleType().getWidth();
6844}
6845
6846
6847double
6849 return getCenterOnEdge(lane) + 0.5 * getVehicleType().getWidth();
6850}
6851
6852
6853double
6855 if (lane == nullptr || &lane->getEdge() == &myLane->getEdge()) {
6857 } else if (lane == myLaneChangeModel->getShadowLane()) {
6858 if (myLaneChangeModel->isOpposite() && &lane->getEdge() != &myLane->getEdge()) {
6859 return lane->getRightSideOnEdge() + lane->getWidth() - myState.myPosLat + 0.5 * myLane->getWidth();
6860 }
6862 return lane->getRightSideOnEdge() + lane->getWidth() + myState.myPosLat + 0.5 * myLane->getWidth();
6863 } else {
6864 return lane->getRightSideOnEdge() - myLane->getWidth() + myState.myPosLat + 0.5 * myLane->getWidth();
6865 }
6866 } else if (lane == myLane->getBidiLane()) {
6867 return lane->getRightSideOnEdge() - myState.myPosLat + 0.5 * lane->getWidth();
6868 } else {
6869 assert(myFurtherLanes.size() == myFurtherLanesPosLat.size());
6870 for (int i = 0; i < (int)myFurtherLanes.size(); ++i) {
6871 if (myFurtherLanes[i] == lane) {
6872#ifdef DEBUG_FURTHER
6873 if (DEBUG_COND) std::cout << " getCenterOnEdge veh=" << getID() << " lane=" << lane->getID() << " i=" << i << " furtherLat=" << myFurtherLanesPosLat[i]
6874 << " result=" << lane->getRightSideOnEdge() + myFurtherLanesPosLat[i] + 0.5 * lane->getWidth()
6875 << "\n";
6876#endif
6877 return lane->getRightSideOnEdge() + myFurtherLanesPosLat[i] + 0.5 * lane->getWidth();
6878 } else if (myFurtherLanes[i]->getBidiLane() == lane) {
6879#ifdef DEBUG_FURTHER
6880 if (DEBUG_COND) std::cout << " getCenterOnEdge veh=" << getID() << " lane=" << lane->getID() << " i=" << i << " furtherLat(bidi)=" << myFurtherLanesPosLat[i]
6881 << " result=" << lane->getRightSideOnEdge() + myFurtherLanesPosLat[i] + 0.5 * lane->getWidth()
6882 << "\n";
6883#endif
6884 return lane->getRightSideOnEdge() - myFurtherLanesPosLat[i] + 0.5 * lane->getWidth();
6885 }
6886 }
6887 //if (DEBUG_COND) std::cout << SIMTIME << " veh=" << getID() << " myShadowFurtherLanes=" << toString(myLaneChangeModel->getShadowFurtherLanes()) << "\n";
6888 const std::vector<MSLane*>& shadowFurther = myLaneChangeModel->getShadowFurtherLanes();
6889 for (int i = 0; i < (int)shadowFurther.size(); ++i) {
6890 //if (DEBUG_COND) std::cout << " comparing i=" << (*i)->getID() << " lane=" << lane->getID() << "\n";
6891 if (shadowFurther[i] == lane) {
6892 assert(myLaneChangeModel->getShadowLane() != 0);
6893 return (lane->getRightSideOnEdge() + myLaneChangeModel->getShadowFurtherLanesPosLat()[i] + 0.5 * lane->getWidth()
6895 }
6896 }
6897 assert(false);
6898 throw ProcessError("Request lateral pos of vehicle '" + getID() + "' for invalid lane '" + Named::getIDSecure(lane) + "'");
6899 }
6900}
6901
6902
6903double
6905 assert(lane != 0);
6906 if (&lane->getEdge() == &myLane->getEdge()) {
6907 return myLane->getRightSideOnEdge() - lane->getRightSideOnEdge();
6908 } else if (myLane->getParallelOpposite() == lane) {
6909 return (myLane->getWidth() + lane->getWidth()) * 0.5 - 2 * getLateralPositionOnLane();
6910 } else if (myLane->getBidiLane() == lane) {
6911 return -2 * getLateralPositionOnLane();
6912 } else {
6913 // Check whether the lane is a further lane for the vehicle
6914 for (int i = 0; i < (int)myFurtherLanes.size(); ++i) {
6915 if (myFurtherLanes[i] == lane) {
6916#ifdef DEBUG_FURTHER
6917 if (DEBUG_COND) {
6918 std::cout << " getLatOffset veh=" << getID() << " lane=" << lane->getID() << " i=" << i << " posLat=" << myState.myPosLat << " furtherLat=" << myFurtherLanesPosLat[i] << "\n";
6919 }
6920#endif
6922 } else if (myFurtherLanes[i]->getBidiLane() == lane) {
6923#ifdef DEBUG_FURTHER
6924 if (DEBUG_COND) {
6925 std::cout << " getLatOffset veh=" << getID() << " lane=" << lane->getID() << " i=" << i << " posLat=" << myState.myPosLat << " furtherBidiLat=" << myFurtherLanesPosLat[i] << "\n";
6926 }
6927#endif
6928 return -2 * (myFurtherLanesPosLat[i] - myState.myPosLat);
6929 }
6930 }
6931#ifdef DEBUG_FURTHER
6932 if (DEBUG_COND) {
6933 std::cout << SIMTIME << " veh=" << getID() << " myShadowFurtherLanes=" << toString(myLaneChangeModel->getShadowFurtherLanes()) << "\n";
6934 }
6935#endif
6936 // Check whether the lane is a "shadow further lane" for the vehicle
6937 const std::vector<MSLane*>& shadowFurther = myLaneChangeModel->getShadowFurtherLanes();
6938 for (int i = 0; i < (int)shadowFurther.size(); ++i) {
6939 if (shadowFurther[i] == lane) {
6940#ifdef DEBUG_FURTHER
6941 if (DEBUG_COND) std::cout << " getLatOffset veh=" << getID()
6942 << " shadowLane=" << Named::getIDSecure(myLaneChangeModel->getShadowLane())
6943 << " lane=" << lane->getID()
6944 << " i=" << i
6945 << " posLat=" << myState.myPosLat
6946 << " shadowPosLat=" << getLatOffset(myLaneChangeModel->getShadowLane())
6947 << " shadowFurtherLat=" << myLaneChangeModel->getShadowFurtherLanesPosLat()[i]
6948 << "\n";
6949#endif
6951 }
6952 }
6953 // Check whether the vehicle issued a maneuverReservation on the lane.
6954 const std::vector<MSLane*>& furtherTargets = myLaneChangeModel->getFurtherTargetLanes();
6955 for (int i = 0; i < (int)myFurtherLanes.size(); ++i) {
6956 // Further target lanes are just neighboring lanes of the vehicle's further lanes, @see MSAbstractLaneChangeModel::updateTargetLane()
6957 MSLane* targetLane = furtherTargets[i];
6958 if (targetLane == lane) {
6959 const double targetDir = myLaneChangeModel->getManeuverDist() < 0 ? -1. : 1.;
6960 const double latOffset = myFurtherLanesPosLat[i] - myState.myPosLat + targetDir * 0.5 * (myFurtherLanes[i]->getWidth() + targetLane->getWidth());
6961#ifdef DEBUG_TARGET_LANE
6962 if (DEBUG_COND) {
6963 std::cout << " getLatOffset veh=" << getID()
6964 << " wrt targetLane=" << Named::getIDSecure(myLaneChangeModel->getTargetLane())
6965 << "\n i=" << i
6966 << " posLat=" << myState.myPosLat
6967 << " furtherPosLat=" << myFurtherLanesPosLat[i]
6968 << " maneuverDist=" << myLaneChangeModel->getManeuverDist()
6969 << " targetDir=" << targetDir
6970 << " latOffset=" << latOffset
6971 << std::endl;
6972 }
6973#endif
6974 return latOffset;
6975 }
6976 }
6977 assert(false);
6978 throw ProcessError("Request lateral offset of vehicle '" + getID() + "' for invalid lane '" + Named::getIDSecure(lane) + "'");
6979 }
6980}
6981
6982
6983double
6984MSVehicle::lateralDistanceToLane(const int offset) const {
6985 // compute the distance when changing to the neighboring lane
6986 // (ensure we do not lap into the line behind neighLane since there might be unseen blockers)
6987 assert(offset == 0 || offset == 1 || offset == -1);
6988 assert(myLane != nullptr);
6989 assert(myLane->getParallelLane(offset) != nullptr || myLane->getParallelOpposite() != nullptr);
6990 const double halfCurrentLaneWidth = 0.5 * myLane->getWidth();
6991 const double halfVehWidth = 0.5 * (getWidth() + NUMERICAL_EPS);
6992 const double latPos = getLateralPositionOnLane();
6993 const double oppositeSign = getLaneChangeModel().isOpposite() ? -1 : 1;
6994 double leftLimit = halfCurrentLaneWidth - halfVehWidth - oppositeSign * latPos;
6995 double rightLimit = -halfCurrentLaneWidth + halfVehWidth - oppositeSign * latPos;
6996 double latLaneDist = 0; // minimum distance to move the vehicle fully onto the new lane
6997 if (offset == 0) {
6998 if (latPos + halfVehWidth > halfCurrentLaneWidth) {
6999 // correct overlapping left
7000 latLaneDist = halfCurrentLaneWidth - latPos - halfVehWidth;
7001 } else if (latPos - halfVehWidth < -halfCurrentLaneWidth) {
7002 // correct overlapping right
7003 latLaneDist = -halfCurrentLaneWidth - latPos + halfVehWidth;
7004 }
7005 latLaneDist *= oppositeSign;
7006 } else if (offset == -1) {
7007 latLaneDist = rightLimit - (getWidth() + NUMERICAL_EPS);
7008 } else if (offset == 1) {
7009 latLaneDist = leftLimit + (getWidth() + NUMERICAL_EPS);
7010 }
7011#ifdef DEBUG_ACTIONSTEPS
7012 if (DEBUG_COND) {
7013 std::cout << SIMTIME
7014 << " veh=" << getID()
7015 << " halfCurrentLaneWidth=" << halfCurrentLaneWidth
7016 << " halfVehWidth=" << halfVehWidth
7017 << " latPos=" << latPos
7018 << " latLaneDist=" << latLaneDist
7019 << " leftLimit=" << leftLimit
7020 << " rightLimit=" << rightLimit
7021 << "\n";
7022 }
7023#endif
7024 return latLaneDist;
7025}
7026
7027
7028double
7029MSVehicle::getLateralOverlap(double posLat, const MSLane* lane) const {
7030 return (fabs(posLat) + 0.5 * getVehicleType().getWidth()
7031 - 0.5 * lane->getWidth());
7032}
7033
7034double
7038
7039double
7043
7044
7045void
7047 for (const DriveProcessItem& dpi : lfLinks) {
7048 if (dpi.myLink != nullptr) {
7049 dpi.myLink->removeApproaching(this);
7050 }
7051 }
7052 // unregister on all shadow links
7054}
7055
7056
7057bool
7058MSVehicle::unsafeLinkAhead(const MSLane* lane, double zipperDist) const {
7059 // the following links are unsafe:
7060 // - zipper links if they are close enough and have approaching vehicles in the relevant time range
7061 // - unprioritized links if the vehicle is currently approaching a prioritzed link and unable to stop in time
7062 double seen = myLane->getLength() - getPositionOnLane();
7063 const double dist = MAX2(zipperDist, getCarFollowModel().brakeGap(getSpeed(), getCarFollowModel().getMaxDecel(), 0));
7064 if (seen < dist) {
7065 const std::vector<MSLane*>& bestLaneConts = getBestLanesContinuation(lane);
7066 int view = 1;
7067 std::vector<MSLink*>::const_iterator link = MSLane::succLinkSec(*this, view, *lane, bestLaneConts);
7068 DriveItemVector::const_iterator di = myLFLinkLanes.begin();
7069 while (!lane->isLinkEnd(link) && seen <= dist) {
7070 if ((!lane->isInternal()
7071 && (((*link)->getState() == LINKSTATE_ZIPPER && seen < (*link)->getFoeVisibilityDistance())
7072 || !(*link)->havePriority()))
7073 || (lane->isInternal() && zipperDist > 0)) {
7074 // find the drive item corresponding to this link
7075 bool found = false;
7076 while (di != myLFLinkLanes.end() && !found) {
7077 if ((*di).myLink != nullptr) {
7078 const MSLane* diPredLane = (*di).myLink->getLaneBefore();
7079 if (diPredLane != nullptr) {
7080 if (&diPredLane->getEdge() == &lane->getEdge()) {
7081 found = true;
7082 }
7083 }
7084 }
7085 if (!found) {
7086 di++;
7087 }
7088 }
7089 if (found) {
7090 const SUMOTime leaveTime = (*link)->getLeaveTime((*di).myArrivalTime, (*di).myArrivalSpeed,
7091 (*di).getLeaveSpeed(), getVehicleType().getLength());
7092 const MSLink* entry = (*link)->getCorrespondingEntryLink();
7093 //if (DEBUG_COND) {
7094 // std::cout << SIMTIME << " veh=" << getID() << " changeTo=" << Named::getIDSecure(bestLaneConts.front()) << " linkState=" << toString((*link)->getState()) << " seen=" << seen << " dist=" << dist << " zipperDist=" << zipperDist << " aT=" << STEPS2TIME((*di).myArrivalTime) << " lT=" << STEPS2TIME(leaveTime) << "\n";
7095 //}
7096 if (entry->hasApproachingFoe((*di).myArrivalTime, leaveTime, (*di).myArrivalSpeed, getCarFollowModel().getMaxDecel())) {
7097 //std::cout << SIMTIME << " veh=" << getID() << " aborting changeTo=" << Named::getIDSecure(bestLaneConts.front()) << " linkState=" << toString((*link)->getState()) << " seen=" << seen << " dist=" << dist << "\n";
7098 return true;
7099 }
7100 }
7101 // no drive item is found if the vehicle aborts its request within dist
7102 }
7103 lane = (*link)->getViaLaneOrLane();
7104 if (!lane->getEdge().isInternal()) {
7105 view++;
7106 }
7107 seen += lane->getLength();
7108 link = MSLane::succLinkSec(*this, view, *lane, bestLaneConts);
7109 }
7110 }
7111 return false;
7112}
7113
7114
7116MSVehicle::getBoundingBox(double offset) const {
7117 PositionVector centerLine;
7118 Position pos = getPosition();
7119 centerLine.push_back(pos);
7120 switch (myType->getGuiShape()) {
7127 for (MSLane* lane : myFurtherLanes) {
7128 centerLine.push_back(lane->getShape().back());
7129 }
7130 break;
7131 }
7132 default:
7133 break;
7134 }
7135 double l = getLength();
7136 Position backPos = getBackPosition();
7137 if (pos.distanceTo2D(backPos) > l + NUMERICAL_EPS) {
7138 // getBackPosition may not match the visual back in networks without internal lanes
7139 double a = getAngle() + M_PI; // angle pointing backwards
7140 backPos = pos + Position(l * cos(a), l * sin(a));
7141 }
7142 centerLine.push_back(backPos);
7143 if (offset != 0) {
7144 centerLine.extrapolate2D(offset);
7145 }
7146 PositionVector result = centerLine;
7147 result.move2side(MAX2(0.0, 0.5 * myType->getWidth() + offset));
7148 centerLine.move2side(MIN2(0.0, -0.5 * myType->getWidth() - offset));
7149 result.append(centerLine.reverse(), POSITION_EPS);
7150 return result;
7151}
7152
7153
7155MSVehicle::getBoundingPoly(double offset) const {
7156 switch (myType->getGuiShape()) {
7162 // box with corners cut off
7163 PositionVector result;
7164 PositionVector centerLine;
7165 centerLine.push_back(getPosition());
7166 centerLine.push_back(getBackPosition());
7167 if (offset != 0) {
7168 centerLine.extrapolate2D(offset);
7169 }
7170 PositionVector line1 = centerLine;
7171 PositionVector line2 = centerLine;
7172 line1.move2side(MAX2(0.0, 0.3 * myType->getWidth() + offset));
7173 line2.move2side(MAX2(0.0, 0.5 * myType->getWidth() + offset));
7174 line2.scaleRelative(0.8);
7175 result.push_back(line1[0]);
7176 result.push_back(line2[0]);
7177 result.push_back(line2[1]);
7178 result.push_back(line1[1]);
7179 line1.move2side(MIN2(0.0, -0.6 * myType->getWidth() - offset));
7180 line2.move2side(MIN2(0.0, -1.0 * myType->getWidth() - offset));
7181 result.push_back(line1[1]);
7182 result.push_back(line2[1]);
7183 result.push_back(line2[0]);
7184 result.push_back(line1[0]);
7185 return result;
7186 }
7187 default:
7188 return getBoundingBox();
7189 }
7190}
7191
7192
7193bool
7195 for (std::vector<MSLane*>::const_iterator i = myFurtherLanes.begin(); i != myFurtherLanes.end(); ++i) {
7196 if (&(*i)->getEdge() == edge) {
7197 return true;
7198 }
7199 }
7200 return false;
7201}
7202
7203
7204bool
7205MSVehicle::isBidiOn(const MSLane* lane) const {
7206 return lane->getBidiLane() != nullptr && (
7207 myLane == lane->getBidiLane()
7208 || onFurtherEdge(&lane->getBidiLane()->getEdge()));
7209}
7210
7211
7212bool
7213MSVehicle::rerouteParkingArea(const std::string& parkingAreaID, std::string& errorMsg) {
7214 // this function is based on MSTriggeredRerouter::rerouteParkingArea in order to keep
7215 // consistency in the behaviour.
7216
7217 // get vehicle params
7218 MSParkingArea* destParkArea = getNextParkingArea();
7219 const MSRoute& route = getRoute();
7220 const MSEdge* lastEdge = route.getLastEdge();
7221
7222 if (destParkArea == nullptr) {
7223 // not driving towards a parking area
7224 errorMsg = "Vehicle " + getID() + " is not driving to a parking area so it cannot be rerouted.";
7225 return false;
7226 }
7227
7228 // if the current route ends at the parking area, the new route will also and at the new area
7229 bool newDestination = (&destParkArea->getLane().getEdge() == route.getLastEdge()
7230 && getArrivalPos() >= destParkArea->getBeginLanePosition()
7231 && getArrivalPos() <= destParkArea->getEndLanePosition());
7232
7233 // retrieve info on the new parking area
7235 parkingAreaID, SumoXMLTag::SUMO_TAG_PARKING_AREA);
7236
7237 if (newParkingArea == nullptr) {
7238 errorMsg = "Parking area ID " + toString(parkingAreaID) + " not found in the network.";
7239 return false;
7240 }
7241
7242 const MSEdge* newEdge = &(newParkingArea->getLane().getEdge());
7244
7245 // Compute the route from the current edge to the parking area edge
7246 ConstMSEdgeVector edgesToPark;
7247 router.compute(getEdge(), getPositionOnLane(), newEdge, newParkingArea->getEndLanePosition(), this, MSNet::getInstance()->getCurrentTimeStep(), edgesToPark);
7248
7249 // Compute the route from the parking area edge to the end of the route
7250 ConstMSEdgeVector edgesFromPark;
7251 if (!newDestination) {
7252 router.compute(newEdge, lastEdge, this, MSNet::getInstance()->getCurrentTimeStep(), edgesFromPark);
7253 } else {
7254 // adapt plans of any riders
7255 for (MSTransportable* p : getPersons()) {
7256 p->rerouteParkingArea(getNextParkingArea(), newParkingArea);
7257 }
7258 }
7259
7260 // we have a new destination, let's replace the vehicle route
7261 ConstMSEdgeVector edges = edgesToPark;
7262 if (edgesFromPark.size() > 0) {
7263 edges.insert(edges.end(), edgesFromPark.begin() + 1, edgesFromPark.end());
7264 }
7265
7266 if (newDestination) {
7267 SUMOVehicleParameter* newParameter = new SUMOVehicleParameter();
7268 *newParameter = getParameter();
7270 newParameter->arrivalPos = newParkingArea->getEndLanePosition();
7271 replaceParameter(newParameter);
7272 }
7273 const double routeCost = router.recomputeCosts(edges, this, MSNet::getInstance()->getCurrentTimeStep());
7274 ConstMSEdgeVector prevEdges(myCurrEdge, myRoute->end());
7275 const double savings = router.recomputeCosts(prevEdges, this, MSNet::getInstance()->getCurrentTimeStep());
7276 if (replaceParkingArea(newParkingArea, errorMsg)) {
7277 const bool onInit = myLane == nullptr;
7278 replaceRouteEdges(edges, routeCost, savings, "TraCI:" + toString(SUMO_TAG_PARKING_AREA_REROUTE), onInit, false, false);
7279 } else {
7280 WRITE_WARNING("Vehicle '" + getID() + "' could not reroute to new parkingArea '" + newParkingArea->getID()
7281 + "' reason=" + errorMsg + ", time=" + time2string(MSNet::getInstance()->getCurrentTimeStep()) + ".");
7282 return false;
7283 }
7284 return true;
7285}
7286
7287
7288bool
7290 const int numStops = (int)myStops.size();
7291 const bool result = MSBaseVehicle::addTraciStop(stop, errorMsg);
7292 if (myLane != nullptr && numStops != (int)myStops.size()) {
7293 updateBestLanes(true);
7294 }
7295 return result;
7296}
7297
7298
7299bool
7300MSVehicle::handleCollisionStop(MSStop& stop, const double distToStop) {
7301 if (myCurrEdge == stop.edge && distToStop + POSITION_EPS < getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getMaxDecel(), 0)) {
7302 if (distToStop < getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getEmergencyDecel(), 0)) {
7303 double vNew = getCarFollowModel().maximumSafeStopSpeed(distToStop, getCarFollowModel().getMaxDecel(), getSpeed(), false, 0);
7304 //std::cout << SIMTIME << " veh=" << getID() << " v=" << myState.mySpeed << " distToStop=" << distToStop
7305 // << " vMinNex=" << getCarFollowModel().minNextSpeed(getSpeed(), this)
7306 // << " bg1=" << getCarFollowModel().brakeGap(myState.mySpeed)
7307 // << " bg2=" << getCarFollowModel().brakeGap(myState.mySpeed, getCarFollowModel().getEmergencyDecel(), 0)
7308 // << " vNew=" << vNew
7309 // << "\n";
7310 myState.mySpeed = MIN2(myState.mySpeed, vNew + ACCEL2SPEED(getCarFollowModel().getEmergencyDecel()));
7313 if (myState.myPos < myType->getLength()) {
7317 myAngle += M_PI;
7318 }
7319 }
7320 }
7321 }
7322 return true;
7323}
7324
7325
7326bool
7328 if (isStopped()) {
7332 }
7333 MSStop& stop = myStops.front();
7334 // we have waited long enough and fulfilled any passenger-requirements
7335 if (stop.busstop != nullptr) {
7336 // inform bus stop about leaving it
7337 stop.busstop->leaveFrom(this);
7338 }
7339 // we have waited long enough and fulfilled any container-requirements
7340 if (stop.containerstop != nullptr) {
7341 // inform container stop about leaving it
7342 stop.containerstop->leaveFrom(this);
7343 }
7344 if (stop.parkingarea != nullptr && stop.getSpeed() <= 0) {
7345 // inform parking area about leaving it
7346 stop.parkingarea->leaveFrom(this);
7347 }
7348 if (stop.chargingStation != nullptr) {
7349 // inform charging station about leaving it
7350 stop.chargingStation->leaveFrom(this);
7351 }
7352 // the current stop is no longer valid
7353 myLane->getEdge().removeWaiting(this);
7354 // MSStopOut needs to know whether the stop had a loaded 'ended' value so we call this before replacing the value
7355 if (stop.pars.started == -1) {
7356 // waypoint edge was passed in a single step
7358 }
7359 if (MSStopOut::active()) {
7360 MSStopOut::getInstance()->stopEnded(this, stop.pars, stop.lane->getID());
7361 }
7363 for (const auto& rem : myMoveReminders) {
7364 rem.first->notifyStopEnded();
7365 }
7367 myCollisionImmunity = TIME2STEPS(5); // leave the conflict area
7368 }
7370 // reset lateral position to default
7371 myState.myPosLat = 0;
7372 }
7373 myPastStops.push_back(stop.pars);
7374 myPastStops.back().routeIndex = (int)(stop.edge - myRoute->begin());
7375 myStops.pop_front();
7376 myStopDist = std::numeric_limits<double>::max();
7377 // do not count the stopping time towards gridlock time.
7378 // Other outputs use an independent counter and are not affected.
7379 myWaitingTime = 0;
7380 // maybe the next stop is on the same edge; let's rebuild best lanes
7381 updateBestLanes(true);
7382 // continue as wished...
7385 return true;
7386 }
7387 return false;
7388}
7389
7390
7393 if (myInfluencer == nullptr) {
7394 myInfluencer = new Influencer();
7395 }
7396 return *myInfluencer;
7397}
7398
7403
7404
7407 return myInfluencer;
7408}
7409
7412 return myInfluencer;
7413}
7414
7415
7416double
7418 if (myInfluencer != nullptr && myInfluencer->getOriginalSpeed() >= 0) {
7419 // influencer original speed is -1 on initialization
7421 }
7422 return myState.mySpeed;
7423}
7424
7425
7426int
7428 if (hasInfluencer()) {
7430 MSNet::getInstance()->getCurrentTimeStep(),
7431 myLane->getEdge(),
7432 getLaneIndex(),
7433 state);
7434 }
7435 return state;
7436}
7437
7438
7439void
7443
7444
7445bool
7449
7450
7451bool
7455
7456
7457bool
7458MSVehicle::keepClear(const MSLink* link) const {
7459 if (link->hasFoes() && link->keepClear() /* && item.myLink->willHaveBlockedFoe()*/) {
7460 const double keepClearTime = getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_IGNORE_KEEPCLEAR_TIME, -1);
7461 //std::cout << SIMTIME << " veh=" << getID() << " keepClearTime=" << keepClearTime << " accWait=" << getAccumulatedWaitingSeconds() << " keepClear=" << (keepClearTime < 0 || getAccumulatedWaitingSeconds() < keepClearTime) << "\n";
7462 return keepClearTime < 0 || getAccumulatedWaitingSeconds() < keepClearTime;
7463 } else {
7464 return false;
7465 }
7466}
7467
7468
7469bool
7470MSVehicle::ignoreRed(const MSLink* link, bool canBrake) const {
7471 if ((myInfluencer != nullptr && !myInfluencer->getEmergencyBrakeRedLight())) {
7472 return true;
7473 }
7474 const double ignoreRedTime = getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_DRIVE_AFTER_RED_TIME, -1);
7475#ifdef DEBUG_IGNORE_RED
7476 if (DEBUG_COND) {
7477 std::cout << SIMTIME << " veh=" << getID() << " link=" << link->getViaLaneOrLane()->getID() << " state=" << toString(link->getState()) << "\n";
7478 }
7479#endif
7480 if (ignoreRedTime < 0) {
7481 const double ignoreYellowTime = getVehicleType().getParameter().getJMParam(SUMO_ATTR_JM_DRIVE_AFTER_YELLOW_TIME, 0);
7482 if (ignoreYellowTime > 0 && link->haveYellow()) {
7483 assert(link->getTLLogic() != 0);
7484 const double yellowDuration = STEPS2TIME(MSNet::getInstance()->getCurrentTimeStep() - link->getLastStateChange());
7485 // when activating ignoreYellow behavior, vehicles will drive if they cannot brake
7486 return !canBrake || ignoreYellowTime > yellowDuration;
7487 } else {
7488 return false;
7489 }
7490 } else if (link->haveYellow()) {
7491 // always drive at yellow when ignoring red
7492 return true;
7493 } else if (link->haveRed()) {
7494 assert(link->getTLLogic() != 0);
7495 const double redDuration = STEPS2TIME(MSNet::getInstance()->getCurrentTimeStep() - link->getLastStateChange());
7496#ifdef DEBUG_IGNORE_RED
7497 if (DEBUG_COND) {
7498 std::cout
7499 // << SIMTIME << " veh=" << getID() << " link=" << link->getViaLaneOrLane()->getID()
7500 << " ignoreRedTime=" << ignoreRedTime
7501 << " spentRed=" << redDuration
7502 << " canBrake=" << canBrake << "\n";
7503 }
7504#endif
7505 // when activating ignoreRed behavior, vehicles will always drive if they cannot brake
7506 return !canBrake || ignoreRedTime > redDuration;
7507 } else {
7508 return false;
7509 }
7510}
7511
7512bool
7515 return false;
7516 }
7517 for (const std::string& typeID : StringTokenizer(getParameter().getParameter(toString(SUMO_ATTR_CF_IGNORE_TYPES), "")).getVector()) {
7518 if (typeID == foe->getVehicleType().getID()) {
7519 return true;
7520 }
7521 }
7522 for (const std::string& id : StringTokenizer(getParameter().getParameter(toString(SUMO_ATTR_CF_IGNORE_IDS), "")).getVector()) {
7523 if (id == foe->getID()) {
7524 return true;
7525 }
7526 }
7527 return false;
7528}
7529
7530bool
7532 // either on an internal lane that was entered via minor link
7533 // or on approach to minor link below visibility distance
7534 if (myLane == nullptr) {
7535 return false;
7536 }
7537 if (myLane->getEdge().isInternal()) {
7538 return !myLane->getIncomingLanes().front().viaLink->havePriority();
7539 } else if (myLFLinkLanes.size() > 0 && myLFLinkLanes.front().myLink != nullptr) {
7540 MSLink* link = myLFLinkLanes.front().myLink;
7541 return !link->havePriority() && myLFLinkLanes.front().myDistance <= link->getFoeVisibilityDistance();
7542 }
7543 return false;
7544}
7545
7546bool
7547MSVehicle::isLeader(const MSLink* link, const MSVehicle* veh, const double gap) const {
7548 assert(link->fromInternalLane());
7549 if (veh == nullptr) {
7550 return false;
7551 }
7552 if (!myLane->isInternal() || myLane->getEdge().getToJunction() != link->getJunction()) {
7553 // if this vehicle is not yet on the junction, every vehicle is a leader
7554 return true;
7555 }
7556 if (veh->getLaneChangeModel().hasBlueLight()) {
7557 // blue light device automatically gets right of way
7558 return true;
7559 }
7560 const MSLane* foeLane = veh->getLane();
7561 if (foeLane->isInternal()) {
7562 if (foeLane->getEdge().getFromJunction() == link->getJunction()) {
7564 SUMOTime foeET = veh->myJunctionEntryTime;
7565 // check relationship between link and foeLane
7567 // we are entering the junction from the same lane
7569 foeET = veh->myJunctionEntryTimeNeverYield;
7572 }
7573 } else {
7574 const MSLink* foeLink = foeLane->getIncomingLanes()[0].viaLink;
7575 const MSJunctionLogic* logic = link->getJunction()->getLogic();
7576 assert(logic != nullptr);
7577 // determine who has right of way
7578 bool response; // ego response to foe
7579 bool response2; // foe response to ego
7580 // attempt 1: tlLinkState
7581 const MSLink* entry = link->getCorrespondingEntryLink();
7582 const MSLink* foeEntry = foeLink->getCorrespondingEntryLink();
7583 if (entry->haveRed() || foeEntry->haveRed()) {
7584 // ensure that vehicles which are stuck on the intersection may exit
7585 if (!foeEntry->haveRed() && veh->getSpeed() > SUMO_const_haltingSpeed && gap < 0) {
7586 // foe might be oncoming, don't drive unless foe can still brake safely
7587 const double foeNextSpeed = veh->getSpeed() + ACCEL2SPEED(veh->getCarFollowModel().getMaxAccel());
7588 const double foeBrakeGap = veh->getCarFollowModel().brakeGap(
7589 foeNextSpeed, veh->getCarFollowModel().getMaxDecel(), veh->getCarFollowModel().getHeadwayTime());
7590 // the minGap was subtracted from gap in MSLink::getLeaderInfo (enlarging the negative gap)
7591 // so the -2* makes it point in the right direction
7592 const double foeGap = -gap - veh->getLength() - 2 * getVehicleType().getMinGap();
7593#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7594 if (DEBUG_COND) {
7595 std::cout << " foeGap=" << foeGap << " foeBGap=" << foeBrakeGap << "\n";
7596
7597 }
7598#endif
7599 if (foeGap < foeBrakeGap) {
7600 response = true;
7601 response2 = false;
7602 } else {
7603 response = false;
7604 response2 = true;
7605 }
7606 } else {
7607 // let conflict entry time decide
7608 response = true;
7609 response2 = true;
7610 }
7611 } else if (entry->havePriority() != foeEntry->havePriority()) {
7612 response = !entry->havePriority();
7613 response2 = !foeEntry->havePriority();
7614 } else if (entry->haveYellow() && foeEntry->haveYellow()) {
7615 // let the faster vehicle keep moving
7616 response = veh->getSpeed() >= getSpeed();
7617 response2 = getSpeed() >= veh->getSpeed();
7618 } else {
7619 // fallback if pedestrian crossings are involved
7620 response = logic->getResponseFor(link->getIndex()).test(foeLink->getIndex());
7621 response2 = logic->getResponseFor(foeLink->getIndex()).test(link->getIndex());
7622 }
7623#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7624 if (DEBUG_COND) {
7625 std::cout << SIMTIME
7626 << " foeLane=" << foeLane->getID()
7627 << " foeLink=" << foeLink->getViaLaneOrLane()->getID()
7628 << " linkIndex=" << link->getIndex()
7629 << " foeLinkIndex=" << foeLink->getIndex()
7630 << " entryState=" << toString(entry->getState())
7631 << " entryState2=" << toString(foeEntry->getState())
7632 << " response=" << response
7633 << " response2=" << response2
7634 << "\n";
7635 }
7636#endif
7637 if (!response) {
7638 // if we have right of way over the foe, entryTime does not matter
7639 foeET = veh->myJunctionConflictEntryTime;
7640 egoET = myJunctionEntryTime;
7641 } else if (response && response2) {
7642 // in a mutual conflict scenario, use entry time to avoid deadlock
7643 foeET = veh->myJunctionConflictEntryTime;
7645 }
7646 }
7647 if (egoET == foeET) {
7648 // try to use speed as tie braker
7649 if (getSpeed() == veh->getSpeed()) {
7650 // use ID as tie braker
7651#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7652 if (DEBUG_COND) {
7653 std::cout << SIMTIME << " veh=" << getID() << " equal ET " << egoET << " with foe " << veh->getID()
7654 << " foeIsLeaderByID=" << (getID() < veh->getID()) << "\n";
7655 }
7656#endif
7657 return getID() < veh->getID();
7658 } else {
7659#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7660 if (DEBUG_COND) {
7661 std::cout << SIMTIME << " veh=" << getID() << " equal ET " << egoET << " with foe " << veh->getID()
7662 << " foeIsLeaderBySpeed=" << (getSpeed() < veh->getSpeed())
7663 << " v=" << getSpeed() << " foeV=" << veh->getSpeed()
7664 << "\n";
7665 }
7666#endif
7667 return getSpeed() < veh->getSpeed();
7668 }
7669 } else {
7670 // leader was on the junction first
7671#ifdef DEBUG_PLAN_MOVE_LEADERINFO
7672 if (DEBUG_COND) {
7673 std::cout << SIMTIME << " veh=" << getID() << " egoET " << egoET << " with foe " << veh->getID()
7674 << " foeET=" << foeET << " isLeader=" << (egoET > foeET) << "\n";
7675 }
7676#endif
7677 return egoET > foeET;
7678 }
7679 } else {
7680 // vehicle can only be partially on the junction. Must be a leader
7681 return true;
7682 }
7683 } else {
7684 // vehicle can only be partially on the junction. Must be a leader
7685 return true;
7686 }
7687}
7688
7689void
7692 // here starts the vehicle internal part (see loading)
7693 std::vector<std::string> internals;
7694 internals.push_back(toString(myParameter->parametersSet));
7695 internals.push_back(toString(myDeparture));
7696 internals.push_back(toString(distance(myRoute->begin(), myCurrEdge)));
7697 internals.push_back(toString(myDepartPos));
7698 internals.push_back(toString(myWaitingTime));
7699 internals.push_back(toString(myTimeLoss));
7700 internals.push_back(toString(myLastActionTime));
7701 internals.push_back(toString(isStopped()));
7702 internals.push_back(toString(myPastStops.size()));
7703 out.writeAttr(SUMO_ATTR_STATE, internals);
7705 out.writeAttr(SUMO_ATTR_SPEED, std::vector<double> { myState.mySpeed, myState.myPreviousSpeed });
7710 // save past stops
7712 stop.write(out, false);
7713 // do not write started and ended twice
7714 if ((stop.parametersSet & STOP_STARTED_SET) == 0) {
7715 out.writeAttr(SUMO_ATTR_STARTED, time2string(stop.started));
7716 }
7717 if ((stop.parametersSet & STOP_ENDED_SET) == 0) {
7718 out.writeAttr(SUMO_ATTR_ENDED, time2string(stop.ended));
7719 }
7720 stop.writeParams(out);
7721 out.closeTag();
7722 }
7723 // save upcoming stops
7724 for (MSStop& stop : myStops) {
7725 stop.write(out);
7726 }
7727 // save parameters and device states
7729 for (MSVehicleDevice* const dev : myDevices) {
7730 dev->saveState(out);
7731 }
7732 out.closeTag();
7733}
7734
7735void
7737 if (!attrs.hasAttribute(SUMO_ATTR_POSITION)) {
7738 throw ProcessError(TL("Error: Invalid vehicles in state (may be a meso state)!"));
7739 }
7740 int routeOffset;
7741 bool stopped;
7742 int pastStops;
7743
7744 std::istringstream bis(attrs.getString(SUMO_ATTR_STATE));
7745 bis >> myParameter->parametersSet;
7746 bis >> myDeparture;
7747 bis >> routeOffset;
7748 bis >> myDepartPos;
7749 bis >> myWaitingTime;
7750 bis >> myTimeLoss;
7751 bis >> myLastActionTime;
7752 bis >> stopped;
7753 bis >> pastStops;
7754
7756 bool ok;
7757 myArrivalPos = attrs.get<double>(SUMO_ATTR_ARRIVALPOS_RANDOMIZED, getID().c_str(), ok);
7758 }
7759 // load stops
7760 myStops.clear();
7762
7763 if (hasDeparted()) {
7764 myCurrEdge = myRoute->begin() + routeOffset;
7765 myDeparture -= offset;
7766 // fix stops
7767 while (pastStops > 0) {
7768 myPastStops.push_back(myStops.front().pars);
7769 myPastStops.back().routeIndex = (int)(myStops.front().edge - myRoute->begin());
7770 myStops.pop_front();
7771 pastStops--;
7772 }
7773 // see MSBaseVehicle constructor
7776 }
7777 // a (tentative lane is needed for calling hasArrivedInternal
7778 myLane = (*myCurrEdge)->getLanes()[0];
7779 }
7782 WRITE_WARNINGF(TL("Action steps are out of sync for loaded vehicle '%'."), getID());
7783 }
7784 std::istringstream pis(attrs.getString(SUMO_ATTR_POSITION));
7786 std::istringstream sis(attrs.getString(SUMO_ATTR_SPEED));
7791 std::istringstream dis(attrs.getString(SUMO_ATTR_DISTANCE));
7792 dis >> myOdometer >> myNumberReroutes;
7794 if (stopped) {
7795 myStops.front().startedFromState = true;
7796 myStopDist = 0;
7797 }
7799 // no need to reset myCachedPosition here since state loading happens directly after creation
7800}
7801
7802void
7804 SUMOTime arrivalTime, double arrivalSpeed,
7805 double arrivalSpeedBraking,
7806 double dist, double leaveSpeed) {
7807 // ensure that approach information is reset on the next call to setApproachingForAllLinks
7808 myLFLinkLanes.push_back(DriveProcessItem(link, 0, 0, setRequest,
7809 arrivalTime, arrivalSpeed, arrivalSpeedBraking, dist, leaveSpeed));
7810
7811}
7812
7813
7814std::shared_ptr<MSSimpleDriverState>
7818
7819
7820double
7822 return myFrictionDevice == nullptr ? 1. : myFrictionDevice->getMeasuredFriction();
7823}
7824
7825
7826void
7827MSVehicle::setPreviousSpeed(double prevSpeed, double prevAcceleration) {
7828 myState.mySpeed = MAX2(0., prevSpeed);
7829 // also retcon acceleration
7830 if (prevAcceleration != std::numeric_limits<double>::min()) {
7831 myAcceleration = prevAcceleration;
7832 } else {
7834 }
7835}
7836
7837
7838double
7840 //return MAX2(-myAcceleration, getCarFollowModel().getApparentDecel());
7842}
7843
7844/****************************************************************************/
7845bool
7849
7850/* -------------------------------------------------------------------------
7851 * methods of MSVehicle::manoeuvre
7852 * ----------------------------------------------------------------------- */
7853
7854MSVehicle::Manoeuvre::Manoeuvre() : myManoeuvreStop(""), myManoeuvreStartTime(0), myManoeuvreCompleteTime(0), myManoeuvreType(MSVehicle::MANOEUVRE_NONE), myGUIIncrement(0) {}
7855
7856
7858 myManoeuvreStop = manoeuvre.myManoeuvreStop;
7859 myManoeuvreStartTime = manoeuvre.myManoeuvreStartTime;
7860 myManoeuvreCompleteTime = manoeuvre.myManoeuvreCompleteTime;
7861 myManoeuvreType = manoeuvre.myManoeuvreType;
7862 myGUIIncrement = manoeuvre.myGUIIncrement;
7863}
7864
7865
7868 myManoeuvreStop = manoeuvre.myManoeuvreStop;
7869 myManoeuvreStartTime = manoeuvre.myManoeuvreStartTime;
7870 myManoeuvreCompleteTime = manoeuvre.myManoeuvreCompleteTime;
7871 myManoeuvreType = manoeuvre.myManoeuvreType;
7872 myGUIIncrement = manoeuvre.myGUIIncrement;
7873 return *this;
7874}
7875
7876
7877bool
7879 return (myManoeuvreStop != manoeuvre.myManoeuvreStop ||
7880 myManoeuvreStartTime != manoeuvre.myManoeuvreStartTime ||
7881 myManoeuvreCompleteTime != manoeuvre.myManoeuvreCompleteTime ||
7882 myManoeuvreType != manoeuvre.myManoeuvreType ||
7883 myGUIIncrement != manoeuvre.myGUIIncrement
7884 );
7885}
7886
7887
7888double
7890 return (myGUIIncrement);
7891}
7892
7893
7896 return (myManoeuvreType);
7897}
7898
7899
7904
7905
7906void
7910
7911
7912void
7914 myManoeuvreType = mType;
7915}
7916
7917
7918bool
7920 if (!veh->hasStops()) {
7921 return false; // should never happen - checked before call
7922 }
7923
7924 const SUMOTime currentTime = MSNet::getInstance()->getCurrentTimeStep();
7925 const MSStop& stop = veh->getNextStop();
7926
7927 int manoeuverAngle = stop.parkingarea->getLastFreeLotAngle();
7928 double GUIAngle = stop.parkingarea->getLastFreeLotGUIAngle();
7929 if (abs(GUIAngle) < 0.1) {
7930 GUIAngle = -0.1; // Wiggle vehicle on parallel entry
7931 }
7932 myManoeuvreVehicleID = veh->getID();
7933 myManoeuvreStop = stop.parkingarea->getID();
7934 myManoeuvreType = MSVehicle::MANOEUVRE_ENTRY;
7935 myManoeuvreStartTime = currentTime;
7936 myManoeuvreCompleteTime = currentTime + veh->myType->getEntryManoeuvreTime(manoeuverAngle);
7937 myGUIIncrement = GUIAngle / (STEPS2TIME(myManoeuvreCompleteTime - myManoeuvreStartTime) / TS);
7938
7939#ifdef DEBUG_STOPS
7940 if (veh->isSelected()) {
7941 std::cout << "ENTRY manoeuvre start: vehicle=" << veh->getID() << " Manoeuvre Angle=" << manoeuverAngle << " Rotation angle=" << RAD2DEG(GUIAngle) << " Road Angle" << RAD2DEG(veh->getAngle()) << " increment=" << RAD2DEG(myGUIIncrement) << " currentTime=" << currentTime <<
7942 " endTime=" << myManoeuvreCompleteTime << " manoeuvre time=" << myManoeuvreCompleteTime - currentTime << " parkArea=" << myManoeuvreStop << std::endl;
7943 }
7944#endif
7945
7946 return (true);
7947}
7948
7949
7950bool
7952 // At the moment we only want to set for parking areas
7953 if (!veh->hasStops()) {
7954 return true;
7955 }
7956 if (veh->getNextStop().parkingarea == nullptr) {
7957 return true;
7958 }
7959
7960 if (myManoeuvreType != MSVehicle::MANOEUVRE_NONE) {
7961 return (false);
7962 }
7963
7964 const SUMOTime currentTime = MSNet::getInstance()->getCurrentTimeStep();
7965
7966 int manoeuverAngle = veh->getCurrentParkingArea()->getManoeuverAngle(*veh);
7967 double GUIAngle = veh->getCurrentParkingArea()->getGUIAngle(*veh);
7968 if (abs(GUIAngle) < 0.1) {
7969 GUIAngle = 0.1; // Wiggle vehicle on parallel exit
7970 }
7971
7972 myManoeuvreVehicleID = veh->getID();
7973 myManoeuvreStop = veh->getCurrentParkingArea()->getID();
7974 myManoeuvreType = MSVehicle::MANOEUVRE_EXIT;
7975 myManoeuvreStartTime = currentTime;
7976 myManoeuvreCompleteTime = currentTime + veh->myType->getExitManoeuvreTime(manoeuverAngle);
7977 myGUIIncrement = -GUIAngle / (STEPS2TIME(myManoeuvreCompleteTime - myManoeuvreStartTime) / TS);
7978 if (veh->remainingStopDuration() > 0) {
7979 myManoeuvreCompleteTime += veh->remainingStopDuration();
7980 }
7981
7982#ifdef DEBUG_STOPS
7983 if (veh->isSelected()) {
7984 std::cout << "EXIT manoeuvre start: vehicle=" << veh->getID() << " Manoeuvre Angle=" << manoeuverAngle << " increment=" << RAD2DEG(myGUIIncrement) << " currentTime=" << currentTime
7985 << " endTime=" << myManoeuvreCompleteTime << " manoeuvre time=" << myManoeuvreCompleteTime - currentTime << " parkArea=" << myManoeuvreStop << std::endl;
7986 }
7987#endif
7988
7989 return (true);
7990}
7991
7992
7993bool
7995 // At the moment we only want to consider parking areas - need to check because we could be setting up a manoeuvre
7996 if (!veh->hasStops()) {
7997 return (true);
7998 }
7999 MSStop* currentStop = &veh->myStops.front();
8000 if (currentStop->parkingarea == nullptr) {
8001 return true;
8002 } else if (currentStop->parkingarea->getID() != myManoeuvreStop || MSVehicle::MANOEUVRE_ENTRY != myManoeuvreType) {
8003 if (configureEntryManoeuvre(veh)) {
8005 return (false);
8006 } else { // cannot configure entry so stop trying
8007 return true;
8008 }
8009 } else if (MSNet::getInstance()->getCurrentTimeStep() < myManoeuvreCompleteTime) {
8010 return false;
8011 } else { // manoeuvre complete
8012 myManoeuvreType = MSVehicle::MANOEUVRE_NONE;
8013 return true;
8014 }
8015}
8016
8017
8018bool
8020 if (checkType != myManoeuvreType) {
8021 return true; // we're not maneuvering / wrong manoeuvre
8022 }
8023
8024 if (MSNet::getInstance()->getCurrentTimeStep() < myManoeuvreCompleteTime) {
8025 return false;
8026 } else {
8027 return true;
8028 }
8029}
8030
8031
8032bool
8034 return (MSNet::getInstance()->getCurrentTimeStep() >= myManoeuvreCompleteTime);
8035}
8036
8037
8038bool
8042
8043
8044std::pair<double, double>
8046 if (hasStops()) {
8047 MSLane* lane = myLane;
8048 if (lane == nullptr) {
8049 // not in network
8050 lane = getEdge()->getLanes()[0];
8051 }
8052 const MSStop& stop = myStops.front();
8053 auto it = myCurrEdge + 1;
8054 // drive to end of current edge
8055 double dist = (lane->getLength() - getPositionOnLane());
8056 double travelTime = lane->getEdge().getMinimumTravelTime(this) * dist / lane->getLength();
8057 // drive until stop edge
8058 while (it != myRoute->end() && it < stop.edge) {
8059 travelTime += (*it)->getMinimumTravelTime(this);
8060 dist += (*it)->getLength();
8061 it++;
8062 }
8063 // drive up to the stop position
8064 const double stopEdgeDist = stop.pars.endPos - (lane == stop.lane ? lane->getLength() : 0);
8065 dist += stopEdgeDist;
8066 travelTime += stop.lane->getEdge().getMinimumTravelTime(this) * (stopEdgeDist / stop.lane->getLength());
8067 // estimate time loss due to acceleration and deceleration
8068 // maximum speed is limited by available distance:
8069 const double a = getCarFollowModel().getMaxAccel();
8070 const double b = getCarFollowModel().getMaxDecel();
8071 const double c = getSpeed();
8072 const double d = dist;
8073 const double len = getVehicleType().getLength();
8074 const double vs = MIN2(MAX2(stop.getSpeed(), 0.0), stop.lane->getVehicleMaxSpeed(this));
8075 // distAccel = (v - c)^2 / (2a)
8076 // distDecel = (v + vs)*(v - vs) / 2b = (v^2 - vs^2) / (2b)
8077 // distAccel + distDecel < d
8078 const double maxVD = MAX2(c, ((sqrt(MAX2(0.0, pow(2 * c * b, 2) + (4 * ((b * ((a * (2 * d * (b + a) + (vs * vs) - (c * c))) - (b * (c * c))))
8079 + pow((a * vs), 2))))) * 0.5) + (c * b)) / (b + a));
8080 it = myCurrEdge;
8081 double v0 = c;
8082 bool v0Stable = getAcceleration() == 0 && v0 > 0;
8083 double timeLossAccel = 0;
8084 double timeLossDecel = 0;
8085 double timeLossLength = 0;
8086 while (it != myRoute->end() && it <= stop.edge) {
8087 double v = MIN2(maxVD, (*it)->getVehicleMaxSpeed(this));
8088 double edgeLength = (it == stop.edge ? stop.pars.endPos : (*it)->getLength()) - (it == myCurrEdge ? getPositionOnLane() : 0);
8089 if (edgeLength <= len && v0Stable && v0 < v) {
8090 const double lengthDist = MIN2(len, edgeLength);
8091 const double dTL = lengthDist / v0 - lengthDist / v;
8092 //std::cout << " e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " el=" << edgeLength << " lDist=" << lengthDist << " newTLL=" << dTL<< "\n";
8093 timeLossLength += dTL;
8094 }
8095 if (edgeLength > len) {
8096 const double dv = v - v0;
8097 if (dv > 0) {
8098 // timeLossAccel = timeAccel - timeMaxspeed = dv / a - distAccel / v
8099 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
8100 //std::cout << " e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " newTLA=" << dTA << "\n";
8101 timeLossAccel += dTA;
8102 // time loss from vehicle length
8103 } else if (dv < 0) {
8104 // timeLossDecel = timeDecel - timeMaxspeed = dv / b - distDecel / v
8105 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
8106 //std::cout << " e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " newTLD=" << dTD << "\n";
8107 timeLossDecel += dTD;
8108 }
8109 v0 = v;
8110 v0Stable = true;
8111 }
8112 it++;
8113 }
8114 // final deceleration to stop (may also be acceleration or deceleration to waypoint speed)
8115 double v = vs;
8116 const double dv = v - v0;
8117 if (dv > 0) {
8118 // timeLossAccel = timeAccel - timeMaxspeed = dv / a - distAccel / v
8119 const double dTA = dv / a - dv * (v + v0) / (2 * a * v);
8120 //std::cout << " final e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " newTLA=" << dTA << "\n";
8121 timeLossAccel += dTA;
8122 // time loss from vehicle length
8123 } else if (dv < 0) {
8124 // timeLossDecel = timeDecel - timeMaxspeed = dv / b - distDecel / v
8125 const double dTD = -dv / b + dv * (v + v0) / (2 * b * v0);
8126 //std::cout << " final e=" << (*it)->getID() << " v0=" << v0 << " v=" << v << " newTLD=" << dTD << "\n";
8127 timeLossDecel += dTD;
8128 }
8129 const double result = travelTime + timeLossAccel + timeLossDecel + timeLossLength;
8130 //std::cout << SIMTIME << " v=" << c << " a=" << a << " b=" << b << " maxVD=" << maxVD << " tt=" << travelTime
8131 // << " ta=" << timeLossAccel << " td=" << timeLossDecel << " tl=" << timeLossLength << " res=" << result << "\n";
8132 return {MAX2(0.0, result), dist};
8133 } else {
8135 }
8136}
8137
8138
8139double
8141 if (hasStops() && myStops.front().pars.until >= 0) {
8142 const MSStop& stop = myStops.front();
8143 SUMOTime estimatedDepart = MSNet::getInstance()->getCurrentTimeStep() - DELTA_T;
8144 if (stop.reached) {
8145 return STEPS2TIME(estimatedDepart + stop.duration - stop.pars.until);
8146 }
8147 if (stop.pars.duration > 0) {
8148 estimatedDepart += stop.pars.duration;
8149 }
8150 estimatedDepart += TIME2STEPS(estimateTimeToNextStop().first);
8151 const double result = MAX2(0.0, STEPS2TIME(estimatedDepart - stop.pars.until));
8152 return result;
8153 } else {
8154 // vehicles cannot drive before 'until' so stop delay can never be
8155 // negative and we can use -1 to signal "undefined"
8156 return -1;
8157 }
8158}
8159
8160
8161double
8163 if (hasStops() && myStops.front().pars.arrival >= 0) {
8164 const MSStop& stop = myStops.front();
8165 if (stop.reached) {
8166 return STEPS2TIME(stop.pars.started - stop.pars.arrival);
8167 } else {
8168 return STEPS2TIME(MSNet::getInstance()->getCurrentTimeStep()) + estimateTimeToNextStop().first - STEPS2TIME(stop.pars.arrival);
8169 }
8170 } else {
8171 // vehicles can arrival earlier than planned so arrival delay can be negative
8172 return INVALID_DOUBLE;
8173 }
8174}
8175
8176
8177const MSEdge*
8179 return myLane != nullptr ? &myLane->getEdge() : getEdge();
8180}
8181
8182
8183const MSEdge*
8185 if (myLane == nullptr || (myCurrEdge + 1) == myRoute->end()) {
8186 return nullptr;
8187 }
8188 if (myLane->isInternal()) {
8190 } else {
8191 const MSEdge* nextNormal = succEdge(1);
8192 const MSEdge* nextInternal = myLane->getEdge().getInternalFollowingEdge(nextNormal, getVClass());
8193 return nextInternal ? nextInternal : nextNormal;
8194 }
8195}
8196
8197
8198const MSLane*
8199MSVehicle::getPreviousLane(const MSLane* current, int& furtherIndex) const {
8200 if (furtherIndex < (int)myFurtherLanes.size()) {
8201 return myFurtherLanes[furtherIndex++];
8202 } else {
8203 // try to use route information
8204 int routeIndex = getRoutePosition();
8205 bool resultInternal;
8206 if (MSGlobals::gUsingInternalLanes && MSNet::getInstance()->hasInternalLinks()) {
8207 if (myLane->isInternal()) {
8208 if (furtherIndex % 2 == 0) {
8209 routeIndex -= (furtherIndex + 0) / 2;
8210 resultInternal = false;
8211 } else {
8212 routeIndex -= (furtherIndex + 1) / 2;
8213 resultInternal = false;
8214 }
8215 } else {
8216 if (furtherIndex % 2 != 0) {
8217 routeIndex -= (furtherIndex + 1) / 2;
8218 resultInternal = false;
8219 } else {
8220 routeIndex -= (furtherIndex + 2) / 2;
8221 resultInternal = true;
8222 }
8223 }
8224 } else {
8225 routeIndex -= furtherIndex;
8226 resultInternal = false;
8227 }
8228 furtherIndex++;
8229 if (routeIndex >= 0) {
8230 if (resultInternal) {
8231 const MSEdge* prevNormal = myRoute->getEdges()[routeIndex];
8232 for (MSLane* cand : prevNormal->getLanes()) {
8233 for (MSLink* link : cand->getLinkCont()) {
8234 if (link->getLane() == current) {
8235 if (link->getViaLane() != nullptr) {
8236 return link->getViaLane();
8237 } else {
8238 return const_cast<MSLane*>(link->getLaneBefore());
8239 }
8240 }
8241 }
8242 }
8243 } else {
8244 return myRoute->getEdges()[routeIndex]->getLanes()[0];
8245 }
8246 }
8247 }
8248 return current;
8249}
8250
8253 // this vehicle currently has the highest priority on the allway_stop
8254 return link == myHaveStoppedFor ? SUMOTime_MAX : getWaitingTime();
8255}
8256
8257
8258void
8260 bool diverged = false;
8261 const ConstMSEdgeVector& route = myRoute->getEdges();
8262 int ri = getRoutePosition();
8263 for (const DriveProcessItem& dpi : myLFLinkLanes) {
8264 if (dpi.myLink != nullptr) {
8265 if (!diverged) {
8266 const MSEdge* next = route[ri + 1];
8267 if (&dpi.myLink->getLane()->getEdge() != next) {
8268 diverged = true;
8269 } else {
8270 if (dpi.myLink->getViaLane() == nullptr) {
8271 ri++;
8272 }
8273 }
8274 }
8275 if (diverged) {
8276 dpi.myLink->removeApproaching(this);
8277 }
8278 }
8279 }
8280}
8281
8282/****************************************************************************/
long long int SUMOTime
Definition GUI.h:36
#define RAD2DEG(x)
Definition GeomHelper.h:36
#define DEBUG_COND2(obj)
Definition MESegment.cpp:54
std::vector< const MSEdge * > ConstMSEdgeVector
Definition MSEdge.h:74
std::vector< MSEdge * > MSEdgeVector
Definition MSEdge.h:73
std::pair< const MSVehicle *, double > CLeaderDist
std::pair< const MSPerson *, double > PersonDist
Definition MSPModel.h:41
ConstMSEdgeVector::const_iterator MSRouteIterator
Definition MSRoute.h:57
#define NUMERICAL_EPS_SPEED
#define STOPPING_PLACE_OFFSET
#define JUNCTION_BLOCKAGE_TIME
#define DIST_TO_STOPLINE_EXPECT_PRIORITY
#define CRLL_LOOK_AHEAD
#define WRITE_WARNINGF(...)
Definition MsgHandler.h:287
#define WRITE_ERROR(msg)
Definition MsgHandler.h:295
#define WRITE_WARNING(msg)
Definition MsgHandler.h:286
#define TL(string)
Definition MsgHandler.h:304
std::shared_ptr< const MSRoute > ConstMSRoutePtr
Definition Route.h:32
SUMOTime DELTA_T
Definition SUMOTime.cpp:38
SUMOTime string2time(const std::string &r)
convert string to SUMOTime
Definition SUMOTime.cpp:46
std::string time2string(SUMOTime t, bool humanReadable)
convert SUMOTime to string (independently of global format setting)
Definition SUMOTime.cpp:91
#define STEPS2TIME(x)
Definition SUMOTime.h:55
#define SPEED2DIST(x)
Definition SUMOTime.h:45
#define SIMSTEP
Definition SUMOTime.h:61
#define ACCEL2SPEED(x)
Definition SUMOTime.h:51
#define SUMOTime_MAX
Definition SUMOTime.h:34
#define TS
Definition SUMOTime.h:42
#define SIMTIME
Definition SUMOTime.h:62
#define TIME2STEPS(x)
Definition SUMOTime.h:57
#define DIST2SPEED(x)
Definition SUMOTime.h:47
#define SPEED2ACCEL(x)
Definition SUMOTime.h:53
bool isRailway(SVCPermissions permissions)
Returns whether an edge with the given permissions is a (exclusive) railway edge.
@ RAIL_CARGO
render as a cargo train
@ RAIL
render as a rail
@ PASSENGER_VAN
render as a van
@ PASSENGER
render as a passenger vehicle
@ RAIL_CAR
render as a (city) rail without locomotive
@ PASSENGER_HATCHBACK
render as a hatchback passenger vehicle ("Fliessheck")
@ BUS_FLEXIBLE
render as a flexible city bus
@ TRUCK_1TRAILER
render as a transport vehicle with one trailer
@ PASSENGER_SEDAN
render as a sedan passenger vehicle ("Stufenheck")
@ PASSENGER_WAGON
render as a wagon passenger vehicle ("Combi")
@ TRUCK_SEMITRAILER
render as a semi-trailer transport vehicle ("Sattelschlepper")
@ SVC_RAIL_CLASSES
classes which drive on tracks
@ SVC_EMERGENCY
public emergency vehicles
const long long int VEHPARS_FORCE_REROUTE
@ GIVEN
The lane is given.
@ GIVEN
The speed is given.
@ SPLIT_FRONT
depart position for a split vehicle is in front of the continuing vehicle
const long long int VEHPARS_CFMODEL_PARAMS_SET
@ GIVEN
The arrival lane is given.
@ GIVEN
The speed is given.
const int STOP_ENDED_SET
@ GIVEN
The arrival position is given.
const int STOP_STARTED_SET
@ SUMO_TAG_PARKING_AREA_REROUTE
entry for an alternative parking zone
@ SUMO_TAG_PARKING_AREA
A parking area.
@ SUMO_TAG_OVERHEAD_WIRE_SEGMENT
An overhead wire segment.
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ TURN
The link is a 180 degree turn.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ TURN_LEFTHAND
The link is a 180 degree turn (left-hand network)
@ PARTRIGHT
The link is a partial right direction.
@ NODIR
The link has no direction (is a dead end link)
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_EQUAL
This is an uncontrolled, right-before-left link.
@ LINKSTATE_ZIPPER
This is an uncontrolled, zipper-merge link.
@ LCA_KEEPRIGHT
The action is due to the default of keeping right "Rechtsfahrgebot".
@ LCA_BLOCKED
blocked in all directions
@ LCA_URGENT
The action is urgent (to be defined by lc-model)
@ LCA_STAY
Needs to stay on the current lane.
@ LCA_SUBLANE
used by the sublane model
@ LCA_WANTS_LANECHANGE_OR_STAY
lane can change or stay
@ LCA_COOPERATIVE
The action is done to help someone else.
@ LCA_OVERLAPPING
The vehicle is blocked being overlapping.
@ LCA_LEFT
Wants go to the left.
@ LCA_STRATEGIC
The action is needed to follow the route (navigational lc)
@ LCA_TRACI
The action is due to a TraCI request.
@ LCA_SPEEDGAIN
The action is due to the wish to be faster (tactical lc)
@ LCA_RIGHT
Wants go to the right.
@ SUMO_ATTR_JM_STOPLINE_GAP_MINOR
@ SUMO_ATTR_JM_STOPLINE_CROSSING_GAP
@ SUMO_ATTR_JM_IGNORE_KEEPCLEAR_TIME
@ SUMO_ATTR_SPEED
@ SUMO_ATTR_STARTED
@ SUMO_ATTR_MAXIMUMPOWER
Maximum Power.
@ SUMO_ATTR_WAITINGTIME
@ SUMO_ATTR_CF_IGNORE_IDS
@ SUMO_ATTR_JM_STOPLINE_GAP
@ SUMO_ATTR_POSITION_LAT
@ SUMO_ATTR_JM_DRIVE_AFTER_RED_TIME
@ SUMO_ATTR_JM_DRIVE_AFTER_YELLOW_TIME
@ SUMO_ATTR_ENDED
@ SUMO_ATTR_LCA_CONTRIGHT
@ SUMO_ATTR_ANGLE
@ SUMO_ATTR_DISTANCE
@ SUMO_ATTR_CF_IGNORE_TYPES
@ SUMO_ATTR_ARRIVALPOS_RANDOMIZED
@ SUMO_ATTR_FLEX_ARRIVAL
@ SUMO_ATTR_JM_IGNORE_JUNCTION_FOE_PROB
@ SUMO_ATTR_POSITION
@ SUMO_ATTR_STATE
The state of a link.
@ SUMO_ATTR_JM_DRIVE_RED_SPEED
int gPrecision
the precision for floating point outputs
Definition StdDefs.cpp:27
bool gDebugFlag1
global utility flags for debugging
Definition StdDefs.cpp:43
const double INVALID_DOUBLE
invalid double
Definition StdDefs.h:68
const double SUMO_const_laneWidth
Definition StdDefs.h:52
T MIN3(T a, T b, T c)
Definition StdDefs.h:93
T MIN2(T a, T b)
Definition StdDefs.h:80
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
Definition StdDefs.h:62
T MAX2(T a, T b)
Definition StdDefs.h:86
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
Definition ToString.h:46
#define SOFT_ASSERT(expr)
define SOFT_ASSERT raise an assertion in debug mode everywhere except on the windows test server
double getDoubleOptional(SumoXMLAttr attr, const double def) const
Returns the value for a given key with an optional default. SUMO_ATTR_MASS and SUMO_ATTR_FRONTSURFACE...
void setDynamicValues(const SUMOTime stopDuration, const bool parking, const SUMOTime waitingTime, const double angle)
Sets the values which change possibly in every simulation step and are relevant for emsssion calculat...
static double naviDegree(const double angle)
static double fromNaviDegree(const double angle)
Interface for lane-change models.
double getLaneChangeCompletion() const
Get the current lane change completion ratio.
const std::vector< double > & getShadowFurtherLanesPosLat() const
double getManeuverDist() const
Returns the remaining unblocked distance for the current maneuver. (only used by sublane model)
int getLaneChangeDirection() const
return the direction of the current lane change maneuver
void resetChanged()
reset the flag whether a vehicle already moved to false
MSLane * getShadowLane() const
Returns the lane the vehicle's shadow is on during continuous/sublane lane change.
virtual void saveState(OutputDevice &out) const
Save the state of the laneChangeModel.
void endLaneChangeManeuver(const MSMoveReminder::Notification reason=MSMoveReminder::NOTIFICATION_LANE_CHANGE)
void setNoShadowPartialOccupator(MSLane *lane)
MSLane * getTargetLane() const
Returns the lane the vehicle has committed to enter during a sublane lane change.
SUMOTime remainingTime() const
Compute the remaining time until LC completion.
void setShadowApproachingInformation(MSLink *link) const
set approach information for the shadow vehicle
double getCooperativeHelpSpeed(const MSLane *lane, double distToLaneEnd) const
return speed for helping a vehicle that is blocked from changing
static MSAbstractLaneChangeModel * build(LaneChangeModel lcm, MSVehicle &vehicle)
Factory method for instantiating new lane changing models.
void changedToOpposite()
called when a vehicle changes between lanes in opposite directions
int getShadowDirection() const
return the direction in which the current shadow lane lies
virtual void loadState(const SUMOSAXAttributes &attrs)
Loads the state of the laneChangeModel from the given attributes.
double calcAngleOffset()
return the angle offset during a continuous change maneuver
void setPreviousAngleOffset(const double angleOffset)
set the angle offset of the previous time step
const std::vector< MSLane * > & getFurtherTargetLanes() const
double getAngleOffset() const
return the angle offset resulting from lane change and sigma
const std::vector< MSLane * > & getShadowFurtherLanes() const
bool isChangingLanes() const
return true if the vehicle currently performs a lane change maneuver
void setExtraImpatience(double value)
Sets routing behavior.
The base class for microscopic and mesoscopic vehicles.
double getMaxSpeed() const
Returns the maximum speed (the minimum of desired and technical maximum speed)
bool haveValidStopEdges(bool silent=false) const
check whether all stop.edge MSRouteIterators are valid and in order
virtual bool isSelected() const
whether this vehicle is selected in the GUI
std::list< MSStop > myStops
The vehicle's list of stops.
double getImpatience() const
Returns this vehicles impatience.
const std::vector< MSTransportable * > & getPersons() const
retrieve riding persons
virtual void initDevices()
const MSEdge * succEdge(int nSuccs) const
Returns the nSuccs'th successor of edge the vehicle is currently at.
void calculateArrivalParams(bool onInit)
(Re-)Calculates the arrival position and lane from the vehicle parameters
virtual double getArrivalPos() const
Returns this vehicle's desired arrivalPos for its current route (may change on reroute)
MoveReminderCont myMoveReminders
Currently relevant move reminders.
double myDepartPos
The real depart position.
const SUMOVehicleParameter & getParameter() const
Returns the vehicle's parameter (including departure definition)
void replaceParameter(const SUMOVehicleParameter *newParameter)
replace the vehicle parameter (deleting the old one)
double getChosenSpeedFactor() const
Returns the precomputed factor by which the driver wants to be faster than the speed limit.
std::vector< MSVehicleDevice * > myDevices
The devices this vehicle has.
virtual void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
const SUMOVehicleParameter::Stop * getNextStopParameter() const
return parameters for the next stop (SUMOVehicle Interface)
virtual bool replaceRoute(ConstMSRoutePtr route, const std::string &info, bool onInit=false, int offset=0, bool addRouteStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
bool isRail() const
MSVehicleType & getSingularType()
Replaces the current vehicle type with a new one used by this vehicle only.
const MSVehicleType * myType
This vehicle's type.
double getLength() const
Returns the vehicle's length.
bool isParking() const
Returns whether the vehicle is parking.
MSParkingArea * getCurrentParkingArea()
get the current parking area stop or nullptr
const MSEdge * getEdge() const
Returns the edge the vehicle is currently at.
int getPersonNumber() const
Returns the number of persons.
MSRouteIterator myCurrEdge
Iterator to current route-edge.
StopParVector myPastStops
The list of stops that the vehicle has already reached.
bool hasDeparted() const
Returns whether this vehicle has already departed.
ConstMSRoutePtr myRoute
This vehicle's route.
double getWidth() const
Returns the vehicle's width.
MSDevice_Transportable * myContainerDevice
The containers this vehicle may have.
const std::list< MSStop > & getStops() const
double getDesiredMaxSpeed() const
void addReminder(MSMoveReminder *rem, double pos=0)
Adds a MoveReminder dynamically.
SumoRNG * getRNG() const
SUMOTime getDeparture() const
Returns this vehicle's real departure time.
EnergyParams * getEmissionParameters() const
retrieve parameters for the energy consumption model
MSDevice_Transportable * myPersonDevice
The passengers this vehicle may have.
bool hasStops() const
Returns whether the vehicle has to stop somewhere.
virtual void activateReminders(const MSMoveReminder::Notification reason, const MSLane *enteredLane=0)
"Activates" all current move reminder
const MSStop & getNextStop() const
@ ROUTE_START_INVALID_PERMISSIONS
void addStops(const bool ignoreStopErrors, MSRouteIterator *searchStart=nullptr, bool addRouteStops=true)
Adds stops to the built vehicle.
SUMOVehicleClass getVClass() const
Returns the vehicle's access class.
MSParkingArea * getNextParkingArea()
get the upcoming parking area stop or nullptr
int myArrivalLane
The destination lane where the vehicle stops.
SUMOTime myDeparture
The real departure time.
bool isStoppedTriggered() const
Returns whether the vehicle is on a triggered stop.
void onDepart()
Called when the vehicle is inserted into the network.
virtual bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
const MSRoute & getRoute() const
Returns the current route.
int getRoutePosition() const
return index of edge within route
bool replaceParkingArea(MSParkingArea *parkingArea, std::string &errorMsg)
replace the current parking area stop with a new stop with merge duration
static const SUMOTime NOT_YET_DEPARTED
bool myAmRegisteredAsWaiting
Whether this vehicle is registered as waiting for a person or container (for deadlock-recognition)
SUMOAbstractRouter< MSEdge, SUMOVehicle > & getRouterTT() const
EnergyParams * myEnergyParams
The emission parameters this vehicle may have.
const SUMOVehicleParameter * myParameter
This vehicle's parameter.
int myRouteValidity
status of the current vehicle route
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool isStopped() const
Returns whether the vehicle is at a stop.
MSDevice * getDevice(const std::type_info &type) const
Returns a device of the given type if it exists, nullptr otherwise.
int myNumberReroutes
The number of reroutings.
double myArrivalPos
The position on the destination lane where the vehicle stops.
virtual void saveState(OutputDevice &out)
Saves the (common) state of a vehicle.
virtual void replaceVehicleType(const MSVehicleType *type)
Replaces the current vehicle type by the one given.
double myOdometer
A simple odometer to keep track of the length of the route already driven.
int getContainerNumber() const
Returns the number of containers.
bool replaceRouteEdges(ConstMSEdgeVector &edges, double cost, double savings, const std::string &info, bool onInit=false, bool check=false, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given edges.
The car-following model abstraction.
Definition MSCFModel.h:57
double estimateSpeedAfterDistance(const double dist, const double v, const double accel) const
virtual double maxNextSpeed(double speed, const MSVehicle *const veh) const
Returns the maximum speed given the current speed.
virtual double minNextSpeedEmergency(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed after emergency braking, given the current speed (depends on the numerical ...
virtual VehicleVariables * createVehicleVariables() const
Returns model specific values which are stored inside a vehicle and must be used with casting.
Definition MSCFModel.h:252
double getEmergencyDecel() const
Get the vehicle type's maximal physically possible deceleration [m/s^2].
Definition MSCFModel.h:277
SUMOTime getStartupDelay() const
Get the vehicle type's startupDelay.
Definition MSCFModel.h:293
double getMinimalArrivalSpeed(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance.
virtual void setHeadwayTime(double headwayTime)
Sets a new value for desired headway [s].
Definition MSCFModel.h:619
virtual double freeSpeed(const MSVehicle *const veh, double speed, double seen, double maxSpeed, const bool onInsertion=false, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed without a leader.
virtual double minNextSpeed(double speed, const MSVehicle *const veh=0) const
Returns the minimum speed given the current speed (depends on the numerical update scheme and its ste...
virtual double insertionFollowSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0) const
Computes the vehicle's safe speed (no dawdling) This method is used during the insertion stage....
SUMOTime getMinimalArrivalTime(double dist, double currentSpeed, double arrivalSpeed) const
Computes the minimal time needed to cover a distance given the desired speed at arrival.
virtual double finalizeSpeed(MSVehicle *const veh, double vPos) const
Applies interaction with stops and lane changing model influences. Called at most once per simulation...
@ FUTURE
the return value is used for calculating future speeds
Definition MSCFModel.h:83
@ CURRENT_WAIT
the return value is used for calculating junction stop speeds
Definition MSCFModel.h:85
double getApparentDecel() const
Get the vehicle type's apparent deceleration [m/s^2] (the one regarded by its followers.
Definition MSCFModel.h:285
double getMaxAccel() const
Get the vehicle type's maximum acceleration [m/s^2].
Definition MSCFModel.h:261
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
Definition MSCFModel.h:408
virtual double maximumLaneSpeedCF(const MSVehicle *const veh, double maxSpeed, double maxSpeedLane) const
Returns the maximum velocity the CF-model wants to achieve in the next step.
Definition MSCFModel.h:229
double maximumSafeStopSpeed(double gap, double decel, double currentSpeed, bool onInsertion=false, double headway=-1, bool relaxEmergency=true) const
Returns the maximum next velocity for stopping within gap.
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
Definition MSCFModel.h:269
double getMinimalArrivalSpeedEuler(double dist, double currentSpeed) const
Computes the minimal possible arrival speed after covering a given distance for Euler update.
virtual double followSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0, const CalcReason usage=CalcReason::CURRENT) const =0
Computes the vehicle's follow speed (no dawdling)
double stopSpeed(const MSVehicle *const veh, const double speed, double gap, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed for approaching a non-moving obstacle (no dawdling)
Definition MSCFModel.h:173
virtual double getHeadwayTime() const
Get the driver's desired headway [s].
Definition MSCFModel.h:339
The ToC Device controls transition of control between automated and manual driving.
std::shared_ptr< MSSimpleDriverState > getDriverState() const
return internal state
void update()
update internal state
A device which collects info on the vehicle trip (mainly on departure and arrival)
double consumption(SUMOVehicle &veh, double a, double newSpeed)
return energy consumption in Wh (power multiplied by TS)
void setConsum(const double consumption)
double acceleration(SUMOVehicle &veh, double power, double oldSpeed)
double getConsum() const
Get consum.
A device which collects info on current friction Coefficient on the road.
A device which collects info on the vehicle trip (mainly on departure and arrival)
A device which collects info on the vehicle trip (mainly on departure and arrival)
void cancelCurrentCustomers()
remove the persons the taxi is currently waiting for from reservations
bool notifyMove(SUMOTrafficObject &veh, double oldPos, double newPos, double newSpeed)
Checks whether the vehicle is at a stop and transportable action is needed.
bool anyLeavingAtStop(const MSStop &stop) const
void transferAtSplitOrJoin(MSBaseVehicle *otherVeh)
transfers transportables that want to continue in the other train part (without boarding/loading dela...
void checkCollisionForInactive(MSLane *l)
trigger collision checking for inactive lane
A road/street connecting two junctions.
Definition MSEdge.h:77
static void clear()
Clears the dictionary.
Definition MSEdge.cpp:1108
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
Definition MSEdge.h:204
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
Definition MSEdge.h:168
const MSEdge * getOppositeEdge() const
Returns the opposite direction edge if on exists else a nullptr.
Definition MSEdge.cpp:1356
bool isFringe() const
return whether this edge is at the fringe of the network
Definition MSEdge.h:772
const MSEdge * getNormalSuccessor() const
if this edge is an internal edge, return its first normal successor, otherwise the edge itself
Definition MSEdge.cpp:963
const std::vector< MSLane * > * allowedLanes(const MSEdge &destination, SUMOVehicleClass vclass=SVC_IGNORING, bool ignoreTransientPermissions=false) const
Get the allowed lanes to reach the destination-edge.
Definition MSEdge.cpp:488
const MSEdge * getBidiEdge() const
return opposite superposable/congruent edge, if it exist and 0 else
Definition MSEdge.h:282
bool isNormal() const
return whether this edge is an internal edge
Definition MSEdge.h:263
double getSpeedLimit() const
Returns the speed limit of the edge @caution The speed limit of the first lane is retured; should pro...
Definition MSEdge.cpp:1174
bool hasChangeProhibitions(SUMOVehicleClass svc, int index) const
return whether this edge prohibits changing for the given vClass when starting on the given lane inde...
Definition MSEdge.cpp:1378
bool hasLaneChanger() const
Definition MSEdge.h:746
const MSJunction * getToJunction() const
Definition MSEdge.h:426
const MSJunction * getFromJunction() const
Definition MSEdge.h:422
int getNumLanes() const
Definition MSEdge.h:172
double getMinimumTravelTime(const SUMOVehicle *const veh) const
returns the minimum travel time for the given vehicle
Definition MSEdge.h:484
bool isRoundabout() const
Definition MSEdge.h:729
bool isInternal() const
return whether this edge is an internal edge
Definition MSEdge.h:268
double getWidth() const
Returns the edges's width (sum over all lanes)
Definition MSEdge.h:664
bool isVaporizing() const
Returns whether vehicles on this edge shall be vaporized.
Definition MSEdge.h:442
void addWaiting(SUMOVehicle *vehicle) const
Adds a vehicle to the list of waiting vehicles.
Definition MSEdge.cpp:1467
const MSEdge * getInternalFollowingEdge(const MSEdge *followerAfterInternal, SUMOVehicleClass vClass) const
Definition MSEdge.cpp:916
void removeWaiting(const SUMOVehicle *vehicle) const
Removes a vehicle from the list of waiting vehicles.
Definition MSEdge.cpp:1476
const MSEdgeVector & getSuccessors(SUMOVehicleClass vClass=SVC_IGNORING) const
Returns the following edges, restricted by vClass.
Definition MSEdge.cpp:1274
static bool gModelParkingManoeuver
whether parking simulation includes manoeuver time and any associated lane blocking
Definition MSGlobals.h:162
static bool gUseMesoSim
Definition MSGlobals.h:106
static bool gUseStopStarted
Definition MSGlobals.h:134
static bool gCheckRoutes
Definition MSGlobals.h:91
static SUMOTime gStartupWaitThreshold
The minimum waiting time before applying startupDelay.
Definition MSGlobals.h:180
static double gTLSYellowMinDecel
The minimum deceleration at a yellow traffic light (only overruled by emergencyDecel)
Definition MSGlobals.h:171
static double gLateralResolution
Definition MSGlobals.h:100
static bool gSemiImplicitEulerUpdate
Definition MSGlobals.h:53
static bool gLefthand
Whether lefthand-drive is being simulated.
Definition MSGlobals.h:174
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
Definition MSGlobals.h:165
static SUMOTime gLaneChangeDuration
Definition MSGlobals.h:97
static double gEmergencyDecelWarningThreshold
threshold for warning about strong deceleration
Definition MSGlobals.h:152
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
Definition MSGlobals.h:81
void add(SUMOVehicle *veh)
Adds a single vehicle for departure.
virtual const MSJunctionLogic * getLogic() const
Definition MSJunction.h:141
virtual const MSLogicJunction::LinkBits & getResponseFor(int linkIndex) const
Returns the response for the given link.
Representation of a lane in the micro simulation.
Definition MSLane.h:84
std::vector< StopWatch< std::chrono::nanoseconds > > & getStopWatch()
Definition MSLane.h:1293
const std::vector< MSMoveReminder * > & getMoveReminders() const
Return the list of this lane's move reminders.
Definition MSLane.h:323
std::pair< MSVehicle *const, double > getFollower(const MSVehicle *ego, double egoPos, double dist, MinorLinkMode mLinkMode) const
Find follower vehicle for the given ego vehicle (which may be on the opposite direction lane)
Definition MSLane.cpp:4400
std::pair< const MSPerson *, double > nextBlocking(double minPos, double minRight, double maxLeft, double stopTime=0, bool bidi=false) const
This is just a wrapper around MSPModel::nextBlocking. You should always check using hasPedestrians be...
Definition MSLane.cpp:4574
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
Definition MSLane.cpp:2850
virtual MSVehicle * removeVehicle(MSVehicle *remVehicle, MSMoveReminder::Notification notification, bool notify=true)
Definition MSLane.cpp:2832
int getVehicleNumber() const
Returns the number of vehicles on this lane (for which this lane is responsible)
Definition MSLane.h:456
MSVehicle * getFirstAnyVehicle() const
returns the first vehicle that is fully or partially on this lane
Definition MSLane.cpp:2680
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
Definition MSLane.cpp:2768
int getVehicleNumberWithPartials() const
Returns the number of vehicles on this lane (including partial occupators)
Definition MSLane.h:464
double getBruttoVehLenSum() const
Returns the sum of lengths of vehicles, including their minGaps, which were on the lane during the la...
Definition MSLane.h:1166
static std::vector< MSLink * >::const_iterator succLinkSec(const SUMOVehicle &veh, int nRouteSuccs, const MSLane &succLinkSource, const std::vector< MSLane * > &conts)
Definition MSLane.cpp:2694
void markRecalculateBruttoSum()
Set a flag to recalculate the brutto (including minGaps) occupancy of this lane (used if mingap is ch...
Definition MSLane.cpp:2433
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
Definition MSLane.cpp:2745
void forceVehicleInsertion(MSVehicle *veh, double pos, MSMoveReminder::Notification notification, double posLat=0)
Inserts the given vehicle at the given position.
Definition MSLane.cpp:1392
double getVehicleStopOffset(const MSVehicle *veh) const
Returns vehicle class specific stopOffset for the vehicle.
Definition MSLane.cpp:3778
double getSpeedLimit() const
Returns the lane's maximum allowed speed.
Definition MSLane.h:597
std::vector< MSVehicle * > VehCont
Container for vehicles.
Definition MSLane.h:119
const MSEdge * getNextNormal() const
Returns the lane's follower if it is an internal lane, the edge of the lane otherwise.
Definition MSLane.cpp:2465
SVCPermissions getPermissions() const
Returns the vehicle class permissions for this lane.
Definition MSLane.h:619
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
Definition MSLane.h:957
MSLane * getCanonicalPredecessorLane() const
Definition MSLane.cpp:3272
double getLength() const
Returns the lane's length.
Definition MSLane.h:611
double getMaximumBrakeDist() const
compute maximum braking distance on this lane
Definition MSLane.cpp:2907
const MSLane * getInternalFollowingLane(const MSLane *const) const
returns the internal lane leading to the given lane or nullptr, if there is none
Definition MSLane.cpp:2757
const MSLeaderInfo getLastVehicleInformation(const MSVehicle *ego, double latOffset, double minPos=0, bool allowCached=true) const
Returns the last vehicles on the lane.
Definition MSLane.cpp:1445
std::pair< MSVehicle *const, double > getLeaderOnConsecutive(double dist, double seen, double speed, const MSVehicle &veh, const std::vector< MSLane * > &bestLaneConts, bool considerCrossingFoes=true) const
Returns the immediate leader and the distance to him.
Definition MSLane.cpp:2991
bool isLinkEnd(std::vector< MSLink * >::const_iterator &i) const
Definition MSLane.h:860
bool allowsVehicleClass(SUMOVehicleClass vclass) const
Definition MSLane.h:932
virtual double setPartialOccupation(MSVehicle *v)
Sets the information about a vehicle lapping into this lane.
Definition MSLane.cpp:384
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
Definition MSLane.h:574
double getRightSideOnEdge() const
Definition MSLane.h:1202
bool hasPedestrians() const
whether the lane has pedestrians on it
Definition MSLane.cpp:4567
int getIndex() const
Returns the lane's index.
Definition MSLane.h:647
MSLane * getCanonicalSuccessorLane() const
Definition MSLane.cpp:3296
double getOppositePos(double pos) const
return the corresponding position on the opposite lane
Definition MSLane.cpp:4395
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
Definition MSLane.cpp:3216
double getCenterOnEdge() const
Definition MSLane.h:1210
bool isNormal() const
Definition MSLane.cpp:2626
MSVehicle * getLastAnyVehicle() const
returns the last vehicle that is fully or partially on this lane
Definition MSLane.cpp:2661
bool isInternal() const
Definition MSLane.cpp:2620
@ FOLLOW_NEVER
Definition MSLane.h:981
virtual void resetPartialOccupation(MSVehicle *v)
Removes the information about a vehicle lapping into this lane.
Definition MSLane.cpp:403
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
Definition MSLane.cpp:4383
virtual const VehCont & getVehiclesSecure() const
Returns the vehicles container; locks it for microsimulation.
Definition MSLane.h:483
virtual void releaseVehicles() const
Allows to use the container for microsimulation again.
Definition MSLane.h:513
bool mustCheckJunctionCollisions() const
whether this lane must check for junction collisions
Definition MSLane.cpp:4685
double interpolateLanePosToGeometryPos(double lanePos) const
Definition MSLane.h:554
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
Definition MSLane.cpp:4679
@ COLLISION_ACTION_WARN
Definition MSLane.h:203
virtual const PositionVector & getShape(bool) const
Definition MSLane.h:294
MSLane * getParallelOpposite() const
return the opposite direction lane of this lanes edge or nullptr
Definition MSLane.cpp:4389
MSEdge & getEdge() const
Returns the lane's edge.
Definition MSLane.h:769
double getSpaceTillLastStanding(const MSVehicle *ego, bool &foundStopped) const
return the empty space up to the last standing vehicle or the empty space on the whole lane if no veh...
Definition MSLane.cpp:4694
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
Definition MSLane.cpp:3241
MSLeaderDistanceInfo getFollowersOnConsecutive(const MSVehicle *ego, double backOffset, bool allSublanes, double searchDist=-1, MinorLinkMode mLinkMode=FOLLOW_ALWAYS) const
return the sublane followers with the largest missing rear gap among all predecessor lanes (within di...
Definition MSLane.cpp:3803
double getWidth() const
Returns the lane's width.
Definition MSLane.h:640
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
Definition MSLane.h:729
MSVehicle * getFirstFullVehicle() const
returns the first vehicle for which this lane is responsible or 0
Definition MSLane.cpp:2652
const Position geometryPositionAtOffset(double offset, double lateralOffset=0) const
Definition MSLane.h:560
static CollisionAction getCollisionAction()
Definition MSLane.h:1364
saves leader/follower vehicles and their distances relative to an ego vehicle
virtual std::string toString() const
print a debugging representation
void fixOppositeGaps(bool isFollower)
subtract vehicle length from all gaps if the leader vehicle is driving in the opposite direction
virtual int addLeader(const MSVehicle *veh, double gap, double latOffset=0, int sublane=-1)
void setSublaneOffset(int offset)
set number of sublanes by which to shift positions
void removeOpposite(const MSLane *lane)
remove vehicles that are driving in the opposite direction (fully or partially) on the given lane
int numSublanes() const
virtual int addLeader(const MSVehicle *veh, bool beyond, double latOffset=0.)
virtual std::string toString() const
print a debugging representation
virtual void clear()
discard all information
bool hasVehicles() const
int getSublaneOffset() const
void getSubLanes(const MSVehicle *veh, double latOffset, int &rightmost, int &leftmost) const
Something on a lane to be noticed about vehicle movement.
Notification
Definition of a vehicle state.
@ NOTIFICATION_TELEPORT_ARRIVED
The vehicle was teleported out of the net.
@ NOTIFICATION_PARKING_REROUTE
The vehicle needs another parking area.
@ NOTIFICATION_DEPARTED
The vehicle has departed (was inserted into the network)
@ NOTIFICATION_LANE_CHANGE
The vehicle changes lanes (micro only)
@ NOTIFICATION_VAPORIZED_VAPORIZER
The vehicle got vaporized with a vaporizer.
@ NOTIFICATION_JUNCTION
The vehicle arrived at a junction.
@ NOTIFICATION_PARKING
The vehicle starts or ends parking.
@ NOTIFICATION_VAPORIZED_COLLISION
The vehicle got removed by a collision.
@ NOTIFICATION_LOAD_STATE
The vehicle has been loaded from a state file.
@ NOTIFICATION_TELEPORT
The vehicle is being teleported.
@ NOTIFICATION_TELEPORT_CONTINUATION
The vehicle continues being teleported past an edge.
The simulated network and simulation perfomer.
Definition MSNet.h:89
void removeVehicleStateListener(VehicleStateListener *listener)
Removes a vehicle states listener.
Definition MSNet.cpp:1333
VehicleState
Definition of a vehicle state.
Definition MSNet.h:626
@ STARTING_STOP
The vehicles starts to stop.
@ STARTING_PARKING
The vehicles starts to park.
@ STARTING_TELEPORT
The vehicle started to teleport.
@ ENDING_STOP
The vehicle ends to stop.
@ ARRIVED
The vehicle arrived at his destination (is deleted)
@ EMERGENCYSTOP
The vehicle had to brake harder than permitted.
@ MANEUVERING
Vehicle maneuvering either entering or exiting a parking space.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
Definition MSNet.cpp:187
virtual MSTransportableControl & getContainerControl()
Returns the container control.
Definition MSNet.cpp:1266
std::string getStoppingPlaceID(const MSLane *lane, const double pos, const SumoXMLTag category) const
Returns the stop of the given category close to the given position.
Definition MSNet.cpp:1488
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
Definition MSNet.h:334
static bool hasInstance()
Returns whether the network was already constructed.
Definition MSNet.h:158
MSStoppingPlace * getStoppingPlace(const std::string &id, const SumoXMLTag category) const
Returns the named stopping place of the given category.
Definition MSNet.cpp:1467
void addVehicleStateListener(VehicleStateListener *listener)
Adds a vehicle states listener.
Definition MSNet.cpp:1325
bool hasContainers() const
Returns whether containers are simulated.
Definition MSNet.h:425
void informVehicleStateListener(const SUMOVehicle *const vehicle, VehicleState to, const std::string &info="")
Informs all added listeners about a vehicle's state change.
Definition MSNet.cpp:1342
bool hasPersons() const
Returns whether persons are simulated.
Definition MSNet.h:409
MSInsertionControl & getInsertionControl()
Returns the insertion control.
Definition MSNet.h:445
MSVehicleControl & getVehicleControl()
Returns the vehicle control.
Definition MSNet.h:392
virtual MSTransportableControl & getPersonControl()
Returns the person control.
Definition MSNet.cpp:1257
MSEdgeControl & getEdgeControl()
Returns the edge control.
Definition MSNet.h:435
bool hasElevation() const
return whether the network contains elevation data
Definition MSNet.h:808
static const double SAFETY_GAP
Definition MSPModel.h:59
A lane area vehicles can halt at.
int getOccupancyIncludingReservations(const SUMOVehicle *forVehicle) const
void leaveFrom(SUMOVehicle *what)
Called if a vehicle leaves this stop.
int getCapacity() const
Returns the area capacity.
int getLotIndex(const SUMOVehicle *veh) const
compute lot for this vehicle
int getLastFreeLotAngle() const
Return the angle of myLastFreeLot - the next parking lot only expected to be called after we have est...
bool parkOnRoad() const
whether vehicles park on the road
double getLastFreePosWithReservation(SUMOTime t, const SUMOVehicle &forVehicle, double brakePos)
Returns the last free position on this stop including reservations from the current lane and time ste...
double getLastFreeLotGUIAngle() const
Return the GUI angle of myLastFreeLot - the angle the GUI uses to rotate into the next parking lot as...
int getManoeuverAngle(const SUMOVehicle &forVehicle) const
Return the manoeuver angle of the lot where the vehicle is parked.
int getOccupancy() const
Returns the area occupancy.
void enter(SUMOVehicle *veh, const bool parking)
Called if a vehicle enters this stop.
double getGUIAngle(const SUMOVehicle &forVehicle) const
Return the GUI angle of the lot where the vehicle is parked.
void notifyApproach(const MSLink *link)
switch rail signal to active
static MSRailSignalControl & getInstance()
const ConstMSEdgeVector & getEdges() const
Definition MSRoute.h:128
const MSEdge * getLastEdge() const
returns the destination edge
Definition MSRoute.cpp:91
MSRouteIterator begin() const
Returns the begin of the list of edges to pass.
Definition MSRoute.cpp:73
const MSLane * lane
The lane to stop at (microsim only)
Definition MSStop.h:50
bool triggered
whether an arriving person lets the vehicle continue
Definition MSStop.h:69
bool containerTriggered
whether an arriving container lets the vehicle continue
Definition MSStop.h:71
SUMOTime timeToLoadNextContainer
The time at which the vehicle is able to load another container.
Definition MSStop.h:83
MSStoppingPlace * containerstop
(Optional) container stop if one is assigned to the stop
Definition MSStop.h:56
double getSpeed() const
return speed for passing waypoint / skipping on-demand stop
Definition MSStop.cpp:212
bool joinTriggered
whether coupling another vehicle (train) the vehicle continue
Definition MSStop.h:73
bool isOpposite
whether this an opposite-direction stop
Definition MSStop.h:87
SUMOTime getMinDuration(SUMOTime time) const
return minimum stop duration when starting stop at time
Definition MSStop.cpp:170
int numExpectedContainer
The number of still expected containers.
Definition MSStop.h:79
bool reached
Information whether the stop has been reached.
Definition MSStop.h:75
MSRouteIterator edge
The edge in the route to stop at.
Definition MSStop.h:48
SUMOTime timeToBoardNextPerson
The time at which the vehicle is able to board another person.
Definition MSStop.h:81
bool skipOnDemand
whether the decision to skip this stop has been made
Definition MSStop.h:89
const MSEdge * getEdge() const
Definition MSStop.cpp:55
double getReachedThreshold() const
return startPos taking into account opposite stopping
Definition MSStop.cpp:65
SUMOTime endBoarding
the maximum time at which persons may board this vehicle
Definition MSStop.h:85
double getEndPos(const SUMOVehicle &veh) const
return halting position for upcoming stop;
Definition MSStop.cpp:36
int numExpectedPerson
The number of still expected persons.
Definition MSStop.h:77
MSParkingArea * parkingarea
(Optional) parkingArea if one is assigned to the stop
Definition MSStop.h:58
bool startedFromState
whether the 'started' value was loaded from simulaton state
Definition MSStop.h:91
MSStoppingPlace * chargingStation
(Optional) charging station if one is assigned to the stop
Definition MSStop.h:60
SUMOTime duration
The stopping duration.
Definition MSStop.h:67
SUMOTime getUntil() const
return until / ended time
Definition MSStop.cpp:187
const SUMOVehicleParameter::Stop pars
The stop parameter.
Definition MSStop.h:65
MSStoppingPlace * busstop
(Optional) bus stop if one is assigned to the stop
Definition MSStop.h:54
void stopBlocked(const SUMOVehicle *veh, SUMOTime time)
Definition MSStopOut.cpp:66
static bool active()
Definition MSStopOut.h:54
void stopNotStarted(const SUMOVehicle *veh)
Definition MSStopOut.cpp:75
void stopStarted(const SUMOVehicle *veh, int numPersons, int numContainers, SUMOTime time)
Definition MSStopOut.cpp:82
void stopEnded(const SUMOVehicle *veh, const SUMOVehicleParameter::Stop &stop, const std::string &laneOrEdgeID, bool simEnd=false)
static MSStopOut * getInstance()
Definition MSStopOut.h:60
double getBeginLanePosition() const
Returns the begin position of this stop.
virtual void enter(SUMOVehicle *veh, const bool parking)
Called if a vehicle enters this stop.
bool fits(double pos, const SUMOVehicle &veh) const
return whether the given vehicle fits at the given position
double getEndLanePosition() const
Returns the end position of this stop.
const MSLane & getLane() const
Returns the lane this stop is located at.
virtual void leaveFrom(SUMOVehicle *what)
Called if a vehicle leaves this stop.
bool hasAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle) const
check whether any transportables are waiting for the given vehicle
bool loadAnyWaiting(const MSEdge *edge, SUMOVehicle *vehicle, SUMOTime &timeToLoadNext, SUMOTime &stopDuration, MSTransportable *const force=nullptr)
load any applicable transportables Loads any person / container that is waiting on that edge for the ...
bool isPerson() const override
Whether it is a person.
A static instance of this class in GapControlState deactivates gap control for vehicles whose referen...
Definition MSVehicle.h:1354
void vehicleStateChanged(const SUMOVehicle *const vehicle, MSNet::VehicleState to, const std::string &info="")
Called if a vehicle changes its state.
Changes the wished vehicle speed / lanes.
Definition MSVehicle.h:1349
void setLaneChangeMode(int value)
Sets lane changing behavior.
TraciLaneChangePriority myTraciLaneChangePriority
flags for determining the priority of traci lane change requests
Definition MSVehicle.h:1671
bool getEmergencyBrakeRedLight() const
Returns whether red lights shall be a reason to brake.
Definition MSVehicle.h:1519
SUMOTime getLaneTimeLineEnd()
void adaptLaneTimeLine(int indexShift)
Adapts lane timeline when moving to a new lane and the lane index changes.
void setRemoteControlled(Position xyPos, MSLane *l, double pos, double posLat, double angle, int edgeOffset, const ConstMSEdgeVector &route, SUMOTime t)
bool isRemoteAffected(SUMOTime t) const
int getSpeedMode() const
return the current speed mode
void deactivateGapController()
Deactivates the gap control.
Influencer()
Constructor.
void setSpeedMode(int speedMode)
Sets speed-constraining behaviors.
std::shared_ptr< GapControlState > myGapControlState
The gap control state.
Definition MSVehicle.h:1616
int getSignals() const
Definition MSVehicle.h:1587
bool myConsiderMaxDeceleration
Whether the maximum deceleration shall be regarded.
Definition MSVehicle.h:1637
void setLaneTimeLine(const std::vector< std::pair< SUMOTime, int > > &laneTimeLine)
Sets a new lane timeline.
bool myRespectJunctionLeaderPriority
Whether the junction priority rules are respected (within)
Definition MSVehicle.h:1646
void setOriginalSpeed(double speed)
Stores the originally longitudinal speed.
double myOriginalSpeed
The velocity before influence.
Definition MSVehicle.h:1619
bool myConsiderSpeedLimit
Whether the speed limit shall be regarded.
Definition MSVehicle.h:1631
double implicitDeltaPosRemote(const MSVehicle *veh)
return the change in longitudinal position that is implicit in the new remote position
double implicitSpeedRemote(const MSVehicle *veh, double oldSpeed)
return the speed that is implicit in the new remote position
void postProcessRemoteControl(MSVehicle *v)
update position from remote control
double gapControlSpeed(SUMOTime currentTime, const SUMOVehicle *veh, double speed, double vSafe, double vMin, double vMax)
Applies gap control logic on the speed.
void setSublaneChange(double latDist)
Sets a new sublane-change request.
double getOriginalSpeed() const
Returns the originally longitudinal speed to use.
SUMOTime myLastRemoteAccess
Definition MSVehicle.h:1655
bool getRespectJunctionLeaderPriority() const
Returns whether junction priority rules within the junction shall be respected (concerns vehicles wit...
Definition MSVehicle.h:1527
LaneChangeMode myStrategicLC
lane changing which is necessary to follow the current route
Definition MSVehicle.h:1660
LaneChangeMode mySpeedGainLC
lane changing to travel with higher speed
Definition MSVehicle.h:1664
void init()
Static initalization.
LaneChangeMode mySublaneLC
changing to the prefered lateral alignment
Definition MSVehicle.h:1668
bool getRespectJunctionPriority() const
Returns whether junction priority rules shall be respected (concerns approaching vehicles outside the...
Definition MSVehicle.h:1511
static void cleanup()
Static cleanup.
int getLaneChangeMode() const
return the current lane change mode
SUMOTime getLaneTimeLineDuration()
double influenceSpeed(SUMOTime currentTime, double speed, double vSafe, double vMin, double vMax)
Applies stored velocity information on the speed to use.
double changeRequestRemainingSeconds(const SUMOTime currentTime) const
Return the remaining number of seconds of the current laneTimeLine assuming one exists.
bool myConsiderSafeVelocity
Whether the safe velocity shall be regarded.
Definition MSVehicle.h:1628
bool mySpeedAdaptationStarted
Whether influencing the speed has already started.
Definition MSVehicle.h:1625
~Influencer()
Destructor.
void setSignals(int signals)
Definition MSVehicle.h:1583
double myLatDist
The requested lateral change.
Definition MSVehicle.h:1622
bool considerSpeedLimit() const
Returns whether speed limits shall be considered.
Definition MSVehicle.h:1538
bool myEmergencyBrakeRedLight
Whether red lights are a reason to brake.
Definition MSVehicle.h:1643
LaneChangeMode myRightDriveLC
changing to the rightmost lane
Definition MSVehicle.h:1666
void setSpeedTimeLine(const std::vector< std::pair< SUMOTime, double > > &speedTimeLine)
Sets a new velocity timeline.
void updateRemoteControlRoute(MSVehicle *v)
update route if provided by remote control
SUMOTime getLastAccessTimeStep() const
Definition MSVehicle.h:1563
bool myConsiderMaxAcceleration
Whether the maximum acceleration shall be regarded.
Definition MSVehicle.h:1634
LaneChangeMode myCooperativeLC
lane changing with the intent to help other vehicles
Definition MSVehicle.h:1662
bool isRemoteControlled() const
bool myRespectJunctionPriority
Whether the junction priority rules are respected (approaching)
Definition MSVehicle.h:1640
int influenceChangeDecision(const SUMOTime currentTime, const MSEdge &currentEdge, const int currentLaneIndex, int state)
Applies stored LaneChangeMode information and laneTimeLine.
void activateGapController(double originalTau, double newTimeHeadway, double newSpaceHeadway, double duration, double changeRate, double maxDecel, MSVehicle *refVeh=nullptr)
Activates the gap control with the given parameters,.
Container for manouevering time associated with stopping.
Definition MSVehicle.h:1273
SUMOTime myManoeuvreCompleteTime
Time at which this manoeuvre should complete.
Definition MSVehicle.h:1325
MSVehicle::ManoeuvreType getManoeuvreType() const
Accessor (get) for manoeuvre type.
std::string myManoeuvreStop
The name of the stop associated with the Manoeuvre - for debug output.
Definition MSVehicle.h:1319
bool manoeuvreIsComplete() const
Check if any manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureExitManoeuvre(MSVehicle *veh)
Setup the myManoeuvre for exiting (Sets completion time and manoeuvre type)
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
Accessor (set) for manoeuvre type.
Manoeuvre & operator=(const Manoeuvre &manoeuvre)
Assignment operator.
Manoeuvre()
Constructor.
ManoeuvreType myManoeuvreType
Manoeuvre type - currently entry, exit or none.
Definition MSVehicle.h:1328
double getGUIIncrement() const
Accessor for GUI rotation step when parking (radians)
SUMOTime myManoeuvreStartTime
Time at which the Manoeuvre for this stop started.
Definition MSVehicle.h:1322
bool operator!=(const Manoeuvre &manoeuvre)
Operator !=.
bool entryManoeuvreIsComplete(MSVehicle *veh)
Configure an entry manoeuvre if nothing is configured - otherwise check if complete.
bool manoeuvreIsComplete(const ManoeuvreType checkType) const
Check if specific manoeuver is ongoing and whether the completion time is beyond currentTime.
bool configureEntryManoeuvre(MSVehicle *veh)
Setup the entry manoeuvre for this vehicle (Sets completion time and manoeuvre type)
Container that holds the vehicles driving state (position+speed).
Definition MSVehicle.h:87
double myPosLat
the stored lateral position
Definition MSVehicle.h:140
State(double pos, double speed, double posLat, double backPos, double previousSpeed)
Constructor.
double myPreviousSpeed
the speed at the begin of the previous time step
Definition MSVehicle.h:148
double myPos
the stored position
Definition MSVehicle.h:134
bool operator!=(const State &state)
Operator !=.
double myLastCoveredDist
Definition MSVehicle.h:154
double mySpeed
the stored speed (should be >=0 at any time)
Definition MSVehicle.h:137
State & operator=(const State &state)
Assignment operator.
double pos() const
Position of this state.
Definition MSVehicle.h:107
double myBackPos
the stored back position
Definition MSVehicle.h:145
void passTime(SUMOTime dt, bool waiting)
const std::string getState() const
SUMOTime cumulatedWaitingTime(SUMOTime memory=-1) const
void setState(const std::string &state)
WaitingTimeCollector(SUMOTime memory=MSGlobals::gWaitingTimeMemory)
Constructor.
void registerEmergencyStop()
register emergency stop
SUMOVehicle * getVehicle(const std::string &id) const
Returns the vehicle with the given id.
void registerStopEnded()
register emergency stop
void registerEmergencyBraking()
register emergency stop
void removeVType(const MSVehicleType *vehType)
void registerOneWaiting()
increases the count of vehicles waiting for a transport to allow recognition of person / container re...
void unregisterOneWaiting()
decreases the count of vehicles waiting for a transport to allow recognition of person / container re...
void registerStopStarted()
register emergency stop
Abstract in-vehicle device.
Representation of a vehicle in the micro simulation.
Definition MSVehicle.h:77
void setManoeuvreType(const MSVehicle::ManoeuvreType mType)
accessor function to myManoeuvre equivalent
TraciLaneChangePriority
modes for prioritizing traci lane change requests
Definition MSVehicle.h:1151
@ LCP_OPPORTUNISTIC
Definition MSVehicle.h:1155
double getRightSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
bool wasRemoteControlled(SUMOTime lookBack=DELTA_T) const
Returns the information whether the vehicle is fully controlled via TraCI within the lookBack time.
void processLinkApproaches(double &vSafe, double &vSafeMin, double &vSafeMinDist)
This method iterates through the driveprocess items for the vehicle and adapts the given in/out param...
const MSLane * getPreviousLane(const MSLane *current, int &furtherIndex) const
void checkLinkLeader(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest, bool isShadowLink=false) const
checks for link leaders on the given link
void checkRewindLinkLanes(const double lengthsInFront, DriveItemVector &lfLinks) const
runs heuristic for keeping the intersection clear in case of downstream jamming
bool willStop() const
Returns whether the vehicle will stop on the current edge.
bool hasDriverState() const
Whether this vehicle is equipped with a MSDriverState.
Definition MSVehicle.h:996
static int nextLinkPriority(const std::vector< MSLane * > &conts)
get a numerical value for the priority of the upcoming link
double getTimeGapOnLane() const
Returns the time gap in seconds to the leader of the vehicle on the same lane.
void updateBestLanes(bool forceRebuild=false, const MSLane *startLane=0)
computes the best lanes to use in order to continue the route
bool myAmIdling
Whether the vehicle is trying to enter the network (eg after parking so engine is running)
Definition MSVehicle.h:1930
SUMOTime myWaitingTime
The time the vehicle waits (is not faster than 0.1m/s) in seconds.
Definition MSVehicle.h:1866
double getStopDelay() const
Returns the public transport stop delay in seconds.
double computeAngle() const
compute the current vehicle angle
double myTimeLoss
the time loss in seconds due to driving with less than maximum speed
Definition MSVehicle.h:1870
SUMOTime myLastActionTime
Action offset (actions are taken at time myActionOffset + N*getActionStepLength()) Initialized to 0,...
Definition MSVehicle.h:1885
ConstMSEdgeVector::const_iterator getRerouteOrigin() const
Returns the starting point for reroutes (usually the current edge)
bool hasArrivedInternal(bool oppositeTransformed=true) const
Returns whether this vehicle has already arived (reached the arrivalPosition on its final edge) metho...
double getFriction() const
Returns the current friction on the road as perceived by the friction device.
bool ignoreFoe(const SUMOTrafficObject *foe) const
decide whether a given foe object may be ignored
void boardTransportables(MSStop &stop)
board persons and load transportables at the given stop
const std::vector< const MSLane * > getUpcomingLanesUntil(double distance) const
Returns the upcoming (best followed by default 0) sequence of lanes to continue the route starting at...
bool isOnRoad() const
Returns the information whether the vehicle is on a road (is simulated)
Definition MSVehicle.h:605
void adaptLaneEntering2MoveReminder(const MSLane &enteredLane)
Adapts the vehicle's entering of a new lane.
void addTransportable(MSTransportable *transportable)
Adds a person or container to this vehicle.
SUMOTime myJunctionConflictEntryTime
Definition MSVehicle.h:1948
double getLeftSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
PositionVector getBoundingPoly(double offset=0) const
get bounding polygon
void setTentativeLaneAndPosition(MSLane *lane, double pos, double posLat=0)
set tentative lane and position during insertion to ensure that all cfmodels work (some of them requi...
bool brakeForOverlap(const MSLink *link, const MSLane *lane) const
handle width transitions
void workOnMoveReminders(double oldPos, double newPos, double newSpeed)
Processes active move reminder.
bool isStoppedOnLane() const
double getDistanceToPosition(double destPos, const MSLane *destLane) const
bool brokeDown() const
Returns how long the vehicle has been stopped already due to lack of energy.
double myAcceleration
The current acceleration after dawdling in m/s.
Definition MSVehicle.h:1912
void registerInsertionApproach(MSLink *link, double dist)
register approach on insertion
void cleanupFurtherLanes()
remove vehicle from further lanes (on leaving the network)
void adaptToLeaders(const MSLeaderInfo &ahead, double latOffset, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass) const
const MSLane * getBackLane() const
Returns the lane the where the rear of the object is currently at.
void enterLaneAtInsertion(MSLane *enteredLane, double pos, double speed, double posLat, MSMoveReminder::Notification notification)
Update when the vehicle enters a new lane in the emit step.
double getBackPositionOnLane() const
Get the vehicle's position relative to its current lane.
Definition MSVehicle.h:405
void setPreviousSpeed(double prevSpeed, double prevAcceleration)
Sets the influenced previous speed.
SUMOTime getArrivalTime(SUMOTime t, double seen, double v, double arrivalSpeed) const
double getAccumulatedWaitingSeconds() const
Returns the number of seconds waited (speed was lesser than 0.1m/s) within the last millisecs.
Definition MSVehicle.h:714
SUMOTime getWaitingTime(const bool accumulated=false) const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
Definition MSVehicle.h:670
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
virtual ~MSVehicle()
Destructor.
void processLaneAdvances(std::vector< MSLane * > &passedLanes, std::string &emergencyReason)
This method checks if the vehicle has advanced over one or several lanes along its route and triggers...
MSAbstractLaneChangeModel & getLaneChangeModel()
void setEmergencyBlueLight(SUMOTime currentTime)
sets the blue flashing light for emergency vehicles
bool isActionStep(SUMOTime t) const
Returns whether the next simulation step will be an action point for the vehicle.
Definition MSVehicle.h:635
MSAbstractLaneChangeModel * myLaneChangeModel
Definition MSVehicle.h:1892
Position getPositionAlongBestLanes(double offset) const
Return the (x,y)-position, which the vehicle would reach if it continued along its best continuation ...
bool hasValidRouteStart(std::string &msg)
checks wether the vehicle can depart on the first edge
double getLeftSideOnLane() const
Get the lateral position of the vehicles left side on the lane:
std::vector< MSLane * > myFurtherLanes
The information into which lanes the vehicle laps into.
Definition MSVehicle.h:1919
bool signalSet(int which) const
Returns whether the given signal is on.
Definition MSVehicle.h:1187
MSCFModel::VehicleVariables * myCFVariables
The per vehicle variables of the car following model.
Definition MSVehicle.h:2160
bool betterContinuation(const LaneQ *bestConnectedNext, const LaneQ &m) const
comparison between different continuations from the same lane
bool addTraciStop(SUMOVehicleParameter::Stop stop, std::string &errorMsg)
void checkLinkLeaderCurrentAndParallel(const MSLink *link, const MSLane *lane, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass, double &vLinkWait, bool &setRequest) const
checks for link leaders of the current link as well as the parallel link (if there is one)
void planMoveInternal(const SUMOTime t, MSLeaderInfo ahead, DriveItemVector &lfLinks, double &myStopDist, std::pair< double, const MSLink * > &myNextTurn) const
std::pair< double, const MSLink * > myNextTurn
the upcoming turn for the vehicle
Definition MSVehicle.h:1916
double getDistanceToLeaveJunction() const
get the distance from the start of this lane to the start of the next normal lane (or 0 if this lane ...
int influenceChangeDecision(int state)
allow TraCI to influence a lane change decision
double getMaxSpeedOnLane() const
Returns the maximal speed for the vehicle on its current lane (including speed factor and deviation,...
bool isRemoteControlled() const
Returns the information whether the vehicle is fully controlled via TraCI.
bool myAmOnNet
Whether the vehicle is on the network (not parking, teleported, vaporized, or arrived)
Definition MSVehicle.h:1927
void enterLaneAtMove(MSLane *enteredLane, bool onTeleporting=false)
Update when the vehicle enters a new lane in the move step.
void adaptBestLanesOccupation(int laneIndex, double density)
update occupation from MSLaneChanger
std::pair< double, double > estimateTimeToNextStop() const
return time (s) and distance to the next stop
double accelThresholdForWaiting() const
maximum acceleration to consider a vehicle as 'waiting' at low speed
Definition MSVehicle.h:2074
void setAngle(double angle, bool straightenFurther=false)
Set a custom vehicle angle in rad, optionally updates furtherLanePosLat.
std::vector< LaneQ >::iterator myCurrentLaneInBestLanes
Definition MSVehicle.h:1907
void setApproachingForAllLinks()
Register junction approaches for all link items in the current plan.
double getDeltaPos(const double accel) const
calculates the distance covered in the next integration step given an acceleration and assuming the c...
const MSLane * myLastBestLanesInternalLane
Definition MSVehicle.h:1895
void updateOccupancyAndCurrentBestLane(const MSLane *startLane)
updates LaneQ::nextOccupation and myCurrentLaneInBestLanes
const std::vector< MSLane * > getUpstreamOppositeLanes() const
Returns the sequence of opposite lanes corresponding to past lanes.
WaitingTimeCollector myWaitingTimeCollector
Definition MSVehicle.h:1867
void setRemoteState(Position xyPos)
sets position outside the road network
void fixPosition()
repair errors in vehicle position after changing between internal edges
double getAcceleration() const
Returns the vehicle's acceleration in m/s (this is computed as the last step's mean acceleration in c...
Definition MSVehicle.h:514
double getSpeedWithoutTraciInfluence() const
Returns the uninfluenced velocity.
PositionVector getBoundingBox(double offset=0) const
get bounding rectangle
ManoeuvreType
flag identifying which, if any, manoeuvre is in progress
Definition MSVehicle.h:1246
@ MANOEUVRE_ENTRY
Manoeuvre into stopping place.
Definition MSVehicle.h:1248
@ MANOEUVRE_NONE
not manouevring
Definition MSVehicle.h:1252
@ MANOEUVRE_EXIT
Manoeuvre out of stopping place.
Definition MSVehicle.h:1250
const MSEdge * getNextEdgePtr() const
returns the next edge (possibly an internal edge)
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
void setBrakingSignals(double vNext)
sets the braking lights on/off
const std::vector< MSLane * > & getBestLanesContinuation() const
Returns the best sequence of lanes to continue the route starting at myLane.
const MSEdge * myLastBestLanesEdge
Definition MSVehicle.h:1894
bool ignoreCollision() const
whether this vehicle is except from collision checks
Influencer * myInfluencer
An instance of a velocity/lane influencing instance; built in "getInfluencer".
Definition MSVehicle.h:2163
void saveState(OutputDevice &out)
Saves the states of a vehicle.
void onRemovalFromNet(const MSMoveReminder::Notification reason)
Called when the vehicle is removed from the network.
void planMove(const SUMOTime t, const MSLeaderInfo &ahead, const double lengthsInFront)
Compute safe velocities for the upcoming lanes based on positions and speeds from the last time step....
bool resumeFromStopping()
int getBestLaneOffset() const
void adaptToJunctionLeader(const std::pair< const MSVehicle *, double > leaderInfo, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass, double distToCrossing=-1) const
double lateralDistanceToLane(const int offset) const
Get the minimal lateral distance required to move fully onto the lane at given offset.
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
Definition MSVehicle.h:398
void leaveLaneBack(const MSMoveReminder::Notification reason, const MSLane *leftLane)
Update of reminders if vehicle back leaves a lane during (during forward movement.
void resetActionOffset(const SUMOTime timeUntilNextAction=0)
Resets the action offset for the vehicle.
std::vector< DriveProcessItem > DriveItemVector
Container for used Links/visited Lanes during planMove() and executeMove.
Definition MSVehicle.h:2017
void interpolateLateralZ(Position &pos, double offset, double posLat) const
perform lateral z interpolation in elevated networks
void setBlinkerInformation()
sets the blue flashing light for emergency vehicles
const MSEdge * getCurrentEdge() const
Returns the edge the vehicle is currently at (possibly an internal edge or nullptr)
void adaptToLeaderDistance(const MSLeaderDistanceInfo &ahead, double latOffset, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
DriveItemVector::iterator myNextDriveItem
iterator pointing to the next item in myLFLinkLanes
Definition MSVehicle.h:2030
bool unsafeLinkAhead(const MSLane *lane, double zipperDist) const
whether the vehicle may safely move to the given lane with regard to upcoming links
void leaveLane(const MSMoveReminder::Notification reason, const MSLane *approachedLane=0)
Update of members if vehicle leaves a new lane in the lane change step or at arrival.
const MSLink * myHaveStoppedFor
Definition MSVehicle.h:1952
bool isIdling() const
Returns whether a sim vehicle is waiting to enter a lane (after parking has completed)
Definition MSVehicle.h:621
std::shared_ptr< MSSimpleDriverState > getDriverState() const
Returns the vehicle driver's state.
void removeApproachingInformation(const DriveItemVector &lfLinks) const
unregister approach from all upcoming links
SUMOTime myJunctionEntryTimeNeverYield
Definition MSVehicle.h:1947
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
bool rerouteParkingArea(const std::string &parkingAreaID, std::string &errorMsg)
bool hasArrived() const
Returns whether this vehicle has already arrived (reached the arrivalPosition on its final edge)
void switchOffSignal(int signal)
Switches the given signal off.
Definition MSVehicle.h:1170
double getStopArrivalDelay() const
Returns the estimated public transport stop arrival delay in seconds.
int mySignals
State of things of the vehicle that can be on or off.
Definition MSVehicle.h:1924
bool setExitManoeuvre()
accessor function to myManoeuvre equivalent
bool isOppositeLane(const MSLane *lane) const
whether the give lane is reverse direction of the current route or not
double myStopDist
distance to the next stop or doubleMax if there is none
Definition MSVehicle.h:1938
Signalling
Some boolean values which describe the state of some vehicle parts.
Definition MSVehicle.h:1105
@ VEH_SIGNAL_BLINKER_RIGHT
Right blinker lights are switched on.
Definition MSVehicle.h:1109
@ VEH_SIGNAL_BRAKELIGHT
The brake lights are on.
Definition MSVehicle.h:1115
@ VEH_SIGNAL_EMERGENCY_BLUE
A blue emergency light is on.
Definition MSVehicle.h:1131
@ VEH_SIGNAL_BLINKER_LEFT
Left blinker lights are switched on.
Definition MSVehicle.h:1111
SUMOTime getActionStepLength() const
Returns the vehicle's action step length in millisecs, i.e. the interval between two action points.
Definition MSVehicle.h:525
bool myHaveToWaitOnNextLink
Definition MSVehicle.h:1932
SUMOTime collisionStopTime() const
Returns the remaining time a vehicle needs to stop due to a collision. A negative value indicates tha...
const std::vector< const MSLane * > getPastLanesUntil(double distance) const
Returns the sequence of past lanes (right-most on edge) based on the route starting at the current la...
double getBestLaneDist() const
returns the distance that can be driven without lane change
void replaceVehicleType(const MSVehicleType *type)
Replaces the current vehicle type by the one given.
void updateState(double vNext, bool parking=false)
updates the vehicles state, given a next value for its speed. This value can be negative in case of t...
double slowDownForSchedule(double vMinComfortable) const
optionally return an upper bound on speed to stay within the schedule
bool executeMove()
Executes planned vehicle movements with regards to right-of-way.
const MSLane * getLane() const
Returns the lane the vehicle is on.
Definition MSVehicle.h:581
std::pair< const MSVehicle *const, double > getFollower(double dist=0) const
Returns the follower of the vehicle looking for a fixed distance.
SUMOTime getWaitingTimeFor(const MSLink *link) const
getWaitingTime, but taking into account having stopped for a stop-link
ChangeRequest
Requests set via TraCI.
Definition MSVehicle.h:191
@ REQUEST_HOLD
vehicle want's to keep the current lane
Definition MSVehicle.h:199
@ REQUEST_LEFT
vehicle want's to change to left lane
Definition MSVehicle.h:195
@ REQUEST_NONE
vehicle doesn't want to change
Definition MSVehicle.h:193
@ REQUEST_RIGHT
vehicle want's to change to right lane
Definition MSVehicle.h:197
bool isLeader(const MSLink *link, const MSVehicle *veh, const double gap) const
whether the given vehicle must be followed at the given junction
void resetApproachOnReroute()
reset rail signal approach information
void computeFurtherLanes(MSLane *enteredLane, double pos, bool collision=false)
updates myFurtherLanes on lane insertion or after collision
MSLane * getMutableLane() const
Returns the lane the vehicle is on Non const version indicates that something volatile is going on.
Definition MSVehicle.h:589
std::pair< const MSLane *, double > getLanePosAfterDist(double distance) const
return lane and position along bestlanes at the given distance
SUMOTime myCollisionImmunity
amount of time for which the vehicle is immune from collisions
Definition MSVehicle.h:1941
bool passingMinor() const
decide whether the vehicle is passing a minor link or has comitted to do so
void updateWaitingTime(double vNext)
Updates the vehicle's waiting time counters (accumulated and consecutive)
void enterLaneAtLaneChange(MSLane *enteredLane)
Update when the vehicle enters a new lane in the laneChange step.
BaseInfluencer & getBaseInfluencer()
Returns the velocity/lane influencer.
Influencer & getInfluencer()
bool isBidiOn(const MSLane *lane) const
whether this vehicle is driving against lane
double getRightSideOnLane() const
Get the lateral position of the vehicles right side on the lane:
double getCurrentApparentDecel() const
get apparent deceleration based on vType parameters and current acceleration
double updateFurtherLanes(std::vector< MSLane * > &furtherLanes, std::vector< double > &furtherLanesPosLat, const std::vector< MSLane * > &passedLanes)
update a vector of further lanes and return the new backPos
DriveItemVector myLFLinkLanesPrev
planned speeds from the previous step for un-registering from junctions after the new container is fi...
Definition MSVehicle.h:2023
std::vector< std::vector< LaneQ > > myBestLanes
Definition MSVehicle.h:1902
void setActionStepLength(double actionStepLength, bool resetActionOffset=true)
Sets the action steplength of the vehicle.
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
Definition MSVehicle.h:413
double getSlope() const
Returns the slope of the road at vehicle's position in degrees.
bool myActionStep
The flag myActionStep indicates whether the current time step is an action point for the vehicle.
Definition MSVehicle.h:1882
const Position getBackPosition() const
bool congested() const
void loadState(const SUMOSAXAttributes &attrs, const SUMOTime offset)
Loads the state of this vehicle from the given description.
SUMOTime myTimeSinceStartup
duration of driving (speed > SUMO_const_haltingSpeed) after the last halting episode
Definition MSVehicle.h:1951
double getSpeed() const
Returns the vehicle's current speed.
Definition MSVehicle.h:490
SUMOTime remainingStopDuration() const
Returns the remaining stop duration for a stopped vehicle or 0.
bool keepStopping(bool afterProcessing=false) const
Returns whether the vehicle is stopped and must continue to do so.
void workOnIdleReminders()
cycle through vehicle devices invoking notifyIdle
static std::vector< MSLane * > myEmptyLaneVector
Definition MSVehicle.h:1909
Position myCachedPosition
Definition MSVehicle.h:1943
bool replaceRoute(ConstMSRoutePtr route, const std::string &info, bool onInit=false, int offset=0, bool addStops=true, bool removeStops=true, std::string *msgReturn=nullptr)
Replaces the current route by the given one.
MSVehicle::ManoeuvreType getManoeuvreType() const
accessor function to myManoeuvre equivalent
double checkReversal(bool &canReverse, double speedThreshold=SUMO_const_haltingSpeed, double seen=0) const
void updateLaneBruttoSum()
Update the lane brutto occupancy after a change in minGap.
void removePassedDriveItems()
Erase passed drive items from myLFLinkLanes (and unregister approaching information for corresponding...
const std::vector< MSLane * > & getFurtherLanes() const
Definition MSVehicle.h:835
const std::vector< LaneQ > & getBestLanes() const
Returns the description of best lanes to use in order to continue the route.
std::vector< double > myFurtherLanesPosLat
lateral positions on further lanes
Definition MSVehicle.h:1921
bool checkActionStep(const SUMOTime t)
Returns whether the vehicle is supposed to take action in the current simulation step Updates myActio...
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
Definition MSVehicle.h:969
Position validatePosition(Position result, double offset=0) const
ensure that a vehicle-relative position is not invalid
void loadPreviousApproaching(MSLink *link, bool setRequest, SUMOTime arrivalTime, double arrivalSpeed, double arrivalSpeedBraking, double dist, double leaveSpeed)
bool keepClear(const MSLink *link) const
decide whether the given link must be kept clear
bool manoeuvreIsComplete() const
accessor function to myManoeuvre equivalent
double processNextStop(double currentVelocity)
Processes stops, returns the velocity needed to reach the stop.
double myAngle
the angle in radians (
Definition MSVehicle.h:1935
bool ignoreRed(const MSLink *link, bool canBrake) const
decide whether a red (or yellow light) may be ignored
double getPositionOnLane() const
Get the vehicle's position along the lane.
Definition MSVehicle.h:374
void updateTimeLoss(double vNext)
Updates the vehicle's time loss.
MSDevice_DriverState * myDriverState
This vehicle's driver state.
Definition MSVehicle.h:1876
bool joinTrainPart(MSVehicle *veh)
try joining the given vehicle to the rear of this one (to resolve joinTriggered)
MSLane * myLane
The lane the vehicle is on.
Definition MSVehicle.h:1890
bool onFurtherEdge(const MSEdge *edge) const
whether this vehicle has its back (and no its front) on the given edge
double processTraCISpeedControl(double vSafe, double vNext)
Check for speed advices from the traci client and adjust the speed vNext in the current (euler) / aft...
Manoeuvre myManoeuvre
Definition MSVehicle.h:1335
double getLateralOverlap() const
return the amount by which the vehicle extends laterally outside it's primary lane
double getAngle() const
Returns the vehicle's direction in radians.
Definition MSVehicle.h:735
bool handleCollisionStop(MSStop &stop, const double distToStop)
bool hasInfluencer() const
whether the vehicle is individually influenced (via TraCI or special parameters)
Definition MSVehicle.h:1690
MSDevice_Friction * myFrictionDevice
This vehicle's friction perception.
Definition MSVehicle.h:1879
double getPreviousSpeed() const
Returns the vehicle's speed before the previous time step.
Definition MSVehicle.h:498
MSVehicle()
invalidated default constructor
bool joinTrainPartFront(MSVehicle *veh)
try joining the given vehicle to the front of this one (to resolve joinTriggered)
void updateActionOffset(const SUMOTime oldActionStepLength, const SUMOTime newActionStepLength)
Process an updated action step length value (only affects the vehicle's action offset,...
double getBrakeGap(bool delayed=false) const
get distance for coming to a stop (used for rerouting checks)
std::pair< const MSVehicle *const, double > getLeader(double dist=0, bool considerFoes=true) const
Returns the leader of the vehicle looking for a fixed distance.
void executeFractionalMove(double dist)
move vehicle forward by the given distance during insertion
LaneChangeMode
modes for resolving conflicts between external control (traci) and vehicle control over lane changing...
Definition MSVehicle.h:1143
virtual void drawOutsideNetwork(bool)
register vehicle for drawing while outside the network
Definition MSVehicle.h:1841
void initDevices()
void adaptToOncomingLeader(const std::pair< const MSVehicle *, double > leaderInfo, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
State myState
This Vehicles driving state (pos and speed)
Definition MSVehicle.h:1873
double getCenterOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
void adaptToLeader(const std::pair< const MSVehicle *, double > leaderInfo, double seen, DriveProcessItem *const lastLink, double &v, double &vLinkPass) const
void switchOnSignal(int signal)
Switches the given signal on.
Definition MSVehicle.h:1162
static bool overlap(const MSVehicle *veh1, const MSVehicle *veh2)
Definition MSVehicle.h:763
int getLaneIndex() const
void updateParkingState()
update state while parking
DriveItemVector myLFLinkLanes
container for the planned speeds in the current step
Definition MSVehicle.h:2020
void updateDriveItems()
Check whether the drive items (myLFLinkLanes) are up to date, and update them if required.
SUMOTime myJunctionEntryTime
time at which the current junction was entered
Definition MSVehicle.h:1946
static MSVehicleTransfer * getInstance()
Returns the instance of this object.
void remove(MSVehicle *veh)
Remove a vehicle from this transfer object.
The car-following model and parameter.
double getLengthWithGap() const
Get vehicle's length including the minimum gap [m].
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
double getMaxSpeed() const
Get vehicle's (technical) maximum speed [m/s].
const std::string & getID() const
Returns the name of the vehicle type.
double getMinGap() const
Get the free space in front of vehicles of this class.
LaneChangeModel getLaneChangeModel() const
void setLength(const double &length)
Set a new value for this type's length.
SUMOTime getExitManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning exit time for a specific manoeuver angle.
const MSCFModel & getCarFollowModel() const
Returns the vehicle type's car following model definition (const version)
bool isVehicleSpecific() const
Returns whether this type belongs to a single vehicle only (was modified)
void setActionStepLength(const SUMOTime actionStepLength, bool resetActionOffset)
Set a new value for this type's action step length.
double getLength() const
Get vehicle's length [m].
SUMOVehicleShape getGuiShape() const
Get this vehicle type's shape.
SUMOTime getEntryManoeuvreTime(const int angle) const
Accessor function for parameter equivalent returning entry time for a specific manoeuver angle.
const SUMOVTypeParameter & getParameter() const
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
Definition Named.h:67
const std::string & getID() const
Returns the id.
Definition Named.h:74
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
bool hasParameter(const std::string &key) const
Returns whether the parameter is set.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
void writeParams(OutputDevice &device) const
write Params in the given outputdevice
A point in 2D or 3D with translation and scaling methods.
Definition Position.h:37
double slopeTo2D(const Position &other) const
returns the slope of the vector pointing from here to the other position (in radians between -M_PI an...
Definition Position.h:288
static const Position INVALID
used to indicate that a position is valid
Definition Position.h:323
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
Definition Position.h:273
void setz(double z)
set position z
Definition Position.h:77
double z() const
Returns the z-position.
Definition Position.h:62
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position (in radians bet...
Definition Position.h:283
A list of positions.
double length2D() const
Returns the length.
void append(const PositionVector &v, double sameThreshold=2.0)
double rotationAtOffset(double pos) const
Returns the rotation at the given length.
Position positionAtOffset(double pos, double lateralOffset=0) const
Returns the position at the given length.
void move2side(double amount, double maxExtension=100)
move position vector to side using certain amount
double slopeDegreeAtOffset(double pos) const
Returns the slope at the given length.
void extrapolate2D(const double val, const bool onlyFirst=false)
extrapolate position vector in two dimensions (Z is ignored)
void scaleRelative(double factor)
enlarges/shrinks the polygon by a factor based at the centroid
PositionVector reverse() const
reverse position vector
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
virtual bool compute(const E *from, const E *to, const V *const vehicle, SUMOTime msTime, std::vector< const E * > &into, bool silent=false)=0
Builds the route between the given edges using the minimum effort at the given time The definition of...
virtual double recomputeCosts(const std::vector< const E * > &edges, const V *const v, SUMOTime msTime, double *lengthp=nullptr) const
Encapsulated SAX-Attributes.
virtual std::string getString(int id, bool *isPresent=nullptr) const =0
Returns the string-value of the named (by its enum-value) attribute.
T get(int attr, const char *objectid, bool &ok, bool report=true) const
Tries to read given attribute assuming it is an int.
virtual bool hasAttribute(int id) const =0
Returns the information whether the named (by its enum-value) attribute is within the current list.
double getFloat(int id) const
Returns the double-value of the named (by its enum-value) attribute.
Representation of a vehicle, person, or container.
virtual const MSVehicleType & getVehicleType() const =0
Returns the object's "vehicle" type.
virtual double getSpeed() const =0
Returns the object's current speed.
double locomotiveLength
the length of the locomotive
double speedFactorPremature
the possible speed reduction when a train is ahead of schedule
double getLCParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
double getJMParam(const SumoXMLAttr attr, const double defaultValue) const
Returns the named value from the map, or the default if it is not contained there.
Representation of a vehicle.
Definition SUMOVehicle.h:62
Definition of vehicle stop (position and duration)
SUMOTime started
the time at which this stop was reached
ParkingType parking
whether the vehicle is removed from the net while stopping
SUMOTime extension
The maximum time extension for boarding / loading.
std::string split
the id of the vehicle (train portion) that splits of upon reaching this stop
double startPos
The stopping position start.
std::string line
the new line id of the trip within a cyclical public transport route
double posLat
the lateral offset when stopping
bool onDemand
whether the stop may be skipped
std::string join
the id of the vehicle (train portion) to which this vehicle shall be joined
SUMOTime until
The time at which the vehicle may continue its journey.
SUMOTime ended
the time at which this stop was ended
double endPos
The stopping position end.
SUMOTime waitUntil
The earliest pickup time for a taxi stop.
std::string tripId
id of the trip within a cyclical public transport route
bool collision
Whether this stop was triggered by a collision.
SUMOTime arrival
The (expected) time at which the vehicle reaches the stop.
SUMOTime duration
The stopping duration.
Structure representing possible vehicle parameter.
int departLane
(optional) The lane the vehicle shall depart from (index in edge)
ArrivalSpeedDefinition arrivalSpeedProcedure
Information how the vehicle's end speed shall be chosen.
double departSpeed
(optional) The initial speed of the vehicle
std::vector< std::string > via
List of the via-edges the vehicle must visit.
ArrivalLaneDefinition arrivalLaneProcedure
Information how the vehicle shall choose the lane to arrive on.
long long int parametersSet
Information for the router which parameter were set, TraCI may modify this (when changing color)
DepartLaneDefinition departLaneProcedure
Information how the vehicle shall choose the lane to depart from.
bool wasSet(long long int what) const
Returns whether the given parameter was set.
DepartSpeedDefinition departSpeedProcedure
Information how the vehicle's initial speed shall be chosen.
double arrivalPos
(optional) The position the vehicle shall arrive on
ArrivalPosDefinition arrivalPosProcedure
Information how the vehicle shall choose the arrival position.
double arrivalSpeed
(optional) The final speed of the vehicle (not used yet)
int arrivalEdge
(optional) The final edge within the route of the vehicle
DepartPosDefinition departPosProcedure
Information how the vehicle shall choose the departure position.
static SUMOTime processActionStepLength(double given)
Checks and converts given value for the action step length from seconds to miliseconds assuring it be...
std::vector< std::string > getVector()
return vector of strings
#define DEBUG_COND
Definition json.hpp:4471
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
Definition json.hpp:21884
#define M_PI
Definition odrSpiral.cpp:45
Drive process items represent bounds on the safe velocity corresponding to the upcoming links.
Definition MSVehicle.h:1959
void adaptStopSpeed(const double v)
Definition MSVehicle.h:2006
double getLeaveSpeed() const
Definition MSVehicle.h:2010
void adaptLeaveSpeed(const double v)
Definition MSVehicle.h:1998
static std::map< const MSVehicle *, GapControlState * > refVehMap
stores reference vehicles currently in use by a gapController
Definition MSVehicle.h:1408
static GapControlVehStateListener * myVehStateListener
Definition MSVehicle.h:1411
void activate(double tauOriginal, double tauTarget, double additionalGap, double duration, double changeRate, double maxDecel, const MSVehicle *refVeh)
Start gap control with given params.
static void cleanup()
Static cleanup (removes vehicle state listener)
void deactivate()
Stop gap control.
static void init()
Static initalization (adds vehicle state listener)
A structure representing the best lanes for continuing the current route starting at 'lane'.
Definition MSVehicle.h:857
double length
The overall length which may be driven when using this lane without a lane change.
Definition MSVehicle.h:861
bool allowsContinuation
Whether this lane allows to continue the drive.
Definition MSVehicle.h:871
double nextOccupation
As occupation, but without the first lane.
Definition MSVehicle.h:867
std::vector< MSLane * > bestContinuations
Definition MSVehicle.h:877
MSLane * lane
The described lane.
Definition MSVehicle.h:859
double currentLength
The length which may be driven on this lane.
Definition MSVehicle.h:863
int bestLaneOffset
The (signed) number of lanes to be crossed to get to the lane which allows to continue the drive.
Definition MSVehicle.h:869
double occupation
The overall vehicle sum on consecutive lanes which can be passed without a lane change.
Definition MSVehicle.h:865